R07. Identification of Antifungal Bisphosphocholines from Medicinal Gentiana Species

Xing-Cong Li
University of Mississippi, xcli7@olemiss.edu

Siyu Ren
University of Mississippi; *Hunan University of Chinese Medicine, Changsha (People's Republic of China)*

Kejun Deng
University of Mississippi; *University of Electronic Science and Technology of China, (People's Republic of China)*

Shi Qiu
University of Mississippi

Mei Wang
University of Mississippi

See next page for additional authors

Follow this and additional works at: https://egrove.olemiss.edu/pharm_annual_posters

Recommended Citation

Li, Xing-Cong; Ren, Siyu; Deng, Kejun; Qiu, Shi; Wang, Mei; Avula, Bharathi; Tripathi, Siddharth K.; Jacob, Melissa R.; Gong, Limin; Wang, Wei; and Khan, Ikhlas A., "R07. Identification of Antifungal Bisphosphocholines from Medicinal Gentiana Species" (2020). *Annual Poster Session*. 7. https://egrove.olemiss.edu/pharm_annual_posters/7

This Book is brought to you for free and open access by the Pharmacy, School of at eGrove. It has been accepted for inclusion in Annual Poster Session by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.
Authors
Xing-Cong Li, Siyu Ren, Kejun Deng, Shi Qiu, Mei Wang, Bharathi Avula, Siddharth K. Tripathi, Melissa R. Jacob, Limin Gong, Wei Wang, and Ikhlas A. Khan

This book is available at eGrove: https://egrove.olemiss.edu/pharm_annual_posters/7
IDENTIFICATION OF ANTFUNGAL BISPHEROCHOLINES FROM MEDICINAL GENTIANA SPECIES

Siyu Ren 1,3, Kejun Deng 1,4, Shi Qiu 1, Mei Wang 1, Bharathi Avula 1, Siddharth K. Tripathi 1, Melissa R. Jacob 1, Limin Gong 3, Wei Wang 1, Ikhas A. Khan 1,2, and Xing-Cong Li 1,2

1National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, Mississippi 38677, USA; 2Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA; 3TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China; and 4School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China

Abstract

Gentiana species including G. crassicaulis, G. macrophylla, G. dahurica, and G. straminea are used in traditional Chinese medicine (TCM) as “Qinjiao” for the treatment of rheumatism, hepatitis, and pain. Four antifungal bisphosphocholines [irlbacholine (2) and three new analogues, gentianalines A-C (1, 3, and 4)] were identified from G. crassicaulis by a bioassay-guided fractionation and structure elucidation approach. Subsequent chemical analysis of 56 “Qinjiao” samples (45 from G. crassicaulis, five from G. macrophylla, three from G. dahurica, and three from G. straminea) showed that bisphosphocholines were present in all four Gentiana species, with irlbacholine as the major compound ranging from 2.0–6.2 mg per gram dried material. irlbacholine exhibited potent in vitro antifungal activity against Cryptococcus neoformans, Aspergillus fumigatus, Candida albicans, and Candida glabrata with minimum inhibitory concentrations (MICs) values of 0.63, 1.25, 10.0, and 5.0 μg/mL, respectively. Identification of the bisphosphocholines, a rare class of antifungal natural products, in these medicinal plants provides scientific evidence to complement their medicinal use. The bisphosphocholines carrying a long aliphatic chain possess amphiphilic molecule-like properties with a tendency of retention in both normal and reversed-phase silica gel column chromatography, and thereby may be neglected in natural products discovery. This report may stimulate interest in this class of compounds that warrant the further study of other biological activities as well.

In Vitro Antifungal Activity of IrlbaIcholine (2) and Extracts

<table>
<thead>
<tr>
<th>Compound</th>
<th>C. neoformans ATCC 90113</th>
<th>A. fumigatus ATCC 204305</th>
<th>C. albicans ATCC 90028</th>
<th>C. glabrata ATCC 90030</th>
</tr>
</thead>
<tbody>
<tr>
<td>irlbacholine (2)</td>
<td>0.42 / 0.63</td>
<td>0.87 / 1.25</td>
<td>3.7 / 10.0</td>
<td>2.08 / 5.0</td>
</tr>
<tr>
<td>fraction a</td>
<td>1.15 / 2.5</td>
<td>2.06 / 2.5</td>
<td>15.0 / 20.0</td>
<td>7.3 / 20.0</td>
</tr>
<tr>
<td>EIOH extract</td>
<td>5.2 / 12.5</td>
<td>9.99 / 12.5</td>
<td>>200 / >200</td>
<td>34.4 / 100</td>
</tr>
<tr>
<td>CHCl₃ extract</td>
<td>14.9 / 25.0</td>
<td>44.3 / 100</td>
<td>>200 / >200</td>
<td>90.5 / 200</td>
</tr>
<tr>
<td>ammonothiuranin b</td>
<td>0.19 / 0.63</td>
<td>1.1 / 2.5</td>
<td>0.22 / 0.63</td>
<td>0.21 / 0.63</td>
</tr>
</tbody>
</table>

*IC₅₀ concentration responsible for 50% growth inhibition of fungal cells; MIC: minimum inhibitory concentration (lowest concentration that allows no detectable growth). The highest test concentrations for compounds, fractions, and crude extracts are 20, 20, and 200 μg/mL, respectively. *A fraction contains irlbacholine as major compound and also gentianalines A–C as minor compounds determined by LC-MS.

Acknowledgments

This work was supported by the USDA Agricultural Research Service Specific Cooperative Agreement No. 58-6000-6-015 and China Scholarship Council.

Contact: Dr. Xing-Cong Li, NCNPR, Phone: (662) 915-6742; Email: xcl7@olemiss.edu
This work has been published in Journal of Natural Products http://dx.doi.org/10.1021/acs.jnatprod.0c00584.