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Abstract
This paper brings some insights of � ′-mixing, �∗-mixing and �-mixing for copula-
based Markov chains and the perturbations of their copulas. We provide new tools to 
check Markov chains for �-mixing or � ′-mixing. We show that perturbations of � ′

-mixing copula-based Markov chains are � ′-mixing while perturbations of �-mix-
ing Markov chains are not necessarily �-mixing Markov chains, even when the per-
turbed copula generates �-mixing. The Farlie–Gumbel–Morgenstern, gaussian and 
Ali-Mikhail-Haq copula families are considered among other examples. A statistical 
study is provided to emphasize the impact of perturbations on copula-based Markov 
chains in a simulation study. Moreover, we provide a correction to a statement made 
in Longla et al. (J Korean Stat Soc, 1–23, 2021) on �-mixing.

Keywords Perturbations of copulas · Mixtures of copulas · Convex combinations of 
copulas · Mixing rates · Lower-psi mixing · Gaussian copula

Mathematics Subject Classification 62G08 · 62M02 · 60J35

1 Introduction

Modelling dependence among variables or factors in economics, finance, risk man-
agement and other applied fields has benefited over the last decades from the study 
of copulas. For recent applications of copulas, see [14, 28]. More references of such 
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applications can be found in the review paper of Bhati and Do [2]. Copulas, these 
multivariate cumulative distributions with uniform marginals on the interval [0, 1], 
have been widely used as strength of dependence between variables. Sklar [27] first 
showed that by rescaling the effect of marginal distributions, one obtains a copula 
from the joint distribution of random variables. This rescaling implies that when 
variables are transformed using increasing functions, the copula of their transforma-
tions remains same as that of the original variables. For many dependence coeffi-
cients, this copula is all that affects the computations (random vectors with common 
copulas have common dependence coefficients). This justifies why dealing with the 
uniform distribution as stationary distribution of a Markov chain is same as studying 
a Markov chain with any absolutely continuous stationary distribution. Following 
the ideas of Durante et al. [8], Longla et al. [15] and Longla et al. [16] have consid-
ered the perturbation method that adds to a copula an extra term called perturba-
tion. They also considered other classes of modifications and their impact on the 
dependence structure as studied by Komornik et  al. [13]. The long run impact of 
such perturbations on the dependence structure and the measures of association was 
investigated. In fact, they investigated the impact of perturbations of copulas on the 
mixing structure of the Markov chains that they generate. The case was presented 
for �-mixing, �-mixing, �-mixing and �-mixing in Longla et al. [15] and [16]. Our 
work concerns the case of �-mixing, � ′-mixing and �∗-mixing.

1.1  Facts About Copulas

The definition of a 2-copula and related topics can be found in Nelsen [24]. 2-copu-
las are in general referred to as copulas when there is no reason for confusion. We 
will follow this assumption throughout this paper. A function C ∶ [0, 1]2 → [0, 1] is 
called a bivariate copula if it satisfies the following conditions: 

 i. C(0, x) = C(x, 0) = 0 (meaning that C is grounded);
 ii. C(x, 1) = C(1, x) = x,∀x ∈ [0, 1] (meaning that each coordinate is uniform on 

[0,1]);
 iii. C(a, c) + C(b, d) − C(a, d) − C(b, c) ≥ 0,∀ [a, b] × [c, d] ⊂ [0, 1]2.

The last condition basically states that the probability of any rectangular subset of 
[0, 1] × [0, 1] is non-negative. This is an obvious condition, given that C(x, y) is a 
cumulative probability distribution function on [0, 1] × [0, 1] . The first condition 
states that the probability of any rectangle that doesn’t intersect [0, 1] × [0, 1] is equal 
to 0 (this is because such a rectangle doesn’t intersect the support of the distribution 
function that has cumulative distribution C(u,  v)). The second condition confirms 
that the marginal distribution is uniform on [0, 1] for each of the components of the 
considered vector.

Darsaw et al. [7] derived the transition probabilities for stationary Markov chains 
with uniform marginals on [0, 1] as P(Xn ∈ (−∞, x]|Xn−1 = x) = C,1(x, y),∀n ∈ ℕ , 
where C,i(x, y) denotes the derivative of C(x,  y) with respect to the ith variable. 
This property has been used by many authors to establish mixing properties of 
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copula-based Markov chains. We can cite [18, 19, 21] who provided some results 
for reversible Markov chains, Beare [1] who presented results for �-mixing among 
others.

It’s been shown in the literature (see [7] and the references therein) that if 
(X1,… ,Xn) is a Markov chain with consecutive copulas (C1,… ,Cn−1) , then the fold 
product given by

is the copula of (X1,X3) and the ⋆-product given by

is the copula of (X1,X2,X3) . The n-fold product of C(x, y) denoted Cn
(x, y) is defined 

by the recurrence C1
(x, y) = C(x, y),

Some of the most popular copulas are Π(u, v) = uv (the independence cop-
ula), the Hoeffding lower and upper bounds W(u, v) = max(u + v − 1, 0) 
and M(u, v) = min(u, v) respectively. Convex combinations of copulas 
{C1(x, y),… ,Ck(x, y)} defined by {C(x, y) =

∑k

j=1
ajCj(x, y), 0 ≤ aj,

∑k

j=1
aj = 1} 

are copulas. For any copula C(x,  y), there exists a unique representation 
C(x, y) = AC(x, y) + SC(x, y) , where AC(x,  y) is the absolute continuous part of 
C(x, y) and SC(x, y) is the singular part of the copula C(x, y). AC(x, y) induces on 
[0, 1]2 a measure Pc defined on borel sets by

An absolutely continuous copula is one that has singular part SC(x, y) = 0 and a 
singular copula is one that has absolutely continuous part AC(x, y) = 0 . This work 
is concerned mostly by absolutely continuous copulas and mixing properties of the 
Markov chains they generate.

1.2  Mixing Coefficients of Interest

The mixing coefficients of interest in this paper are � ′ and � . The �-mixing condi-
tion has its origin in the paper by Blum et al. [3]. They studied a different condi-
tion (“�*-mixing”) similar to this mixing coefficient. They showed that for Markov 
chains satisfying their condition, the mixing rate is exponential. The coefficient took 
its present form in the paper of Philipp [25]. For examples of mixing sequences, 
see [10], who showed that in general, the mixing rate could be arbitrarily slow, a 
large class of mixing rates can occur for stationary �-mixing. It’s been shown that  

C(x, y) = C1 ∗ C2(x, y) = ∫
1

0

C1,2(x, t)C2,1(t, y)dt

C(x, y, z) = C1 ⋆ C2(x, y, z) = ∫
y

0

C1,2(x, t)C2,1(t, z)dt

Cn
(x, y) = Cn−1

∗ C(x, y).

Pc(A × B) = ∫A ∫B

c(x, y)dxdy and P(A ∩ B)

= Pc(A × B) + SC(A × B), (see Longla (2015)).
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�
∗-mixing is equivalent to �-mixing for Markov chains (see page 206 of Bradley 

[4]). General definitions of these mixing coefficients are as follows. Given any �
-fields A  and B and a defined probability measure P,

In case of stationary copula-based Markov chains generated by an absolutely con-
tinuous copula and the uniform distribution of the interval [0,  1], the � ′-mixing 
dependence coefficient takes the form

𝜓
�

n
(C) = inf

A,B∈B
𝜆(A)𝜆(B)>0

∫
A
∫
B
cn(x, y)dxdy

𝜆(A)𝜆(B)
,

where cn(x, y) is the density of the of Cn
(x, y) and � is the Lebesgue measure on 

I = [0, 1] . For every positive integer n, let �n be the measure induced by the distri-
bution of (X0,Xn) . Let � be the measure induced by the stationary distribution of 
the Markov chain and B the �-algebra generated by X0 . The � ′-mixing dependence 
coefficient takes the form

For more on the topic, see [1, 12, 20].

1.3  About Perturbations

In applications, knowing approximately a copula C(u, v) appropriate to the model 
of the observed data, minor perturbations of C(u, v) are considered. Komornik et al. 
[13] have investigated some perturbations that were introduced by Mesiar et al. [23]. 
These perturbations were also considered by Longla et al. [15] and [16]. Perturba-
tions that we consider in this work have been studied by many authors. Sheikhi et al. 
[26] looked at the perturbations of copulas via modification of the random variables 
that the copulas represent. They perturbed the copula of (X,  Y) by looking at the 
copula of (X + Z, Y + Z) for some Z independent of (X, Y) that can be considered as 
noise. Mesiar and al. [22] worked on the perturbations induced by modification of 
one of the random variables of the pair. Namely, the copula of (X, Y) was perturbed 
to obtain the copula of (X + Z, Y) . In this work, we look at the impact of perturba-
tions on �-mixing and � ′-mixing. We provide theoretical proofs and a simulation 
study that justifies the importance of the study of perturbations and their impact on 
estimation problems. This is done through the central limit theorem that varies from 

𝜓(A,B) = sup
B∈B,A∈A,P(A)⋅P(B)>0

|P(A ∩ B) − P(A)P(B)|
P(A)P(B)

,

𝜓
�
(A,B) = inf

B∈B,A∈A,P(A)>0

P(B ∩ A)

P(A)P(B)
,

and 𝜓
∗
(A,B) = sup

B∈B,A∈A,P(A)⋅P(B)>0

P(A ∩ B)

P(A)P(B)
.

𝜓
�

n
(C) = inf

A,B∈B,𝜇(A).𝜇(B)>0

𝜇n(A × B)

𝜇(A)𝜇(B)
,

and 𝜓
∗

n
(C) = sup

A,B∈B,𝜇(A).𝜇(B)>0

𝜇n(A × B)

𝜇(A)𝜇(B)
.
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one kind of mixing structure to another and is severely impacted by perturbations, 
for instance, in the case of �-mixing.

1.4  Structure of the Paper

This paper consists of six sections, each of which concern a specific topic of inter-
est and is structured as follows. Introduction in Sect. 1 is divided into several parts. 
Facts about copulas are introduced in Sect.  1.1, mixing coefficient of interest ( � ′

-mixing and �-mixing) are defined in Sects. 1.2 and 1.3 is dedicated to facts about 
perturbation of copulas. Section 2 is devoted to the impact of perturbations on � ′

-mixing, �∗-mixing and �-mixing copula-based Markov chains, addressing � ′-mix-
ing in Sect.  2.1 and �-mixing in Sect.  2.2. We emphasize the fact that perturba-
tions of � ′-mixing copula-based Markov chains are � ′-mixing while perturbations 
of �-mixing Markov chains are not necessarily �-mixing. We present the case of 
�

∗-mixing. This section ends by an example. In Sect.  3 we provide some graphs 
to show the effect of perturbations. In Sect. 4, we showcase a simulation study to 
emphasize the importance of this topic. Comments on the paper’s results and their 
relationship with current state of art are presented in Sects. 5 and 6 provides proofs 
of our main results. Throughout this work �n(C) is replaced by �n when there is no 
reason for confusion.

2  Facts About Ã′‑Mixing, Ã∗‑Mixing and Ã ‑Mixing

It is important to recall that we are only interested by the case of Markov chains. In 
this set up, the Markov chain property simplifies the formulas of mixing coefficients 
of interest and properties of the copula can be enough to identify the mixing struc-
ture of the sequence of associated random variables.

2.1  All About Ã′‑Mixing

Longla [18] showed that for a copula with density of absolutely continuous part 
bounded away from 0, Markov chains it generates are � ′-mixing. This result was 
extended to convex combinations of copulas by Longla et al. [16] using the result of 
Bradley [6] that states that for any strictly stationary Markov chain, either � ′

n
→ 1 as 

n → ∞ or � �

n
= 0 ∀n ∈ ℕ . Based on this result, we show the following for stationary 

Markov chains with marginal distribution uniform on the interval [0, 1].

Theorem 2.1.1 Let � be the Lebesgue measure on [0, 1]. If the copula C(u, v) of the 
stationary Markov chain (Xk, k ∈ ℕ) is such that the density of its absolutely contin-

uous part c(u, v) ≥ �1(u) + �2(v) on a set of Lebesgue measure 1 and inf
A⊂I

∫
A
𝜀1d𝜆

𝜆(A)
> 0 

or inf
A⊂I

∫
A
𝜀2d𝜆

𝜆(A)
> 0 , then the Markov chain is � ′-mixing.
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Theorem  2.1.1 is an extension of Theorem  2.5 of Longla [19]. It extends the 
result from �-mixing to � ′-mixing. Longla et al. [15] state that for a copula C per-
turbed by means of the independence copula Π , the following result holds for the 
perturbation copula C

�,Π(u, v) with parameter �.

As a result of this formula, following [18], based on the fact that the density of the 
copula Cn

�,Π
(u, v) is bounded away from zero on a set of Lebesgue Measure 1, we 

conclude the following.

Corollary 2.1.2 For any copula C(u, v), the perturbation copula C
�,Π(u, v) generates 

�
′-mixing stationary Markov chains with the uniform distribution on the interval 

[0, 1] as stationary distribution.

In general, for any convex combination of copulas, the following result holds.

Theorem 2.1.3 For any set of copulas C1(u, v)…Ck(u, v) , if there exists a subset of 
copulas Ck1

…Cks
, s ≤ k ∈ ℕ such that 𝜓 �

(Ĉ) > 0 for Ĉ = Ck1
∗ ⋯ ∗ Cks

, then 
𝜓

�

s
(C) > 0 and any Markov chain generated by

Theorem 2.1.4 For any set of copulas C1(u, v)…Ck(u, v) , if there exists a subset of 
copulas Ck1

…Cks
, s ≤ k ∈ ℕ such that the density of the absolutely continuous part 

of Ĉ(u, v) is bounded away from 0 for Ĉ = Ck1
∗ ⋯ ∗ Cks

, then 𝜓 �

s
(C) > 0 and any 

Markov chain generated by

2.2  All About Ã ‑Mixing and Ã∗‑Mixing

It’s been shown in the literature that �-mixing implies � ′-mixing, �∗-mixing and 
other mixing conditions. See for instance [4]. We emphasize here that the above 
theorems cannot be extended to �-mixing in general by exhibiting cases when the 
conditions of the theorems are satisfied, but there is no �-mixing. It’s good to recall 
that for markov chains, �∗-mixing is equivalent to �-mixing. So, any result stated in 
this paper for �∗-mixing is valid for �-mixing. A result of Bradley [6] states that for 
a strictly stationary mixing sequence, either �∗

n
= ∞ for all n or �∗

n
→ 1 as n → ∞.

(1)Cn
�,Π

(u, v) = (1 − �)
nCn

(u, v) + (1 − (1 − �)
n
)uv.

C = a1C1 +⋯ + akCk, for 0 < a1,… , ak < 1,

k∑
i=1

ai = 1, is exponential 𝜓
�-mixing.

C = a1C1 +⋯ + akCk, for 0 < a1,… , ak < 1,

k∑
i=1

ai = 1, is exponential 𝜓
�-mixing.
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Based on this result, if we want to show that a stationary Markov chain is �∗-mix-
ing, it is enough to show that it is mixing and �∗

1
≠ ∞ . It needs to be clear that this is 

not a necessary condition. In fact, there is �∗-mixing for any mixing sequence when-
ever we can show that for some positive integer n, �∗

n
≠ ∞ . The required mixing condi-

tion is implied by any of the mixing properties defined in this paper. It is mixing in the 
ergodic theoretic sense, that we do not define in this paper. References to this mixing 
can be found in Bradley [4]. A remark of Longla et al. [15] states the following.

Remark 2.2.1 In general, for any convex combination of two copulas (here 
0 ≤ a ≤ 1) , the �-mixing coefficient satisfies the following inequalities:

A result of Longla et al. [15] states that a convex combination of copulas gener-
ates stationary �-mixing Markov chains if each of the copulas of the combination 
generates �-mixing stationary Markov chains. This statement was not fully proven 
and might not be true as stated. Based on the provided proof, the correct statement 
should be as follows.

Theorem  2.2.2 A convex combination of copulas generates stationary �-mixing 
Markov chains if each of the copulas of the combination generates �-mixing station-
ary Markov chains with 𝜓1 < 1.

We now state the following result for �∗-mixing that is also true for �-mixing in 
the case of Markov chains.

Theorem 2.2.3 Assume that (Xi, 1 ≤ i ≤ n) is a stationary Markov chain generated 
by the absolutely continuous copula C(u, v) and the continuous marginal distribu-
tion F. The following holds. 

1. If for some positive integer n, the density of Cn
(u, v) is bounded above on [0, 1]2 

and for some s the density of Cs
(u, v) is bounded away from 0, then Markov chain 

is �-mixing.
2. If for some n, cn(u, v) ≤ m < 2 on [0, 1]2 , where cn(u, v) is the density of Cn

(u, v) 
and m is a constant, then the Markov chain is �-mixing.

3. If for every n the density of Cn
(u, v) is continuous and not bounded above on 

[0, 1]2 , then the Markov chain is not �∗-mixing.

2.2.1  Examples

We consider two classes of copulas that are widely used in the literature: The gauss-
ian copula and the Ali-Mikhail-Haq copula families. 

(2)�(aC1 + (1 − a)C2) ≤ a�(C1) + (1 − a)�(C2);

(3)�(aC1 + (1 − a)C2) ≥ a�(C1) − (1 − a)�(C2).
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1. The bivariate gaussian copula and the Markov chains it generates. The bivariate 
gaussian copula C

�
(u, v) is obtained from the joint gaussian distribution of (X1,X2) 

via Sklar’s theorem (see [24]). Assuming that X1 and X2 follow the standard nor-
mal distribution, the covariance matrix has the form 

 Therefore, the density of the bivariate gaussian copula is defined as 

 where � is the 2 × 2 identity matrix and Φ−1
(x) is the quantile function of the 

standard normal distribution. Via simple computations, it is established that 

 This density is equal to 1 when � = 0 because in this case the two random vari-
ables are independent and their copula is the product copula. It is also obvi-
ous the � = 1 and � = −1 are excluded because in these two cases, the original 
variables are linearly dependent and either have copula M(u, v) when � = 1 or 
W(u, v) when � = −1.

        It is clear that when � ≠ 0 , this density is not bounded above because for 
u = Φ(

1

�
Φ

−1
(v)) , we have 

 and as v → 1 , we have f (v) → ∞ for any � ≠ 0 . Therefore, by simple computa-
tions, we have that any bivariate gaussian copula that is not the independence 
copula has a density that is not bounded above. Based on the ∗-product of copu-
las, we show next that for any stationary Markov chain based on gaussian copu-
las, the copula of any pair of variables of the chain is gaussian. Moreover, the ∗
-product of two gaussian copulas is the independence copula if and only if one 
of them is the independence copula.

Proposition 2.2.4 For any gaussian copulas C
�1
(u, v) and C

�2
(u, v) , the following 

holds. 

(a) C
�1
∗ C

�2
(u, v) = C

�1�2
(u, v),

(b) Cn
�1
(u, v) = C

�
n
1
(u, v).

It is enough to show that C
�1
∗ C

�2
(u, v) = C

�1�2
(u, v) , wich is equivalent to show-

ing that

R =

(
1 �

� 1

)
, where � is the covariance of the variables X1 and X2.

1√�R�
e
−

1

2
(Φ

−1
(u) Φ

−1
(v))(R−1

−�)(
Φ
−1

(u)

Φ−1(v)
)
,

c
�
(u, v) =

1√
1 − �2

e
−

�
2

2(1−�2)
([Φ

−1
(u)]2−

2

�
Φ

−1
(u)Φ−1

(v)+[Φ−1
(v)]2)

.

f (v) ∶= c
�
(u, v) =

1√
1 − �2

e
1

2
[Φ

−1
(v)]2 ,
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This equality holds because

If we denote s = Φ
−1
(u) , r = Φ

−1
(v) and z = Φ

−1
(t) , then t = Φ(z) and 

dt =
1√
2�
e−z

2
∕2dz . Therefore,

The quatratic portion in z is identified to the Normal distribution with variance
(1 − �

2
1
)(1 − �

2
2
)

1 − �
2
1
�
2
2

 and mean 
s�1(1 − �

2
2
) + r�2(1 − �

2
1
)

1 − �
2
1
�
2
2

 . This leads to

The last equality simplifies to

This ends the proof of Proposition 6.2.1. In Beare [1] it was reported that gaussian 
copulas have square integrable densities with L2-norm 1√

1−�2
 . We have just shown 

that the density of the fold-product of C
�
(u, v) is not continuous on (0, 1)2 and not 

bounded on [0, 1]2 . Therefore, Theorem 2.2.3 implies the following.

Corollary 2.2.5 Any Copula-based Markov chain generated by a gaussian copula 
that is not the product copula is not �-mixing.

The proof of Corollary 2.2.5 is an application of Theorem 2.2.3 and the fact 
that the copula of (X0,Xn) is C

�n
(u, v) ; and c

�n
(u, v) is not bounded as shown above 

for any value of the correlation �n or for any n. 

∫
1

0

c
�1
(u, t)c

�2
(t, v)dt = c

�1�2
(u, v).

∫
1

0

c
�1
(u, t)c

�2
(t, v)dt =

1√
(1 − �

2
1
)(1 − �

2
2
)

× ∫
1

0

e
−

�
2
1

2(1−�2
1
)

([Φ
−1
(u)]2−

2

�1
Φ

−1
(u)Φ−1

(t)+[Φ−1
(t)]2)−

�
2
2

2(1−�2
2
)

([Φ
−1
(t)]2−

2

�2
Φ

−1
(t)Φ−1

(v)+[Φ−1
(v)]2)

dt.

A =
1�

(1 − �
2
1
)(1 − �

2
2
)
∫

∞

−∞

1√
2�

e
−

�
2
1

2(1−�2
1
)

(s2−
2

�1
sz+z2)−

�
2
2

2(1−�2
2
)

(z2−
2

�2
zr+r2)−

1

2
z2

dz

=
(

√
2�)−1�

(1 − �
2
1
)(1 − �

2
2
)
∫

∞

−∞

e

−(1−�2
1
�
2
2
)

2(1−�2
1
)(1−�2

2
)

[(z−
s�1 (1−�

2
2
)+r�2(1−�

2
1
)

1−�2
1
�
2
2

)
2
−(

s�1(1−�
2
2
)+r�2(1−�

2
1
)

1−�2
1
�
2
2

)
2
+

s2�2
1
(1−�2

2
)+r2�2

2
(1−�2

1
)

1−�2
1
�
2
2

]

dz

A =

√
(1 − �

2
1
)(1 − �

2
2
)

√
(1 − �

2
1
�
2
2
)

√
(1 − �

2
1
)(1 − �

2
2
)

e

−(1−�2
1
�
2
2
)

2(1−�2
1
)(1−�2

2
)

[
−

(
s�1(1−�

2
2
)+r�2(1−�

2
1
)

1−�2
1
�
2
2

)2

+

s2�2
1
(1−�2

2
)+r2�2

2
(1−�2

1
)

1−�2
1
�
2
2

]

.

A =
1√

1 − �
2
1
�
2
2

e

−�
2
1
�
2
2

2(1−�2
1
�
2
2
)

[
s2−

1

1−�1�2
sr+r2

]
= c

�1�2
(u, v).



140 Journal of Statistical Theory and Applications (2022) 21:131–154

1 3

2. The Ali-Mikhail-Haq copula and the Markov chains they generate.
  Copulas from the Ali-Mikhail-Haq family are defined for � ∈ [−1, 1] by 

 It is easy to see that this density is continuous and satisfies 
(1 − �)

2 ≤ c
�
(u, v) ≤ 1+�

(1−�)3
 when 1 > 𝜃 ≥ 0 or 1+𝜃

(1−𝜃)3
≤ c

𝜃
(u, v) ≤ (1 − 𝜃)

2
< 2 

when −1 < 𝜃 ≤ 0 . From these inequalities, it follows that when −1 < 𝜃 < 1 , the 
density is bounded away from 0. Therefore, the copula generates � ′-mixing. � ′

-mixing implies mixing. Therefore, due to the upper bound on the density, Theo-
rem 2.2.3 implies the following.

Corollary 2.2.6 Any copula from the Ali-Mikhail-Haq family of copulas with |�| ≠ 1 
generates �∗-mixing stationary Markov chains.

3. Copulas with densities m1,m2,m3 and m4 of Longla [19] and the Markov chains 
they generate.

  Each of these copulas is bounded when the functions g(x) and h(x) used in their 
definitions are bounded. It was shown in Longla [19] that each of these copulas 
generates �-mixing. �-mixing implies mixing. Therefore, Thoerem 2.2.3 implies 
the following.

Corollary 2.2.7 All copulas with densities m1,m2,m3 and m4 of Longla [19] with 
bounded functions g(x) and h(x) generate �-mixing Markov chains.

2.2.2  The Farlie–Gumbel–Morgenstern Copula Family

This family of copulas is defined by C
�
(u, v) = uv + �uv(1 − u)(1 − v) , for 

� ∈ [−1, 1] . Longla [19] showed that these copulas generate geometrically ergodic 
Markov chains. Moreover, due to symmetry, the Markov chains they generate are 
also reversible. Therefore, geometric ergodicity implies exponential �-mixing. 
Longla [18] showed that These copulas generate � ′-mixing when |𝜃| < 1 . We will 
improve this result in this section by showing that for all values of the parameter, 
these copulas generate �-mixing.

Theorem 2.2.8 For any member of the Farlie–Gumbel–Morgenstern family of cop-
ula with parameter � , the joint distribution of (X0,Xn) for a stationary copula-based 
Markov chain generated is

C
�
(u, v) =

uv

1 − �(1 − u)(1 − v)
with density

c
�
(u, v) =

(1 − �)(1 − �(1 − u)(1 − v)) + 2�uv

(1 − �(1 − u)(1 − v))3
.
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The density of this copula is cn
�
(u, v) = 1 + 3(

�

3
)
n
(1 − 2u)(1 − 2v) . Via simple cal-

culations, it follows that

These inequalities are used to establish the following result.

Theorem  2.2.9 Any Copula-based Markov chain generated by a copula from the 
Farlie–Gumbel–Morgenstern family is �-mixing for any � ∈ [−1, 1].

It has been established, using the first inequality of (5) when n = 1 and a weaker 
form of Theorem 2.1.4, that any copula from this family with |�| ≠ 1 generates expo-
nential � ′-mixing. We now show via integration that for any copula-based Markov 
chain (X1,… ,Xn) generated by C

�
(u, v) , if A ∈ �(X1) and B ∈ �(Xn+1) , then

Formula (6) implies that sup
A,B

Pn
(A ∩ B)

P(A)P(B)
≤ 1 + 3(

|𝜃|
3
)
n
< 2 , for n > 1 and |�| ≤ 1 . It 

follows from Theorem 3.3 of Bradley [5] that this Markov chain is exponential �
-mixing for all values of �.

2.2.3  The Mardia and Frechet Families of Copula

Any copula from the Mardia family is represented as 
C
�,�(u, v) = �M(u, v) + �W(u, v) + (1 − � − �)Π(u, v), with 0 ≤ �, �, 1 − � − � ≤ 1 . 

The Frechet family of copulas is a subclass of the Mardia family with � + � = �
2 . The 

two families enjoy the same mixing properties and their analysis is theoretically identi-
cal. The density of any copula of these families is bounded away from zero on a set of 
Lebesgue measure 1. Therefore, the results of this paper imply that these families gen-
erate � ′-mixing. Now, consider (X1,X2) with joint distribution C

�,�(u, v) and the sets 
A = (0, �) and B = (1 − �, 1) . Via simple calculations, we obtain

Thus,

To complete the proof, we use the fact that based on the result of Longla [19], the 
joint distribution of (X1,Xn+1) is Cn

(u, v)-member of the Mardia family of copulas. 
This fact and formula (8) imply that �n = ∞ for all n. Therefore, this copula doesn’t 

(4)Cn
�
(u, v) = uv + 3

(
�

3

)n

uv(1 − u)(1 − v).

(5)0 ≤ 1 − 3

(|�|
3

)n

≤ cn
�
(u, v) ≤ 1 + 3

(|�|
3

)n

.

(6)1 − 3

(|�|
3

)n

≤ Pn
(A ∩ B)

P(A)P(B)
≤ 1 + 3

(|�|
3

)n

.

(7)P(A ∩ B) = (1 − � − �)�
2
+ ��.

(8)sup
A,B

P(A ∩ B) − P(A)P(B)

P(A)P(B)
≥ sup

�

(
−� − � +

�

�

)
= ∞.
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generate �-mixing as a result of Bradley [6]. Hence, the results of this work cannot 
be extended to �-mixing for copulas with non-zero singular parts. One of the issues 
is that in this case, � = 1 ceases to be eigen function of the density of the absolutely 
continuous part of the copula. The idea of this proof leads to the following.

Theorem  2.2.10 Let C(u,  v) be a copula that generates non �∗-mixing stationary 
Markov chains with �∗

n
= 0 for all n. Any convex combination of copulas containing 

C(u, v) generates non �∗-mixing stationary Markov chains.

Theorem 2.2.10 combined with Longla et al. [16] imply the following result.

Theorem  2.2.11 A convex combination of copulas generates �∗-mixing stationary 
Markov chains if every copula it contains generates �∗-mixing stationary Markov 
chains with 𝜓∗

1
< 2.

2.2.4  General Case of Lack of Ã ‑Mixing in Presence of Ã′‑Mixing

Here we present a large class of copulas that generate � ′-mixing Markov chains, but 
don’t generate �-mixing Markov chains. Based on the results of this paper, the fol-
lowing general corollary holds.

Corollary 2.2.12 Any convex combination of copulas that contains the independence 
copula Π(u, v) and M(u,  v) or W(u,  v) generates exponential � ′-mixing stationary 
Markov chains, but doesn’t generate �-mixing stationary Markov chains.

This is a consequence of Theorem  2.2.10 and Longla [18]. Because the con-
vex combination contains Π(u, v) , the density of its absolutely continous part is 
bounded away from 0 on [0, 1]2 . Therefore, by Longla [18], it generates � ′-mixing 
stationary Markov chains. Because the combination contains M(u, v) or W(u, v), for 
which �n = ∞ for all n, by Theorem 2.2.10, it doesn’t generate �-mixing stationary 
Markov chains.

3  Some Graphs of Copulas and Their Perturbations

Here, we provide graphical representations of the impact of perturbations of copulas 
on Markov chains generated by them. The case is presented for some examples from 
the Frechet and Farlie–Gumbel–Morgenstern families of copulas. Examples are cho-
sen for values of parameters that are close to independence and the extreme case of 
each of the families. Two graphs of data on (0, 1)2 are provided as well as two graphs 
for the standard normal distribution as marginal distribution of the Markov chains. 
To generate a Markov chain with a copula from the Farlie–Gumbel–Morgenstern 
family, we proceed as follows.
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(a) Generate U1 from Uniform(0, 1);
(b) For t = 2,… n, generate Wt from Uniform(0,  1) and solve for Ut the equation 
Wt = Ut + �(1 − 2Ut−1)Ut(1 − Ut);
(c) Set Yt = G−1

(Ut) , where G(t) is the common marginal distribution of the vari-
ables of the stationary Markov chain.

Longla et al. [15] worked on perturbation of copulas and their properties. For a copula 
C(u, v), some of the studied perturbations are as follows. Assume � ∈ [0, 1].

Formulas (9) and (10) lead to the following.

Proposition 3.0.1 Let � ∈ [0, 1] , � ∈ [−1, 1] and C
�
(u, v) be a Farlie–Gumbel–Mor-

genstern copula.

 
1. C̃

𝛼,𝜃(u, v) = C
𝜃(1−𝛼)(u, v) - is a member of the Farlie–Gumbel–Morgenstern family 

of copulas and generates �-mixing Markov chains.
2. Ĉ

𝛼,𝜃(u, v) is not a member of the Farlie–Gumbel–Morgenstern family of copulas 
and does not generates �-mixing Markov chains, but generates � ′-mixing Markov 
chains.

On Fig. 1 we have a 3-dimensional graph of the Farlie–Gumbel–Morgenstern cop-
ula with � = 0.6 and its level curves on the left and the corresponding graphs for the 
perturbation with � = 0.4 on the right. Figure 2 represents a simulated Markov chain 
from the Farlie–Gumbel–Morgenstern copula with � = 0.4 and the one generated by 
its perturbation with � = 0.7 . Here, the marginal distribution of the Markov chain is the 
standard normal distribution. We can see on the graphs that the mixing structure is not 
the same when the copula is perturbed by M(u, v). This supports the theoretical results.

The Mardia family of copulas is defined by

and the Frechet copulas form a subfamily with a =
�
2
(1 + �)

2
 , b =

�
2
(1 − �)

2
 and 

|�| ≤ 1 . Unlike Farlie–Gumbel–Morgenstern copulas, these copulas are not abso-
lutely continuous. To generate an observation (U,  V) from C

�
(u, v) , one needs to 

generate independent observations (U,V1,V2) from the uniform distribution on 
(0, 1). Then, do the following:

(9)C̃
𝛼
(u, v) =C(u, v) + 𝛼(Π(u, v) − C(u, v)),

(10)Ĉ
𝛼
(u, v) =C(u, v) + 𝛼(M(u, v) − C(u, v)).

(11)C̃
𝛼,𝜃(u, v) =C

𝜃
(u, v) + 𝛼

(
Π(u, v) − C

𝜃
(u, v)

)
;

(12)Ĉ
𝛼,𝜃(u, v) =C

𝜃
(u, v) + 𝛼

(
M(u, v) − C

𝜃
(u, v)

)
.

(13)Ca,b(u, v) = aM(u, v) + bW(u, v) + (1 − a − b)Π(u, v)
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Figure 3 gives a representation of the Frechet copula for � = 0.6 and its perturba-
tion with � = 0.4 and their with level curves. Figure 4 represents a Markov chain 
of 500 observations simulated from the Frechet copula with � = 0.6 and its per-
turbation with � = 0.7 . Perturbations of the Frechet copula have the form given in 
Proposition 3.0.1.

V =

⎧⎪⎨⎪⎩

V2 if V1 < 1 − 𝜃
2,

U if 1 − 𝜃
2
< V1 < 1 − 𝜃

2
+ 𝜃

2
(1 + 𝜃)∕2,

1 − U if V1 > 1 − 𝜃
2
+ 𝜃

2
(1 + 𝜃)∕2.

Fig. 1  Farlie–Gumbel–Morgenstern copula and level curves

Fig. 2  Data from the Farlie–Gumbel–Morgenstern copula and its perturbations
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It is good to notice that these perturbations are not Frechet copulas, but remain 
in the class of Mardia copulas. Figure 4 represents a Markov chain generated by 
a Frechet copula and the one generated by its perturbation via a Farlie–Gum-
bel–Morgenstern copula using the standard normal distribution as stationary 
distribution.

4  Simulation Study

This simulation study shows the importance of the topic. We simulate a dependent 
data set that exhibits �-mixing or � ′-mixing and show how the mixing structure 
influences the statistical study. Based on the fact that the considered mixing coef-
ficient converges exponentially to 0, we can bound the variance of partial sums and 
obtain the condition of the central limit theorem and confidence interval of Longla 
and Peligrad [17]. Thanks to this central limit theorem, we construct confidence 
intervals without having to estimate the limiting variance of the central limit theo-
rem of Kipnis and Varadhan [11] that holds here because the Markov chains are 
reversible and nvar(Ȳ) → 𝜎 < ∞ . The standard central limit theorem is useless in 
this case because the limiting variance is not necessarily that of Y. Let us recall here 
the formulations of Longla and Peligrad [17]. They have proposed a new robust con-
fidence interval for the mean based on a sample of dependent observations with a 

Fig. 3  Frechet copula representation and level curves
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mild condition on the variance of partial sums. This confidence interval needs a ran-
dom sample (Xi, 1 ≤ i ≤ n) , generated independently of (Yi, 1 ≤ i ≤ n) and following 
the standard normal distribution. The Gaussian Kernel and the optimal bandwidths 
hn are used. Denoting ȳ2

n
 the sample average of Y2 and ȳn the sample average of Y,

Let’s check the conditions required for use of their proposed estimator of the mean 
and confidence interval. These conditions are as follows: 

1. (Yi)i∈ℤ is an ergodic sequence;
2. (Yi)i∈ℤ have finite second moments;
3. nhnvar(Ȳn) → 0 as n → ∞.

For the sake of clarity, we will use CFGM
�

(u, v) to denote the Farlie–Gumbel–Mor-
genstern copula with parameter �.

Verification of the conditions

1. Ergodicity 

(a) It has been shown in Theorem 2.3 and Example 2.4 of Longla [19] that the 
copula CFGM

�
(u, v) generates geometrically ergodic Markov chains.

(b) Based on the results of this paper, we deduce that the perturbation copula 
ĈFGM
𝜃,𝛼

(u, v) generates � ′-mixing Markov chains. In fact, this copula is a 
convex combination of two copulas such that one is � ′-mixing. In addi-
tion, (see [5] and [21]) � ′-mixing implies �-mixing and �-mixing implies 

hn =

�
ȳ2
n

n
√
2ȳ2

n

�1∕5

.

Fig. 4  Markov chain generated by Frechet copulas and its perturbations
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geometric ergodicity for reversible Markov chains. So the Markov chain 
generated by ĈFGM

𝜃,𝛼
(u, v) is geometrically ergodic.

(c) By Theorem 2.16 and Remark 2.17 of Longla [19], the Frechet copula 
C
�
(u, v) generates geometrically ergodic Markov chains.

(d) The perturbation copula Ĉ
(𝜃1,𝜃2,𝛼)

(u, v) is a convex combination of copulas 
C
�1
(u, v) and CFGM

�2
(u, v) . These two copulas are symmetric and each one 

generates geometrically ergodic stationary Markov chains as said above. 
Therefore, by Theorem 5 of Longla and Peligrad [21], this copula generates 
geometrically ergodic Markov chains.

2. The stationary distribution that is used in this paper is gaussian with mean 30 and 
variance 1. Therefore, variables have finite second moments.

3. The condition on the variance ( nhnvar(Ȳ) → 0 ) is checked in the appropriate 
section below.

For data simulation, we set Yi ∼ N(30, 1) for all copulas and the perturbation 
parameter � = 0.4 in all cases. For Farlie–Gumbel–Morgenstern and Frechet copu-
las we set � = 0.6 . For the Frechet perturbed copula, �1 = �2 = 0.6 . For 1 ≤ i ≤ n , 
Xi ∼ N(0, 1) is a sequence of independent random variables that is independent of 
the Markov chain (Yi, 1 ≤ i ≤ n).

Using the above mentioned, the estimator of �Y is 

r̃n =
1

nhn

∑n

i=1
Yi exp

�
−0.5(

Xi

hn
)
2

�
 and the confidence interval is 

⎛⎜⎜⎝
r̃n

�
1 + h2

n
− z

𝛼∕2

�
Ȳ2
n

nhn

√
2

�1∕2

, r̃n

�
1 + h2

n
+ z

𝛼∕2

�
Ȳ2
n

nhn

√
2

�1∕2⎞⎟⎟⎠
.

The following Table 1 is the result of the simulation study for Markov chains gen-
erated by the considered copulas and their perturbations.

5  Conclusion and Remarks

The graphs and simulations presented in this paper have been obtained using R. We 
have provided some insights on �∗-mixing, � ′-mixing and �-mixing. Though we 
have presented extensive examples and results for � ′-mixing and �∗-mixing, we 
have not been able to answer the question on convex combinations of �-mixing. The 
following question remains open: Does a convex combination of �-mixing generat-
ing copulas generate �-mixing? A positive answer to this question has been pre-
sented for the case when each of the copulas satisfy 𝜓1 < 1.

6  List of Abbreviations

“L2-norm of a function” stands for the square root of the integral of its square.
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Appendix of Proofs

Proof of Theorem 2.1.1

Recall that the function c(x, y) defined on I2 is said to be bounded away from zero on a 
set of Lebesgue measure 1 iff ∃m > 0,m ∈ ℝ,∃Q ⊂ [0, 1]2 ∶ 𝜆(Q) = 1,∀(x, y) ∈ Q , 
c(x, y) ≥ m.

By Bradley [6], a strictly stationary Markov chain (Xk, k ∈ ℕ) is � ′-mixing if 
for some n ∈ ℕ, � �

n
(C) ≠ 0. Let A ⊂ [0, 1], B ⊂ [0, 1].

Thus, for all A ⊂ [0, 1], B ⊂ [0, 1],

Therefore,
inf

A⊂[0,1], B⊂[0,1]
𝜆(A)𝜆(B)>0

P(X1 ∈ A,X2 ∈ B) ≥ M, where 

M = min

{
inf

A⊂[0,1]
𝜆(A)>0

∫
A
𝜀1d𝜆

𝜆(A)
, inf
B⊂[0,1]
𝜆(B)>0

∫
B
𝜀2d𝜆

𝜆(B)

}
 . Hence, 𝜓 �

1
(C) ≥ M > 0. We can conclude 

(Xk, k ∈ ℕ) is � ′-mixing.

Theorem 2.1.3 and 2.1.4

To prove these theorems, we will use the following proposition from Longla et al. 
[16]

(14)

P(X1 ∈ A,X2 ∈ B) ≥�A �B

c(x, y)dxdy

≥�A �B

(�1(x) + �2(y))dxdy

=�A

�1(x)dx�(B) + �B

�2(y)dy�(A)

(15)
P(X1 ∈ A,X2 ∈ B)

�(A)�(B)
≥ ∫

A
�1(x)dx

�(A)
+

∫
B
�2(y)dy

�(B)
.

Table 1  Simulation study

Copula Size n = 100 n = 5000 n = 10, 000 n = 20, 000

C
FGM

�
Estimate of �

Y
23.25 28.41 29.85 29.54

Confidence interval (16.72, 32.88) (27.12, 30.51) (28.89, 31.46) (28.81, 30.76)

Ĉ
FGM

𝜃,𝛼
Estimate of �

Y
23.70 28.39 29.80 29.52

Confidence interval (17.08, 33.50) (27.10, 30.50) (28.84, 31.42) (28.79, 30.74)
C
�

Estimate of �
Y

31 29.40 30.30 30.29
Confidence interval (24.97, 41, 16) (28.13, 31.52) (29.34, 31.91) (29.56, 31.51)

Ĉ
(𝜃1,𝜃2,𝛼)

Estimate of �
Y

31.15 29.39 30.29 30.23
Confidence interval (25.08, 41.37) (28.11, 31.51) (29.33, 31.90) (29.51, 31.46)
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Proposition 6.2.1 For a convex combination of copulas C(x, y) =
∑k

i=1
aiCi(x, y), 

where 0 < a1, ..., ak < 1 and

where 
∑ks

j=1
bj = 1, 0 < b1, ..., bks < 1 , and each of the copulas iCj(x, y) = Cji

(x, y) 
for some ji ∈ {1, ..., k} and the sum is over all possible products of s copulas 
selected from the original k copulas with replacement.

The notation iCj indicates that the copula Cji
 was selected in the given jth element 

of B = {C1, ...,Ck}
s.

(1)   Suppose that there exists a subset of copulas Ck1
, ...,Cks

, s ≤ k ∈ ℕ such that 
𝜓

�
(Ĉ) > 0 for Ĉ = Ck1

∗ ... ∗ Cks
 . Equation (16) can be written as follows:

Ĉ(x, y) = Ci1
∗ ... ∗ Cis

(x, y)   and Ĉj(x, y) = Cj1
∗ ... ∗ Cjs

(x, y)

Let (Xk, k ∈ ℕ) be a copula-based Markov chain generated by the copula C(x, y); 
(X̂

j

k
, k ∈ ℕ) a copula-based Markov chain generated by the copula Ĉj for 1 ≤ j ≤ ks , 

Ĉi = Ĉ . For A ∈ �(X0) and B ∈ �(Xs) , Eq. (17) yields

where Ps
(A ∩ B) = P(X1 ∈ A,Xs+1 ∈ B) ; P̂j(A ∩ B) = P(X̂

j

1
∈ A, X̂

j

s+1
∈ B) and 

P̂(A ∩ B) = P(X̂i
1
∈ A, X̂i

s+1
∈ B) . Thus,

𝜓
�

s
(C) = inf

A⊂I,B⊂I,P(A)(B)>0

Ps
(A ∩ B)

P(A)P(B)
≥ bi𝜓

�
(Ĉ).

By our assumptions, 𝜓 �
(Ĉ) > 0 . The conclusion follows from Bradley [6].

(2)  Suppose there exists a subset of copulas Ck1
, ...,Cks

, s ≤ k ∈ ℕ such that the 
density of the absolutely continuous part of the copula Ĉ = Ck1

∗ ... ∗ Cks
 is bounded 

away from zero. From Eq. (17) we have:

Moreover, the density of the absolutely continuous part of Ĉ(u, v) is bounded 
away from zero. Thus, there exists c > 0 : ∀(x, y) ∈ [0, 1]2 ,  ĉ(x, y) ≥ c almost surely. 
Hence, from (19), we have cs(x, y) ≥ bic . Now, if (Xk, k ∈ ℕ) is a copula-based 
Markov chain generated by the copula C(x, y) and an absolutely continuous distribu-
tion, then for A ∈ �(X1) and B ∈ �(Xs+1) , we have

(16)

k∑
i=1

ai = 1, for any s ∈ ℕ we have Cs
(x, y) =

ks∑
j=1

bj × 1Cj ∗ ... ∗ sCj(x, y),

(17)Cs
(x, y) = biĈ(x, y) +

ks∑
j=1
j≠i

bjĈj(x, y), where

(18)Ps
(A ∩ B) =biP̂(A ∩ B) +

ks∑
j=1
j≠i

bjP̂j(A ∩ B) ≥ biP̂(A ∩ B),

(19)cs(x, y) ≥ biĉ(x, y).

(20)Ps
(A ∩ B) ≥ bicP(A) × P(B) and

Ps
(A ∩ B)

P(A) × P(B)
≥ bic,
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where Ps
(A ∩ B) = P(X1 ∈ A,Xs+1 ∈ B) . It follows from Eq. (20) that

This concludes the proof of Theorem 2.1.4.

Proof of Formula 5

The following representation is true for Farlie–Gumbel–Morgenstern copulas with 
� = 1 − �.

Given that C(u, v) = (uv + uv(1 − u)(1 − v)) is a copula, we can apply [15] to 
obtain

It remains to show that Cn
(u, v) = uv + 3(

1

3
)
nuv(1 − u)(1 − v) by mathematical 

induction. It is clear that the formula is correct for n = 1 . Assume that for n = k , we 
have

Using the fold product, we obtain

Plugging these functions into the integral and computing yields the needed result. 
The proof ends by replacing Cn

(u, v) by its value and � = 1 − �.

Proof of Theorem 2.2.3

Assume that the copula C(u,  v) is such that for all (u, v) ∈ [0, 1]2 , cn(u, v) ≤ K , 
where K is a constant and cn is the density of the copula Cn

(u, v) . Let A ∈ �(X0) and 
B ∈ �(Xn) , where (X0,Xn) has copula Cn

(u, v) . Assume that the stationary distribution 
of the Markov chain has distribution F(x). Using Sklar’s Theorem (see [27]), we have

Therefore, Pn
(A ∩ B) ≤ KP(A)P(B) . It follows that �∗

n
(C) ≤ K . Moreover, 

𝜓
�

s
(C) = inf

P(A)(B)>0

Ps
(A ∩ B)

P(A)P(B)
≥ bic > 0.

C
�
(u, v) = (1 − �)(uv + uv(1 − u)(1 − v)) + �uv.

Cn
�
(u, v) = (1 − �)

nCn
(u, v) + (1 − (1 − �)

n
)uv.

Ck
(u, v) = uv + 3

(
1

3

)k

uv(1 − u)(1 − v).

Ck+1
=Ck

∗ C(u, v) = ∫
1

0

Ck
,2
(u, t)C,1(t, v)dt,

where Ck
,2
(u, t) = u + 3(

1

3
)
ku(1 − u)(1 − 2t)

and C,1(t, v) = v + v(1 − v)(1 − 2t).

Pn
(A ∩ B) = P(X0 ∈ A,Xn ∈ B) = ∫A ∫B

cn(F(x),F(y))dF(y)dF(x).
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1. if cs(u, v) is bounded away from 0, then by Longla [18] C(u, v) generates � ′-mix-
ing stationary Markov chains. This implies the these Markov chains are mixing 
in the ergodic theoretic sense. Therefore, as �∗

n
(C) ≤ K ≠ ∞ , Bradley [6] implies 

that C(u, v) generates stationary �∗-mixing Markov chains.
2. if cn(u, v) ≤ m < 2 for all (u, v) ∈ [0, 1]2 , then it follows Pn

(A ∩ B) ≤ mP(A)P(B) . 
It follows that 𝜓∗

n
(C) ≤ m < 2 . This inequality implies �-mixing without extra 

condistions by Theorem 3.3. of Bradley [5].
3. Now, if we assume that there exists a set of non-zero measure Ω ⊂ [0, 1]2 such 

that A × B ⊂ Ω , A ∈ �(X0) , B ∈ �(Xn) and the density of Cn
(u, v) is not bounded 

above on Ω , but bounded below by a any given non-zero real number M. This 
construction is possible due to continuity of the density of C(u, v). It follows that 
for any constant M, 

 It is obvious here that As M grows, the size of P(A)P(B) reduces as their prod-
uct has to be at most 1. From here, we obtain 

 Because this is true for every M and n, we can conclude that �∗

n
(C) = ∞ and 

�n(C) = ∞ for all n. Thus, the generated Markov chain is not �-mixing.

Proof of Theorem 2.2.10 and Theorem 2.2.11

Without loss of generality the proof can be done for a convex combination of two copu-
las, one of which is C(u, v) and doesn’t generate �∗-mixing Markov chains. This is true 
because any convex combination of copulas can be written as a convex combination of 
two copulas. Now, assume that

By Bradley [6], �∗

n
(C) = ∞ for all n ∈ ℕ . We need to show that �∗

n
(C2) = ∞ 

for all n ∈ ℕ . By Longla et  al. [15], there exist bin,C1in(u, v) , such that bin > 0 , 
�
n
+
∑2n

i=2
bin = 1 and

Therefore, the probability distribution Pn
2
 of (X1,Xn+1) for the Markov chain gener-

ated by C2(u, v) and the probability distributions Pn
1i

 of (X̃i1, X̃in+1) for the Markov 
chains generated by the copulas C1in(u, v) satisfy the following relationship for every 
A ∈ �(X0) and B ∈ �(Xn+1):

Pn
(X0 ∈ A,Xn ∈ B) ≥ M �A×B

dF(x)dF(y) = MP(A)P(B).

P(A ∩ B)

P(A)P(B)
≥ M. This leads to 𝜓

∗

n
(C) > M.

C2(u, v) = �C(u, v) + (1 − �)C1(u, v).

Cn
2
(u, v) =

2n∑
i=2

binC1in(u, v) + �
nCn

(u, v).
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Therefore, Pn
2
(A ∩ B) ≥ �

nPn
(A ∩ B) . Given that �∗

n
(C) = ∞ for all n, it follows that 

supA,B
Pn

(A∩B)

P(A)P(B)
= ∞ , leading to

This concludes the proof of Theorem 2.2.10.
Now, to prove Theorem  2.2.11, as for the previous case, it is enough to con-

sider a convex combination of two copulas. Assume that C1(u, v) and C2(u, v) gen-
erate each �∗-mixing stationary copula-based Markov chains with 𝜓∗

1
< 2 . Define 

C(u, v) = �C1(u, v) + (1 − �)C2(u, v) . Once more, we use [6] to establish that we 
have �∗-mixing. By Longla et  al [15] we have �∗

1
(C) ≤ ��1(C1) + (1 − �)�1(C2) . 

Therefore, 𝜓∗

1
(C) < 2(𝛼) + 2(1 − 𝛼) = 2 . To finish the proof, we need to show that 

the Markov chain generated by the convex combination is mixing. Each of the copu-
las generates mixing stationary Markov chains because these Markov chains are �∗

-mixing. Therefore, their convex combination generates mixing stationary Markov 
chains as shown by Longla [18].

Checking the Condition nhnvar(Ȳ) → 0

Given the Markov chains that we consider are reversible and ergodic (see [9, 11]),

Moreover, if the series converges, then the central limit theorem holds with 
variance equal to its sum. On the other side, Markov chains generated by Far-
lie–Gumbel–Morgenstern copulas, Frechet copulas and their considered perturba-
tions are exponential � ′-mixing. This implies that they are all exponential �-mix-
ing. Exponential �-mixing implies convergence of the considered series. Therefore 
nvar(Ȳ) → C , leading to nhnvar(Ȳ) → 0.
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2
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binP
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