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Abstract

Brain networks that mediate motivated behavior in the context of aversive and rewarding experiences involve
the prefrontal cortex (PFC) and ventral tegmental area (VTA). Neurons in both regions are activated by stress
and reward, and by learned cues that predict aversive or appetitive outcomes. Recent studies have proposed
that separate neuronal populations and circuits in these regions encode learned aversive versus appetitive
contexts. But how about the actual experience? Do the same or different PFC and VTA neurons encode unan-
ticipated aversive and appetitive experiences? To address this, we recorded unit activity and local field poten-
tials (LFPs) in the dorsomedial PFC (dmPFC) and VTA of male rats as they were exposed, in the same
recording session, to reward (sucrose) or stress (tail pinch) spaced 1 h apart. As expected, experience-specific
neuronal responses were observed. Approximately 15–25% of single units in each region responded by excita-
tion or inhibition to either stress or reward, and only stress increased LFP theta oscillation power in both re-
gions and coherence between regions. But the largest number of responses (29% dmPFC and 30% VTA
units) involved dual-valence neurons that responded to both stress and reward exposure. Moreover, the tem-
poral profile of neuronal population activity in dmPFC and VTA as assessed by principal component analysis
(PCA) were similar during both types of experiences. These results reveal that aversive and rewarding experi-
ences engage overlapping neuronal populations in the dmPFC and the VTA. These populations may provide a
locus of vulnerability for stress-related disorders, which are often associated with anhedonia.

Key words: depression; dopamine; ensemble activity; reward; stress; theta oscillations

Significance Statement

Animals must recognize unexpected harmful and rewarding events to survive. How the brain represents
these competing experiences is not fully understood. Two interconnected brain regions implicated in en-
coding both rewarding and stressful events are the dorsomedial prefrontal cortex (dmPFC) and the ventral
tegmental area (VTA). In either region, separate neurons and associated circuitry are assumed to respond to
events with positive or negative valence. We find, however, that a significant subpopulation of neurons in
dmPFC and VTA encode both rewarding and aversive experiences. These dual-valence neurons may pro-
vide a computational advantage for flexible planning of behavior when organisms face unexpected reward-
ing and harmful experiences.
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Introduction
Acute aversive and rewarding events are motivationally

salient experiences that may change brain function and
behavior (Ulrich-Lai and Herman, 2009; Hermans et al.,
2014; Ferenczi et al., 2016; Ye et al., 2016). These experi-
ences can produce opposite behavioral outcomes including
promoting avoidance after an aversive experience and ap-
proach behavior after a rewarding experience (Bissonette et
al., 2014; Gentry et al., 2019), which suggest that they engage
different neurophysiological responses in the brain. At the
same time, however, they promote similar behaviors such as
increased vigilance and motivation to act. The neurophysio-
logical response to both aversive and rewarding stimuli is al-
tered in psychiatric disorders (Kalivas and Volkow, 2005;
Lederbogen et al., 2011; Stanton et al., 2019), suggesting
common neurobiological substrates. In particular, stress-re-
lated disorders such as major depressive disorder are com-
monly associated with anhedonia and impaired ability to
enjoy experiences that were once rewarding (Stanton et al.,
2019).
Two principal brain regions that have been implicated in

processing aversive and rewarding experiences are the
prefrontal cortex (PFC) and the ventral tegmental area
(VTA; Thierry et al., 1976; Abercrombie et al., 1989; Taber
and Fibiger, 1997; Kobayashi et al., 2006). Acute stres-
sors and rewarding events increase the release of dopa-
mine (DA), noradrenaline and the expression of early
genes in the PFC (i.e., c-fos; Thierry et al., 1976; Smith et
al., 1997; Weinberg et al., 2010; Butts et al., 2011). Stress
and expectation of a rewarding outcome also increase the
activity of PFC neurons (Jackson and Moghaddam, 2006;
Horst and Laubach, 2013). In the VTA, DA neurons are fa-
mously activated by reward (Schultz, 1998; Steinberg et al.,
2013), and while VTA DA neurons are both activated and in-
hibited in aversive contexts (Anstrom and Woodward,
2005; Bromberg-Martin et al., 2010; Holly and Miczek,
2016; Moriya et al., 2018), stress robustly increases the re-
lease of DA in all VTA terminal regions including ventral
striatum, amygdala, and PFC (Abercrombie et al., 1989;
Inglis and Moghaddam, 1999). But while it is well accepted
that both stress and reward activate these regions, it re-
mains an open question whether the same neural popula-
tions within each region represent events with opposing
valence.
Recent recording studies have compared the neuronal

response to aversive and rewarding contexts and show
that specific PFC and VTA (DA and non-DA) circuits and
neuronal populations can be activated and/or inhibited
differently by either context (Kim et al., 2010; Cohen et al.,
2012; Caracheo et al., 2018; Vander Weele et al., 2018; de

Jong et al., 2019). Yet most of these studies involve
Pavlovian or operant conditioning paradigms where a
trained animal responds to an expected outcome. While
the results of these studies are important for understand-
ing how expectation of an impending appetitive versus
aversive event are encoded after learning, they do not ad-
dress how these regions respond to the actual experience
of an unexpected appetitive versus aversive event.
The present study was designed to compare neuronal

responses to acute, unanticipated rewarding and aversive
experiences in the dorsomedial PFC (dmPFC) and the
VTA. Neuronal activity spanning individual neurons, neu-
ronal populations and local field potentials (LFP) were re-
corded simultaneously in both areas of the brain.
Critically, animals were exposed to both rewarding and
aversive experiences in the same recording sessions so
that we could reliably compare their effects on the same
neurons across time. Food (sucrose) exposure (15min)
and tail pinch (15min), spaced 1 h apart, were used as re-
warding and aversive experiences, respectively. We find
that while, in both regions, some populations of neurons
respond only to one experience, a significant proportion
of neurons respond to both types of experiences.

Materials and Methods
Animals
Adult male Long Evans rats weighing 325–360 g (n = 10)

were housed in pairs on a 12/12 h light/dark cycle (lights on
at 7 P.M.). All experiments were performed during the dark
active phase of the cycle. All procedures were conducted in
accordance with the University of Pittsburgh’s Institutional
Animal Care, the University of Mississippi Animal Review
Board and Use Committee, and the National Institute of
Health’s Guide for the Care and Use of Laboratory Animals.

Surgery and electrophysiology procedure
Chronic microelectrode arrays were implanted under

isoflurane anesthesia in the dmPFC (prelimbic; AP =
13.0, L = 0.7, V = �4, from bregma) and the VTA (AP =
�5.3, L = 0.5–1.1, V = �8.3, from bregma) of rats (Del
Arco et al., 2017; Park and Moghaddam, 2017; Fig. 1A,B).
Microelectrode arrays consisting of eight polymide-insu-
lated Tungsten wires (50mm) made in-house were im-
planted in the VTA. Microelectrode arrays consisting of
eight or sixteen Teflon-insulated stainless-steel wires
(50 mm; NB Labs) were implanted in the dmPFC.
Electrode arrays were secured onto the skull with dental
cement using six screws as anchors. A silver wire was
connected to one of the screws used as a ground.
Single units were recorded by a unity-gain field-effect

transistor head stage and lightweight cabling, which
passed through a commutator to allow freedom of move-
ment in the test chamber (Plexon). Recorded neuronal ac-
tivity was amplified at 1000� gain and digitized at 40 kHz
by the recorder software (Plexon). Single-unit activity was
digitally high-pass filtered at 300Hz, and LFPs were low-
pass filtered at 125Hz (Plexon). Single units were isolated
in Offline Sorter (Plexon) using a combination of manual
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and semiautomatic sorting techniques (Homayoun and
Moghaddam, 2007).

Tail pinch and food reward exposure
Animals were allowed to recover from surgery for at least

oneweek. They were then acclimated to the recording cable
in the testing cage for 2–3d before the recording started.
During this time, animals were individually housed and mildly
food-restricted (15 g of standard chow per day). Habituation
included exposing animals to sugar pellets in the testing cage
at least 1 d before recording started.
Recording sessions lasted 165min (Fig. 1). After 30min

of baseline recording, animals were exposed to food (su-
crose) for 15min and, 60min later, to tail pinch for 15min.
To control for the order of exposure to these salient
events, four animals received tail pinch before food in a
second recording session. Tail pinch was performed
using a foam-covered cloth pin attached 2 cm from the
base of the tail. The foam was used to avoid excessive
pressure on the tail. Previous studies have shown that 15-
min tail pinch increases corticosterone concentrations
and impairs executive functions (Butts et al., 2011, 2013).
Food exposure involved giving ad lib access to sugar pel-
lets (dustless sugar pellets, 45mg; Bio-Serv) placed in a
Petri dish in the test cage. All animals consumed sugar
pellets during food exposure (456 8 pellets per session,
averaged across eight recording sessions).

Histology
After completion of experiments, rats were anesthetized

with chloral hydrate (400mg/kg, i.p.) and perfused with saline
and 4% buffered formalin. Fixed brain sections were stained

with cresyl violet, and electrode-tip placements were verified
using a light microscope. Only data with correct placements
within the prelimbic region of the dmPFC and the VTA were
included in electrophysiological analyses (Fig. 1B).

Electrophysiological data and statistical analysis
Electrophysiological data were analyzed with custom-

written scripts, executed in MATLAB (MathWorks), along
with the Chronux toolbox (http://chronux.org/). Units were
classified as activated or inhibited by sucrose exposure or
tail pinch in 60-s bins if their average absolute activity was
Z . 2 or Z , �2, respectively. The average across time
bins was computed to compare the number of units acti-
vated or inhibited by both events during the event time
(15min; 15 bins) and postevent time (15min beginning
after the end of the event; 15 bins). Units were selected as
responsive when either five consecutive bins or at least
seven non-consecutive bins were significant during the
15-min event period (sucrose exposure or tail pinch).
Significant bins were detected by using Student paired t
tests to compare the average basal firing rate to 60-s bins
during sucrose exposure and tail pinch. The response of
each unit was calculated by the normalized (z score) aver-
age firing rate of significant bins during the event. Putative
DA and non-DA units were identified using the firing rate
(,12Hz for DA) and waveform duration (.1.2ms for DA)
as criteria (Kim et al., 2010; Park and Moghaddam, 2017).
The DA neuron waveform patterns were consistent with
the ontogenetically identified DA neurons in the VTA
of the same strain of rats (Lohani et al., 2019).
Unit pairs in the dmPFC and the VTA were detected by

correlating the firing rate of units recorded during the
same sessions (Narayanan and Laubach, 2009; Kim et al.,

Figure 1. Electrode location and experimental protocol. A, Schematic of electrode arrays implantation for recording simultaneously in
the dmPFC and the VTA. B, Representation of the electrode’s placement in the dmPFC (prelimbic) and the VTA of the rat. C, Protocol
performed during the recording sessions.
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2012). Specifically, a Pearson’s correlation of the nor-
malized firing rate (1-min bins) for each pair of units was
calculated in the time period of 35min (35 bins) centered
on the event (10-min baseline1 15-min stimulus1 10-
min poststimulus). In the VTA, correlations were calcu-
lated in within the group of putative DA and non-DA
units. The Pearson correlation coefficient served to de-
tect significant unit pairs; p , 0.01 was considered
significant.
The principal component analysis (PCA) was performed

to find common sources of variance in the temporal pat-
terns of firing rate over the population of units (Narayanan
and Laubach, 2009). A different matrix was built for each
event containing the normalized (z score) firing rate of
each unit (rows) and 60-s time bins (columns). The pca
function form MATLAB was used to obtain coefficients
and scores. Coefficients represent the principal compo-
nents (PCs) and the scores represent the projection of the
PCs for every unit. The variance explained by each PC
was also obtained by this approach. The scores of every
unit were represented in a 2-d space comprising the top
two PCs (PC1 and PC2) to visually identify potential clus-
ters for food reward exposure and tail pinch population’s
activity (Figs. 2H, 3H). Also, the PCs that explained the
maximal variance (PC1 and PC2) were represented to vis-
ualize the temporal profile of the population activity (Figs.
2E–G, 3E–G).
LFPs power spectral densities were quantified using

the chronux routine mtspecgramc. The raw LFP data
were split in 10-s windows inside which Fourier transform
computation was performed using a sliding time window
of 4 s, with 2-s steps. A multitaper approach was used be-
cause it improves spectrogram estimates when dealing
with non-infinite time series data (Mitra and Pesaran,
1999). Windows with clipping artifacts or LFP values high-
er and lower than 3� SD of the mean of the total signal
were excluded. Spectral data were normalized (z score)
against the average of the baseline period, and each ani-
mal’s data were averaged together to yield group mean
spectral data. The magnitude squared coherence be-
tween time series recorded from dmPFC and VTA was
calculated in the same moving window using the chronux
routine cohgramc. Each animal’s normalized spectral
power and coherence during each event was used for sta-
tistical comparisons.
x2 tests were used to test whether reward (sucrose ex-

posure) or stress (tail pinch) differentially change the pro-
portion of units and unit pairs responding to these
events. Student paired t test was used to compare the
basal firing rate of neurons. One-way and two-way
ANOVAs were used to compare the LFP power and co-
herence values during the two events. The statistical
analysis and results are depicted in Table 1. Units and
LFP data recorded in two sessions were pooled together
for the analysis. This was done because the order of
events in the second recording session did not change
significantly the proportion of unresponsive neurons or
those that responded to both events and only one event
(see Results).

Results
dmPFC and VTA neuronal response to reward and
stress
Neuronal population
Both food (sucrose) and tail pinch bidirectionally modu-

lated the neuronal activity of PFC and VTA. Figures 2, 3
show the neuronal response to both experiences in the
dmPFC and the VTA, respectively. In both figures, the top
graphs are heat plots that represent the changes in the fir-
ing rate (z scores) during sucrose exposure and tail pinch
(Figs. 2A, 3A) or tail pinch and sucrose exposure (Figs.
2B, 3B), performed in the same recording session. The
middle and bottom graphs represent the significant pro-
portion of units that were activated and inhibited during
both events (Figs. 2C,D, 3C,D) and the PCA analyses
(Figs. 2E–H, 3E–H).
In the dmPFC (104 units, n=10), the basal firing rate of

neurons was 6.4760.59Hz before sucrose exposure and
6.4160.53Hz before tail pinch (as the average of the
10min before each event). These values were not signifi-
cantly different (t(103) = 0.27, p = 0.784, paired t test). Both
events activated more units than inhibited units (Fig. 2),
but there were no significant differences between sucrose
exposure and tail pinch in the average proportion of units
activated or inhibited during the event time (x2

(2) = 0.11,
p . 0.1, average across time bins 15–30min) or during
the postevent time (x2

(2) = 0.22, p . 0.1, average across
time bins 30–45min).
In the VTA (61 units, n=8), we classified units as puta-

tive DA (n = 38; 62%) and non-DA (n = 23; 38%) subtypes
(see Materials and Methods). The basal firing rate of VTA
neurons before sucrose was 10.166 1.74Hz (DA =
4.2060.32Hz; non-DA = 20.026 3.82Hz) and before tail
pinch was 9.4561.60Hz (DA = 3.896 0.31Hz; non-DA =
18.636 3.50Hz; as the average of the 10min before each
event). There were no significant differences between
these values (t(22) = 1.36, p = 0.186, paired t test). The
basal firing rate of DA units was slightly lower before tail
pinch compared with sucrose (t(37) = 2.08, p = 0.044,
paired t test). Both events activated more units than inhib-
ited units (Fig. 3), but similar to dmPFC, there were no sig-
nificant differences between sucrose exposure and tail
pinch in the average proportion of units activated or inhib-
ited during the event time (x2

(2) = 1.93, p . 0.1, average
across time bins 15–30min) or during the postevent time
(x2

(2) = 1.02, p . 0.1, average across time bins 30–
45min).
Because similar proportion of units activated, inhibited,

or unresponsive were observed in the dmPFC and the
VTA when the order of tail pinch and reward exposure
was changed (Figs. 2B, 3B), units recorded in both ses-
sions were pooled together for the above analyses.
Specifically, in the dmPFC (36 units, n = 4; Fig. 2B), during
tail pinch, 29% of units (vs 29%) were activated and 5%
(vs 8%) inhibited (x2

(2) = 0.08, p . 0.1, average across
time bins 15–30min); during reward exposure 36% of
units (vs 30%) were activated and 10% (vs 6%) inhibited
(x2

(2) = 0.23, p . 0.1, average across time bins 15–
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Figure 2. dmPFC population activity during rewarding and stressful events. A, B, Heat plots represent the baseline normalized firing
rate for single units. Each row is the activity of a single unit in 60-s time bins aligned to the first event, sucrose food exposure (A) or
tail pinch (B; 15min, dashed lines); and sorted from lowest to highest average normalize firing rate. C, D, Time course of single
unit’s activation and inhibition during sucrose food exposure (C) and tail pinch (D). All units represented in A, B are included. The
percentage of units was categorized as activated or inhibited based on whether their averaged activity by 60-s time bins was signifi-
cantly different from baseline activity. E–G, Temporal profile of the population activity associated with the top two principal compo-
nents (PC1 and PC2) for sucrose food exposure and tail pinch. F, Variance explained by the top five principal components for both
events. H, Representation of single units in the 2-d space according to the top two principal components.
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30min). Similar results were found in the VTA (13 units, n
= 4; Fig. 3B). During tail pinch, 31% of units (vs 44%) were
activated and 5% (vs 6%) inhibited (x2

(2) = 0.70, p . 0.1,
average across time bins 15–30min); during reward expo-
sure, 19% of units (vs 27%) were activated and 10% (vs
2%) inhibited (x2

(2) = 0.33, p . 0.1, average across time
bins 15–30min).
Next, a PCA was performed to identify common sour-

ces of variance in the temporal pattern of firing rate during
both events (Narayanan and Laubach, 2009). The tempo-
ral pattern of the population activity as represented by the
top two PCs (PC1 and PC2) was similar between sucrose
exposure and tail pinch in both areas of the brain (Figs.
2E–G, 3E–G). The variance explained by the top five PCs
is shown in Figures 2F, 3F. The projection of each neuron
in the 2-d PCs space (PC1 and PC2) is consistent with the
same pattern of population activity during both sucrose
exposure and tail pinch since all units can be included in
one cluster (Figs. 2H, 3H).

Single units
Figure 4A,B shows the response of every unit to food

(sucrose) exposure compared with the response to tail
pinch in the dmPFC and VTA, respectively. These graphs
show that units in both areas of the brain are activated
and inhibited by both events as well as activated or inhib-
ited by only one of them. Figure 5C,D shows the percent-
age of dmPFC and VTA units that responded to both
sucrose exposure and tail pinch or only one of these
events (paired t test, at a = 0.05; see Materials and
Methods). As shown, a high number of units responded to
both events in the dmPFC [30 (29%)] and the VTA [18
(30%)]. In the dmPFC, the number of units that responded
specifically to sucrose or tail pinch was the same [20
(20%)]. In the VTA, there were more units that responded
specifically to tail pinch [17 (28%)] compared with sucrose
exposure [9 (15%)] with similar responses from putative
DA and non-DA units (Fig. 5E). Of note, the vast majority
of VTA units responding to tail pinch is consistent with
previous studies showing that VTA DA and non-DA cells
increase their activity in response to aversive stimuli
(Brischoux et al., 2009; Thierry et al., 1976; Morales and
Margolis, 2017). The percentage of units that did not re-
spond to any of the events was similar in the dmPFC [33
(32%)] and the VTA [17 (29%)]. There were no significant
differences in the proportion of units that responded to
sucrose exposure and tail pinch or only to one of the
events, in the dmPFC (x2

(3) = 4.88, p . 0.1) and the VTA
(x2

(3) = 3.50, p . 0.1). Similarly, there were no differences
in the proportion of DA and non-DA units in the VTA that
responded to both events and to only one of the events
(x2

(3) = 1.85, p. 0.1; Fig. 5F).
Similar responses to both salient events were observed in

the dmPFC when the order of tail pinch and food exposure
was changed (36 units, n = 4; x2

(3) = 1.26, p . 0.10). There
were similar proportions of unresponsive neurons (38% vs
35%), neurons that responded to both events (22% vs 17%),
only to food (11% vs 20%) or only to tail pinch (27% vs 27%).
The same results were found in the VTA (13 units, n = 4; x2

(3) =
6.90, p. 0.05). Units recorded in both sessions were pooled
together for the above analyses.

Unit pairs
To evaluate whether food (sucrose) exposure and tail

pinch change the functional interaction (i.e., coordinated
activity) between neurons in the dmPFC and the VTA, we
analyzed the correlation between the firing rate of pairs of
units recorded in the same sessions (Table 2). Previous
studies show that brief appetitive and aversive stimuli dur-
ing conditioning learning can modulate the functional
connectivity between neurons in the VTA (Kim et al.,
2012). This study shows a significant proportion of unit
pairs during both events in the dmPFC and the VTA. In the
dmPFC, there were 144 and 166 significant pairs during
sucrose exposure and tail pinch, respectively, out of 413
possible pairs. In the VTA, there were 68 and 82 signifi-
cant pairs during sucrose exposure and tail pinch, respec-
tively, out of 221 possible pairs. As shown in Table 2,
there were no significant differences in the proportion of
significant unit pairs that overlapped during both events
or emerged specifically during one of the events (food ex-
posure or tail pinch), in the dmPFC (x2

(2) = 4.44, p . 0.1)
and the VTA (x2

(2) = 2.44, p . 0.1). These results suggest
that both events produced similar coordinated activity
among units in both areas of the brain and are consistent
with the neuronal population activity results shown above
(i.e., PCA).

LFP
To examine whether LFPs mediate neural interactions

within, and between, dmPFC and VTA, we analyzed LFP
oscillations at different frequencies (from 1 to 40Hz; bin
size 2.5Hz) and compared the effects of food (sucrose)
exposure and tail pinch. A two-way ANOVA (frequency �
event) showed that food exposure and tail pinch pro-
duced different effects on LFP oscillations in the dmPFC
(F(30,336) = 1.67, p=0.017, frequency � event interaction)
and the VTA (F(30,336) = 2.10, p=0.001, frequency � event
interaction). Specifically, as shown in Figure 5, tail pinch,
but not food exposure, increased the power of low theta
oscillations (2–5Hz) in the dmPFC (F(2,21) = 7.59,
p=0.003, one-way ANOVA) and the VTA (F(2,21) = 4.44,
p=0.024, one-way ANOVA; as the average 2–5Hz for
20min after the beginning of the events). Furthermore,
theta oscillations were significantly synchronized between
the dmPFC and the VTA during tail pinch (F(2,21) = 4.39,
p=0.025, one-way ANOVA) compared with food expo-
sure and baseline (as the average 2–5Hz for 20min after
the beginning of the events). Overall, these results show
that tail pinch, but not food exposure, increases theta os-
cillations and coherence between the dmPFC and the
VTA.

Discussion
In the same recording session, we compared the effects

of unanticipated aversive and rewarding experiences on
dmPFC and VTA single units as well as LFP oscillations.
We find experience-specific changes in LFP oscillations
and in the activity of neuronal subpopulations. There
were, however, no global changes in the population activ-
ity or its temporal profile that characterized each type of
experience. In fact, the largest proportions of neurons in
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Figure 3. VTA population activity during rewarding and stressful events. A, B, Heat plots represent the baseline normalized firing
rate for single units. Each row is the activity of a single unit in 60-s time bins aligned to the first event, sucrose food exposure (A) or
tail pinch (B; 15min, dashed lines), and sorted from lowest to highest average normalize firing rate. C, D, Time course of single
unit’s activation and inhibition during sucrose food exposure (C) and tail pinch (D). All units represented in A, B are included. The
percentage of units was categorized as activated or inhibited based on whether their averaged activity by 60-s time bins was signifi-
cantly different from baseline activity. E–G, Temporal profile of the population activity associated with the top two principal compo-
nents (PC1 and PC2) for sucrose food exposure and tail pinch. F, Variance explained by the top five principal components for both
events. H, Representation of single units in the 2-d space according to the top two principal components.
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either region responded to both experiences. These re-
sults suggest that while separate networks may encode
aversive and rewarding experiences, there is a consider-
able population of dual-valence dmPFC and VTA neurons
that encode both experiences. This overlap may be signif-
icant in the context of organizing behaviors that are simi-
larly affected by stressful and rewarding events, and in
psychiatric disorders where both negative and positive
valence systems are affected.

Same neurons in the dmPFC and VTA respond to
unanticipated aversive and rewarding experiences
The PFC and the VTA are components of negative and

positive valence systems. Both regions are sensitive to acute
stressors (Jackson and Moghaddam, 2006; Holly and
Miczek, 2016), and both are implicated in stress-related and
anxiety-related brain disorders (Holmes and Wellman, 2009;
Chaudhury et al., 2013; Tye et al., 2013; Cha et al., 2014;
Arnsten, 2015) while also processing reward-related events
(Schultz, 1998; Kobayashi et al., 2006; Cohen et al., 2012;
Horst and Laubach, 2013). Little is known, however, about
the relative response of the same PFC or VTA neurons to
stressful versus rewarding experiences. To address this void,
we compared the effect of exposure to a reward (sucrose) in
mildly food restricted animals with an aversive experience (tail
pinch) on dmPFC and VTA single units during the same re-
cording session. Our results that stress and reward can have
amixed inhibitory and excitatory effects on unit activity, espe-
cially on dmPFC cells, is in general agreement with previous
literature (Anstrom and Woodward, 2005; Jackson and

Moghaddam, 2006; Kobayashi et al., 2006; Brischoux et al.,
2009; Bromberg-Martin et al., 2010). Critically, however, the
proportion of neurons activated/inhibited and the temporal
profile of these changes were not different between the re-
warding and aversive experiences. Moreover, the global ac-
tivity of the neuronal population during and after either
experience was similar as evaluated by PCA. These results
demonstrate that there is overlap in the neuronal representa-
tion of aversive and rewarding experiences in either region
that may be masked if the relationship was assessed by only
measuring global changes in the population activity such as
thosemeasured by fiber photometry.
Approximately 30% of neurons in the dmPFC and the

VTA encoded the experience of animals receiving food re-
ward or the tail pinch stressor. This substantial proportion of
neurons in the dmPFC and the VTA that encode opposing
valence experiences (dual-valence neurons) could function
as mixed selectivity neurons. Mixed selective neurons have
been implicated in processing different sensory or motor
variables and can facilitate contextual flexibility during cog-
nitive and motor behavior (Rigotti et al., 2013; Kobak et al.,
2016; Ma et al., 2016). Mixed selective neurons are preva-
lent in the PFC (Rigotti et al., 2013; Grunfeld and Likhtik,
2018). While VTA neurons are often assumed to be special-
ized, recent studies have suggested that clusters of DA neu-
rons respond to a whole array of variables in addition to
reward (Engelhard et al., 2019). Dual-valence neurons in the
dmPFC and the VTA could fine-tune adequate behavioral
outcomes depending on the emotional context (i.e., degree
of averseness; Matsumoto et al., 2016; Park and
Moghaddam, 2017; Berridge, 2019). Alternatively, dual-

Table 1: Statistical results according to brain area, data analyzed, and test used

Neuronal population dmPFC

VTA

Basal firing rate (food vs stress)
Units activated/inhibited
(food vs stress)

Basal firing rate (food vs stress)

Units activated/inhibited
(food vs stress)

Paired t test
x2

paired t test

x2

t(103) = 0.27, p = 0.784
x2

(2) = 0.11, p. 0.1
(event time)
x2

(2) = 0.22, p. 0.1
(postevent time)
t(37) = 2.08, p = 0.044
(DA)
t(23) = 1.36, p = 0.186 (non-DA)
x2

(2) = 1.93, p. 0.1
(event time)
x2

(2) = 1.02, p. 0.1
(postevent time)

Single units dmPFC
VTA

Units responses
Units responses
DA vs non-DA

x2

x2

x2

x2
(3) = 4.88, p . 0.1

x2
(3) = 3.50, p . 0.1

x2
(3) = 1.85, p . 0.1

Unit pairs dmPFC
VTA

Units pairs
Units pairs

x2

x2
x2

(2) = 4.44, p . 0.1
x2

(2) = 2.44, p . 0.1
LFP dmPFC

VTA

dmPFC-VTA

LFP power
(food vs stress)

LFP power
(food vs stress)

LFP coherence

Two-way ANOVA
frequency effect
event effect
frequency � event
One-way ANOVA
Two-way ANOVA
frequency effect
event effect
frequency � event
One-way ANOVA
One-way ANOVA

F(15,336) = 6.77, p , 0.001
F(2,336) = 0.33, p . 0.1
F(30,336) = 1.67, p = 0.017

F(2,21) = 7.59, p = 0.003
F(15,336) = 6.38, p , 0.001
F(2,336) = 11.54, p , 0.001
F(30,336) = 2.10, p = 0.001

F(2,21) = 4.44, p = 0.024
F(2,21) = 4.39, p = 0.025
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valence neurons may facilitate learning by adapting their re-
sponse to only one type of experience (aversive or reward-
ing) after repeated exposure (Li et al., 2017). Future studies
are needed to establish which common input onto these
neurons drives this activity. Possible regions include bed nu-
cleus of the stria terminals, hypothalamus, and amygdala
(Burgos-Robles et al., 2017; Morales and Margolis, 2017;
Ch’ng et al., 2018).

Experience-specific response of dmPFC and VTA
neurons
Subpopulations of neurons in the dmPFC and the

VTA responded selectively to tail pinch or sucrose ex-
posure. These neurons may represent the first building

blocks for conditioned learning (Gore et al., 2015) and
may have specific molecular features and input/output
projections (Li et al., 2017). This aspect of our results is
consistent with recent studies that have identified spe-
cific populations in the PFC (Warden et al., 2012; Ye et
al., 2016; Rozeske et al., 2018; Vander Weele et al.,
2018) and the VTA (Kim et al., 2016; Ye et al., 2016;
Morales and Margolis, 2017; de Jong et al., 2019) that
respond to rewarding or aversive events. Thus, VTA
neurons that receive inputs from the lateral tegmentum
and project to the nucleus accumbens respond to re-
wards while VTA cells that receive inputs from the lat-
eral habenula and project to the PFC respond primarily
to aversive stimuli (Lammel et al., 2012). Similarly, PFC

Figure 4. dmPFC and VTA single units respond to rewarding and stressful events. A, B, Representation of single units according to
their response to sucrose food exposure and tail pinch in the dmPFC (A) and the VTA (B). The response is the averaged normalized
(z score) firing rate (FR) during the event (15min). C, D, Proportion (percentage) of single units that respond to sucrose food expo-
sure and/or tail pinch in the dmPFC (C) and the VTA (D). E, Electrophysiological characterization of VTA units in putative DA and
non-DA according to their basal FR and wave form duration. Each point represents one recorded unit. F, Proportion of putative DA
and non-DA units that respond to sucrose food exposure and tail pinch (overlapped on D, bar graph).
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neurons that receive inputs from the VTA and project to
the periaqueductal gray selectively respond to aversive
events and also process avoidance behavior (Vander
Weele et al., 2018). Our results expand on these studies
by showing that individual neurons as well as neuronal
populations respond to prolonged aversive and reward-
ing experiences in the dmPFC and the VTA.

Aversive experience uniquely engages dmPFC and
VTA networks
Tail pinch, but not exposure to reward, increased the

power of theta oscillations in both the dmPFC and the

VTA. Furthermore, tail pinch increased the synchroniza-
tion of VTA-dmPFC theta oscillations (2–5Hz), which sug-
gests that the response to acute stress requires a
stronger functional connectivity between the dmPFC and
the VTA (Fries, 2005). Theta Oscillations in the PFC and
the VTA, and their potential role in appetitive and aversive
processing (Kim et al., 2012; Amarante et al., 2017; Park
and Moghaddam, 2017) as well as memory (Benchenane
et al., 2011; Fujisawa and Buzsáki, 2011), is still a matter
of debate. Recent studies show that theta oscillations in
the PFC and limbic-connected areas (i.e., amygdala, hip-
pocampus) contribute to conditioned fear learning and
avoidance behavior. Thus, 4-Hz theta oscillations in the
PFC-amygdala circuit predicts the expression of fear behav-
ior (i.e., freezing; Karalis et al., 2016). Furthermore, an in-
crease in 8–Hz (and to a lesser extend 4–Hz) theta
oscillations promotes avoidance behavior in the elevated
plus maze (Padilla-Coreano et al., 2019). Importantly, using
optogenetics, this last study also shows a causal role of
PFC theta oscillations to induce avoidance behavior through
the activation of ventral hippocampus-PFC inputs. In line
with these studies, our results suggest that theta oscillations
in the VTA-dmPFC circuit contribute to process

Figure 5. dmPFC and VTA LFP oscillations change during sucrose food exposure and tail pinch. A, B, Baseline normalized LFP
power spectrum during sucrose food exposure and tail pinch in the dmPFC (A) and the VTA (B). C, Normalized power-spectrum
plots comparing both events in the dmPFC and the VTA. D, Normalized dmPFC-VTA coherence plots comparing both events, su-
crose food exposure and tail pinch; pp, 0.05 one-way ANOVA.

Table 2: Proportion of significant unit pairs in the PFC and
the VTA

PFC VTA (DA/non-DA)
Food exposure 0.35 0.31 (0.21/0.05)
Tail pinch 0.40 0.37 (0.22/0.09)
Food and tail pinch 0.17 0.16 (0.10/0.04)
Only food 0.18 0.15 (0.12/0.01)
Only tail pinch 0.23 0.21 (0.13/0.01)

In parenthesis, unit pairs for DA and non-DA units.
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unanticipated stressful experiences and generate innate
avoidance responses.
VTA modulates information coding and valence proc-

essing in the PFC (Ellwood et al., 2017; Mininni et al.,
2018; Lohani et al., 2019; Weele et al., 2019). It is possible
that the increased theta oscillations in the dmPFC during
tail pinch are produced by a direct modulation from the
VTA because selective optogenetic stimulation of DA
cells in the VTA can induce PFC oscillations and modulate
the activity of PFC neuronal ensembles at different time
scales (Lohani et al., 2019). Furthermore, VTA DA inputs
in the PFC can regulate the occurrence of prefrontal 4-Hz
theta oscillations (Parker et al., 2014) and amplify the re-
sponse of prefrontal neurons that encode aversive stimuli
(Vander Weele et al., 2018). Based on this evidence, we
suggest that VTA promotes VTA-dmPFC communication
through theta oscillations in response to tail pinch.
Importantly, the degree of VTA-dmPFC theta connectivity
might depend on contextual information (Park and
Moghaddam, 2017) and involve other areas of the brain
such as the hippocampus (Fujisawa and Buzsáki, 2011).

Unique features of the present data
Multiple studies have identified specialized populations

of PFC and VTA neurons that respond to aversive and re-
warding events (Kobayashi et al., 2006; Warden et al.,
2012; de Jong et al., 2019). These studies have involved
Pavlovian or instrumental conditioning paradigms and
therefore provide data on how previously learned aversive
or rewarding outcomes, or cues that predict those out-
comes, are encoded by these neurons. Most of the previ-
ous studies use either fiber photometry to assess
population activity or assess neuronal activity in different
sessions. They, therefore, do not measure the activity of
the same neurons to both stress and reward.
Our study focused on the unanticipated experience of

stress and reward. Wewere able to distinguish separate pop-
ulations of dual-valence versus experience-specific neurons
unrelated to conditioning paradigms. Notwithstanding the im-
portance of encoding learned associations, animalsmust rec-
ognize unexpected aversive and appetitive events to survive.
The relatively large proportion of neurons that responded to
both experiences shown here may be critical for behavioral
flexibility and future learning needed to successfully adapt to
dangerous or positive elements in the environment.
Another novel aspect of the data are the selective engage-

ment of the VTA-dmPFC networks by the stressful experi-
ence. The change in theta oscillation in the PFC, in
coordination with other regions, has been implicated in state
anxiety and learned fear (Adhikari et al., 2010; Padilla-
Coreano et al., 2019). The present data suggest that engage-
ment of this network reflects an innate (not learned) response
to an aversive event.

Caveats
PFC and VTA contain heterogeneous groups of cells.

The PFC includes pyramidal cells and multiple types of
GABA interneurons (DeFelipe and Fariñas, 1992; Somogyi
et al., 1998). The VTA includes DA-containing and GABA-

containing cells, both of which package other neurotrans-
mitters including glutamate (Carr and Sesack, 2000; Nair-
Roberts et al., 2008). We did not methodically distinguish
between neuron types and indiscriminately recorded from
all spontaneously active neurons. In the dmPFC, the low-
average firing rate of recorded neurons, and the general
inefficiency of our style of electrodes to record from small
interneurons, suggest that the majority, if not all, of the re-
corded neurons were pyramidal cells. In the VTA, we clas-
sified neurons based on firing characteristics as putative
DA and non-DA. This characterization is consistent with
optogenetically tagged DA neurons observed in previous
studies (Cohen et al., 2012; Lohani et al., 2019). While we
do not claim that this characterization is perfectly accu-
rate, the finding that both DA and non-DA neurons can be
activated and inhibited by both aversive and rewarding
events is consistent with previous work (Cohen et al.,
2012). Furthermore, regardless of the type of cells in ei-
ther dmPFC or VTA that we recorded, our primary conclu-
sion that same cells respond to both appetitive and
aversive experiences holds.

Clinical implications
The gist of our finding is that a subpopulation of dmPFC

and VTA neurons encodes both unanticipated aversive and
rewarding experiences. These dual-valence neurons may
be critical for vulnerability to develop disorders that are man-
ifested, or exacerbated, by stress. These conditions, includ-
ing mood and anxiety disorders, PTSD, addiction, and
schizophrenia, involve symptoms with concomitant mal-
function of negative and positive valence systems (Kalivas
and Volkow, 2005; Meyer-Lindenberg, 2010; Daviu et al.,
2019; Stanton et al., 2019). Animal models relevant to these
disorders also suggest an alteration in communication be-
tween the PFC and other areas of the brain including the
VTA (Cha et al., 2014; Bruchim-Samuel et al., 2016; Park
andMoghaddam, 2017). Future work will be critical in identi-
fying the brain circuitry that mediates the dual-valence re-
sponse of dmPFC and VTA neurons.
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