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ABSTRACT Energy efficiency is the major concern in hierarchical wireless sensor networks(WSNs), where
the major energy consumption originates from radios for communication. Due to notable energy expenditure
of long-range transmission for cluster members and data aggregation for Cluster Head (CH), saving and
balancing energy consumption is a tricky challenge in WSNs. In this paper, we design a CH selection
mechanism with a mobile sink (MS) while proposing relay selection algorithms with multi-user multi-armed
bandit (UM-MAB) to solve the problem of energy efficiency. According to the definition of node density
and residual energy, we propose a conception referred to as a Virtual Head (VH) for MS to collect data
in terms of energy efficiency. Moreover, we naturally change the relay selection problem into permutation
problem through employing the two-hop transmission in cooperative power line communication, which deals
with long-distance transmission. As far as the relay selection problem is concerned, we propose the machine
learning algorithm, namelyMU-MAB, to solve it through the reward associated with an increment for energy
consumption. Furthermore, we employ the stable matching theory based onmarginal utility for the allocation
of the final one-to-one optimal combinations to achieve energy efficiency. In order to evaluate MU-MAB,
the regret is taken advantage to demonstrate the performance by using upper confidence bound (UCB) index.
In the end, simulation results illustrate the efficacy and effectiveness of our proposed solutions for saving
and balancing energy consumption.

INDEX TERMS Wireless sensor networks, relay selection, mobility, marginal utility, matching theory,
multi-armed bandit.

I. INTRODUCTION
Wireless sensor networks (WSNs) have recently gained
increasing popularity in ubiquitous support of sensing system
services which periodically sense and transmit collected data
to the Sink [1], and has widely involved many applications
including modern industrial processes and automation, envi-
ronment monitoring, intelligent transportation, and military
surveillance [2], [3]. Due to the limitation in battery resource
of sensor nodes, energy conservation is always a pivotal

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Fu Cheng .

challenge for prolonging the lifetime ofWSNs. Actually, long
geographical distance transmission often aggravates energy
expenditure. For example, sensor nodes sending data directly
to the Sink will consume more energy. Moreover, exchanging
or recharging power supplies of sensor nodes is usually dif-
ficult, which generally incurs the phenomenon of disconnec-
tion in WSNs. So it is harmful or disastrous for applications
to collect data in these situations.

The cluster-based hierarchical technology is one of the
most effective and promising schemes to enhance energy
conservation [4], [5]. However, cluster heads (CHs) forward-
ing packets to the Sink via either long-distance or multi-hop
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FIGURE 1. Energy consumption with transmission ranges.

transmissions usually drain their energy quickly, which leads
to energy consumption unbalance and limitation of the net-
work performance [6], [7]. Especially, CHs located nearby
the Sink deplete their energy quicker than other ones, which
incurs the problem of energy holes [8].In addition, the CH,
which plays a role of the arrangement for the system opera-
tion in an associated manner to improve the performance of
WSNs, is always overburdened during the process of cluster
formation [9].

Combining the cluster-based hierarchical technology and
the mobility for data collection seems to be a promising way
to achieve a better performance of WSNs [10]. Accordingly,
researchers have already exploited mobility of the mobile
devices or robots as a novel innovation to assist conventional
multi-hop transmission for data collection [11], [12]. How-
ever, the main concern of previous schemes mainly focuses
on how to select CH to achieve energy consumption balance
in terms of clustering [13], which exactly determines the
lifetime of WSNs. On a broader level, it is not reasonable
for the solution of energy efficiency to design a multi-hop
path without paying attention to the communication between
nodes in one cluster. Consequently, the energy consumption
of a node distributed at the edge of the network will be
consumed quickly owing to the long-distance communication
between the node and CH [14]. In fact, the energy con-
sumption of cluster members will exponentially increase with
transmission distance largening according to their transmis-
sion power models. As shown in Fig. 1, the energy expen-
diture for diverse transmission distances differentiate signif-
icantly. For instance, the long-distance data communication
will consume a large amount of energywhen the large volume
of data are exchanged or proceed in the cluster [15]. So one
solution for this phenomenon is that a short-distance multi-
hop path will be designed via introducing relay technologies
for energy reservation to provide data services for upper
applications [16].

Although multi-hop clustering algorithms can effectively
expand the cluster coverage and reduce the number of CHs,
Exchanging information frequently will incur more energy
consumption in the process of forming a stable cluster [17].
Based on the analysis and research of multi-hop clustering
algorithms published in recent years, we propose a multi-hop

clustering mechanism with MS to collect data for energy
efficiency. In the process of building the multi-hop cluster,
we propose multi-user multi-armed bandit (MU-MAB) algo-
rithms for relay selection to reduce and balance energy con-
sumption without prior knowledge. The major contributions
of this paper are summarized as follows.

1) we propose a CH selection mechanism based on defini-
tions of node density and residual energy to relieve the burden
of CH while reducing and balancing energy consumption of
the cluster. In this case, nodes with long-distance transmis-
sion to CH are separated, whose data should be transferred
by the relay node.

2) We create the conception of virtual head (VH) with a
mobile sink (MS) to collect data for balancing energy con-
sumption and shortening average distance of separated edge
nodes.

3) In order to achieve energy optimization in terms of
multi-hop transmission, we proposed MU-MAB for relay
selection without prior knowledge to reduce and balance
energy consumption. Via defining marginal utility function
and introducing matching theory, we build the optimization
framework for relay selection in terms of energy efficiency
with a most upper bound of the expected regret.

4) The relations between clustering and routing in our
algorithms are further exploited by theoretical and numerical
analysis, and the results are respectively demonstrated from
several aspects to verify the validation of our proposed algo-
rithms.

This paper is organized as follows. In Section II, we intro-
duce a brief survey of related works. Section III provides
some preliminaries and formulations based on our proposed
basic framework. In Section IV, we describe the principles
for relay selection. Afterwards, we detailedly analyze the
performance of system model and propose MU-MAB algo-
rithms for data collection in Section V. Section VI gives the
regret analysis for MU-MAB and simulations are clarified in
Section VII. Finally, Section VIII concludes this paper.

II. RELATED WORKS
Clustering greatly contributes to energy efficiency and net-
work lifetime, which enhances the power allocation and the
benefit recapture of resource [18]. In [9], single hop commu-
nication is applied to minimize energy consumption at cluster
level by creating an optimal data collecting chain based on
the fact that node’s energy capacity is rather limited and the
communication overhead is proportional to the transmission
distance. However, the energy hole problem incurs lower
performance of WSNs at global level for data collection,
which could be circumvented through an application-based
optimization of multi-level clustering algorithm proposed
in [19].

In practical applications, data collection always combines
the mobility to achieve better performance of WSNs. In [20],
a novel dynamic clustering called mobile-to-cluster scheme
is proposed to optimize the service process, which employs
mobile vehicles to balance the load of WSNs. The authors
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in [21] focus on low delay and high-throughput opportunistic
data collection in WSNs with general network topologies
and arbitrary numbers of MSs. The study in [22] utilizes
mobile robots to create a connected path from the base sta-
tion to the event for in-network forwarding. MS and CHs
in [23] are collaboratively considered to minimize the total
dissipated energy in communication. However, most of them
only consider the built network pattern to better the energy
efficiency of WSNs, not referring to the complex environ-
ment where the optimization performance of WSNs has to
face uncertainty. For example in [24], the long range com-
munication may incur the obstacle of power consumption,
which is potential for reducing the power consumption by
novel approaches combining WSNs with Unmanned Aerial
Vehicles (UAV).

For multi-hop cluster data collection, one significant issue
is the relay selection problem because of energy constrained
WSNs. Relay selection is proposed in [1], where an optimized
forwarding tree and a minimized UAV trajectory distance
are jointly designed to gather data. Additionally, the relay
selection problem can be solved by channel state informa-
tion (CSI) at transmitter, which selects the most appropri-
ate relay to achieve the best performance [25]. However,
acquiring the channel state information at transmitter could
increase the complexity of the communication system and
introduce undesired overhead to the system. To deal with
this problem, the multi-armed bandit (MAB) is employed to
replace channel state information. In [26], the authors intro-
duce UAV in wireless communication systems for dynamic
relaying and large-area environmental sensing, which are
referred to as the UAV-assisted networks. In order to handle
large data volumes in the long term for stand alone UAVswith
constrained energy and processing capacity, authors in [27]
determine optimized selection of multi-hop path between a
source and a target UAV with MAB. In [28], a DSMU-MAB
algorithm based on stablematching and the designed back-off
timer is presented to reduce the frequency of the information
exchange for relay selection. It is better to usemulti-hop intra-
cluster communications, if there is a small number of CHs
when member nodes are far from CHs or when there are
transfer restrictions on sensors. Hence, [3] considers an eval-
uation criterion of parameters either one-hop or multi-hop
WSNs.

III. PRELIMINARIES AND FORMULATIONS
In this section, we will formally introduce the energy effi-
ciency problem discussed in this paper, which mainly focuses
on a dynamic cluster changing as the density of CH to balance
energy consumption of the cluster for data collection. After
that, we consequentially analyze properties of Equation (1)
as the criterion in the following sections.

A. ENERGY CONSUMPTION MODEL
The energy consumption formulas follow the popular models
given in [18]. To transmit l-bit packets from node i to node j,

FIGURE 2. Trajectories for different size of clusters.

the energy expending formula is shown as follows:

Ei = ETx(l, dij)

=

{
(Eelec + εfs · d2ij) · l if dij < d0
(Eelec + εamp · d4ij) · l if dij ≥ d0

(1)

where dij stands for the distance between transmitter i and
receiver j, Eelec indicates energy depletion of the electronic
circuit. Parameters εfs and εamp denote the energy consump-
tion of the amplifier in the free space and multi-path fad-
ing channel models, respectively. d0 is equal to

√
εfs/εamp.

To receive l-bit packets, the energy expending formula can
be defined as:

ERx(l) = l · Eelec (2)

B. CLUSTERING
Supposed that sensor nodes are randomly deployed in the
region of interest, wewill introduce themechanism of cluster-
ing for data collection in order to improve the energy-efficient
performance of WSNs. In this paper, we explicitly consider
two scenarios in the cluster for a MS to collect data, which
exactly depends on the position where MS is going to stop.
Actually, MS could move on to CH for efficient data collec-
tion or to the center of the cluster for energy optimization.
However, the patten of clustering comes to affect the decision
of MS’s moving trajectory. We employ K-means clustering
to partition WSNs into K clusters according to Euclidean
distance and use the superiority of it to flexibly control the
size of clusters. Actually, if K is large, the cluster size may be
so smaller that MS’s moving trajectory becomes longer. Basi-
cally, MS will take more time to collect data. On the contrary,
if K is small, the cluster will include more sensor nodes and
MS’s moving trajectory could be shorten consequently. Seen
from Fig.2, both of clustering and path of MS jointly play
crucial roles to optimize and balance energy consumption.
Therefore,the size of a cluster can be adjusted flexibly so that
the performance of WSNs (e.g. the tradeoff between energy
consumption and MS’s moving trajectory assignment) are
improved dramatically.

Different from [29], we adequately operate the generated
cluster as many rounds as possible rather than frequently
change it for keeping a single property of the cluster. In this
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way, we eventually partition WSNs into Voronoi uniform
regions where MS goes through to collect data.

Note that 1) we set the size of cluster according to the
energy model of data transmission Equation (1), that is,
the data transmission ranges in the cluster include both of free
space and multi-path fading channel models; 2) The value
K definitely determines the MS’s moving trajectory while
changing the data transmission and energy consumption.

C. CLUSTER HEAD SELECTION
In this subsection, we select CH by combining the factors of
node’s residual energy and density. It is easy to understand
the factor of node’s residual energy. In terms of node density,
we create the following definitions.
Definition 1 (Neighbor Node Set): For a given node i in

the cluster and supposed that the size of cluster is L,
the Neighbor Node Set of node i can be defined as:

0i = {Nodeij|dNodeij < d0, j = 1, 2, · · · ,L} (3)

Definition 2 (Node’s Density): Given the size of cluster L,
Node i’s density is calculated by

sidensity =
|0i|

L
(4)

where the expression |0i| is the number of elements of set 0i.
In fact, the density property of node i in the cluster indicates

a ratio of the number of Neighbor Node Set and the size of the
cluster. In addition, the node with more residual energy also
has an opportunity to be selected as CH. Combined residual
energy and the definition of node density, the selection prin-
ciple of candidate CHs is

Nodei = w
E iresidual
Emax

+ (1− w)
|0i|

L
(5)

where ω ∈ [0, 1] is a weight coefficient, Emax indicates the
maximal energy of node in the cluster, and E iresidual stands for
the residual energy of node i.
After calculating all the candidate CHs’ value, the CH is

selected by maximizing the following objective function.

CHi = max

(
w
E iresidual
Emax

+ (1− w)
|0i|

L

)
(6)

The CH selection method aims to prevent edge nodes of
cluster from being selected as CH, which will exacerbate
the energy unbalance problem. CH can not only be used
as backbone network to deliver data from source nodes for
real-time quality of service, but also facilitate the design
of MS’ optimal trajectory to achieve energy-efficient data
collection with latency. However, the topic of latency from
introducing MS is beyond the scope of this paper and we will
discuss it in the future. In this way,the energy-efficient data
collection could be improved. On the other hand, we also con-
sider energy distribution to minimize the dissipation energy
of node as far as possible, thereby we have the definition of
node density for CH to guarantee sufficient members, which
play a role as the relay. Furthermore, the energy density could

Algorithm 1 CH Election Algorithm
Initialization: Define K , a CH set 8=∅ and density set

0=∅

1: for i = 1 toK do
2: Difine |iK | is the size of i-th cluster
3: for j=1 to |iK | do
4: let 0ij = {Nodeij|RNodeij < d0}
5: Calculate the density of node j with radius R = d0
6: Compute Nodeij using Equation (5)
7: Broadcast a control packet including Nodeij
8: end for
9: Maximize {Nodei} i.e. CHi = max{Nodei }
10: Update CH set 8 by 8← CHi
11: Update 0̄i
12: end for
13: Broadcast a control packet including 8

also contribute to energy balance designedly, which will be
described in detail in the following part of this paper. The
CH selection method is shown in Algorithm 1 by considering
node’s energy and density, which is built for a multi-hop
cluster to enhance the energy-efficient performance ofWSNs.
where 0̄i indicates the complementary set of 0i in terms of
cluster i in WSNs.

D. PREFERENCE RELATION IN CLUSTERS
According to CH selection based on Equation (6) and Equa-
tion (1), we assume that theremust exist nodes whose range to
CH is larger than d0 in our cluster model. In order to transmit
data to CH, they have to enhance power and inevitably con-
sume more energy. Such phenomenon should be preventable
in terms of energy balance, so we assign a node relay included
in Neighbor Node Set of CH for the node exceeding range
d0. On the other hand, CH plays a role of leader to manege
members of the cluster, which generally receives data from
clustermembers or other CHs and eventually transmits data to
the Sink. So CHs usually undertake the responsible forWSNs
as a backbone network, leading to consume more energy than
cluster members. Consequently, we introduceMS to takes the
responsibility for data collection so that workload of WSNs
is mainly offloaded to MS.

Our proposed algorithms aim at collecting data in an
energy-efficient manner with mobility. For this purpose,
we design two different ways for MS to collect data. In the
process of data collection, we actually adopt the traversal
technology for MS to gather data from each cluster. As can
be seen from Fig.3, sensory data is delivered to CH, and CH
sends collected data to MS that travels and stops at CH’s
position. On the other hand, we primarily focus on mitigating
long-distance energy consumption and unbalance. So we pro-
pose the definition of Virtual Head(VH) based on Neighbor
Node Set to achieve equalization in terms of transmission dis-
tance. In this paper, we assume a two-hop transmission, that
is, a source node transmits data to CH through a relay like the
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FIGURE 3. Two models of two-hop clustering data collection process by
MS: CH-based data collection and VH-based data collection.

principle of power line communication transmission in [25].
A generalization to a multi-hop transmission is straightfor-
ward. Taking advantage of energy-efficient mobility of MS,
it is noticeable thatMS-based data collection strategies by CH
or VH are performed to enhance the performance of WSNs,
which are usually built for minimizing and balancing energy
consumption.

IV. PRINCIPLES FOR RELAY SELECTION
Clustering has been employed as an effective approach for
organizing the network to achieve energy efficiency. In this
section, we first provide the properties of our models for
cluster. Then, we analyze intra-cluster data relay in terms of
energy efficiency.

A. PROPERTIES OF CLUSTER
According to the rationale that the intra-cluster routing load
from cluster members to CH is minimized when CH tends
to be located at the center of each cluster, we focus on the
intra-cluster two-hop data transmission and build two strate-
gies for data collection. As shown in Fig.3, one strategy is
called CH-based data collection, which data are delivered
to CH or transferred by a relay to CH. The other strategy
called VH-based data collection will enable the rationale to
enhance the performance of WSNs based on the CH-based
data collection.

In order to reduce and balance energy consumption, MS is
introduced to collect data by visiting CH orVH.AlthoughCH
and VH are proposed in the same framework, they play their
respective roles and can be applied for different scenarios. For
example, CH-based data collection strategy with or without
MS can be modeled for random deployment WSNs in an
inaccessible field to humans, while VH-based data collection
strategy with or without CH can be applied for smart city
where MS travels along street to gather data from sensor
nodes deployed in blocks. Note that CH is not essential
after initialization in VH-based strategy because MS can
be responsibility for maintaining the basic information of
cluster.

In this paper, we research two strategies for data collection
in the perspective of energy efficiency. For both of them,
we focus on the data relay communication in two-hop cluster.

B. RELAY NODES SELECTION
In fact, we should consider the situations about differ-
ent transmission distances in terms of energy consumption.
By investigating a wider transmission distance distribution,
we specifically determine an optimization of energy con-
sumption as far as the effect of transmission distance is
concerned. For convenience, we can control the coverage area
of the cluster with the distance R ∈ [0, 2d0].
In order to reduce energy consumption for two-hop cluster,

we could exploit the relay node to transfer data. However,
choosing appropriate quantities of relay nodes is difficult in
terms of the optimization for energy efficiency. Based on the
energy consumption model, we turn out the existence of the
relay.
Theorem 1: For cluster i, there exists a point Q ∈ 0i as a

relay for one node in set 0̄i to reduce energy consumption.
Proof: Suppose that there exists one point Q such

that the following inequalities dnode,Q < d0, dQ,CH < d0
and dnode,CH > d0 are hold. For convenience, Enode is
the directly transmitted energy consumption of node. EQ
presents the transmitted and received energy consumption of
Q, and Enode,CH denotes the transmitted energy consumption
between node and CH. They are calculated in detail as fol-
lows.

Enode = Eelec+εfs · d2node,Q (7)

EQ = ERelec + ETelec+εfs · d2Q,CH (8)

Enode,CH = ETelec+εmp · d4node,CH (9)

We will verify that the sum of Enode and EQ is less than
Enode,CH . Therefore, we combine Enode and EQ to subtract
Enode,CH :

1E = Enode + EQ − Enode,CH
= εfs · (d2node,Q + d

2
Q,CH )+ (ERelec + ETelec)

− εmpd4node,CH (10)

Due to dnode,Q, dQ,CH ∈ (0, d0], dnode,CH ∈ (d0,+∞),
Equation (10) can be rewritten

1E = Enode + EQ − Enode,CH
= εfs · (d2node,Q + d

2
Q,CH )+ (ERelec + ETelec)

− εampd4node,CH
≤ 2εfs · d20 + (ERelec + ETelec)− εmpd4node,CH (11)

Owing to εfs > 0, εmp > 0, d0 > 0,ERelec + ETelec > 0,
which are all constants, there exists a dnode,CH ∈ (d0,+∞)
to make1E < 0 held. So we prove the existence of theQ. �
For example, we assume every node transmits 4000-bit

data. Let d0 = sqrt(εfs/εmp) = 87.7058 and dnode,CH =√
2d0. According to Theorem 1, Enode = 5.0769e - 04, EQ =

7.0769e - 04, and Enode,CH = 0.0014. So we have 1E =
Enode + EQ − Enode,CH = −2.1538e - 04 < 0.
Considering all nodes in 0̄ to send data to CH or VH,

we directly apply Theorem 1 to reduce the energy consump-
tion of the cluster. So we have the following corollary and
omit the proof.
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TABLE 1. Notations.

Corollary 1: There exist a node subset of 0 to relay data
from nodes in set 0̄ so that the energy consumption of the
cluster is minimal.

Since choosing relay nodes to get a layover of transmitted
data is challenging, so we have the following theorem.
Theorem 2: It is a NP-hard problem to select relay nodes

in 0 for energy efficiency in the cluster.
Proof: Obviously, we can reduce the problem of select-

ing relay nodes into a knapsack problem, and here omits the
process. �

V. MUTI-USER MAB FOR RELAY SELECTION
As shown in above sections, it is of importance to select
energy-efficient relay nodes in the cluster to achieve opti-
mization of energy consumption. In view of this, we adopt
MU-MAB to perform the relay selection strategy while guar-
anteeing energy balance of the cluster.

A. NOTATIONS AND FORMULAS
In this section, we model the issue of relay selection as a
MU-MABproblem. For convenience, we list usable notations
in table 1.

In this paper, we take advantage ofM nodes in set 0̄ to opti-
mize relay nodes in set0 includingN nodes. According to the
CH selection algorithm, we can control the scale N of set 0,
whichmeets the relationshipN ≥ M shown in Fig.3. Suppose
m ∈ {1, 2, · · · ,M} and n ∈ {1, 2, · · · ,N }, we calculate the
reward Xm,n(t) by |1E| while assuming that Xm,n(t) follows
some unknown i.i.d. over time. Without loss of generality,
we normalize Xm,n(t) ∈ [0, 1]. The mean of random variable
Xm,n(t) is θm,n = ET [Xm,n(t)]. We denote the set of all these
means as 2 = {θm,n, 1 ≤ m ≤ M , 1 ≤ n ≤ K }. The
performance of a relay selection is evaluated by the regret
value, which is defined as the difference between the expected
reward and that calculated by the selectable policy π [30].

Then we can obtain the mathematical formula after T time
slots.

<
π (2(t);T )=

T∑
t=1

∑
(m,n)∈k∗opt (t)

EXm,n(t)−Eπ [
T∑
t=1

Sπ (t)(t)] (12)

where Sπ (t)(t) is the sum of rewards obtained by all users
under policy π (t), which is computed as:

Sπ (t)(t) =
N∑
n=1

M∑
m=1

Xm,n(t)× Im,n(t) (13)

where Im,n(t) = 1 when nodem is the only one to select relay
n, otherwise Im,n(t) = 0.

B. FORMULATION OF MU-MAB
In this subsection, we consider the case where no prior reward
distribution knowledge is provided throughout the relay
selection process, however, we assume that the reward dis-
tribution remains constant during all games. The multi-user
relay selection algorithm is proposed and the algorithm has a
learning ability based on modified MAB in WSNs, which is
built with the matching theory and an energy utility.

To evaluate the most promising relays, we employ a
learning mechanism named upper confidence bound (UCB)
to support an optimistic evaluation of the relay’s quality,
which associates an index referred to as UCB index for the
user-relay pair. Then, we estimate the corresponding reward
expectations via the computed index for each user-relay pair
and choose the user-relay pair with the highest index.

In order to make this argument more precise, we need to
define the UCB in our framework. To simplify the process,
we assume Xm,n(t) is a sequence of independent gaussian
random variables with mean µ, variance σ 2

= 1. Given
an observed sequence {X1,X2, · · · ,XT }, we would like to
estimate the mean µ. Actually, the most natural estimator

can be calculated by the expression µ̂ = 1
T

T∑
i=1

Xi. Owing to

µ− µ̂ ∼ N (0, σ
2
√
T
), and then we have

P

(
µ− µ̂ ≥

√
2 log(1/δ)

T

)
≤ δ (14)

where δ ∈ (0, 1). We assume that the learner has observed
Tm,n(t − 1) samples from one arm at time t and received
rewards from the arm (m, n) with an empirical mean of
µ̂m,n(t − 1). Then, the unknown mean of the arm can be
expressed by

UCBm,n(t − 1) = µ̂m,n(t − 1)+

√
2 log(1/δ)
Tm,n(t − 1)

(15)

Under the description in III-D, there are sufficient relay
nodes in set 0 to meet energy-efficient policies. However,
due to P(N ,M ) arms, it is prohibitively expensive to solve
this maximization via using exhaustive search, which actu-
ally refer to the problem of combinational optimization.
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In order to solve the problem of combinational optimization,
we employ thematching theory to design policies for this type
of MAB problem with respect to regret. After that, we map
the optimization of matching into an arm.

Compared with UCB index in Equation (15), an arm is
determined through the optimization of the matching strategy
and the corresponding UCB index is observed in each time as
follow: ∑

(m,n)∈kopt (t)

µ̂m,n(t − 1)+

√
2 log(1/δ)
Tm,n(t)

(16)

where µ̂m,n(t) =
µ̂m,n(t−1)Tm,n(t)+Xm,n(t)

Tm,n(t−1)+1
and Tm,n(t) =

Tm,n(t−1)+1. Our scheme selectsM user-relay pairs with the
maximum value b(kopt ) at each time slot after initialization
period, and this optation is carried out once. For convenience,
we denote the UCB index by bm,n, and define the total UCB
index of a matching strategy kopt by

b(kopt ) :=
M∑
m=1

bm,kopt (t) (17)

C. MARGINAL-BASED MATCHING OPTIMIZATION
The main goal of matching is to optimally match relays
and users, if their individual and learned information are
observed. Then, each source node named user ranks relays
by using a preference relation referred to as UCB index,
which predicts the energy efficiency achieved by marginal
utility function. Nowwe can define a matching stability when
no user-relay pairs prefer each other in comparison to their
current matching. Hence, the definition of stability is shown
as follows:
Definition 3 (Stability [31]): A matching S : [M ]→ [K ]

is stable if for every m ∈ [M ] and n ∈ [N ] satisfying S(m) 6=
n if bm,S(m) < bm,n then there exits some user m′ ∈ [M ] such
that S(m′) = n and bm′,n < bm,n.
To obtain a stable matching strategy, we design a definition

of utility function which have the property of marginal rule
to select relay nodes.
Definition 4 (Marginal Utility Function): A utility func-

tion about energy is presented:

ft (1Ei) =
M∑
i=1

(E inode(t)+ E
i
Q(t)− E

i
node,CH (t)) (18)

where t indicates some time and M is the number of relay
nodes in a cluster under the assumption of n ≥ 1, E inode(t),
E iQ(t) and E

i
node,CH (t) are from expression(11).

Due to E inode(t)+E
i
Q(t)−E

i
node,CH (t), we can create Equa-

tion (18) as a monotonically decreasing function through
selecting relay nodes if the following inequality is held.

1Ei+1 −1Ei < 1Ei −1Ei−1 (19)

Ranking the sequence {1Ei+1−1Ei} at time t , we could get
a relay selection strategy min(ft (1Ei+1)− ft (1Ei)).

Algorithm 2 Marginal-Baed Matching Optimization
Algorithm
Input: M ,N ,
Output: kopt
1: Calculate UCB index
2: for i = 1 toM do
3: for j = 1 toN do
4: if 1Ei+1)+ f(t)(1Ei−1) < 2f(t)(1Ei) then

5: Update
∑

(m,n)∈kopt (t)
µ̂m,n(t − 1)+

√
2 log(1/δ)
Tm,n(t)

6: end if
7: end for
8: end for

Algorithm 3 MU-MAB Algorithm
1: for t = 1→ T do
2: for m = 1→ M do
3: Calculate Xm,n(t)
4: end for
5: end for
6: while l do
7: t = T + 1
8: Run algorithm 2 to get UCB of an arm

b(kopt ) :=
M∑
m=1

bm,kopt (t)

9: end while

Through analyzing the property of the above utility func-
tion, we definitely calculates UCB index bm,n andmaps it into
a monotonically decreasing function with a user-relay pair.
Theorem 3: The marginal utility function satisfying

inequality (19) is stable.
Proof: Obviously, the marginal utility function ft (·) <

0 guarantees the declining tendency with increment of i ∈
{1, 2, . . . ,M}. Next, we look for relay nodes in the cluster
according to the following inequality,

ft (1Ei+1)+ ft (1Ei−1) < 2ft (1Ei) (20)

Owing to the property of declining tendency, inequal-
ity (18) accord with diminishing marginal utility with i ∈
{1, 2, . . . ,M} increasing constantly. Therefor the following
equality is satisfied mathematically.

lim
n→+∞

ft (1Ei+1)− ft (1Ei) = 0 (21)

Generally, as long as we should guarantee the marginal
increment between f (1Ei+1) and f (1Ei) is minimum, that
is, min(ft (1Ei+1)− ft (1Ei)), there must be no m ∈ [M ] and
n ∈ [N ] to match a smaller value of bm,k . Therefore, we get
the conclusion. �
According to the above analysis, we design an optimiza-

tion algorithm based on MU-MAB to select relay nodes
through a marginal-based matching strategy as shown in
Algorithm 2 and 3.
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VI. REGRET ANALYSIS
Traditionally, the regret of a policy for a multi-armed bandit
problem is upper-bounded by analyzing the expected number
of times that each non-optimal arm is played. In this paper,
our work is influenced in [32] and references therein.
Theorem 4: For any horizon T, if δ = 1/T 2, then the

expected regret is at most

3MN1max +
16MN log(T )

1min
(22)

Proof: According to Equation (12), we change regret
into the following expression.

RT =
M∑
m=1

N∑
n=1

1ijE[Tm,n(T )] (23)

In order to bounding E[Tm,n(T )] for each arm(m, n),
we define a collection Gm,n for convenience.

Gm,n = {µ∗m,n < min
t∈[T ]

UCB1(t)}

∩ {µ̄(m,n)um,n +

√
2

um,n
log(1/δ) < µ∗m,n} (24)

where um,n indicates observations of arm (m, n) and can be
solve as a constant. In this way, we can conclude E[Tm,n(T )]
according to the definition of expectation.

E[Tm,n(T )] = E[I {Gm,n}Tm,n(T )]+ E[I {Gcm,n}Tm,n(T )]

≤ um,n + P(Gcm,n)n (25)

Naturally, we only verify that Tm,n(T ) ≤ um,n and P(Gm,n)c

is small enough with regard to T . First, we use contradiction
method to proof Tm,n ≤ um,n. Suppose that Tm,n(T ) > um,n
which means arm (m, n) was played more than um,n times
over T rounds. Then there exists a round t ∈ [T ] to get
Tm,n(t − 1) = um,n and At = (m, n) held.

UCBm,n(t − 1) = µ̄m,n(t − 1)+

√
2

Tm,n(t − 1)
log(1/δ)

= µ̄(m,n)um,n +

√
2

um,n
log(1/δ)

< µ∗ij

< UCB1(t − 1) (26)

Therefore, there indeed exist At = argmaxpq UCBpq(t −
1) 6= (m, n). This is a contradiction and then we conclude
Tm,n(T ) ≤ um,n. Next, we concern the second part P(Gcm,n)
of inequality (25). According to the definition of Gm,n, it is
easy to get the complement set P(Gcm,n) defined as follows.

Gcm,n = {µ
∗
m,n ≥ min

t∈[T ]
UCB1(t)}

∪ {µ̄(m,n)um,n +

√
2

um,n
log(1/δ) ≥ µ∗m,n} (27)

In Equation (27), we decompose the first part.

{µ∗m,n ≥ min
t∈[T ]

UCB1(t)}

⊂ {µ∗m,n ≥ min
s∈[T ]

µ̄(m,n)s +

√
2
s
log(1/δ)}

= ∪
s∈[T ]
{µ∗m,n ≥ µ̄(m,n)s +

√
2
s
log(1/δ)} (28)

Due to random variables are independent, we theoretically
infer the following inequalities.

P(µ∗m,n ≥ min
t∈[T ]

UCB1(t))

≤ P( ∪
s∈[T ]
{µ∗m,n ≥ µ̄(m,n)s +

√
2
s
log(1/δ)})

≤

T∑
s=1

P(µ∗m,n ≥ µ̄(m,n)s +

√
2
s
log(1/δ))

≤ T δ (29)

For the second part of Equation (27), we mainly confirm
the value of um,n. Due to the definition of 1m,n and the
relationship between 1ij and uij, we obtain an simplified
format only about 1m,n, which could be figured out here.

1m,n −

√
2

um,n
log(1/δ) ≥ c1m,n (30)

where c ∈ (0, 1). Using Hoeffding’s bound, we have the
following deduction.

P(µ̄(m,n)um,n +

√
2

um,n
log(1/δ) ≥ µ∗ij)

= P(µ̄(m,n)um,n − µm,n ≥ 1m,n −

√
2

um,n
log(1/δ))

≤ P(µ̄(m,n)um,n − µm,n ≥ c1m,n)

≤ exp(−
um,nc212

m,n

2
) (31)

Taking expression (31)together with Inequality (29),
we obtain P(Gcm,n) as follows.

P(Gcm,n) ≤ nδ + exp(−
um,nc212

m,n

2
) (32)

We then substitute Inequality (32) into Inequality (25), and
the result is

E[Tm,n(T )] ≤ um,n + T (T δ + exp(−
um,nc212

m,n

2
)) (33)

What we need to solve in Inequality (33) is um,n. According
to Inequality (30), we can get a smallest integer um,n =⌈

2 log(1/δ)
(1−c)212

ij

⌉
. Then setting δ = 1/T 2 and c = 0.5, we have

E[Tm,n(T )] ≤

⌈
2 log(1/δ)

(1− c)212
m,n

⌉
+ T

1− 2c2

(1−c)2 + 1

≤ 3+
16 log(T )
12
m,n

(34)
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TABLE 2. Simulation parameters.

FIGURE 4. The lifetime of network when k = 2.

Therefore, the result of expected regret RT follows

RT =
M∑
m=1

N∑
n=1

1m,nE[Tm,n(T )]

≤

M∑
m=1

N∑
n=1

1m,n(3+
16 log(T )
12
m,n

)]

≤ 3MN1max +
16MN log(T )

1min
(35)

�

VII. SIMULATIONS
In order to evaluate the energy efficiency of network perfor-
mances, we carry out our proposed algorithms in the section.

A. PERFORMANCE COMPARISONS
We start from two WSNs frameworks named CH-MAB-MS
and VH-MAB-MS respectively, and then simulate effects of
traffic using the marginal-based matching theory for sensor
relay to further verify proposed algorithms. We carry out
simulations in different scenarios using MATLAB. For the
sake of comparing to several critical indicators, we simulta-
neously refer to the traditional algorithm as One-hop which
describes the data delivery with one-hop patten in the cluster.
As expressed in the above sections, main parameters referred
to energy efficiency in simulations are listed in table 2,
which is used in a classical one-hop clustering algorithm(e.g.
LEACH).

We consider the implementation of running time for life-
time based on two frameworks illustrated in Section III with
K-mean cluster, where K = 2, K = 4 and K = 6 are
designed. In the figures from Fig.4 to Fig.6, we compare
our two metrics CH-MAB-MS and VH-MAB-MS with the

FIGURE 5. The lifetime of network when k = 4.

FIGURE 6. The lifetime of network when k = 6.

benchmark named One-hop for the death of the first node in
running WSNs.

Seen from Fig.4, the lifetime of benchmark One-hop is
less than 100 rounds obviously. On one hand, long-distance
transmission incurs much more energy consumption owing
to the clustering scale with K = 2. On the other hand,
sensory data from cluster members are delivered to CH,
which increases the CH’s traffic burden in spite of the rotat-
ing mechanism being adopted. In essence, our algorithms
CH-MAB-MS and VH-MAB-MS manifest superior perfor-
mances by introducing the CH selection mechanism, the
mobility for energy efficiency and relay selection strategies.
In terms of CH-MAB-MS, CH selection mechanism guaran-
tees that no node at the edge of cluster is selected as CH,
which avoids the increase of energy consumption in the clus-
ter. MS traverses to CHs for data collection instead of directly
or indirectly delivering data from CH to the Sink. In this
way, CH’s traffic burden is dramatically decreased to reduce
the risk of energy depletion, especially for the application of
raw data collection. More importantly, we employ MU-MAB
with themarginal-basedmatching theory to reduce the energy
consumption for prolonging the lifetime of WSNs. Due to
optimality of MU-MAB for relay selection, the lifetime of
WSNs is tremendously promoted. For VH-MAB-MS, we can
see that the performance of the lifetime is optimal. This is
because VH-MAB-MS is different from CH-MAB-MS in the
process of data collection with MS, which stops at VH and
gathers data from cluster members rather than CH.
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FIGURE 7. Packets of network when k = 2.

FIGURE 8. Packets of network when k = 4.

FIGURE 9. Packets of network when k = 6.

We can also get the similar results in Fig.5 and Fig.6 with
K = 4 and K = 6, respectively. However, all the results
of One-hop, CH-MAB-MS and VH-MAB-MS outperform
what illustrated in Fig.4. The primary cause is that shorter
transmission distance contributes to less energy consumption,
which the cluster scale becomes smaller than the one of the
case K = 2.

In order to study the energy efficiency from the perspec-
tive of network traffic, we consider packets generated and
delivered by the three algorithms with different clustering
scenarios. Seen from Fig.7 to Fig.9, the traffic tends to

FIGURE 10. Residual energy when k = 4.

improvement with K increasing from 2 to 6. Intuitively,
prolonging the lifetime of networks is an efficient method to
achieve considerable packets, which necessitates optimiza-
tion of network resources. Specifically, the death of first
node play an important roles in the process of analyzing data
traffic.

As shown in Fig.7, the total quantity of packets transmitted
by One-hop algorithm is rather quiet small comparing to our
two proposed algorithms. According to the above description
of the lifetime, One-hop algorithm leads to a shorter lifetime
so that data traffic is limited. However, the quantity of packets
transmitted by One-hop algorithm is more than CH-MAB-
MS’s and VH-MAB-MS’s before the first node comes to
death. In terms of CH-MAB-MS, data are transmitted to MS
rather than the Sink. For VH-MAB-MS, all data from cluster
members are sent to MS dwelling at VH, which dramatically
reduces the data traffic to spread in WSNs.

For further illustrating the statistical characters, we also
simulate other scenarios with K = 4 and K = 6 to verify the
rule of data traffic in Fig.8 and Fig.9. In fact, sustainable and
sufficient data created by nodes can ensure a favorable quality
of service. Therefore, our proposed algorithms CH-MAB-MS
and VH-MAB-MS can provide a better data service than the
One-hop algorithm in terms of advancing data supply.

In Fig.10, we demonstrate the residual energy of all nodes
involved in the cluster when the death of the first node appears
and K = 4. The scenarios of K = 2 and K = 6 have
the similar property, so we omit the analysis of them. Seen
from Fig. 10, due to the unbalanced energy consumption
of the One-hop algorithm, most nodes remain major energy
with 0.35J on average when the first node is dead. CH-
MAB-MS algorithm’s and VH-MAB-MS algorithm’s are
0.25J and 0.1J, respectively. From the perspective of lifetime,
the more most nodes remain energy, the poorer WSNs have
performance. Actually, the traditional One-hop algorithm has
tremendous residual energy with about more than 80% of
the original energy. Contrasted to CH-MAB-MS and VH-
MAB-MS, it only consumes a few energy and vulnerably
makes networks disconnected, which leads to an enormous
waste of resource. Although we introduce mobility for data
collection to save energy in CH-MAB-MS algorithm, data
from cluster members are still sent to CH and then MS.
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FIGURE 11. Accumulated energy consumption when k = 2.

In this process, CH dominates the lifetime of network owing
to higher energy consumption than cluster members. The
VH-MAB-MS algorithm utilizes MS to collect data from
cluster members instead of CH so that energy consumption
of every cluster member is taken full advantage. In addi-
tion, the position of VH is always optimal to minimize
the energy consumption, which makes the residual energy
of VH-MAB-MS algorithm superior to CH-MAB-MS algo-
rithm and the traditional One-hop algorithm.

For energy efficiency, we consider the accumulated energy
consumption of WSNs when K = 2 occurs in Fig.11. Based
on the death of the first node, the curve of accumulated
energy consumption for the traditional One-hop algorithm
is steep, because the energy of WSNs runs out in a shorter
time. On the contrary, our proposed CH-MAB-MS algo-
rithm andVH-MAB-MS algorithm take on flat performances.
In other words, our proposed algorithms precede the tradi-
tional One-hop algorithm in total energy consumption, which
means that they have good properties to prolong the lifetime
of WSNs. In terms of our VH-MAB-MS algorithm, it is
energy efficient for delay-tolerant events to collect data owing
to constraints from the mobility of MS. It is also for this
reason that the VH-MAB-MS algorithm consumes the least
energy among the three algorithms in unit time.

Fig.12 depicts the energy variance with K = 4
and Fig.13 shows an elaborate specification between
CH-MAB-MS algorithm and VH-MAB-MS algorithm. Due
to variation of transmission distance distribution for the tradi-
tional One-hop algorithm, the energy variance fluctuates from
0.000572 to 0.002217, which reveals the fact that one-hop
data collection strategy and CH selection mechanism deter-
mine the energy consumption. In Fig.13, energy variance
of CH-MAB-MS algorithm is from 0.000101 to 0.000587.
The reason is that we design data relay strategies to balance
the energy consumption between all nodes in the cluster.
From the perspective of CH, the selection strategy is given
to reduce and balance energy consumption of CH according
to weighted coefficient between the residual energy and the
definition of density. For balancing the energy consump-
tion among cluster members, the data relay strategy with
MU-MAB achieves fairness by including the marginal rule to

FIGURE 12. Energy variances when k = 4.

FIGURE 13. Energy variances when k = 4.

filtrate the potential optimal relay and the matching theory to
determine the optimal solution. Similarly, energy variance of
VH-MAB-MS algorithm varies from 0.000057 to 0.000265.
In this way, VH-MAB-MS is more efficient in energy con-
sumption than CH-MAB-MS. Therefore, we conclude that
introducing mobility and optimizing cluster structure are
energy efficient for data collection in WSNs.

B. DISCUSSION ON MAB REGRETS
In this section, we analyze the regret of MU-MAB applied
for CH-MAB-MS algorithm and VH-MAB-MS algorithm in
two scenarios. One is the predetermined relationship between
source nodes and relay nodes in the cluster, the other is the
stochastic application in a randomly deployed cluster.

Firstly, we discuss the former scenario. For convenience,
we denote M as the number of source nodes(users) and N
as the number of relay nodes(relays). We simulate 5 groups
between users and relays, namely,M = 1 and N = 4,M = 2
and N = 5, M = 3 and N = 6, M = 3 and N = 9,
M = 4 and N = 8. In Fig.14, the regret of VH-MAB-MS
is less than that of CH-MAB-MS in the same cluster scale,
which demonstrates VH-MAB-MS has uniformity in terms
of1max and1min according to expression (24). Furthermore,
CH-MAB-MS and VH-MAB-MS reflect the stability of
regrets for different users and relays, that is, 1max and 1min
vary little while M and N dominate the regret. The reason
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FIGURE 14. Accumulated regrets for the predetermined cluster.

FIGURE 15. Accumulated regrets for the randomly deployed cluster.

is that the marginal-based matching theory contributes to the
relay selection in the optimal solution.

Next, we investigate the latter one which illustrates
changed relationship between users and relays. In Fig.15,
owing to CH selection mechanism in Equation (6),M and N
are constantly changed for CH-MAB-MS andVH-MAB-MS,
so the accumulated regrets calculated with rounds show the
figure of irregular stairs. In this process of selecting relay for
energy efficiency, MU-MABwith the marginal-based match-
ing theory makes the regret less than UCB, which means
CH-MAB-MS and VH-MAB-MS have better performance
for relay selection. Therefore, our proposed algorithms con-
sume less energy and keep better performances in terms of
energy efficiency.

VIII. CONCLUSION
To enhance energy efficiency of hierarchical WSNs,
we exploit MU-MAB technology to solve the relay selection
dilemma. Firstly, we build WSNs framework via K -mean
method to create clusters including the long-distance trans-
mission. In order to optimize and balance cluster’s energy
consumption, we design a CH selection mechanism with MS
to collect data, which can control the proportion between
long-distance transmission nodes and short-distance trans-
mission nodes. Based on CH, we propose VH for MS
to collect data in terms of energy efficiency. Secondly,

we programme our hierarchical WSNs as a cooperative
power line communication mechanism due to long-spanned
transmission distance and nonuniform transmission distance
distribution in the cluster. Thirdly, We propose the machine
learning algorithm, namely MU-MAB, to solve the permuta-
tion problem for relay selection, which maybe incurs poten-
tial computation explosion as the increase in the quantity
of nodes. Furthermore, we employ stable matching theory
with marginal utility rule to allocate the final one-to-one
optimal combinations for achieving energy efficiency of
WSNs. At last, we simulate our proposed solutions in terms
of saving and balancing energy consumptionwhile evaluating
the regret of MU-MAB.
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