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Effects of Polyamine Binding on the Stability of DNA i‑Motif
Structures
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*S Supporting Information

ABSTRACT: B-form DNA can adopt alternative structures under conditions such as superhelical
duress. Alternative DNA structures are favored when there is asymmetric distribution of guanosine
and cytosine on complimentary DNA strands. A guanosine-rich strand can form a four-stranded
structure known as a quadruplex (G4). The complimentary cytosine-rich strand can utilize
intercalating cytosine−cytosine base pairing to form a four-stranded structure known as the i-motif
(iM). Both secondary structures are energetically uphill from double-strand DNA (dsDNA),
meaning that additional factors are needed for their formation. Most iMs require slightly acidic
conditions for structure stabilization. However, crowding agents such as polyethylene glycols and
dextrans can shift the pKa of the iM to near-physiological pH ≈ 7. Nucleic acids have long been
known to be bound and stabilized by polyamines such as putrescine, spermidine, and spermine.
Polyamines have very high concentrations in cells (0.1−30 mM), and their binding to DNA is driven
by electrostatic interactions. Polyamines typically bind in the minor groove of DNA. However,
because of the unusual structure of iMs, it was unknown whether polyamines might also bind and
stabilize iMs. The study described here was undertaken to analyze polyamine−iM interactions. The
thermal stability and pH dependence of iM structures were determined in the presence of polyamines. In contrast to dsDNA,
our results suggest that polyamines have considerably weaker interactions with iMs, as demonstrated by the minimal change in
iM pH dependence and thermal stability. Our results suggest that polyamines are unlikely to provide a significant source of iM
stabilization in vivo.

■ INTRODUCTION

The Watson and Crick B-form DNA structure created the
foundation for further investigation into the structure of this
iconic biological molecule.1 Subsequent work on DNA’s
plasticity resulted in the discovery of various alternative
structures, depending on environmental conditions.2 These
are usually referred to as secondary structures to differentiate
them from B-form DNA. One well-studied secondary structure
that is dependent on clustered guanosines and utilization of
Hoogsteen base pairing is the quadruple helical structure called
a G-quadruplex (G4). Potential G4s have been identified
across the genome in telomeres and in promoters of genes
often associated with the cell growth, such as bcl-2, ras, VEGF,
and c-myc.3−5 G4 structures have significant stability under
physiological conditions, allowing for their potential as drug
targets. Detection of G4s in cell nuclei has also been reported.6

In biotechnological applications, G4s can also act as reporters
for gene deletions7 and for detection of silver, mercury, and
other metal ions.8,9

While much is known about the role of G4-forming
sequences in biology, much less is known about the
complimentary strand that is rich in cytosines. Cytosine-rich
single-strand DNA can also form a four-stranded structure.
Under slightly acidic conditions (pH ≈ 6.5), the N1 position
of cytidine can be protonated, allowing three hydrogen bonds
to form between two cytidines.10 The resulting four-stranded
structure exhibits intercalated interactions between planes of

cytosine base pairs (Figure 2), and therefore, it has been
referred to as i-motif (iM) DNA. In early studies and in dilute
solutions, at increasing pH, the structural stability of iMs
decreases to the point that at physiological pH (∼7.3), little or
no iM structure remains.10 Hence, in the past, the iM has
attracted less attention than G4s because the nucleus does not
appear to be more acidic than the cytoplasm. However, more
recent studies have shown that addition of crowding agents
and/or dehydrating cosolvents can shift the pKa for the
formation of an iM toward more physiological pH.11−14

Longer C-rich sequences that form iMs at pH ≈ 7 have also
been reported.15 More recently, iM structures have also been
observed in cell nuclei, increasing interest in their possible
biological role.16,17

Energetically, it is difficult for G4/iMs to be formed from
double-strand DNA (dsDNA). The estimated free energy
(ΔG) needed to open the dsDNA to its single strands and
form G4/iMs is 20−30 kcal/mol.18 Some of this free energy
can be provided by the negative supercoiling of DNA.19,20

Protein binding as the lone stabilizer of the G4/iM structures
would require a Kd of ∼10−14 M to provide this ΔG. However,
nucleolin binds G4s from the VEGF promoter with Kd ≈ 200
nM, which is energetically too low.21−23 Other proteins that
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bind preferentially to the G4 structure have also been
reported.24,25 Proteins known to bind the iM are the
heterogeneous nuclear ribonucleo-protein K and polycytosine
binding protein 2, both of which have a high affinity for C-rich
strands found in transcriptional promoter regions that are
known to form iM structures,26−28 but again the Kd’s are too
low to fully support the formation of iMs in vivo. One possible
explanation for the observation of iM formation in cells is
synergism between supercoiling, protein binding to iMs, and
binding of other molecules. This paper addresses the question
as to whether polyamines, which are present in high
concentrations in cells, might be likely additional enhancers
of iM stability.
There have been very few studies of the binding of small

molecules to iMs. Certain steroids have been reported to
selectively bind to regions of DNA that form a hairpin
structure in C-rich DNA over the iMs.29 However, a more
abundant potential source of iM-stabilizing molecules is
polyamines. Polyamines are small biomolecules synthesized
in high (0.1−30 mM) concentrations by cells,30 and they are
known to be involved in regulation of transcription.31,32

Polyamines bind to the grooves of B-form DNA because of
their overall net positive charge at physiological pH. Poly-
amines such as putrescine, spermidine, and spermine (Figure
1) increase the thermal stability of B-DNA and additionally can
induce the transition of B-DNA to left-handed Z-DNA.33

To the best of our knowledge, no studies of polyamine
binding to iMs have been reported. Hence, in this report, we
examined the effect of polyamines on the physical properties of
an iM sequence taken from the nuclease-hypersensitive
element found within the c-myc promoter (Figure 2). Our

study examined the interactions between the c-myc iM and the
most prevalent polyamines found in cells (putrescine,
spermidine, and spermine). Our results are described below.

■ RESULTS AND DISCUSSION
Polyamine Binding to C6T iM. In this study, a fixed

concentration of 2 μM of C6T iM was used to determine the
binding affinity of each of the three polyamines. Individual
samples with a known concentration of polyamine were mixed
with a fixed C6T iM concentration. Using electronic circular
dichroism (CD) spectroscopy, a titration for each polyamine
was observed, as shown in Figure 3. When the concentration of
polyamines increased in solution, an increase in the distinct iM
CD signal was observed. Saturation was eventually reached.
There was distinct variation in the concentrations needed to
reach saturation. For putrescine, it was ∼10 mM, while for
spermidine and spermine, it was ∼1 and ∼0.05 mM,
respectively. This may reflect the length of the polyamine, as
our molecular docking (Figure 6) suggests that the grooves of
the 6CT iM may accommodate more than one putrescine.
There are two nonidentical grooves in the iM (Figure 6). On
the basis of the analysis from Figure 3 of the binding plots, the
Kd for each polyamine was determined and recorded in Table
1. We note that given the uncertainty of the capacity of the iM
to accommodate polyamines, the amount bound is given as a
fraction of total iM concentration (Table 2).

iM Dependence on Proton Concentration. As shown in
Figure 4, we used CD spectroscopy to determine the pKa for
folding of the C6T iM in the presence of saturating
concentrations of polyamines. Interestingly, there was no
shift in the pKa observed with any polyamine; the pKa for iM
folding under all conditions was pH 6.2 ± 0.1. We analyzed the
transition region of the pH-dependent plots using a Wyman
plot (Figure 4), which allowed determination of the proton
uptake required to transition from unfolded DNA to the iM in
the presence or absence of polyamines. In the absence of
polyamines, the proton requirement to fold the iM is
approximately 3 protons per iM. This is consistent with prior
literature where slightly less than half of the cytosines in an iM
need to be protonated to stabilize the structure.34 Putrescine at
high concentrations has little or no effect on the proton
requirement. However, an increase in protons required for
stabilization of the C6T iM is observed in the presence of
saturating amounts of spermine (∼4) and spermidine (∼6).
Our interpretation of these data is that as both spermine and
spermidine have long charged chains, their binding interferes
with protonation of the cytidines, likely due to charge
neutralization of the phosphate backbone. The net result is a
requirement of additional protons to stabilize the iM. This
manifests in a more cooperative transition from the unfolded
to folded state, but the midpoint pH of the transition remains
constant.

Thermal Stability of C6T iM in the Presence of
Polyamines Using UV−Vis Spectroscopy. The thermal
stability of the C6T iM was observed using UV−vis
spectroscopy. The baseline C6T iM thermal melting temper-
ature (TM), which is defined as the temperature when half of
its concentration is in the folded state (Figure 5), was
measured at pH 5.3 where the C6T iM is most stable. The
observed TM in the absence of polyamines was 45.4 ± 0.2 °C
(Table 3).
At saturating concentrations of each of the polyamines and 2

μM C6T, the TM was determined and recorded in Table 3. A

Figure 1. Molecular structure of the three polyamines used here.
From top to bottom: putrescine, spermidine, and spermine. All amino
groups are protonated and carry a positive charge at physiological pH
(∼7.3) or lower.

Figure 2. (A) Folded C6T iM DNA equilibrium. Cyan circles
represent dT, red circles dC, and blue circles dA. (B) Single-strand
DNA sequence of C6T used for this study. (C) Double-stranded B-
form of C6T (dsC6T) used for comparison.
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slight increase in TM was observed for all of the polyamines:
∼4 °C for putrescine and ∼8 °C for spermidine and spermine.
For comparison, we also examined the effects on dsC6T.
Consistent with prior literature,35 all polyamines have a
pronounced increase (23−27 °C) on the TM of dsDNA. We
interpret the difference between iM and dsDNA as a function
of the size and shape of the grooves in the two structures.
While dsDNA has a long, narrow minor groove, iMs have two
wide grooves (Figure 6). Binding of polyamines to dsDNA
leads to significant charge neutralization of the phosphate
backbone and thus enhances thermal stability. In contrast,
polyamine binding to iM DNA appears to be mainly located in
the loops of the iM (Figure 6) and hence has little effect on the
stability of the core four-stranded structure.
Molecular Modeling of Polyamine Binding to iM

DNA. We used AutoDock Vina to explore the possible ways in
which polyamines might bind to the C6T iM. Our results are
shown in Figure 6 and provide a good model to explain the
binding data from Figure 3. Because of the intercalated

cytosines, the two grooves in an iM are very wide compared to
B-form dsDNA. The most likely location for putrescine is very
near the loops of the iM (Figure 6C,D). This likely explains
the lower affinity for putrescine for the iMs, inasmuch as the
binding locations are limited because it is the shortest
polyamine used. If the docking model is correct, there are
essentially only two binding sites that favor putrescine. In
contrast, the longer spermidine can occupy both the loop
regions occupied by putrescine, as well as extending into the
groove of the iM (Figure 6C). This would explain the biphasic
binding curve of spermidine, where binding to the loop not
only has a fractional component with affinity similar to
putrescine but also has a groove binding component similar to
spermine (see Table 1). Finally, our docking results indicate
that spermine, the longest polyamine, has the appropriate
molecular dimensions to fit along both grooves of the iM
(Figure 6C,D). This would explain the much higher binding
affinity of spermine to the iM (Figure 3; Table 1).

■ CONCLUSIONS
In this paper, we concluded that although polyamines bind to
iM structures, their binding is weak compared to the more
favorable binding of polyamines to the same sequence in the
double-strand form of DNA. Using the nuclease-hypersensitive
element found within the c-myc gene, denoted as C6T, a
distinct iM structure was formed without the presence of
polyamines, which had a melting temperature of 45.4 ± 0.2 °C
at acidic pH, well above the physiological temperature of 37
°C. Using CD spectroscopy, a titration curve at pH 5.3 of
varying concentrations of polyamines was produced, allowing

Figure 3. CD spectroscopy of fixed 2 μM C6T iM with increasing polyamine concentrations. Dashed lines are the initial CD signal and solid lines
the final CD signal. The panels are for (A) putrescine, (B) spermidine, and (C) spermine. Fits to a single site binding equation for putrescine and
spermine are shown. Spermidine was better fit with a two-site model eq 1.

Table 1. Determined Kd of Polyamine Binding to C6T iM. Parameters Derived from the Data Shown in Figure 3 and Fitting to
Eq 1

polyamine n1 Kd1 (mM) n2 Kd2 (mM)

putrescine 0.89 ± 0.04 5.3 ± 1.1
spermidine 0.60 ± 0.04 0.003 ± 0.001 0.40 ± 0.04 1.0 ± 0.92
spermine 1.00 ± 0.02 0.018 ± 0.003

Table 2. Quantification of Protons Required for C6T
Formation without and with Saturating Polyamines
Presenta

average protons

no polyamines 2.8 ± 0.9
10 mM putrescine 3.2 ± 0.5
1 mM spermidine 4.2 ± 0.4
0.05 mM spermine 5.6 ± 0.5

aData derived from Figure 4.
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concentration saturations levels to be determined. These
results indicated that putrescine, spermidine, and spermine

could reach binding saturation to the C6T iM at concen-
trations of 10, 1, and 0.05 mM, respectively. Using the data

Figure 4. pH dependence of iM folding. Row (A) CD spectra for C6T when no polyamines are present at varying pH. In saturating amounts of
polyamines: row (B) in 10 mM putrescine; row (C) in 1 mM spermidine; and row (D) in 0.05 mM spermine. Final fractions other than 1.0 are due
to fitting, where the final fraction was allowed to be ∼1.0.

Figure 5. Thermal denaturation of the C6T iM in the presence of varying concentrations of polyamines: (A) putrescine, (B) spermidine, and (C)
spermine at pH 5.3.
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collected from CD, the Kd of polyamines’ binding to the C6T
iM were determined. The polyamines produced small but
significant shifts in the thermal stability of the iM, increasing its
TM by 4−8 °C, which is in stark contrast to their ability to shift
dsDNA by increasing its TM by ∼23 °C.
It was determined that at saturating concentrations of

polyamines, the change in the required amount of protons to
stabilize the C6T iM structure is increased. Putrescine displays
a small increase in required protons possibly because of the
small nature of putrescine as a biomolecule. However, both
spermidine and spermine required additional protons,
indicating that they may affect the ability of the core cytidines
of the iM to form the four-stranded structure. However, no
effect on the pKa required to form the iM was observed.
Hence, the effect of polyamines appears to be solely on the
cooperativity of folding.
Overall, it was determined that the most abundant cellular

polyamines putrescine, spermidine, and spermine have the
ability to bind to the C6T iM structure, albeit weakly, and to
add some stability to the structure. However, none of our data
suggests that polyamines have a particularly important role in

stabilizing iM structures in vivo. Because of their high
concentrations in cells, the polyamines may contribute a
certain level of stability to iMs but nowhere near the 20−30
kcal/mol required to stabilize an iM/G4 from opened dsDNA.
Hence, other factors that stabilize iMs are part of the ongoing
investigation in understanding their physical properties in cells.
While our results pertain solely to the cytosine-rich strand of
DNA, we anticipate that our findings are readily transferable to
the situation where iMs are formed in dsDNA.

■ MATERIALS AND METHODS
Materials. The iM-forming oligonucleotide (C6T; Figure

2) used was synthesized by and purchased from Midland
Certified Reagent Co., Inc. (Midland, TX). C6T is a good
model iM because it undergoes a simple two-state transition
from folded to unfolded form.36 C6T iM oligonucleotide stock
was stored in a 10 mM Tris, 1 mM ethylenediaminetetraacetic
acid (EDTA) buffer at pH 8.0 in a −20 °C freezer. The sodium
cacodylate, Tris-HCl, and EDTA used to create buffer
solutions were purchased from Fisher Scientific (Pittsburgh,
PA). Putrescine, spermidine, and spermine were purchased
from Sigma Aldrich (St. Louis, MO).

Polyamine Binding Constants. Binding of polyamines
was monitored by electronic CD spectra of the iM DNA.
Addition of polyamines resulted in a strong increase in CD
signal at 290 nm, which appeared to show typical saturation at
higher concentrations. We analyzed this signal change via
transformation of the data into a binding curve analysis (Figure
3). The binding plots for putrescine and spermine showed a
standard sigmoidal curvature, which could be well fitted to a
single site binding model. However, the binding of spermidine
was better fit with a model of two classes of independent
binding sites (n1, n2) with independent binding constants Kd1
and Kd2 (e.g., the Klotz model).37 The spermidine data were fit
to eq 1, where r is the fraction of iM with the ligand bound and
L is the free polyamine concentration

r
n K L

K L
n K L

K L1 1
1 d1

d1

2 d2

d2
=

+
+

+ (1)

pKa Determination. Samples were prepared in the same
way as for binding analysis. Both polyamine binding and pKa
(the midpoint of the pH-dependent folding for iM) were
determined using CD spectroscopy. To determine the pKa for
iM folding (i.e., the pH at which 50% of the oligo is folded into
the iM), CD spectra of DNA solutions at 20 °C were collected
from 250−320 nm on an Olis DSM 20 CD instrument fitted
with a Peltier heat block (Olis, Inc. Bogart, GA, USA). An
integration time as a function of high voltage was used. The
CD signals observed at 298 nm were then plotted against pH,
and then eq 2 was applied to obtain pKa and the cooperativity
parameter. The cooperativity parameter reflects the slope of
the transition from folded to unfolded iM. A technical caution:
as polyamines are weak bases and are used at high
concentrations, we emphatically note that the pH of buffers
containing polyamines have to be adjusted to the correct pH
for each concentration of polyamine used.

Signal
signal signal

1 10
signal

Ktotal
folded unfolded

(cooperativity (pH p )) unfolded
a

=
−

+
+× −

(2)

To better understand the cooperativity parameter, a
Wyman-type plot34,38 was used to determine the proton

Table 3. C6T iM (C6T iM) and Double-Strand C6T
(dsC6T) Melting Temperature (TM) at pH 5.3

TM (°C)

DNA
no

polyamine
10 mM

putrescine
1.0 mM

spermidine
0.050 mM
spermine

C6T iM 45.4 ± 0.2 49.3 ± 0.1 53.0 ± 0.1 53.1 ± 0.8
dsC6T 50.4 ± 0.4 73.6 ± 0.1 76.7 ± 0.4 72.8 ± 0.6

Figure 6. Molecular model of the C6T iM. The structure has two
unequal grooves (panels A and B at 90° rotation). The ribbon
indicates the backbone trace. The results of molecular docking of
polyamines are shown in panels C and D along with space-filling
models. Electrostatic charge is shown from positive (blue) to neutral
(white) to negative (red). Putrescine is shown in yellow, spermidine
in cyan, and spermine in purple.
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difference (ΔQ) between the folded and unfolded iM. ΔQ can
be determined via the slope of each of the Wyman plots of log
K versus pH, where K is the equilibrium constant between
unfolded and folded iM (defined in eq 5 below)

K Q(log )/ (pH)δ δ = −Δ (3)

Thermal Denaturation Studies. Relative to B-form or
single-strand DNA, the iM structures show a pronounced
hypochromic and bathochromic shift in their UV−visible
absorbance spectra that can be monitored at 260 nm to
determine folded and unfolded states (Figure S1). Solutions of
the C6T iM oligonucleotide (2 μM) in 30 mM cacodylate
buffer at pH 5.3 were prepared with varying concentrations of
polyamines. Melting of the C6T iM with and without
polyamines was done using a Cary 100 UV−visible
spectrometer (Agilent Technologies, Santa Clara, CA). Prior
to experimentation, each sample was heated to 80 °C for 5 min
and then cooled to room temperature for two cycles to ensure
removal of mismatched DNA dimers. Thermal denaturation
recordings were made by monitoring the absorbance at 260
nm while increasing the temperature between 20 and 94 °C at
a ramping rate of 2 °C per min and a 1 min hold at each
temperature. All thermal denaturation experiments could be fit
to a simple two-state model.
The two-state model for DNA melting is described by

Native unfoldedV (4)

and

K
U
N

e G RT/= [ ]
[ ]

= −Δ °

(5)

where K is the equilibrium constant for unfolding, [U] and [N]
are the concentrations of unfolded and folded states,
respectively, and T is the temperature in kelvin at each point
along the melting transition.
The mole fraction of unfolded DNA f(U) is given by

i
k
jjj

y
{
zzzf U

K
K

( )
1

=
+ (6)

The free energy of unfolding at any given temperature T is
given by the following

i
k
jjjjj

y
{
zzzzzG H

T
T

1T m
m

Δ ° = Δ −
(7)

The fraction folded was normalized from 0 to 1 prior to
fitting, and the change in heat capacity (ΔCp) was assumed to
be negligible. The nonlinear regression fits yielded the values
for Tm and ΔHm. Note that in eq 7, ΔHm reflects the slope of
the thermal transitions shown in Figure 5. Because there were
no significant differences in slopes for all the conditions used,
we have not reported separate ΔHm values, but its average
value was ∼33 kcal/mol.
Visualization of the Best-Predicted Polyamine Bind-

ing Location. Using the open source program AutoDock
Vina,39 the most likely locations of molecular docking of the
polyamines to the C6T iM were determined. The model of
C6T used was built by us and has been described previously.40

The polyamine torsion angles were set to move freely to
simulate their flexibility. Both the iM and polyamine structures
were assigned charges found at physiological pH. The output
was visualized using UCSF CHIMERA.41

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsome-
ga.9b00784.

Change in absorbance for fully folded C6T iM DNA at
20 °C and fully unfolded DNA at 80 °C (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: rwadkins@olemiss.edu. Phone: +1-662-915-7732.
ORCID
Randy M. Wadkins: 0000-0001-5571-827X
Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Watson, J. D.; Crick, F. H. C. Molecular Structure of Nucleic
Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171,
737−738.
(2) Choi, J.; Majima, T. Conformational changes of non-B DNA.
Chem. Soc. Rev. 2011, 40, 5893−5909.
(3) Huppert, J. L.; Balasubramanian, S. Prevalence of quadruplexes
in the human genome. Nucleic Acids Res. 2005, 33, 2908−2916.
(4) Hurley, L. H.; Wheelhouse, R. T.; Sun, D.; Kerwin, S. M.;
Salazar, M.; Fedoroff, O. Y.; Han, F. X.; Han, H.; Izbicka, E.; Von
Hoff, D. D. G-quadruplexes as targets for drug design. Pharmacol.
Ther. 2000, 85, 141−158.
(5) Brooks, T. A.; Hurley, L. H. Targeting MYC Expression through
G-Quadruplexes. Genes Cancer 2010, 1, 641−649.
(6) Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S.
Quantitative visualization of DNA G-quadruplex structures in human
cells. Nat. Chem. 2013, 5, 182−186.
(7) Wang, M.; He, B.; Lu, L.; Leung, C.-H.; Mergny, J.-L.; Ma, D.-L.
Label-free luminescent detection of LMP1 gene deletion using an
intermolecular G-quadruplex-based switch-on probe. Biosens. Bioelec-
tron. 2015, 70, 338−344.
(8) Ma, D.-L.; Lin, S.; Lu, L.; Wang, M.; Hu, C.; Liu, L.-J.; Ren, K.;
Leung, C.-H. G-quadruplex-based logic gates for HgII and AgI ions
employing a luminescent iridium(iii) complex and extension of metal-
mediated base pairs by polymerase. J. Mater. Chem. B 2015, 3, 4780−
4785.
(9) Leung, K.-H.; He, B.; Yang, C.; Leung, C.-H.; Wang, H.-M. D.;
Ma, D.-L. Development of an Aptamer-Based Sensing Platform for
Metal Ions, Proteins, and Small Molecules through Terminal
Deoxynucleotidyl Transferase Induced G-Quadruplex Formation.
ACS Appl. Mater. Interfaces 2015, 7, 24046−24052.
(10) Gehring, K.; Leroy, J.-L.; Gueŕon, M. A tetrameric DNA
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