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Abstract. Renz [13] has established a rate of convergence 1/
p

n in the central limit theorem for martin-
gales with some restrictive conditions. In the present paper a modification of the methods, developed by
Bolthausen [2] and Grama and Haeusler [6], is applied for obtaining the same convergence rate for a class of
more general martingales. An application to linear processes is discussed.

Résumé. Renz [13] a établi un taux de convergence 1/
p

n dans le théorème de la limite centrale pour les
martingales avec certaines conditions restrictives. Dans le présent article, une modification des méthodes,
développées par Bolthausen [2] et Grama et Haeusler [6], est appliquée pour obtenir le même taux de
convergence pour une classe de martingales plus générales. Une application aux processus linéaires est
discutée.
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1. Introduction and main result

For n ∈ N, let (ξi ,Fi )i=0,...,n be a finite sequence of martingale differences defined on some
probability space (Ω,F ,P), where ξ0 = 0 and {;,Ω} = F0 ⊆ ·· · ⊆ Fn ⊆ F are increasing σ-fields.
Denote

X0 = 0, Xk =
k∑

i=1
ξi , k = 1, . . . ,n.

Then X = (Xk ,Fk )k=0,...,n is a martingale. Denote by 〈X 〉 the conditional variance of X :

〈X 〉0 = 0, 〈X 〉k =
k∑

i=1
E
[
ξ2

i

∣∣Fi−1
]
, k = 1, . . . ,n.

Define
D(Xn) = sup

x∈R

∣∣P(Xn ≤ x)−Φ(x)
∣∣,

where Φ(x) is the distribution function of the standard normal random variable. Denote by
P→

the convergence in probability as n →∞. According to the martingale central limit theorem, the
“conditional Lindeberg condition”

n∑
i=1

E
[
ξ2

i 1{|ξi |≥ε}
∣∣Fi−1

] P→ 0, for each ε> 0,

and the “conditional normalizing condition” 〈X 〉n
P→ 1 together implies asymptotic normality of

Xn , that is, D(Xn) → 0 as n →∞.
The convergence rate of D(Xn) has attracted a lot of attentions. For instance, Bolthausen [2]

proved that if |ξi | ≤ εn for a number εn and 〈X 〉n = 1 a.s., then D(Xn) ≤ cε3
nn logn, where, here and

after, c is an absolute constant not depending on εn and n. El Machkouri and Ouchti [3] improved
the factor ε3

nn logn in Bolthausen’s bound to εn logn under the following more general condition

E
[|ξi |3

∣∣Fi−1
]≤ εn E

[
ξ2

i

∣∣Fi−1
]

a.s. for all i = 1,2, . . . ,n.

For more related results, we refer to Ouchti [12] and Mourrat [11]. Recently, Fan [4] proved that if
there exist a positive constant ρ and a number εn , such that

E
[|ξi |2+ρ

∣∣Fi−1
]≤ ερn E

[
ξ2

i

∣∣Fi−1
]

a.s. for all i = 1,2, . . . ,n,

and 〈X 〉n = 1 a.s., then D(Xn) ≤ cρ ε̂n , where

ε̂n =
{
ε
ρ
n , if ρ ∈ (0,1),

εn | logεn |, if ρ ≥ 1,

and cρ is a constant depending only on ρ. Fan [4] also showed that this Berry–Esseen bound is
optimal. In particular, if εn ³ 1/

p
n, then we have εn | logεn | ³ (logn)/

p
n. Thus, we cannot obtain

the classical convergence rate 1/
p

n for general martingales.
However, the convergence rate 1/

p
n for martingales is possible to be attained with some

additional restrictive conditions. For instance, Renz [13] proved that if there exists a constant
ρ > 0 such that

E[ξ2
i |Fi−1] = 1/n, E[ξ3

i |Fi−1] = 0 and E
[|ξi |3+ρ

∣∣Fi−1
]≤ cn−(3+ρ)/2, a.s., (1)

then it holds

D(Xn) =O

(
1p
n

)
. (2)

He also showed that this result is not true for ρ = 0. More martingale Berry–Esseen bounds of
convergence rate 1/

p
n can be found in Bolthausen [2] and Kir’yanova and Rotar [10].

In this paper we are interested in extending (2) to a class of more general martingales. The
following theorem is our main result.

C. R. Mathématique, 2020, 358, n 6, 701-712
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Theorem 1. Assume that there exist some numbers ρ ∈ (0,+∞),εn ∈ (0, 1
2 ] and δn ∈ [0, 1

2 ] such that
for all 1 ≤ i ≤ n, ∣∣〈X 〉n −1

∣∣≤ δ2
n , (3)

E
[
ξ3

i

∣∣Fi−1
]= 0 (4)

and
E
[|ξi |3+ρ

∣∣Fi−1
]≤ ε1+ρ

n E
[
ξ2

i

∣∣Fi−1
]

a.s. (5)

Then
D(Xn) ≤ cρ(εn +δn),

where cρ depends only on ρ. In addition, it holds cρ =O(ρ−1),ρ→ 0.

Notice that under the conditions of Renz [13], the conditions of Theorem 1 are satisfied
with δn = 0 and εn ³ 1/

p
n. Thus Theorem 1 extends Renz’s result to a class of more general

martingales.
Thanks to the additional condition (4), the Berry–Esseen bound (6) improves the bound of

Fan [4] by replacing εn | logεn | with εn .
Relaxing the condition (3), we have the following analogue estimation of Fan (cf. [4, (26)]).

Theorem 2. Assume that there exist some numbers ρ ∈ (0,+∞) and εn ∈ (0, 1
2 ] such that for all

1 ≤ i ≤ n,
E
[
ξ3

i

∣∣Fi−1
]= 0

and
E
[|ξi |3+ρ

∣∣Fi−1
]≤ ε1+ρ

n E
[
ξ2

i

∣∣Fi−1
]

a.s.

Then, for all p ≥ 1,

D(Xn) ≤ cρεn + cp

(
E
[∣∣〈X 〉n −1

∣∣p]+E
[

max
1≤i≤n

|ξi |2p
])1/(2p+1)

, (6)

where cρ and cp depend only on ρ and p, respectively.

It is easy to see that when p →∞,(
E
[∣∣〈X 〉n −1

∣∣p])1/(2p+1)

→‖〈X 〉n −1‖1/2
∞ ,

which coincides with δn of Theorem 1.

2. Application

We first extend Theorem 1 to triangular arrays with infinity many terms in each line. For n ∈ N,
let (ξn,i ,Fn,i )n

i=−∞ be a sequence of martingale differences defined on some probability space
(Ω,F ,P), where the adapted filtration is {;,Ω} = F−∞ ⊂ ·· · ⊂ Fn,n−1 ⊂ Fn,n ⊂ F . Denote Xn,k =∑k

i=−∞ ξn,i ,k ≤ n. Then (Xn,k ,Fn,k )n
k=−∞ is a martingale. Let 〈X 〉n,k =∑k

i=−∞ E[ξ2
n,i |Fn,i−1],k ≤ n.

In particular, denote Xn := Xn,n and 〈X 〉n := 〈X 〉n,n .
With some slight modification on the proof, Theorem 1 still holds in this new setting. Now

we apply Theorem 1 with this new setting to the partial sum of linear processes. Let (εi )i∈Z be
a sequence of identically distributed martingale differences adapted to the filtration (Fi )i∈Z. We
consider the causal linear process in the form

Yk =
k∑

j=−∞
ak− jε j , (7)

where the martingale differences have finite variance and the sequence of real coefficients
satisfies

∑∞
i=0 a2

i <∞. Without loss of generality, let the variance of the martingale difference to

C. R. Mathématique, 2020, 358, n 6, 701-712



704 Songqi Wu, Xiaohui Ma, Hailin Sang and Xiequan Fan

be 1. We say the linear process has long memory if
∑∞

i=0 |ai | = ∞. In this case, we assume that
a0 = 1 and

ai = `(i )i−α, i > 0, with 1/2 <α< 1. (8)

Here `( · ) is a slowly varying function. On the other hand, we say the linear process has short
memory if

∑∞
i=0 |ai | <∞ and

∑∞
i=0 ai 6= 0. The third case is

∑∞
i=0 |ai | <∞ and

∑∞
i=0 ai = 0.

The long memory linear processes covers the well-known fractional ARIMA processes (cf.
Granger and Joyeux [7]; Hosking [9]), which play an important role in financial time series
modeling and application. As a special case, let 0 < d < 1/2 and B be the backward shift operator
with Bεk = εk−1 and consider

Yk = (1−B)−dεk =
∞∑

i=0
aiεk−i , where ai = Γ(i +d)

Γ(d)Γ(i +1)
.

For this example we have limn→∞ an/nd−1 = 1/Γ(d). Note that these processes have long memory
because

∑∞
j=0 |a j | =∞.

The partial sum Sn =∑n
k=1 Yk of causal linear process (7) can be written as Sn =∑n

i=−∞ bn,iεi ,
where bn,i = ∑n−i

j=0 a j for 0 < i ≤ n, and bn,i = ∑n−i
j=1−i a j for i ≤ 0. The variance of Sn is B 2

n =
var(Sn) = ∑n

i=−∞ b2
n,i . Now let Xn,k = ∑k

i=−∞ bn,iεi /Bn . Then Xn = Xn,n = Sn/Bn and 〈X 〉n =∑n
i=−∞ b2

n,i E[ε2
i |Fi−1]/B 2

n . If we assume |〈X 〉n − 1| ≤ δ2
n for some δn ∈ [0, 1

2 ], E[ε3
i |Fi−1] = 0 and

E[|εi |3+ρ |Fi−1] ≤ d 1+ρ
ρ E[ε2

i |Fi−1] a.s. for all i ∈ Z and some constant dρ , then, by Theorem 1,

sup
x∈R

|P(Sn/Bn ≤ x)−Φ(x)| ≤ cρ(εn +δn),

where εn = dρ supi≤n |bn,i |/Bn .
In the case that

∑∞
i=0 |ai | < ∞, supi≤n |bn,i | ≤ ∑∞

i=0 |ai | < ∞ and it is well known that B 2
n has

order n. Hence εn has order 1/
p

n in this case. In the long memory case
∑∞

i=0 |ai | = ∞, if we
assume (8), B 2

n has order n3−2α`2(n) (e.g., Wu and Min [14]) and supi≤n |bn,i | has order n1−α`(n)
(see Beknazaryan et al. [1] for upper bound and Fortune et al. [5] for lower bound in the case
d = 1). Hence in this case εn also has order 1/

p
n. In either case the Berry–Esseen bound has

order 1/
p

n if δn = O(n−1/2). In particular, if we in addition assume that the innovations (εi )i∈Z

are independent, then δn = 0 and the Berry–Esseen bound supx∈R |P(Sn/Bn ≤ x)−Φ(x)| has order
1/
p

n. Here the condition E[ε3
i |Fi−1] = 0 is needed to have the Berry–Esseen bound of order

1/
p

n. We cannot have this order from the result of Fan [4].

3. Proofs of theorems

3.1. Preliminary lemmas

In the proofs of theorems, we need the following technical lemmas. The first two lemmas can be
found in Fan [4, Lemmas 3.1 and 3.2].

Lemma 3. If there exists an s > 3 such that

E[|ξi |s |Fi−1] ≤ εs−2
n E[ξ2

i |Fi−1],

then, for any t ∈ [3, s),
E[|ξi |t |Fi−1] ≤ εt−2

n E[ξ2
i |Fi−1].

Lemma 4. If there exists an s > 3 such that

E[|ξi |s |Fi−1] ≤ εs−2
n E[ξ2

i |Fi−1],

then
E[ξ2

i |Fi−1] ≤ ε2
n .

C. R. Mathématique, 2020, 358, n 6, 701-712
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The next two technical lemmas are due to Bolthausen (cf. [2, Lemmas 1 and 2]).

Lemma 5. Let X and Y be random variables. Then

sup
u

∣∣P(
X ≤ u

)−Φ(u)
∣∣≤ c1 sup

u

∣∣P(
X +Y ≤ u

)−Φ(u)
∣∣+ c2

∥∥E[Y 2|X ]
∥∥1/2
∞ ,

where c1 and c2 are two positive constants.

Lemma 6. Let G(x) be an integrable function on R of bounded variation ‖G‖V , X be a random
variable and a,b 6= 0 are real numbers. Then

E
[

G

(
X +a

b

)]
≤ ‖G‖V sup

u

∣∣P(
X ≤ u

)−Φ(u)
∣∣+‖G‖1|b|,

where ‖G‖1 is the L1(R) norm of G(x).

In the proof of Theorem 2, we also need the following lemma of El Machkouri and Ouchti [3].

Lemma 7. Let X and Y be two random variables. Then, for p ≥ 1,

D(X +Y ) ≤ 2D(X )+3
∥∥E

[
Y 2p |X ]∥∥1/(2p+1)

1 . (9)

3.2. Proof of Theorem 1

By Lemma 3, we only need to consider the case of ρ ∈ (0,1]. We follow the method of Grama
and Haeusler [6]. Let T = 1+δ2

n . We introduce a modification of the conditional variance 〈X 〉n as
follows:

Vk = 〈X 〉k 1{k<n} +T 1{k=n}. (10)

It is easy to see that V0 = 0,Vn = T , and that (Vk ,Fk )k=0,...,n is a predictable process. Set

γ= εn +δn .

Let c∗ be some positive and sufficient large constant. Define the following non-increasing dis-
crete time predictable process

Ak = c2
∗γ

2 +T −Vk , k = 1, . . . ,n. (11)

Obviously, we have A0 = c2∗γ2 +T and An = c2∗γ2. In addition, for u, x ∈ R, and y > 0, denote

Φu(x, y) =Φ
(

u −xp
y

)
. (12)

Let N =N (0,1) be a standard normal random variable, which is independent of Xn . Using a
smoothing procedure, by Lemma 5, we deduce that

sup
u

∣∣P(
Xn ≤ u

)−Φ(u)
∣∣≤ c1 sup

u

∣∣P(
Xn + c∗γN ≤ u

)−Φ(u)
∣∣+ c2γ

= c1 sup
u

∣∣E[
Φu

(
Xn , An

)]−Φ(u)
∣∣+ c2γ

≤ c1 sup
u

∣∣E[
Φu

(
Xn , An

)]−E
[
Φu

(
X0, A0

)]∣∣
+ c1 sup

u

∣∣E[
Φu

(
X0, A0

)]−Φ(u)
∣∣+ c2γ

= c1 sup
u

∣∣E[
Φu

(
Xn , An

)]−E
[
Φu

(
X0, A0

)]∣∣
+ c1 sup

u

∣∣∣∣Φ(
u√

c2∗γ2 +T

)
−Φ(u)

∣∣∣∣+ c2γ. (13)

It is obvious that ∣∣∣∣Φ(
u√

c2∗γ2 +T

)
−Φ(u)

∣∣∣∣≤ c3

∣∣∣∣ 1√
c2∗γ2 +T

−1

∣∣∣∣≤ c4γ. (14)

C. R. Mathématique, 2020, 358, n 6, 701-712
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Returning to (13), we get

sup
u

∣∣P(
Xn ≤ u

)−Φ(u)
∣∣≤ c1 sup

u

∣∣E[
Φu

(
Xn , An

)]−E
[
Φu

(
X0, A0

)]∣∣+ c5γ. (15)

By a simple telescoping, we know that

E
[
Φu

(
Xn , An

)]−E
[
Φu

(
X0, A0

)]= E
[ n∑

k=1

(
Φu

(
Xk , Ak

)−Φu
(
Xk−1, Ak−1

))]
. (16)

Taking into account the fact that

∂2

∂x2Φu(x, y) = 2
∂

∂y
Φu(x, y),

we get

E
[
Φu

(
Xn , An

)]−E
[
Φu

(
X0, A0

)]= J1 + J2 − J3, (17)

where

J1 = E
[ n∑

k=1

(
Φu(Xk , Ak )−Φu(Xk−1, Ak )− ∂

∂x
Φu(Xk−1, Ak )ξk

− 1

2

∂2

∂x2Φu(Xk−1, Ak )ξ2
k −

1

6

∂3

∂x3Φu(Xk−1, Ak )ξ3
k

)]
, (18)

J2 = 1

2
E
[ n∑

k=1

∂2

∂x2Φu(Xk−1, Ak )
(4〈X 〉k −4Vk

)]
, (19)

J3 = E
[ n∑

k=1

(
Φu(Xk−1, Ak−1)−Φu(Xk−1, Ak )− ∂

∂y
Φu(Xk−1, Ak )4Vk

)]
, (20)

where 4〈X 〉k = 〈X 〉k −〈X 〉k−1.
Now, we need to give some estimates of J1, J2 and J3. To this end, we introduce some notations.

Denote by ϑi some random variables satisfying 0 ≤ ϑi ≤ 1, which may represent different values
at different places. For the rest of the paper, ϕ stands for the density function of the standard
normal random variable.

Control of J1. For convenience’s sake, let Tk−1 = (u − Xk−1)/
√

Ak , k = 1,2, . . . ,n. It is easy to see
that

Bk =:Φu(Xk , Ak )−Φu(Xk−1, Ak )− ∂

∂x
Φu(Xk−1, Ak )ξk

− 1

2

∂2

∂x2Φu(Xk−1, Ak )ξ2
k −

1

6

∂3

∂x3Φu(Xk−1, Ak )ξ3
k

=Φ
(
Tk−1 −

ξk√
Ak

)
−Φ(Tk−1)+Φ′(Tk−1)

ξk√
Ak

− 1

2
Φ′′(Tk−1)

(
ξk√

Ak

)2

+ 1

6
Φ′′′(Tk−1)

(
ξk√

Ak

)3

.

To estimate the right hand side of the last equality, we distinguish two cases.

Case 1: |ξk /
√

Ak | ≤ 2+|Tk−1|/2. By a four-term Taylor expansion, it is obvious that if |ξk /
√

Ak | ≤
1, then ∣∣Bk

∣∣= ∣∣∣∣ 1

24
Φ(4)

(
Tk−1 −ϑ

ξk√
Ak

)∣∣∣∣ ξk√
Ak

∣∣∣∣4∣∣∣∣
≤

∣∣∣∣Φ(4)
(
Tk−1 −ϑ

ξk√
Ak

)∣∣∣∣∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ
.
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If |ξk /
√

Ak | > 1, by a three-term Taylor expansion, then∣∣Bk
∣∣≤ 1

2

(∣∣∣∣Φ′′′
(
Tk−1 −ϑ

ξk√
Ak

)∣∣∣∣+ ∣∣∣∣Φ′′′(Tk−1)

∣∣∣∣)∣∣∣∣ ξk√
Ak

∣∣∣∣3

≤
∣∣∣∣Φ′′′

(
Tk−1 −ϑ′ ξk√

Ak

)∣∣∣∣∣∣∣∣ ξk√
Ak

∣∣∣∣3

≤
∣∣∣∣Φ′′′

(
Tk−1 −ϑ′ ξk√

Ak

)∣∣∣∣∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ
,

where

ϑ′ =
ϑ, if

∣∣Φ′′′(Tk−1 −ϑ ξkp
Ak

)∣∣≥ |Φ′′′(Tk−1)|,
0, if

∣∣Φ′′′(Tk−1 −ϑ ξkp
Ak

)∣∣< |Φ′′′(Tk−1)|.
Using the inequality max{|Φ′′′(t )|, |Φ′′′′(t )|} ≤ϕ(t )(2+ t 4), we find that∣∣Bk 1{|ξk /

p
Ak |≤2+|Tk−1|/2}

∣∣≤ϕ(
Tk−1 −ϑ1

ξk√
Ak

)(
2+

(
Tk−1 −ϑ1

ξk√
Ak

)4)∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ

≤ g1(Tk−1)

∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ
, (21)

where

g1(z) = sup
|t−z|≤2+|z|/2

ϕ(t )(2+ t 4).

Case 2: |ξk /
√

Ak | > 2+|Tk−1|/2. It is obvious that, for |4x| > 1+|x|/2,∣∣∣∣Φ(x −4x)−Φ(x)+Φ′(x)4x − 1

2
Φ′′(x)(4x)2 + 1

6
Φ′′′(x)(4x)3

∣∣∣∣
≤

(∣∣∣∣Φ(x −4x)−Φ(x)

|4x|3
∣∣∣∣+|Φ′(x)|+ |Φ′′(x)|+ |Φ′′′(x)|

)
|4x|3

≤
(
8

∣∣∣∣Φ(x −4x)−Φ(x)

(2+|x|)3

∣∣∣∣+|Φ′(x)|+ |Φ′′(x)|+ |Φ′′′(x)|
)
|4x|3

≤
(

c̃

(2+|x|)3 +|Φ′(x)|+ |Φ′′(x)|+ |Φ′′′(x)|
)
|4x|3

≤ ĉ

(2+|x|)3 |4x|3

≤ ĉ

(2+|x|)3 |4x|3+ρ .

Hence, we have ∣∣Bk 1{|ξk /
p

Ak |>2+|Tk−1|/2}

∣∣≤ g2(Tk−1)

∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ
, (22)

where

g2(z) = ĉ

(2+|z|)3 .

Denote

G(z) = g1(z)+ g2(z).

Combining (21) and (22) together, we get

|Bk | ≤G(Tk−1)

∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ
. (23)
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Therefore, ∣∣J1
∣∣= ∣∣∣∣E[ n∑

k=1
Bk

]∣∣∣∣≤ E
[ n∑

k=1
G(Tk−1)

∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ]
. (24)

Next, we consider conditional expectation of |ξk |3+ρ . By condition (5), we get

E
[|ξk |3+ρ

∣∣Fk−1
]≤ ε1+ρ

n 4〈X 〉k , (25)

where 4〈X 〉k = 〈X 〉k −〈X 〉k−1 and we know that

4〈X 〉k =4Vk =Vk −Vk−1, 1 ≤ k < n, 4〈X 〉n ≤4Vn , (26)

then

E
[|ξk |3+ρ

∣∣Fk−1
]≤ ε1+ρ

n 4Vk . (27)

By (24) and (27), we obtain

|J1| ≤ R1 := ε1+ρ
n

[ n∑
k=1

G(Tk−1)

A(3+ρ)/2
k

4Vk

]
. (28)

To estimate R1, we introduce the time change τt as follow: for any real t ∈ [0,T ],

τt = min{k ≤ n : Vk ≥ t }, where min;= n. (29)

Obviously, for any t ∈ [0,T ], the stopping time τt is predictable. In addition, (σk )k=1,...,n+1 (with
σ1 = 0) stands for the increasing sequence of moments when the increasing and stepwise
function τt , t ∈ [0,T ], has jumps. It is easy to see that 4Vk = ∫

[σk ,σk+1) dt , and that k = τt for
t ∈ [σk ,σk+1). Since τT = n, we have

n∑
k=1

G(Tk−1)

A(3+ρ)/2
k

4Vk =
n∑

k=1

∫
[σk ,σk+1)

G(Tτt−1)

A(3+ρ)/2
τt

dt =
∫ T

0

G(Tτt−1)

A(3+ρ)/2
τt

dt . (30)

Let at = c2∗γ2 +T − t . Because of 4Vτt ≤ 2ε2
n +2δ2

n (cf. Lemma 4), we know that

t ≤Vτt =Vτt−1 +4Vτt ≤ t +2ε2
n +2δ2

n , t ∈ [0,T ]. (31)

Assume c∗ ≥ 2, then we have
1

2
at ≤ Aτt = c2

∗γ
2 +T −Vτt ≤ at , t ∈ [0,T ]. (32)

Note that G(z) is symmetric and is non-increasing in z ≥ 0. The last bound implies that

R1 ≤ 2(3+ρ)/2ε
1+ρ
n

∫ T

0

1

a(3+ρ)/2
t

E
[

G

(
u −Xτt−1

a1/2
t

)]
dt . (33)

Note also that G(z) is a symmetric integrable function of bounded variation. By Lemma 6, it is
obvious that

E
[

G

(
u −Xτt−1

a1/2
t

)]
≤ c6 sup

z

∣∣P(
Xτt−1 ≤ z

)−Φ(z)
∣∣+ c7

p
at . (34)

Because of c∗ ≥ 2,Vτt−1 =Vτt −4Vτt , Vτt ≥ t and 4Vτt ≤ 2ε2
n +2δ2

n , we obtain

Vn −Vτt−1 =Vn −Vτt +4Vτt ≤ 2ε2
n +2δ2

n +T − t ≤ at . (35)

Therefore

E
[(

Xn −Xτt−1
)2∣∣Fτt−1

]= E
[ n∑

k=τt

E
[
ξ2

k

∣∣Fk−1
]∣∣∣∣Fτt−1

]
= E

[〈X 〉n −〈X 〉τt−1
∣∣Fτt−1

]
≤ E[Vn −Vτt−1|Fτt−1]

≤ at .
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Then, by Lemma 5, we deduce that for any t ∈ [0,T ],

sup
z

∣∣P(
Xτt−1 ≤ z

)−Φ(z)
∣∣≤ c8 sup

z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ c9

p
at . (36)

Combining (28), (33), (34) and (36) together, we get

|J1| ≤ c10ε
1+ρ
n

∫ T

0

1

a(3+ρ)/2
t

dt sup
z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ c11ε

1+ρ
n

∫ T

0

1

a1+ρ/2
t

dt . (37)

Taking some elementary computations, it follows that∫ T

0

1

a(3+ρ)/2
t

dt =
∫ T

0

1

(c2∗γ2 +T − t )(3+ρ)/2
dt ≤ 2

c1+ρ
∗ (1+ρ)γ1+ρ (38)

and ∫ T

0

1

a1+ρ/2
t

dt =
∫ T

0

1

(c2∗γ2 +T − t )1+ρ/2
dt ≤ 2

cρ∗ργρ
. (39)

This yields ∣∣J1
∣∣≤ c12

c1+ρ
∗

sup
z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ cρ,1εn

ρ
. (40)

Control of J2. Since 0 ≤4Vk −4〈X 〉k ≤ 2δ21{k=n}, we have

|J2| ≤ E
[

1

2An

∣∣ϕ′(Tn−1)(4Vn −4〈X 〉n)
∣∣].

Denote G̃(z) = sup|z−t |≤1 |ϕ′(t )|, and then |ϕ′(z)| ≤ G̃(z) for any real z. Since An = c2∗γ2, then we
get the following estimation:

|J2| ≤ 1

c2∗
E
[
G̃(Tn−1)

]
.

Note that G̃ is non-increasing in z ≥ 0, and thus it has bounded variation on R. By Lemma 6,
we get

|J2| ≤ c13

c2∗
sup

z

∣∣P(
Xn−1 ≤ z

)−Φ(z)
∣∣+ c∗,2(εn +δn). (41)

Then, by Lemma 5, we deduce that

sup
z

∣∣P(
Xn−1 ≤ z

)−Φ(z)
∣∣≤ c14 sup

z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ c15εn . (42)

This yields

|J2| ≤ c16

c2∗
sup

z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ cρ,2(εn +δn). (43)

Control of J3. By a two-term Taylor expansion, it follows that

|J3| = 1

8
E
[ n∑

k=1

1

(Ak −ϑk 4 Ak )2ϕ
′′′

(
u −Xk−1√

Ak −ϑk 4 Ak

)
(4Ak )2

]
.

Note that c∗ ≥ 2,4Ak ≤ 0 and, by Lemma 4, |4Ak | =4Vk ≤ 2ε2
n +2δ2

n . We obtain

Ak ≤ Ak −ϑk 4 Ak ≤ c2
∗γ

2 +T −Vk +2ε2
n +2δ2

n ≤ 2Ak . (44)

Denote Ĝ(z) = sup|t−z|≤2 |ϕ′′′(t )|. Then Ĝ(z) is symmetric, and is non-increasing in z ≥ 0. Us-
ing (44), we get

|J3| ≤ (2ε2
n +2δ2

n)E
[ n∑

k=1

1

A2
k

Ĝ

(
Tk−1p

2

)
4Vk

]
. (45)
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By an argument similar to that of (40), we get

|J3| ≤
c17(2ε2

n +2δ2
n)

c2∗γ2
sup

z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ 2c18(2ε2

n +2δ2
n)

c∗γ

≤ c19

c2∗
sup

z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ 4c18(εn +δn)2

c∗γ

≤ c19

c2∗
sup

z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ cρ,3(εn +δn). (46)

Combining (17), (40), (43) and (46) together, we get∣∣E[
Φu

(
Xn , An

)]−E
[
Φu

(
X0, A0

)]∣∣≤ c20

c1+ρ
∗

sup
z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ ĉρ

ρ
(εn +δn),

By (15), we know that

sup
z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣≤ c21

c1+ρ
∗

sup
z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣+ c̃ρ

ρ
(εn +δn),

from which, choosing c1+ρ
∗ = max{2c21,21+ρ}, we get

sup
z

∣∣P(
Xn ≤ z

)−Φ(z)
∣∣≤ 2c̃ρ(εn +δn)

ρ
. (47)

3.3. Proof of Theorem 2

Following the method of Bolthausen [2], we enlarge the sequence (ξi ,Fi )1≤i≤n to
(
ξ̂i ,F̂ i

)
1≤i≤N

such that
〈

X̂
〉

N :=∑N
i=1 E

[
ξ̂2

i |F̂ i−1
]= 1 a.s., and then apply Theorem 1 to the enlarged sequence.

Consider the stopping time

τ= sup{k ≤ n : 〈X 〉k ≤ 1}. (48)

Assume that 0 ≤ ε≤ εn . Let r = ⌊ 1−〈X 〉τ
ε2

⌋
, where bxc denotes the “integer part” of x. It is easy to see

that r ≤ ⌊ 1
ε2

⌋
. Set N = n + r + 1. Let (ζi )i≥1 be a sequence of independent Rademacher random

variables, which is independent of the martingale differences (ξi )1≤i≤n . Consider the random
variables

(
ξ̂i ,F̂ i

)
1≤i≤N defined as follows:

ξ̂i =


ξi a.s., if i ≤ τ,

εζi a.s., if τ+1 ≤ i ≤ τ+ r,(
1−〈X 〉τ− rε2

)1/2
ζi a.s., if i = τ+ r +1,

0 a.s., if τ+ r +1 ≤ i ≤ N ,

and F̂ i =σ
(
ξ̂1, ξ̂2, . . . , ξ̂i

)
.

Clearly,
(
ξ̂i ,F̂ i

)
1≤i≤N still forms a martingale difference sequence with respect to the enlarged

filtration. Then X̂ k =∑k
i=1 ξ̂i , k = 0, . . . , N , with X̂ 0 = 0, is also a martingale. Moreover, it holds that〈

X̂
〉

N = 1, E
[
ξ̂3

i

∣∣F̂ i−1
]= 0 and

E
[∣∣ξ̂i

∣∣3+ρ∣∣F̂ i−1
]≤ ε1+ρ

n E
[
ξ̂2

i

∣∣F̂ i−1
]
, a.s.

By Theorem 1, we have

D
(
X̂ N

)≤ cρεn

ρ
. (49)

Using Lemma 7, we obtain that

D(Xn) ≤ 2D
(
X̂ N

)+3
∥∥E

[∣∣Xn − X̂ N
∣∣2p ∣∣X̂ N

]∥∥1/(2p+1)
1 ≤ 2cρεn

ρ
+3

(
E
[∣∣X̂ N −Xn

∣∣2p])1/(2p+1). (50)
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Since τ is a stopping time and

X̂ N −Xn =
N∑

i=τ+1

(
ξ̂i −ξi

)
, where put ξi = 0 for i > n, (51)

(ξ̂i −ξi ,F̂ i )i≥τ+1 still forms a martingale difference sequence. Applying Theorem 2.11 of Hall and
Heyde [8], we get

E
[∣∣X̂ N −Xn

∣∣2p]≤ E
[

max
τ+1≤i≤N

∣∣X̂ i −Xi
∣∣2p

]
≤ cp

(
E
[∣∣∣∣ N∑

i=τ+1
E
[(
ξ̂i −ξi

)2∣∣F̂ i−1
]∣∣∣∣p ]

+E
[

max
τ+1≤i≤N

∣∣ξ̂i −ξi
∣∣2p

])
. (52)

As E[ξi ξ̂i |F̂ i−1] = 0 for all i ≥ τ+1, we have
N∑

i=τ+1
E
[(
ξ̂i −ξi

)2∣∣F̂ i−1
]= N∑

i=τ+1
E
[
ξ̂2

i

∣∣F̂ i−1
]+ n∑

i=τ+1
E
[
ξ2

i

∣∣F̂ i−1
]= 1−2〈X 〉τ+〈X 〉n .

Noting that 1−E[ξ2
τ+1|Fτ] ≤ 〈X 〉τ. Consequently, using the inequality |a+b|p ≤ 2p−1 (|a|p +|b|p ),

p ≥ 1, and Jensen’s inequality, we derive that∣∣∣∣ N∑
i=τ+1

E
[(
ξ̂i −ξi

)2∣∣F̂ i−1
]∣∣∣∣p

≤ ∣∣〈X 〉n −1+2E
[
ξ2
τ+1

∣∣Fτ

]∣∣p

≤ 22p−1(∣∣〈X 〉n −1
∣∣p + ∣∣E[

ξ2
τ+1

∣∣Fτ

]∣∣p)
≤ 22p−1(∣∣〈X 〉n −1

∣∣p +E
[|ξτ+1|2p ∣∣Fτ

])
. (53)

Taking expectations on both sides of the last inequality, we deduce that

E
[∣∣∣∣ N∑

i=τ+1
E
[(
ξ̂i −ξi

)2∣∣F̂ i−1
]∣∣∣∣p ]

≤ 22p−1(E
[∣∣〈X 〉n −1

∣∣p]+E
[|ξτ+1|2p])

≤ 22p−1
(
E
[∣∣〈X 〉n −1

∣∣p]+E
[

max
1≤i≤n

|ξi |2p
])

. (54)

Similarly, using the inequality |a +b|p ≤ 2p−1 (|a|p +|b|p ) , p ≥ 1,

E
[

max
τ+1≤i≤N

∣∣ξ̂i −ξi
∣∣2p

]
≤ 22p−1E

[
max

τ+1≤i≤N

(|ξi |2p + ∣∣ξ̂i
∣∣2p)]

≤ 22p−1
(
E
[

max
1≤i≤n

|ξi |2p
]
+ε2p

)
. (55)

Combining (52), (54) and (55) together, we obtain

E
[∣∣X̂ N −Xn

∣∣2p]≤ ĉp

(
E
[∣∣〈X 〉n −1

∣∣p]+E
[

max
1≤i≤n

|ξi |2p
]
+ε2p

)
. (56)

Finally, applying the last inequality to (50) and let ε→ 0, then we have

D(Xn) ≤ c̃ρ
εn

ρ
+ c̃p

(
E
[∣∣〈X 〉n −1

∣∣p]+E
[

max
1≤i≤n

|ξi |2p
])1/(2p+1)

.

This completes the proof of Theorem 2.
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