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ABSTRACT Smart grid construction provides the basic conditions for grid connection of renewable
energy power generation. However, the grid connection of large-scale intermittent renewable energy sources
increases the complexity of operational control of power systems.With the increase in intermittent renewable
energy grid connections, distribution system operators must optimize and integrate these new participants
to ensure the flexibility and stability of smart grids. Dividing the smart grid into logical clusters helps to
overcome the problems caused by intermittent renewable energy grid connections. In this study, we propose
a 2-step modeling approach that includes both link and leverage analyses to detect the network partitioning
and assess the stability of the smart grids. Our experimental results of the link analysis show that, despite
the identical scores in modularity and Silhouette Coefficients (SC), the total computational time of the linear
programming model for linkage (CD1) is 29.8% shorter than that of the quadratic programming model
for linkage (CD2) on 7 networks with fewer than 200 nodes, whereas CD2 is 29.5% faster than CD1 on
19 larger networks with more than 200 nodes. The leverage results of benchmark networks indicate that the
computational time of each instance with the proposed linear programming model for leverage (ID1) and
quadratic programming model for leverage (ID2) was substantially reduced, and the Critical Node Problem
(CNP) results of medium- and large-scale networks were better than those reported in the literature, which
play a significant role in smart grid optimization.

17 INDEX TERMS Intermittent renewable energy, smart grid, link analysis, leverage analysis, grid partitions.

I. INTRODUCTION18

The increasing demand for electricity has resulted in stricter19

requirements for reliable power supply. Thus, there is an20

urgent need to solve the problems of energy shortages and21

environmental pollution. The power industry regards the22

promotion of the development of renewable energy as an23

inevitable choice. With the rapid development of smart grids,24

renewable energy has attracted increasing social attention and25

the scale of development is increasing. The use of renewable26

energy has effectively promoted energy conservation and27

emission reduction, as well as alleviated the energy crisis [1].28

However, the disadvantages of intermittent renewable energy29

power generation, such as fluctuations, intermittence, low30

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

energy density, and unstable output, increase the complexity 31

of the operation and control of electrical grid systems [2]. 32

In intermittent renewable energy power generation, electric- 33

ity is generated by using recycled resources. Its advantages 34

can only be exploited when it is effectively combined with a 35

power grid. 36

Intermittent renewable energy power generation is a green, 37

low-carbon, and less polluting power generation method that 38

can save fossil energy and protect the environment. However, 39

owing to the volatility and uncertainty of renewable energy 40

power generation, the extensive use of renewable energy 41

affects the security and stability of the power grid. The secu- 42

rity of a power system is compromised to a certain extent [3]. 43

In combination with relevant smart grid technologies and the 44

grid connection of intermittent renewable sources, the grid 45

division of large-scale renewable energy consumption has 46
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been studied to maintain the stability and security of power47

systems after receiving intermittent renewable energy [4].48

Traditional power grid division is mainly based on admin-49

istrative regions and long-term operational experience [5].50

However, the traditional partitioning method cannot accu-51

rately reflect the partition characteristics of the grid, thus52

threatening its safe operation [6], [7]. Dividing the grid into53

logical clusters helps to integrate these intermittent renewable54

energy sources and adjust the grid to ensure stability and flex-55

ibility. However, because of the complexity of an integrated56

power grid, finding the best grid division is a very challenging57

task.58

Research on complex network community structures and59

their detection methods has been applied in many power60

grid analysis studies. Power systems are widely accepted as61

typical complex-network systems. To monitor the power grid62

operation state in real time and make dispatching decisions63

quickly, operators usually divide the power grid into several64

subregions to effectively improve the calculation speed and65

reduce the complexity of the power grid state analysis [8].66

Generally, the subarea division of a power network can be67

realized based on the operator’s experience or the geographi-68

cal area to which the subarea belongs. However, these meth-69

ods cannot accurately reflect the situation and correlation70

of all parts of the power grid or adapt to rapid changes in71

the operation of the power grid. Therefore, some scholars72

have applied community detection methods to obtain grid73

partitions and facilitate partitioning.74

In recent years, the complex network theory has been75

applied to research community network structures and com-76

munity detection. It was found that many networks have77

local aggregation characteristics owing to uneven edge rela-78

tionships. The network can be divided into multiple sub-79

networks. The internal connections of the sub-networks80

are relatively dense, and the connections between the81

sub-networks are relatively sparse. Accordingly, each sub-82

network is called a community; an example of the community83

structure is shown in Figure 1.84

FIGURE 1. Community structure sketch graph.

A community typically comprises of network nodes with 85

similar functions or properties. Its essence is the regional 86

coupling of the physical, chemical, and social interactions 87

between network nodes. The study of community structure 88

can help analyze the modules, functions, and evolution of 89

an entire network in a divide-and-rule manner. As a typical 90

artificial complex network system, modern power grids have 91

complex systems and network characteristics. The operation, 92

protection, and control of a traditional power grid are signifi- 93

cantly different from those of large-scale intermittent renew- 94

able energy power generation. Furthermore, the develop- 95

ment of large-scale intermittent renewable energy sources has 96

increased the complexity and vulnerability of smart grids [9]. 97

Therefore, the application of research on complex network 98

community structures in power grid analysis is a general 99

trend. 100

The current study focused on two research questions (see 101

Figure 2): (1) Howmany stable grid partitions do power grids 102

have? (2) How can the vulnerability and critical nodes of the 103

smart grids be assessed? First, we used a linear programming 104

model for linkage (CD1) and quadratic programming model 105

for linkage (CD2) to detect the network structure. Then, CD1 106

and CD2 were employed for leverage analysis to identify 107

the importance and influence of key players in the network. 108

We selected modularity and Silhouette Coefficients (SC) to 109

measure the partitioning quality of link analysis models (CD1 110

and CD2). The Critical Node Problem (CNP) and a measure 111

of fragmentation (F-score) were used to evaluate the perfor- 112

mance of the linear programming model for leverage (ID1) 113

and quadratic programming model for leverage (ID2). 114

FIGURE 2. Framework of smart grids analysis.

In the current study, we propose a comprehensive approach 115

combining link and leverage analyses to detect community 116

structure. We explored the community detection method 117

while considering the influence and disruption of key players 118

in power networks. Existing research mainly focuses on static 119

analysis, whereas the current study includes both static and 120

dynamic power network analyses. We detected the actual 121

grid structure and tracked how it changed over time. In this 122

study, benchmark networks of different sizes are selected 123

to verify the effectiveness of the proposed algorithms. The 124

results show that the proposed algorithm can explore com- 125

munity structures more effectively than the other algorithms. 126

The exploration of both link and leverage analyses provides 127

guidance for supervising smart grids. Moreover, the proposed 128

dimensionality reduction algorithm reduces time complexity 129

and significantly shortens computational time. This can play 130

a significant role in smart grid optimization. The remainder 131

of this paper is organized as follows. Section II presents a 132

detailed background andmodels of link and leverage analyses 133
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in smart grid partitions. In Section III, we use three bench-134

mark networks with different sizes to compare the results.135

Finally, Section IV provides concluding remarks and pro-136

poses future work.137

II. LINK AND LEVERAGE ANALYSES138

A. LINK ANALYSIS—COMMUNITY DETECTION139

Community detection is an important research field in social140

network analysis. This refers to the process of identifying141

interacting node groups based on their structural character-142

istics [10]. Community detection reveals the structure of a143

specific network community within a specific time range.144

This enables us to analyze problems from a group-level145

perspective [11]. Therefore, it has many application areas146

such as biology, physics, social science, appliedmathematics,147

and computer science, which can help complete group-level148

tasks. These application areas enhance the development of149

specific algorithms to create technology and tools for prac-150

tical use [12]. The computational complexity of community151

detection is hindered by two main factors: the large scale of152

current social networks and their evolving structures [13].153

Therefore, an increasing number of scholars are focusing on154

community detection in social network analysis and have155

conducted extensive research in this field. Modern network156

science has achieved many breakthroughs in the study of157

complex systems. In many cases, social networks can be158

represented by graphs, in which nodes are used to represent159

individuals in the network and edges represent interactive160

relationships. In sociology, biology, computer science, and161

other disciplines, community detection is important because162

systems in these disciplines are usually represented by graph-163

ics models. Although many interdisciplinary scientists have164

made great efforts in this field in the past few years, this165

problem remains difficult to solve satisfactorily in power-grid166

partitioning.167

Communities in networks are local structures with dense168

and sparse internal connections, which help solve complex169

problems. Large-scale networks are divided into consider-170

ably smaller loosely coupled sub-networks for easy control.171

In power grids, community structures are often used in power172

system recovery [14], [15], reactive power network parti-173

tioning [16], and coherency-based dynamic equivalence [17].174

Several methods have been commonly used in previous stud-175

ies to detect communities in networks, such as hierarchi-176

cal clustering [18], [19], modular optimization [20], [21],177

machine learning, and other algorithms [22], [23], [24]. Exist-178

ing studies and algorithms may only focus on the physical179

structure of the power grid and ignore its functions [25],180

thereby failing to fully reflect the electrical characteristics181

of the power grid. The multi-attribute partitioning method182

combines the k-means algorithm and evolutionary algorithm183

to divide the power grid. However, this approach requires pre-184

defining the number and size of the clusters, which affects185

their adaptability. Moreover, existing researchmainly focuses186

on static analysis, while the current study includes both static187

and dynamic power network analyses. We detected the actual 188

grid structure and tracked how it changed over time. 189

As observed in the literature, community detection and 190

key-player discovery are two distinct research topics with 191

many applications. To improve the robustness of a smart 192

grid system, this study focuses on the analysis of smart grid 193

partitioning and the influence of key players. We conducted 194

a leverage analysis on the influence and disruption of social 195

networks. Next, we show a 2-step modeling approach with 196

a common set of variables and constraints on community 197

detection and key-player discovery. Both problems can be 198

formulated as graphical problems. 199

B. LEVERAGE ANALYSIS—INFLUENCE AND DISRUPTION 200

Compared with traditional power grids, smart power grids 201

have self-healing and disaster-resistant abilities. However, the 202

destruction of critical nodes also causes vulnerability to smart 203

grids. Leverage analysis improves the system analysis ability 204

of the algorithm and identifies the importance and influence 205

of the key players (critical nodes) in the network. We define 206

the key players as nodes that generate the largest influence 207

on smart power networks. When such nodes are removed 208

from the network, the stability of the entire power network 209

is significantly disrupted. A leverage analysis of social net- 210

works is generally conducted from two aspects: influence and 211

disruption. The influence of key players plays a fundamental 212

role in social networking. Key players in achieving optimal 213

dissemination through the network were identified. The influ- 214

ence of key players in leverage analysis is analogous to the 215

‘‘Key Player Problem/Positive’’ (KPP-Pos) [26], in which 216

planners quickly spread information, behaviors, or goods by 217

searching a group of network nodes with the best location. 218

Disruption analysis aims to identify key players by removing 219

critical nodes that disrupt or fragment the network. This 220

aspect of leverage analysis is similar to that of ‘‘Key Player 221

Problem/Negative’’ (KPP-Neg) in [26], which depends on the 222

extent towhich the network relies on its key players to achieve 223

cohesion. 224

Several studies have examined the identification of the key 225

players in power networks. One way to identify key players is 226

based on centrality measures [27], [28]. Traditional centrality 227

measures for key player problems only consider the network 228

structure and do not consider additional information[29]. 229

A new approach uses entropy measures to detect key player 230

sets within a social network, providing a simple solution 231

to the KPP-Pos problem [30]. Entropy-based measures are 232

employed to identify the key player sets, but the shortcoming 233

of such methods is that they are limited to nondense hetero- 234

geneous networks [31], [32], [33]. 235

Related studies have aimed to identify a set of key players 236

rather than individual key players. The problem of maximiz- 237

ing influence was proposed to identify nodes that initially 238

adopt new products or innovations, such as a greedy-based 239

heuristic with a hill-climbing algorithm [34]. Analysis of dif- 240

fusion in social networks has always been a research hotspot 241

[35], [36]. Therefore, several algorithms have been proposed 242
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to identify the key players, and each method emphasizes a243

single object to be examined. However, in complex practical244

applications, a set of algorithms that can perform well for245

multiple interesting objects is required [37], [38], [39]. The246

current study proposes an improved algorithm with multiple247

objects to detect the actual smart grid structure and track its248

dynamic change.249

C. LINK AND LEVERAGE MODELS250

In this section, we present several models for community251

detection and measure the influence and disruption of link-252

ages within a network after removing critical nodes.253

The parameters and variables in the models are presented254

in Table 1:255

TABLE 1. Variable definitions.

We use a classical linear programming (LP) model [40] for256

social network link analysis and community detection (CD):257

CD1 for LP Model:258

max x0 =
∑

i,j>i
wijxij (1)259

s.t. xij + xik − xjk ≤ 1 forall distinct i, j, k ∈ V (2)260

where wij denotes the unrestricted edge weight. If edge261

(i, j) is in partition, xij is 1; otherwise, it is 0. It is an edge-262

based formula. Even for medium-scale graphs, the model was263

expanded into sizes with Cn
2 and 3Cn

3 constraints.264

In CD1, there are several major shortcomings: 1) the265

number of triangle inequality constraints increases with an266

increase in the size of nodes; and 2) the objective function267

cannot show the optimal number of clusters formed in the268

optimal solution directly because the objective function can- 269

not provide the information to assign data points to each 270

cluster. 271

An equivalent quadratic programming (QP) model [41] 272

was employed to address the issues in CD1. 273

CD2 for QP Model: 274

max x0 =
∑n−1

i=1

∑n

j=i+1
wij

∑c_max

k=1
xikxjk (3) 275

s.t.
∑c_max

k=1
xik = 1i = 1, n (4) 276

CD2 significantly reduces the number of constraints and 277

directly provides an optimal number of clusters. CD2 is 278

a node-oriented model with fewer variables than the CD1 279

model. The time complexity of CD2 is O(n(c_max)) com- 280

pared to that of CD1, which is O(n3). Although CD1 is a 281

linearmodel andCD2 is a quadraticmodel, the size difference 282

makes the quadratic model suitable for larger problems in 283

which the computational burden of CD1 hinders its practical 284

application. The main advantage of the CD2 model over the 285

CD1 model is that it can simultaneously determine the opti- 286

mal number of communities as well as the optimal allocation 287

of each member of the community. 288

After the optimal number of communities in a social net- 289

work is detected, the stability of the formed communities can 290

be assessed by removing the important nodes for leverage 291

analysis. As in CD1, we first introduce an LP model for 292

leverage analysis: influence and disruption (ID). 293

ID1 for LP Model: 294

Min
∑

i,j∈V
wijxij (5) 295

s.t. xij + yi + yj ≥ 1,∀(i, j) ∈ E (6) 296∑
i∈V

yi ≤ C (7) 297

xij + xik − xjk ≤ 1 forall distinct i, j, k ∈ V (8) 298

In the ID1 model, there are Cn
2 variables and Cn

3 + 1 299

constraints. 300

ID2 for QP Model: 301

Min
∑

i,j∈V

∑C

k=1
wijxikxjk (9) 302

s.t.
∑C+1

k=1
xik = 1,∀i ∈ V (10) 303∑

i∈V
xi,C+1 ≤ C (11) 304

xik + xjl ≤ 1,∀ (i, j) ∈ E, and k 6= l = 1, · · · ,C 305

(12) 306

In ID2, the number of variables is nC and the number of 307

constraints is n+nC(n-1)/2+1. ID2 had fewer variables and 308

constraints than ID1. The time complexity of ID1 is O(n3), 309

whereas that of ID2 is only O((C)n2). Both models can be 310

solved using an exact solver, such as Gurobi. 311

D. PERFORMANCE MEASURES OF LINK AND 312

LEVERAGE MODELS 313

It is difficult to identify the optimal number of communities 314

by using clustering approaches. The most popular method for 315
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detecting communities in a graph is to optimize the quality316

function, that is, modularization introduced by [42]. Modu-317

larity refers to the number of edges in a packet minus the318

expected number of randomly placed edges in an equivalent319

network.Modularization quantifies the deviation between the320

internal link density of a cluster and the density expected in321

the same vertex group in randomgraphs, with the same expec-322

tation as the network degree sequence. Vertices linked to each323

other randomly cannot form communities because high link324

density values cannot be obtained. Therefore, the high values325

of modularity must represent the ‘‘suspicious’’ high values of326

the internal link densities of the subgraphs. These subgraphs327

differ from the vertex groups of random links and can be328

regarded as real communities [43].329

Let G= (V, E, ω) be an undirected weighted graph without330

parallel edges and with non-empty sets Bader et al. [44]331

defined the following quality measures for partitioning.332

modularity(C) :=

∑
C∈c

∑
{u, v} ∈ E
u, v ∈ C

ω({u, v})

∑
e∈E ω(e)

333

−

∑
C∈c (

∑
v ∈ C (ω(v))2

4(
∑

e ∈ E ω(e))2
(13)334

This function shows the difference between the number of335

edges inside the module and the number of edges between336

modules.337

The current study used the standard Silhouette Coefficient338

(SC) [45] to measure the partitioning quality. The SC value is339

a measure of the ratio of the distance between a member and340

other members in its own community compared to those in341

adjacent communities. This shows how similar that observa-342

tion is to other observations in a neighboring cluster. The SC343

value of member i is defined as344

S (i) =
b (i)− a(i)

max {a (i) , b(i)}
(14)345

where b (i) is the average distance between member i and all346

other members in the closest adjacent community and a (i) is347

the average distance betweenmember i and all othermembers348

in its own community.349

To measure the influence and disruption of social net-350

works, we adopt two measures:351

(1) Minimize the total number of CNP using [46]:352

MinimizeF (n1, · · · , nL ,L) =
1
2

∑L

l=1
nl · (nl − 1) (15)353

denoted by nl , l = 1,. . . , L, and the number of nodes in each354

cluster (i.e., CNP) is equal to the objective function value355

of ID1 (5) or ID2 (9). Critical nodes and edges can char-356

acterize the vulnerability and robustness of a given network357

system. The removal of nodes and edges caused by adver-358

sarial attacks, random failures due to operating conditions,359

or natural disasters can damage the entire network system.360

The CNP shows the influence of the critical nodes removed361

from the network.362

TABLE 2. Data description.

FIGURE 3. Partition of Karate club social network.

(2) The F-measure is similar to the diversity measure, such 363

as heterogeneity or the Herfifindahl index. The F-score mea- 364

sure indicates network fragmentation. The maximum frag- 365

mentation occurs when each node is independent, creating 366

the same number of components as the nodes. Measurement 367

of fragmentation (F-score) proposed in [26] as 368

F = 1−

∑
k sk (sk − 1)
n (n− 1)

(16) 369

100238 VOLUME 10, 2022



W. Wang et al.: Leveraging the Influence of Power Grid Links in Renewable Energy Power Generation

TABLE 3. Illustration of links and disruption of critical nodes (600 s time limit).

FIGURE 4. Silhouette plot of Karate club social network.

where sk is the size of the connected sub-network after the370

node removal. (
∑
k[sk (sk − 1)])/n(n−1) measures the con-371

nectivity of the remaining network when nodes are removed.372

III. CASE STUDY 373

A. DATA 374

This study uses the same set of benchmark networks for both 375

the link and leverage analyses. We used the same datasets as 376

in [46], [47], and [48] (see Table 2). The majority of [46] 377

benchmark networks can be found in this resource. Five 378

real-life medium-scale networks were employed by [47], and 379

[48] proposed heuristics of 16 benchmark random graph 380

structures based on four different types of complex net- 381

work models: Barabasi–Albert, Erdos–Renyi, forest fire, and 382

Watts–Strogatz. For eachmodel of link and leverage analyses, 383

commercial software such as Gurobi 9.0, was implemented 384

on a set of test problems. The computational results were 385

summarized and visualized using R software. 386

B. RESULTS 387

1) LINK ANALYSIS 388

The modeling of complex networks can be static or dynamic; 389

therefore, for these two networks, community detection can 390
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TABLE 4. Leverage results comparison to [46] (small-scale network).

FIGURE 5. Partition of US Airlines 332 network.

be performed. A static network can be considered as a frozen391

network within a specific time interval. However, over time,392

the communities in the network may continue to expand or393

shrink, and new communities may emerge, while some exist-394

ing communities may disappear. Dynamic community detec-395

tion can reveal and process dynamic communities. Therefore,396

the purpose of static community detection is to identify397

the actual community structure, whereas that of dynamic398

community detection is to detect and track how community399

structure changes over time.400

This study proposed linear and quadratic programming401

models for clique partitioning in link analysis, which are402

robust compared to traditional approaches. This algorithm403

divides vertices into g groups, and the size of the g groups404

is predefined to obtain the minimum number of connections405

between identified communities [54]. The number of vertices406

between clusters is called cut size. If the number of clusters407

is not provided in advance and the minimum cut size is used408

FIGURE 6. Partition of Erdos 472 network.

for partitioning, the output will be a trivial solution. The links 409

and disruptions of the critical nodes are listed in Table 3. 410

From Table 3, we can observe that despite the identical 411

scores in modularity and SC, the computational times are dif- 412

ferent. For each problem instance, the optimal computational 413

times are highlighted in bold. The total computational time of 414

CD1 is 29.8% shorter than that of CD2 on 7 networks with 415

fewer than 200 nodes, whereas CD2 is 29.5% faster than CD1 416

on 19 larger networks with more than 200 nodes. Taking the 417

Karate network as an example, computational time of CD1 418

is 0.13 s, which is much smaller than that of CD2 (33 s). 419

However, for large networks such as the BA2500 network, 420

the computational time of CD2 (297 s) is much shorter than 421

that of CD1 (591 s). 422

2) LEVERAGE ANALYSIS 423

Leverage analysis was used in this study to determine the 424

importance and influence of critical nodes in a smart grid. 425
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TABLE 5. Graphical results of [46]. TABLE 5. (Continued.) Graphical results of [46].

TABLE 6. Leverage results comparison to [47] (medium-scale network).

We compared the results for the datasets of the Karate Club 426

social network [46], [49]. The literature identified clusters 427

of 34 participants aligned and reported the number of social 428

contexts in which each pair of participants interacted. The 429

data were displayed in the form of a network with an edge 430

attribute context, which provided the number of interaction 431

contexts for a pair of participants. Each member of the club is 432

represented by nodes and the connections between members 433
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TABLE 7. Leverage results comparison to [48] (large-scale network).

are represented by edges. The leverage results compared to434

those in [46] are presented in Table 4.435

By comparing these three results, it can be observed that436

the CNP values of ID1 and ID2 outperformed the results437

of [46] when C=1 (CNP=61 compared with the best-known438

CNP=62 in the literature) and C=2 (CNP=45 compared439

with the best-known CNP=54 in the literature). For C=9–10,440

there were multiple optimal solutions for fragmentation with441

the same objectives, and their F-scores were the same. For442

example, when C=9, nodes removed in ID1 include 1, 2, 3,443

4, 6, 24, 32, 33, and 34 (same as the BKS in the literature),444

while nodes removed in ID2 include 1, 2, 3, 4, 7, 24, 32,445

33, and 34. For C=6–8, ID2 has a better F-score than ID1,446

even though both have the same CNP, but different nodes447

are removed from the graph. For example, when C=6, the448

F-score was 0.942 in ID2, which is larger than ID1 and BKS449

in the literature (F-score=0.930). The nodes removed in ID2450

include 1, 2, 3, 24, 33, and 34, which is different from the451

nodes removed (1, 2, 3, 6, 33, and 34) in ID1 and BKS in452

the literature. Figure 3 shows the partition of the Karate Club453

social network. Nodes with different colors represent differ-454

ent sub-networks partitioned by the proposed algorithm, and455

edges represent the interactive relationships between these456

sub-networks. For example, nodes 5, 6, 7, 11, and 17 are457

classified in a sub-network, while nodes 24, 25, 26, 28, 29,458

and 32 belong to another sub-network. Figure 4 presents a459

Silhouette plot of the Karate Club social network. The aver-460

age Silhouette width was 0.53, and the plot indicates that the461

number of clusters= 4 generated the best partitioning quality,462

which is consistent with the literature [46]. Table 5 shows463

a graphical comparison of the best results in ID2 based on464

the F-score with the results from the literature. We can see465

obvious differences in the graphical results.466

Table 6 presents a comparison of the results to those in [47],467

which indicates that our study obtained better results for468

medium-scale networks. The computational time and CNP469

were significantly shorter than those reported in the literature.470

TABLE 8. Graphical results of [48].
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TABLE 8. (Continued.) Graphical results of [48]. TABLE 8. (Continued.) Graphical results of [48].
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TABLE 8. (Continued.) Graphical results of [48].

For example, the computational time of US air332 is 0.39 s,471

which is much shorter than the BKS (371.3 s) in the literature472

with 10 nodes removed. The CNP value is 1237, which is473

also much smaller than that of BKS (CNP=12066) reported474

in the literature. Figures 5 and 6 show the partition of the US475

Airlines 332 network and Erdos 472 network by applying the476

model proposed in the current study. The nodes with different477

colors represent the sub-network partitioned by the proposed478

algorithm. As we do not have the details of what nodes479

were removed from the network in [47], we were unable to480

compute the F-score for that paper.481

Table 7 presents a comparison of the results with those482

in [48]. It shows that the algorithm proposed by this study483

generated better results for large-scale networks. For exam-484

ple, the current study obtained better results for BA1000 with485

75 nodes removed. The computational time was shortened486

from 172 s to 28.83 s, and the CNP value was reduced487

from 558 to 335. In addition, our results showed a signifi-488

cantly smaller connected component size. Furthermore, the489

computational time of each benchmark network in our model490

is much shorter than that in [48]. Table 8 shows the graphical491

results of [48]. It shows the changes in the network partition492

for each benchmark network after critical nodes are removed.493

The results of the leverage analysis indicate that ID1 and494

ID2 outperformed the models in the literature in terms of495

computational time.496

IV. DISCUSSION AND CONCLUSION497

The current study provides a new framework to solve498

the problems of smart grid partitioning and critical nodes499

identification using both link and leverage analyses. It con- 500

tributes to the literature by identifying the optimal grid parti- 501

tions and critical nodes in the power network to alleviate the 502

vulnerability of the smart grids. 503

Three benchmark networks of different sizes were used 504

to compare the results. Furthermore, linear and quadratic 505

programming models were proposed for link and leverage 506

analyses, and were found to be robust compared with tra- 507

ditional approaches. Our experimental results of the link 508

analysis show that, despite the identical scores in modularity 509

and SC, the total computational time of CD1 is 29.8% shorter 510

than that of CD2 on 7 networks with fewer than 200 nodes, 511

whereas CD2 is 29.5% faster than CD1 on 19 larger networks 512

with more than 200 nodes. Therefore, CD1 is more suitable 513

for small-scale networks whereas CD2 is more efficient for 514

large-scale networks with more than 200 nodes. The lever- 515

age results of benchmark networks [46], [47], [48] indicate 516

that the computational time of each instance with the new 517

proposed models (ID1 and ID2) was substantially reduced, 518

and the CNP results of medium- and large-scale networks 519

were better than those reported in the literature, which play a 520

significant role in smart grid optimization. 521

The proposed dimensionality reduction algorithm reduces 522

time complexity and significantly shortens computational 523

time. Themethods proposed in this study can contribute to the 524

real-time planning and operation of smart grids. The appli- 525

cation of partitioning consumers according to their energy 526

demand and supply can be explored. In addition, the link and 527

leverage analyses of smart grids can connect future decen- 528

tralized intermittent renewable energy communities to smart 529

grids. By obtaining optimal grid partitions and identifying 530

the critical nodes in the smart grids, we can alleviate the 531

vulnerability of smart grids and improve the security and 532

stability of large-scale power grids. 533

There are some limitations of the current study, and we 534

plan to expand this research further. The effectiveness of 535

the proposed algorithm in an actual power grid is worthy of 536

further study. Meanwhile, additional electrical characteristics 537

of the grid will be considered to detect energy communities in 538

future studies. How to integratemore electrical characteristics 539

into the model and apply the algorithm to larger networks 540

remains to be explored further. In addition, the relationship 541

between themodularization index and the power network par- 542

tition process should be studied further, and multiple objec- 543

tives should be considered simultaneously using the multi- 544

objective method. 545
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