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ABSTRACT Smart grid construction provides the basic conditions for grid connection of renewable
energy power generation. However, the grid connection of large-scale intermittent renewable energy sources
increases the complexity of operational control of power systems. With the increase in intermittent renewable
energy grid connections, distribution system operators must optimize and integrate these new participants
to ensure the flexibility and stability of smart grids. Dividing the smart grid into logical clusters helps to
overcome the problems caused by intermittent renewable energy grid connections. In this study, we propose
a 2-step modeling approach that includes both link and leverage analyses to detect the network partitioning
and assess the stability of the smart grids. Our experimental results of the link analysis show that, despite
the identical scores in modularity and Silhouette Coefficients (SC), the total computational time of the linear
programming model for linkage (CD1) is 29.8% shorter than that of the quadratic programming model
for linkage (CD2) on 7 networks with fewer than 200 nodes, whereas CD2 is 29.5% faster than CD1 on
19 larger networks with more than 200 nodes. The leverage results of benchmark networks indicate that the
computational time of each instance with the proposed linear programming model for leverage (ID1) and
quadratic programming model for leverage (ID2) was substantially reduced, and the Critical Node Problem
(CNP) results of medium- and large-scale networks were better than those reported in the literature, which
play a significant role in smart grid optimization.

INDEX TERMS Intermittent renewable energy, smart grid, link analysis, leverage analysis, grid partitions.

I. INTRODUCTION energy density, and unstable output, increase the complexity

The increasing demand for electricity has resulted in stricter
requirements for reliable power supply. Thus, there is an
urgent need to solve the problems of energy shortages and
environmental pollution. The power industry regards the
promotion of the development of renewable energy as an
inevitable choice. With the rapid development of smart grids,
renewable energy has attracted increasing social attention and
the scale of development is increasing. The use of renewable
energy has effectively promoted energy conservation and
emission reduction, as well as alleviated the energy crisis [1].
However, the disadvantages of intermittent renewable energy
power generation, such as fluctuations, intermittence, low

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.
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of the operation and control of electrical grid systems [2].
In intermittent renewable energy power generation, electric-
ity is generated by using recycled resources. Its advantages
can only be exploited when it is effectively combined with a
power grid.

Intermittent renewable energy power generation is a green,
low-carbon, and less polluting power generation method that
can save fossil energy and protect the environment. However,
owing to the volatility and uncertainty of renewable energy
power generation, the extensive use of renewable energy
affects the security and stability of the power grid. The secu-
rity of a power system is compromised to a certain extent [3].
In combination with relevant smart grid technologies and the
grid connection of intermittent renewable sources, the grid
division of large-scale renewable energy consumption has
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been studied to maintain the stability and security of power
systems after receiving intermittent renewable energy [4].
Traditional power grid division is mainly based on admin-
istrative regions and long-term operational experience [5].
However, the traditional partitioning method cannot accu-
rately reflect the partition characteristics of the grid, thus
threatening its safe operation [6], [7]. Dividing the grid into
logical clusters helps to integrate these intermittent renewable
energy sources and adjust the grid to ensure stability and flex-
ibility. However, because of the complexity of an integrated
power grid, finding the best grid division is a very challenging
task.

Research on complex network community structures and
their detection methods has been applied in many power
grid analysis studies. Power systems are widely accepted as
typical complex-network systems. To monitor the power grid
operation state in real time and make dispatching decisions
quickly, operators usually divide the power grid into several
subregions to effectively improve the calculation speed and
reduce the complexity of the power grid state analysis [8].
Generally, the subarea division of a power network can be
realized based on the operator’s experience or the geographi-
cal area to which the subarea belongs. However, these meth-
ods cannot accurately reflect the situation and correlation
of all parts of the power grid or adapt to rapid changes in
the operation of the power grid. Therefore, some scholars
have applied community detection methods to obtain grid
partitions and facilitate partitioning.

In recent years, the complex network theory has been
applied to research community network structures and com-
munity detection. It was found that many networks have
local aggregation characteristics owing to uneven edge rela-
tionships. The network can be divided into multiple sub-
networks. The internal connections of the sub-networks
are relatively dense, and the connections between the
sub-networks are relatively sparse. Accordingly, each sub-
network is called a community; an example of the community
structure is shown in Figure 1.

FIGURE 1. Community structure sketch graph.
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A community typically comprises of network nodes with
similar functions or properties. Its essence is the regional
coupling of the physical, chemical, and social interactions
between network nodes. The study of community structure
can help analyze the modules, functions, and evolution of
an entire network in a divide-and-rule manner. As a typical
artificial complex network system, modern power grids have
complex systems and network characteristics. The operation,
protection, and control of a traditional power grid are signifi-
cantly different from those of large-scale intermittent renew-
able energy power generation. Furthermore, the develop-
ment of large-scale intermittent renewable energy sources has
increased the complexity and vulnerability of smart grids [9].
Therefore, the application of research on complex network
community structures in power grid analysis is a general
trend.

The current study focused on two research questions (see
Figure 2): (1) How many stable grid partitions do power grids
have? (2) How can the vulnerability and critical nodes of the
smart grids be assessed? First, we used a linear programming
model for linkage (CD1) and quadratic programming model
for linkage (CD2) to detect the network structure. Then, CD1
and CD2 were employed for leverage analysis to identify
the importance and influence of key players in the network.
We selected modularity and Silhouette Coefficients (SC) to
measure the partitioning quality of link analysis models (CD1
and CD?2). The Critical Node Problem (CNP) and a measure
of fragmentation (F-score) were used to evaluate the perfor-
mance of the linear programming model for leverage (ID1)
and quadratic programming model for leverage (ID2).

Link Analysis:

Community Detection

Leverage Analysis:

Influence and Disruption

FIGURE 2. Framework of smart grids analysis.

In the current study, we propose a comprehensive approach
combining link and leverage analyses to detect community
structure. We explored the community detection method
while considering the influence and disruption of key players
in power networks. Existing research mainly focuses on static
analysis, whereas the current study includes both static and
dynamic power network analyses. We detected the actual
grid structure and tracked how it changed over time. In this
study, benchmark networks of different sizes are selected
to verify the effectiveness of the proposed algorithms. The
results show that the proposed algorithm can explore com-
munity structures more effectively than the other algorithms.
The exploration of both link and leverage analyses provides
guidance for supervising smart grids. Moreover, the proposed
dimensionality reduction algorithm reduces time complexity
and significantly shortens computational time. This can play
a significant role in smart grid optimization. The remainder
of this paper is organized as follows. Section II presents a
detailed background and models of link and leverage analyses
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in smart grid partitions. In Section III, we use three bench-
mark networks with different sizes to compare the results.
Finally, Section IV provides concluding remarks and pro-
poses future work.

II. LINK AND LEVERAGE ANALYSES

A. LINK ANALYSIS—COMMUNITY DETECTION

Community detection is an important research field in social
network analysis. This refers to the process of identifying
interacting node groups based on their structural character-
istics [10]. Community detection reveals the structure of a
specific network community within a specific time range.
This enables us to analyze problems from a group-level
perspective [11]. Therefore, it has many application areas
such as biology, physics, social science, applied mathematics,
and computer science, which can help complete group-level
tasks. These application areas enhance the development of
specific algorithms to create technology and tools for prac-
tical use [12]. The computational complexity of community
detection is hindered by two main factors: the large scale of
current social networks and their evolving structures [13].
Therefore, an increasing number of scholars are focusing on
community detection in social network analysis and have
conducted extensive research in this field. Modern network
science has achieved many breakthroughs in the study of
complex systems. In many cases, social networks can be
represented by graphs, in which nodes are used to represent
individuals in the network and edges represent interactive
relationships. In sociology, biology, computer science, and
other disciplines, community detection is important because
systems in these disciplines are usually represented by graph-
ics models. Although many interdisciplinary scientists have
made great efforts in this field in the past few years, this
problem remains difficult to solve satisfactorily in power-grid
partitioning.

Communities in networks are local structures with dense
and sparse internal connections, which help solve complex
problems. Large-scale networks are divided into consider-
ably smaller loosely coupled sub-networks for easy control.
In power grids, community structures are often used in power
system recovery [14], [15], reactive power network parti-
tioning [16], and coherency-based dynamic equivalence [17].
Several methods have been commonly used in previous stud-
ies to detect communities in networks, such as hierarchi-
cal clustering [18], [19], modular optimization [20], [21],
machine learning, and other algorithms [22], [23], [24]. Exist-
ing studies and algorithms may only focus on the physical
structure of the power grid and ignore its functions [25],
thereby failing to fully reflect the electrical characteristics
of the power grid. The multi-attribute partitioning method
combines the k-means algorithm and evolutionary algorithm
to divide the power grid. However, this approach requires pre-
defining the number and size of the clusters, which affects
their adaptability. Moreover, existing research mainly focuses
on static analysis, while the current study includes both static
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and dynamic power network analyses. We detected the actual
grid structure and tracked how it changed over time.

As observed in the literature, community detection and
key-player discovery are two distinct research topics with
many applications. To improve the robustness of a smart
grid system, this study focuses on the analysis of smart grid
partitioning and the influence of key players. We conducted
a leverage analysis on the influence and disruption of social
networks. Next, we show a 2-step modeling approach with
a common set of variables and constraints on community
detection and key-player discovery. Both problems can be
formulated as graphical problems.

B. LEVERAGE ANALYSIS—INFLUENCE AND DISRUPTION
Compared with traditional power grids, smart power grids
have self-healing and disaster-resistant abilities. However, the
destruction of critical nodes also causes vulnerability to smart
grids. Leverage analysis improves the system analysis ability
of the algorithm and identifies the importance and influence
of the key players (critical nodes) in the network. We define
the key players as nodes that generate the largest influence
on smart power networks. When such nodes are removed
from the network, the stability of the entire power network
is significantly disrupted. A leverage analysis of social net-
works is generally conducted from two aspects: influence and
disruption. The influence of key players plays a fundamental
role in social networking. Key players in achieving optimal
dissemination through the network were identified. The influ-
ence of key players in leverage analysis is analogous to the
“Key Player Problem/Positive”” (KPP-Pos) [26], in which
planners quickly spread information, behaviors, or goods by
searching a group of network nodes with the best location.
Disruption analysis aims to identify key players by removing
critical nodes that disrupt or fragment the network. This
aspect of leverage analysis is similar to that of “Key Player
Problem/Negative” (KPP-Neg) in [26], which depends on the
extent to which the network relies on its key players to achieve
cohesion.

Several studies have examined the identification of the key
players in power networks. One way to identify key players is
based on centrality measures [27], [28]. Traditional centrality
measures for key player problems only consider the network
structure and do not consider additional information[29].
A new approach uses entropy measures to detect key player
sets within a social network, providing a simple solution
to the KPP-Pos problem [30]. Entropy-based measures are
employed to identify the key player sets, but the shortcoming
of such methods is that they are limited to nondense hetero-
geneous networks [31], [32], [33].

Related studies have aimed to identify a set of key players
rather than individual key players. The problem of maximiz-
ing influence was proposed to identify nodes that initially
adopt new products or innovations, such as a greedy-based
heuristic with a hill-climbing algorithm [34]. Analysis of dif-
fusion in social networks has always been a research hotspot
[35], [36]. Therefore, several algorithms have been proposed
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to identify the key players, and each method emphasizes a
single object to be examined. However, in complex practical
applications, a set of algorithms that can perform well for
multiple interesting objects is required [37], [38], [39]. The
current study proposes an improved algorithm with multiple
objects to detect the actual smart grid structure and track its
dynamic change.

C. LINK AND LEVERAGE MODELS
In this section, we present several models for community
detection and measure the influence and disruption of link-
ages within a network after removing critical nodes.

The parameters and variables in the models are presented
in Table 1:

TABLE 1. Variable definitions.

G=(V,E) An undirected graph where V is the set of nodes and
E the set of edges
wij A signed weight on edge (i,j) € E
Xij Equal to 1 if nodes i and j are in the same cluster, 0
otherwise
C Total number of possible nodes to be removed from
\%
C+l1 The index of the cluster that all removing nodes are
assigned to
Xis Equal to 1 if node i is moved to cluster s,
s=1,...,C,C+1, 0 otherwise
XisXjs Equal to 1 if an edge (i) is assigned to a cluster s,
s=1,...,C, 0 otherwise; There cannot be an edge
between two nodes in two different clusters s+ t, for
st=1,...,C
Vi Equal to 1 if node i is removed from V, 0 otherwise

Link/Leverage analysis

Link analysis:  Assign all nodes of V to C_max clusters such that:

community 1. Each node is assigned to one cluster

detection (CD) 2. The sum of the edge weights over all
clusters formed is as large as possible

Leverage Assign all nodes of V to C+1 clusters such that:

analysis: 1. Eachnode is assigned to one cluster
influence and 2. Nodes in cluster C+1 cannot be more than C
disruption 3. No edge can exist between two nodes in to
(ID) different clusters 1,...,C

4.  Minimize all edges remaining in clusters

1,...,C

We use a classical linear programming (LP) model [40] for
social network link analysis and community detection (CD):
CD1 for LP Model:

max xpg = Zi />iw,:jx,:j (1)

s.t. xjj+xi — xjk < 1 forall distincti,j,k €V (2)

where wj; denotes the unrestricted edge weight. If edge
(i, j) is in partition, x;jj is 1; otherwise, it is 0. It is an edge-
based formula. Even for medium-scale graphs, the model was
expanded into sizes with C; and 3C5 constraints.

In CDI, there are several major shortcomings: 1) the
number of triangle inequality constraints increases with an
increase in the size of nodes; and 2) the objective function
cannot show the optimal number of clusters formed in the
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optimal solution directly because the objective function can-
not provide the information to assign data points to each
cluster.

An equivalent quadratic programming (QP) model [41]
was employed to address the issues in CD1.

CD2 for QP Model:
n—1 n c_max
max xpg = Zi:l Zj=i+1 W,‘j Zk:l x,'kxjk (3)
c_max .
s.t. Zk:l xip=1li=1,n “4)

CD2 significantly reduces the number of constraints and
directly provides an optimal number of clusters. CD2 is
a node-oriented model with fewer variables than the CDI
model. The time complexity of CD2 is O(n(c_max)) com-
pared to that of CD1, which is O(n?). Although CDI is a
linear model and CD2 is a quadratic model, the size difference
makes the quadratic model suitable for larger problems in
which the computational burden of CD1 hinders its practical
application. The main advantage of the CD2 model over the
CD1 model is that it can simultaneously determine the opti-
mal number of communities as well as the optimal allocation
of each member of the community.

After the optimal number of communities in a social net-
work is detected, the stability of the formed communities can
be assessed by removing the important nodes for leverage
analysis. As in CD1, we first introduce an LP model for
leverage analysis: influence and disruption (ID).

ID1 for LP Model:

Min Zi’jev Wi )
st xj+yi+y = LVG, ) €E (6)
Y. w=C )

i€V

Xjj + xix — xji < 1 forall distinct i,j,k € V. (8)

In the ID1 model, there are C} variables and Cg‘ + 1
constraints.

ID2 for QP Model:
. C
Min Zi’jev Zk:l WiiXikXjk 9
C+1 ,
s.1. Zk:l xx=1,VieV (10)
Doy tic+1 =C (11)
Xg +x < 1L,V j))€eE, andk #1=1,---,C

(12)

In ID2, the number of variables is nC and the number of
constraints is n+nC(n-1)/2+41. ID2 had fewer variables and
constraints than ID1. The time complexity of ID1 is O(n?),
whereas that of ID2 is only O((C)n2). Both models can be
solved using an exact solver, such as Gurobi.

D. PERFORMANCE MEASURES OF LINK AND

LEVERAGE MODELS

It is difficult to identify the optimal number of communities
by using clustering approaches. The most popular method for
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detecting communities in a graph is to optimize the quality
function, that is, modularization introduced by [42]. Modu-
larity refers to the number of edges in a packet minus the
expected number of randomly placed edges in an equivalent
network. Modularization quantifies the deviation between the
internal link density of a cluster and the density expected in
the same vertex group in random graphs, with the same expec-
tation as the network degree sequence. Vertices linked to each
other randomly cannot form communities because high link
density values cannot be obtained. Therefore, the high values
of modularity must represent the “suspicious’ high values of
the internal link densities of the subgraphs. These subgraphs
differ from the vertex groups of random links and can be
regarded as real communities [43].

Let G = (V, E, w) be an undirected weighted graph without
parallel edges and with non-empty sets Bader er al. [44]
defined the following quality measures for partitioning.

Yeee X v} e £ @u VD
uveC
ZeeE w(e)

Ycee Xy e ¢ (@)

— 13
A, c g @@ 4

modularity(C) :=

This function shows the difference between the number of
edges inside the module and the number of edges between
modules.

The current study used the standard Silhouette Coefficient
(SC) [45] to measure the partitioning quality. The SC value is
a measure of the ratio of the distance between a member and
other members in its own community compared to those in
adjacent communities. This shows how similar that observa-
tion is to other observations in a neighboring cluster. The SC
value of member i is defined as

5(0) = — Db _ (14)
max {a (i) , b(i)}
where b (i) is the average distance between member i and all
other members in the closest adjacent community and a (i) is
the average distance between member i and all other members
in its own community.

To measure the influence and disruption of social net-
works, we adopt two measures:

(1) Minimize the total number of CNP using [46]:

. l L
MinimizeF (n, -+ ny, L) = lel n - — 1) (15)

denoted by n;, / = 1,..., L, and the number of nodes in each
cluster (i.e., CNP) is equal to the objective function value
of ID1 (5) or ID2 (9). Critical nodes and edges can char-
acterize the vulnerability and robustness of a given network
system. The removal of nodes and edges caused by adver-
sarial attacks, random failures due to operating conditions,
or natural disasters can damage the entire network system.
The CNP shows the influence of the critical nodes removed
from the network.
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TABLE 2. Data description.

Number
Benchmark of Number Edge density ~ Source
networks of edges

nodes
karate 34 78 0.1390 [49]
dolphins 62 159 0.0841 [50]
chesapeake 39 170 0.0809 [46]
US Airlines
332 network 332 2126 0.0387 [51]
Lea Mis 77 254 0.0868
Books 105 441 0.0808
Football 115 613 0.0935 [52]
Jazz 198 2742 0.1406
Netscience 379 2742 0.0022
Collaborators
379 network 379 914 0.0128 [51]
Erdos 472
collaboration 472 1314 0.0118 [53]
network
ER235 235 349 0.0127
ER466 466 700 0.0065
ER941 941 1400 0.0032
ER2344 2344 3500 0.0013
BA500 500 499 0.0040
BA1000 1000 999 0.0020
BA2500 2500 2499 0.0008
BA5000 5000 4999 0.0004 48]
WS250 250 1250 0.0402
WS500 500 1500 0.0120
WS1000 1000 5000 0.0100
WS1500 1500 4500 0.0040
FF250 250 400 0.0129
FF500 500 792 0.0063
FF1000 1000 1633 0.0033
FF1000 1000 1633 0.0033

FIGURE 3. Partition of Karate club social network.

(2) The F-measure is similar to the diversity measure, such
as heterogeneity or the Herfifindahl index. The F-score mea-
sure indicates network fragmentation. The maximum frag-
mentation occurs when each node is independent, creating
the same number of components as the nodes. Measurement
of fragmentation (F-score) proposed in [26] as

Dok sk (s —1)
nn—1)

F=1-— (16)
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TABLE 3. lllustration of links and disruption of critical nodes (600 s time limit).

Benchmark #node C_max CD1 CDh2
networks Modularity sC Time Modularity sC Time
Karate 34 4 0.42 0.53 0.13 0.42 0.53 33
chesapeake 39 3 0.27 0.32 15 0.27 0.32 4
dolphins 62 5 0.53 0.46 3 0.53 0.46 114
Lea Mis 77 6 0.56 0.47 12 0.56 0.47 76
Books 105 5 0.52 0.48 119 0.52 0.48 55
Football 115 10 0.60 0.24 47 0.60 0.24 102
Jazz 198 4 0.44 0.60 437 0.44 0.60 518
ER235 235 9 0.62 0.51 219 0.62 0.26 163
FF250 250 67 0.62 0.59 316 0.62 0.59 206
WS250 250 12 0.69 0.57 131 0.69 0.57 144
US Air332 332 6 0.19 0.54 516 0.19 0.54 480
Netscience 379 19 0.96 0.47 584 0.96 0.47 386
ER466 466 27 0.65 0.51 413 0.65 0.51 227
Erdos 472 472 9 0.51 0.51 578 0.51 0.51 424
FE500 500 65 0.78 0.58 428 0.78 0.58 249
BA500 500 16 0.89 0.66 512 0.89 0.66 376
WS500 500 20 0.78 0.55 179 0.78 0.55 167
ER941 941 77 0.66 0.52 447 0.66 0.52 375
BA1000 1000 15 091 0.69 563 0.91 0.69 315
FF1000 1000 61 0.80 0.55 515 0.80 0.55 322
WS1000 1000 25 0.80 0.54 265 0.80 0.54 195
WS1500 1500 30 0.87 0.53 439 0.87 0.53 238
FF2000 2000 69 0.88 0.55 587 0.88 0.55 392
ER2344 2344 93 0.68 0.50 579 0.68 0.50 572
BA2500 2500 23 0.95 0.57 591 0.95 0.57 297
BA35000 5000 63 0.96 0.55 584 0.96 0.55 426
Silhouette plot of (x = c4$membership, dist = dE2) lll. CASE STUDY
i A. DATA
3 This study uses the same set of benchmark networks for both
3 BHiEL the link and leverage analyses. We used the same datasets as
?Z in [46], [47], and [48] (see Table 2). The majority of [46]
v Sl benchmark networks can be found in this resource. Five
b real-life medium-scale networks were employed by [47], and
s 3 12] 041 [48] proposed heuristics of 16 benchmark random graph
4 structures based on four different types of complex net-
< 4: 6067 work models: Barabasi—Albert, Erdos—Renyi, forest fire, and
= 1 I : ‘ 1 . ‘ Watts—Strogatz. For each model of link and leverage analyses,
04 02 00 02 04 06 08 10 commercial software such as Gurobi 9.0, was implemented

Silhouette width s,
Average silhouetie width - 0.53

FIGURE 4. Silhouette plot of Karate club social network.

where s; is the size of the connected sub-network after the
node removal. (3_ k[si (sx — 1)])/n(n— 1) measures the con-
nectivity of the remaining network when nodes are removed.
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on a set of test problems. The computational results were
summarized and visualized using R software.

B. RESULTS

1) LINK ANALYSIS

The modeling of complex networks can be static or dynamic;
therefore, for these two networks, community detection can
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TABLE 4. Leverage results comparison to [46] (small-scale network).

C Best known solution (BKS) in the literature ID1 ID2
CNP F-score ~ Node Removed CNP F-score  Node Removed CNP F-score ~ Node Removed

1 62 0.542 1 61 0.642 34 61 0.642 34

2 54 0.683 1,2 45 0.684 1,34 45 0.684 1,34

3 34 0.797 1,33,34 34 0.797 1,33,34 34 0.797 1,33,34

4 26 0.884 1,3,33,34 26 0.884 1,3,33,34 26 0.884 1,3,33,34

5 19 0.926 1,2,3,33, 34 19 0.926 1,2,3,33,34 19 0.926 1,2,3,33,34

6 16 0.930 1,2,3,6, 33,34 16 0.930 1,2,3,6,33,34 16 0.942 1,2,3,24,33,34

7 13 0.940 1,2,3,6,26, 33,34 13 0.940 1,2,3,6,26, 33,34 13 0.943 1,2,3,4,26,33,34

8 10 0.959 1,2,3,6,24,25, 33,34 10 0.959 1,2,3,6,24,25,33,34 10 0.962 1,2,3,4,24,25,33,34

9 7 0.971 1,2,3,4,6,24,32, 33,34 7 0.971 1,2,3,4,6, 7 0.971 1,2,3,4,7,24,32,33,34
24,32,33,34

10 5 0.980 1,2,3,4,5,6,24,32, 33,34 5 0.980 1,2,3,4,5,6, 5 0.980 1,2,3,4,5,6, 24,25,33,34
24,32,33,34

FIGURE 5. Partition of US Airlines 332 network.

be performed. A static network can be considered as a frozen
network within a specific time interval. However, over time,
the communities in the network may continue to expand or
shrink, and new communities may emerge, while some exist-
ing communities may disappear. Dynamic community detec-
tion can reveal and process dynamic communities. Therefore,
the purpose of static community detection is to identify
the actual community structure, whereas that of dynamic
community detection is to detect and track how community
structure changes over time.

This study proposed linear and quadratic programming
models for clique partitioning in link analysis, which are
robust compared to traditional approaches. This algorithm
divides vertices into g groups, and the size of the g groups
is predefined to obtain the minimum number of connections
between identified communities [54]. The number of vertices
between clusters is called cut size. If the number of clusters
is not provided in advance and the minimum cut size is used
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FIGURE 6. Partition of Erdos 472 network.

for partitioning, the output will be a trivial solution. The links
and disruptions of the critical nodes are listed in Table 3.

From Table 3, we can observe that despite the identical
scores in modularity and SC, the computational times are dif-
ferent. For each problem instance, the optimal computational
times are highlighted in bold. The total computational time of
CD1 is 29.8% shorter than that of CD2 on 7 networks with
fewer than 200 nodes, whereas CD2 is 29.5% faster than CD1
on 19 larger networks with more than 200 nodes. Taking the
Karate network as an example, computational time of CD1
is 0.13 s, which is much smaller than that of CD2 (33 s).
However, for large networks such as the BA2500 network,
the computational time of CD2 (297 s) is much shorter than
that of CD1 (591 s).

2) LEVERAGE ANALYSIS
Leverage analysis was used in this study to determine the
importance and influence of critical nodes in a smart grid.
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TABLE 5. Graphical results of [46].

Results from the
literature

Best result in ID2 based
on the F-score

Cc=2

C=

C=

C=

C=

C=
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TABLE 5. (Continued.) Graphical results of [46].
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TABLE 6. Leverage results compatison to [47] (medium-scale network).

Benchmark
C
networks

10
us
air332: 15
332nodes 20
Density= 25
0.038693

30

100
ER472: 105
472 nodes
Density= 110
0.011821 115

120

BKS in the Best solution in the
literature current study
Time CNP  Time CNP F-
Score

3713 12066 039 1237 0.738
4904 5096 047 982 0754
555.2 2159 0.48 774 0.816
6622 875 042 613 0861
961.6 356 047 493 0902

10666 523 0.64 220 0.840
1754 413 0.69 200 0.844
544.1 340 0.73 184 0.862
167.5 275 0.67 169 0.928
82.0 230 0.72 154 0.972

We compared the results for the datasets of the Karate Club
social network [46], [49]. The literature identified clusters
of 34 participants aligned and reported the number of social
contexts in which each pair of participants interacted. The
data were displayed in the form of a network with an edge
attribute context, which provided the number of interaction
contexts for a pair of participants. Each member of the club is
represented by nodes and the connections between members
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TABLE 7. Leverage results comparison to [48] (large-scale network).

TABLE 8. Graphical results of [48].

BKS in the Best (ID1 and ID2) solution

literature in the current study
Benchmark Time  CNP Time ~ CNP  F-Score
networks
BAS500 50 66 195 3.06 137 0.9814
BA1000 75 172 558 28.83 335 0.9984
BA2500 100 840 3704 90.59 1271 0.9919
BA5000 150 3154 10196 1799.2 2851 0.9956
ER235 50 38 295 3.08 122 0.9473
ER466 80 110 1542 28.29 301 0.9905
ER941 140 361 5120 102.41 659 0.9940
ER2344 200 1931 997839 12545 2313 0.9971
FF250 13 37 194 3.29 129 0.8881
FF500 25 156 257 39.63 185 0.9741
FF1000 50 410 1260 277.06 626 0.9953
FF2000 125 1723 4545 1913.3 1643 0.9964
WS250 70 70 3186 3.05 547 0.9559
WS500 125 173 2078 17.22 688 0.9171

WS1000 200 548 113638 97.63 2862 0.8902
WS1500 265 1816 13167 1355.7 2727 0.9389

are represented by edges. The leverage results compared to
those in [46] are presented in Table 4.

By comparing these three results, it can be observed that
the CNP values of ID1 and ID2 outperformed the results
of [46] when C=1 (CNP=61 compared with the best-known
CNP=62 in the literature) and C=2 (CNP=45 compared
with the best-known CNP=54 in the literature). For C=9-10,
there were multiple optimal solutions for fragmentation with
the same objectives, and their F-scores were the same. For
example, when C=9, nodes removed in ID1 include 1, 2, 3,
4, 6,24, 32, 33, and 34 (same as the BKS in the literature),
while nodes removed in ID2 include 1, 2, 3, 4, 7, 24, 32,
33, and 34. For C=6-8, ID2 has a better F-score than ID1,
even though both have the same CNP, but different nodes
are removed from the graph. For example, when C=6, the
F-score was 0.942 in ID2, which is larger than ID1 and BKS
in the literature (F-score=0.930). The nodes removed in ID2
include 1, 2, 3, 24, 33, and 34, which is different from the
nodes removed (1, 2, 3, 6, 33, and 34) in ID1 and BKS in
the literature. Figure 3 shows the partition of the Karate Club
social network. Nodes with different colors represent differ-
ent sub-networks partitioned by the proposed algorithm, and
edges represent the interactive relationships between these
sub-networks. For example, nodes 5, 6, 7, 11, and 17 are
classified in a sub-network, while nodes 24, 25, 26, 28, 29,
and 32 belong to another sub-network. Figure 4 presents a
Silhouette plot of the Karate Club social network. The aver-
age Silhouette width was 0.53, and the plot indicates that the
number of clusters = 4 generated the best partitioning quality,
which is consistent with the literature [46]. Table 5 shows
a graphical comparison of the best results in ID2 based on
the F-score with the results from the literature. We can see
obvious differences in the graphical results.

Table 6 presents a comparison of the results to those in [47],
which indicates that our study obtained better results for
medium-scale networks. The computational time and CNP
were significantly shorter than those reported in the literature.
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BAS500 original graph
Largest connected component: 500

Number of clusters:1

50 node removal

Largest connected component: 5

Number of clusters: 363

BA1000 original graph
Largest connected component: 1000

Number of clusters: 1

75 node removal

Largest connected component: 9

Number of clusters: 665

BA2500 original graph
Largest connected component: 2500

Number of clusters: 1

100 node removal

Largest connected component: 21

Number of clusters: 1229

BAS5000 original graph
Largest connected component:5000

Number of clusters:1

150 node removal:

Largest connected component: 32

Number of clusters: 2149

Er235-50 original graph
Largest connected component: 233

Number of clusters: 2

50 node removal:

Largest connected component:19

Number of clusters: 113
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TABLE 8. (Continued.) Graphical results of [48].

Er466: original graph
Largest connected component:459

Number of clusters: 4

80 node removal
Largest connected component: 94

Number of clusters: 2199

TABLE 8. (Continued.) Graphical results of [48].

ER941: original graph-
Largest connected component: 919

Number of clusters: 12

140 node removal

Largest connected component: 421

FF500
Largest connected component: 500

Number of clusters: 1

110 node removal
Largest connected component: 7

Number of clusters: 319

Number of clusters: 293

¥

FF1000
Largest connected component: 1000

Number of clusters: 1

150 node removal
Largest connected component: 20

Number of clusters: 466

ER2344
Largest connected component:2314

Number of clusters: 14

200 node removal
Largest connected component: 1915

Number of clusters: 358

FF250
Largest connected component: 250

Number of clusters:1

50 node removal
Largest connected component: 15

Number of clusters: 132

FF2000
Largest connected component: 2000

Number of clusters: 1

200 node removal

Largest connected component: 916

Number of clusters: 334

ws250
Largest connected component: 250

Number of clusters: 1

70 node removal
Largest connected component: 179

Number of clusters: 72

FF250
Largest connected component: 250

Number of clusters: 1

70 node removal
Largest connected component: 6

Number of clusters: 177

VOLUME 10, 2022

Wws500
Largest connected component: 500

Number of clusters: 1

125 node removal
Largest connected component: 374

Number of clusters: 127
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TABLE 8. (Continued.) Graphical results of [48].

ws1000 200 node removal
Largest connected component: 1000 Largest connected component: 799

Number of clusters: 1 Number of clusters: 202

ws1500 265 node removal
Largest connected component: 1500 Largest connected component: 1234

Number of clusters: 1 Number of clusters: 267

. 4
;:-\.'::‘” el
NSt and

S

For example, the computational time of US air332 is 0.39 s,
which is much shorter than the BKS (371.3 s) in the literature
with 10 nodes removed. The CNP value is 1237, which is
also much smaller than that of BKS (CNP=12066) reported
in the literature. Figures 5 and 6 show the partition of the US
Airlines 332 network and Erdos 472 network by applying the
model proposed in the current study. The nodes with different
colors represent the sub-network partitioned by the proposed
algorithm. As we do not have the details of what nodes
were removed from the network in [47], we were unable to
compute the F-score for that paper.

Table 7 presents a comparison of the results with those
in [48]. It shows that the algorithm proposed by this study
generated better results for large-scale networks. For exam-
ple, the current study obtained better results for BA1000 with
75 nodes removed. The computational time was shortened
from 172 s to 28.83 s, and the CNP value was reduced
from 558 to 335. In addition, our results showed a signifi-
cantly smaller connected component size. Furthermore, the
computational time of each benchmark network in our model
is much shorter than that in [48]. Table 8 shows the graphical
results of [48]. It shows the changes in the network partition
for each benchmark network after critical nodes are removed.
The results of the leverage analysis indicate that ID1 and
ID2 outperformed the models in the literature in terms of
computational time.

IV. DISCUSSION AND CONCLUSION
The current study provides a new framework to solve
the problems of smart grid partitioning and critical nodes
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identification using both link and leverage analyses. It con-
tributes to the literature by identifying the optimal grid parti-
tions and critical nodes in the power network to alleviate the
vulnerability of the smart grids.

Three benchmark networks of different sizes were used
to compare the results. Furthermore, linear and quadratic
programming models were proposed for link and leverage
analyses, and were found to be robust compared with tra-
ditional approaches. Our experimental results of the link
analysis show that, despite the identical scores in modularity
and SC, the total computational time of CD1 is 29.8% shorter
than that of CD2 on 7 networks with fewer than 200 nodes,
whereas CD2 is 29.5% faster than CD1 on 19 larger networks
with more than 200 nodes. Therefore, CD1 is more suitable
for small-scale networks whereas CD2 is more efficient for
large-scale networks with more than 200 nodes. The lever-
age results of benchmark networks [46], [47], [48] indicate
that the computational time of each instance with the new
proposed models (ID1 and ID2) was substantially reduced,
and the CNP results of medium- and large-scale networks
were better than those reported in the literature, which play a
significant role in smart grid optimization.

The proposed dimensionality reduction algorithm reduces
time complexity and significantly shortens computational
time. The methods proposed in this study can contribute to the
real-time planning and operation of smart grids. The appli-
cation of partitioning consumers according to their energy
demand and supply can be explored. In addition, the link and
leverage analyses of smart grids can connect future decen-
tralized intermittent renewable energy communities to smart
grids. By obtaining optimal grid partitions and identifying
the critical nodes in the smart grids, we can alleviate the
vulnerability of smart grids and improve the security and
stability of large-scale power grids.

There are some limitations of the current study, and we
plan to expand this research further. The effectiveness of
the proposed algorithm in an actual power grid is worthy of
further study. Meanwhile, additional electrical characteristics
of the grid will be considered to detect energy communities in
future studies. How to integrate more electrical characteristics
into the model and apply the algorithm to larger networks
remains to be explored further. In addition, the relationship
between the modularization index and the power network par-
tition process should be studied further, and multiple objec-
tives should be considered simultaneously using the multi-
objective method.
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