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a b s t r a c t

The Hilbert–Kunz multiplicity and F-signature are important invariants for researchers in commutative
algebra and algebraic geometry. We provide software, and describe the automation, for the calculations
of the two invariants in the case of intersection algebras over polynomial rings.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2018_153
Legal Code License BSD 3-Clause
Code versioning system used Git
Software code languages, tools, and services used Common Lisp, Bash
Compilation requirements, operating environments & dependencies Clozure Common Lisp, Bash/Cygwin, Sed, Mathematica (optional)
If available Link to developer documentation/manual
Support email for questions gsjohnso@go.olemiss.edu

1. Motivation and significance

The Hilbert–Kunz multiplicity, along with the F-signature, has
much importance in the related fields of commutative algebra and
algebraic geometry, specifically, in characteristic p > 0 methods,
but is notoriously difficult to compute in practice (see, for exam-
ple, [1]). In particular, very few examples exist in the literature
where both values are known simultaneously. This state of affairs
motivated the work of Enescu and Spiroff, who calculated the two
invariants, as well as the Hilbert–Samuel multiplicity and divisor
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class group, for certain classes of intersection algebras [2]. In their
(toric) setting, the Hilbert–Kunz multiplicity and F-signature can
be found using volumes of polytopes [2, Proposition 4.2], [3, Theo-
rem 2.2], [4, Theorem 3.2.3]. Thus, their calculation, being combi-
natorial in nature, lends itself perfectly to computer automation.
One might expect to be able to obtain general formulæ for the
invariants, however, a significant hurdle is the lack of a usable
description of the unique Hilbert basis elements in terms of the
parameters.

The intersection algebra of a commutative ring R in terms of
ideals I and J is B = BR(I, J) =

⨁
r,s∈Z≥0

(Ir ∩ J s). In particular,
when R = k[x1, . . . , xn], for a field k, and I = (xa11 xa22 · · · xann ) and J =

(xb11 xb22 · · · xbnn ), with ai, bi ∈ Z≥0, the ordered pairs (bi, ai) partition
the first quadrant of the plane into a fan made up of pointed ra-
tional cones, from which monoids, and Hilbert bases are obtained.
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While for general n ∈ N and a = (a1, . . . , an), b = (b1, . . . , bn) no
formula for theHilbert–Kunzmultiplicity eHK (B) or the F-signature
s(B) is known, Enescu and Spiroff have an algorithm to compute
both, for any specific numerical entries [2, §5]. This algorithm has
been automated by Johnson. Thus, while researchers have in the
past relied on a bound of the invariants, or only had information
about one of the two, they may now know the exact value of both
for rings in this class by a simple extraction of numerical data.

Intersection algebras overlapwith classes of objects in algebraic
geometry. For example, when R = k[x], BR((xa1 ), (x)) is isomorphic
to the rational normal scroll S = k[T , xT , xyT , yT , x−1yT , x−2yT ,

. . . , x−(a1−1)yT ] [5, Example 3.5], and BR((x), (x)) is a Segre prod-
uct [6, §3], [2, Proposition 1.12], i.e., the homogeneous coordinate
ring for the Segre embedding P1

× P1
→ P3. For more details on

intersection algebras, especially background material, see [7, §2]
and [8], and for the complete set of results obtained by Enescu
and Spiroff, see [2]. References for geometric results are [1,5,6].
Throughout the paper, R will be a polynomial ring over a field k
and I, J principal monomial ideals. Since the numerical invariants
in our case are given by volumes, they are independent of the
characteristic of k.

2. Software description

To calculate the Hilbert–Kunz multiplicity and F-signature for
BR(I, J) =

⨁
r,s∈Z≥0

(Ir ∩ J s), where R = k[x1, . . . , xn], I =

(xa11 xa22 · · · xann ), and J = (xb11 xb22 · · · xbnn ), with ai, bi ∈ N, the
user extracts (and if necessary, permutes) the exponents into two
strings of fan ordered positive2 integers, a1, . . . , an and b1, . . . , bn,
meaning ai/bi ≥ ai+1/bi+1 for all 1 ≤ i < n. Then the user com-
mands are user directory$ ./calculate-integral a1 a2 · · · an
b1 b2 · · · bn and user directory$ ./inequalities a1 a2 · · · an b1
b2 · · · bn.

The command line interface can be run on a Unix shell. If the
first command is invoked, then the program displays the exact
values of the two invariants for BR(I, J), necessarily rational num-
bers [6, Theorem 2.1], on two lines and terminates, as shown
below.

Hilbert--Kunz Multiplicity = p1/q1
F-Signature = p2/q2

Otherwise, the second command displays the Mathematica code
used to calculate these values. See Example 3.1.

2.1. Software architecture and functionalities

Three main technologies are used.
1. The Bash shell. This collects the arguments from the user and

invokes the program itself.
2. Clozure Common Lisp. This is the programming language we

used to calculate the set of inequalities bounding the region in
question. It provides a large number of list-processing operators
as well as highly flexible looping constructs, making it well suited
for dealing with the points of indefinite dimension involved in this
project.

3. Mathematica [9]. This is used to calculate the final values
of the integrals that give the Hilbert–Kunz multiplicity and F-
signature, in any number of dimensions. The integration features
of Mathematica are particularly well suited to this project, where
the region of integration is defined by a set of inequalities in any
number of dimensions. Other tools capable of solving integrals
tend to require a function rather than a set of inequalities to define

2 The case of non-negative integers can be addressedwithin the scope of positive
integers. See [2, Proposition 1.6].

the area of integration, and limit the number of dimensions to two
or three.

The software package consists of a subdirectory called ccl con-
taining Clozure Common Lisp itself, another subdirectory called src
containing the Lisp source code as well as a couple of auxiliary
bash scripts, and three main bash scripts: setup, inequalities, and
calculate-integral. The first, setup, must be run before attempting
to run the others. It has Clozure compile the source code into an
image file (effectively a DLL; in Lisp, all programs are essentially
implemented as a DLL loaded by the language kernel with a speci-
fied top-level function to run instead of a REPL) called hkm.image.
Once the hkm.image exists in the same directory as the other files,
calculate-integral can be run as specified above.

All the files and subdirectories must occupy the same root
directory. Further, for userswithMathematica, the programalso as-
sumes that theMathematica kernel, calledMathKernel orWolfram,
exists in a specified location depending on the operating system.

2.2. Implementation details

Below is a brief overview of the algorithm used in our program
for either of the two commands. Once the arguments are collected3
from the command line, all steps but the integration for the vol-
umes are done entirely in Lisp.

Step 1. Our program first finds the Hilbert set for BR(I, J), [2,
§1], [7]. Associated to the pairs (bi, ai), there are cones Ci and C , and
monoids Qi, and the unique Hilbert basis Hi for each Qi is found
via the algorithm given in [10, Algorithm 2.4]. The Hilbert set is
H = ∪i=0,...,nHi.

Step 2. It finds the set G = {(v, t(v)) : v ∈ H}, where t(v) =

(max(air, bis))i=1,...,n for v = (r, s) ∈ H. Each pair in the Hilbert
set will be rewritten as an (n+ 2)-tuple. The extra n coordinates zi
are determined according to the formula zi(x, y) = max(aix, biy),
corresponding to the intersection of monomial ideals.

Step 3. It determines the first set of inequalities bounding a
region in n + 2 dimensions. If the individual coordinates of each
element of G are labeled as (x, y, z1, z2, . . . , zn), then an initial set
of inequalities is derived by a predetermined template:

n⋀
i=1

0 ≤ aix ≤ zi ∧ 0 ≤ biy ≤ zi.

From these initial inequalities and G, further inequalities must
be derived, and the conjunction of all these inequalities will pro-
duce the region we seek: an element (p, q, r1, r2, . . . , rn) ∈ G
generates a set of further inequalities by the following function:

extraInequality(p, q, r1, r2, . . . , rn) =

¬initialInequalities(x−p, y−q, z1−r1, z2−r2, . . . , zn−rn),
where initialInequalities is a function that accepts an element of G
and returns true if and only if the given point satisfies all the initial
inequalities. The program repeats this process for every element
of G. Then, it joins all the sets of inequalities by conjunction,
producing our region, the volume of which is the Hilbert–Kunz
multiplicity [2, Proposition 4.2], [3, Theorem 2.2].

Step 4. It determines the second set of inequalities, for the F-
signature, bounding another region in n+ 2 dimensions, using the
formula
n⋀

i=1

aix ≤ zi ≤ 1 + aix ∧ biy ≤ zi ≤ 1 + biy.

This can be found with a simple for loop. The F-signature is the
volume of this polytope [4, Theorem 3.2.3].

Output. If the ./inequalities command is invoked, then
the program shows theMathematica code used in the calculations,

3 Recall that a1, a2, . . . , an and b1, b2, . . . , bn must be entered in fan order. See
p. 2.



G. Johnson and S. Spiroff / SoftwareX 9 (2019) 35–38 37

which includes both sets of inequalities bounding the regions
determined in steps 3 and 4, and terminates. If the ./calculate-
integral command is used, then the program passes this code to
Mathematica, which calculates, by integration, the volume of each
region. Sed is used to format the output readably.

Remark 2.1. The ./inequalities command allows one to inte-
grate or analyze the invariants separately or via another program,
especially if he/she does not have a local installation of Mathe-
matica, a proprietary software. As evinced in the examples below,
the running time in higher dimensions for the ./calculate-
integral command can significantly increase depending upon
the complexity of the geometry involved. The bottleneck in these
cases is the integration; the ./inequalities command finished
almost instantaneously even in the most complex cases tested. It
can also be used for 3D printing.

3. Illustrative examples

Example 3.1 (Volumes.). For BR(I, J) = BR((x3), (x2)), where R =

k[x], the command ./inequalities 3 2 produces the following
output.

Integrate[Boole[ 0 <= x && 0 <= y && 3x <= z1 && 2y
<= z1 &&
((z1 < 3x + 1 || z1 < 2y + 1)) && ((x < 1 || y < 2 || z1
< 3x + 1))
&& ((y < 1 || z1 < 3x + 2)) && ((x < 1 || z1 < 2y + 3))
&&
((x < 1 || y < 1 || z1 < 2y + 1)) && ((x < 2 || y < 3))],

{x, 0, 2000}, {y, 0, 2000}, {z1, 0, 2000}]

Integrate[Boole[3x <= z1 < 1 + 3x && 2y <= z1 < 1 +
2y],
{x, 0, 1}, {y, 0, 1}, {z1, 0, 30}]

The solids bounded by the inequalities are graphed below using
Mathematica. The Hilbert–Kunz multiplicity and F-signature of
BR((x3), (x2)) are the volumes of the solids, respectively, as per [2]
(see Figs. 1 and 2). Their exact values are obtained via the command
./calculate-inequalities 3 2. Moreover, to provide addi-
tional clarity,wenote thatBR((x3), (x2)) ∼= k[x, T1, T2, T3, T4, T5]/I

where I = (T1T3 − T 2
2 , T1T4 − xT2, T1T5 − x2T4, T2T4 − xT3, T2T5 −

xT 2
4 , T3T5 − T 3

4 ), as described in [10, Example 3.14].

Example 3.2 (Fan Order; Running Times). When R = k[x, y, z],
I = (xy6z5), and J = (x2y4z7), the commands in our program are
necessarily implemented in fan order: 2 7 4 1 5 6. The running
time of the ./calculate-integral command, whose output
for BR(I, J) is displayed below, was approximately three and a half
hours, but ./inequalities executed almost instantaneously.

Hilbert--Kunz Multiplicity = 1874881259711/391184640000
F-Signature = 27251293/1564738560

As a related example, fan order for BR(I, I) is obtained by any
sequence ai aj ak ai aj ak and ./calculate-integral 1 6 5
1 6 5, for example, executes in a matter of seconds because
of the symmetry of the associated geometric region. We obtain
eHK (BR(I, I)) = eHK (BR((xy6z5), (xy6z5))) =

1633
864 and s(BR(I, I)) =

95
864 , and note that the sum of the two invariants equals two.

Fig. 1. Hilbert–Kunz multiplicity: view from front and side. eHK (BR(I, J)) =
41
18 ..

Fig. 2. F-Signature: view from front and side. s(BR(I, J)) =
11
36 ..
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Likewise, eHK (BR(J, J)) =
22789
12005 and s(BR(J, J)) =

1221
12005 are easily

obtained.

4. Impact

The significance of this software is due to the importance of the
Hilbert–Kunzmultiplicity and F-signature in the fields of algebraic
geometry and commutative algebra. Countless articles have been
published on the invariants, by myriad authors, too numerous to
list. The overarching idea is that the Hilbert–Kunz multiplicity is
a measure of the pathology of the singularities of the ring: if R
is a regular ring, e.g., R = k[x1, . . . , xn], then the Hilbert–Kunz
multiplicity equals 1, and in general, the closer the invariant is
to 1, the better the singularities of the ring. (Likewise, the F-
signature of a regular ring is also 1.) For this reason, and because
it is so difficult to compute, the Hilbert–Kunz multiplicity has
been analyzed extensively in terms of upper and lower bounds.
Our program now provides a large class of examples where the
exact value is obtained, impacting the practice, and improving
the resources, of those in the fields of research; it often executes
in a matter of seconds or minutes a process that would take an
individual an hour or more per example. Moreover, it provides
the values of both the Hilbert–Kunz multiplicity and F-signature
invariants. Results in the substantial literature exist which seek
to relate the two invariants. For example, if ai = bi for all i, then
eHK (B)+ s(B) = 2 (see Example 3.2), [2, Proposition 4.3]. With the
capability of our software, other relationships and properties may
now be discovered and tested, and new research questions may be
pursued.

The ability to calculate these invariants will, in turn, further
the study of the structure of rings by perhaps answering questions
on tight closure. The relationship of the Hilbert–Kunz multiplicity
to the theory of tight closure is analogous to that of the Hilbert–
Samuel multiplicity to integral closure. Moreover, tight closure
ties into long-standing conjectures and questions in commutative
algebra and algebraic geometry. (See, e.g., [1] and its references.)

Finally, it is important to note that our program works in any
dimension. Consequently, light may be shed on questions and
theories beyond small dimensions, which are often the limited

proving grounds for results in the literature. Moreover, given the
overlap of intersection algebraswith objects in algebraic geometry,
for one, the program’s application and interest extends beyond a
single field of study.
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