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Search for a doubly charged DDK bound state in ϒð1S; 2SÞ
inclusive decays and via direct production in e + e− collisions

at
ffiffi
s
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We report the results of a first search for a doubly charged DDK bound state, denoted the Rþþ,
in ϒð1SÞ and ϒð2SÞ inclusive decays and via direct production in eþe− collisions at

ffiffiffi
s

p ¼ 10.520,
10.580, and 10.867 GeV. The search uses data accumulated with the Belle detector at the KEKB
asymmetric-energy eþe− collider. No significant signals are observed in the DþD�þ

s invariant-mass
spectra of all studied modes. The 90% credibility level upper limits on their product branching fractions
in ϒð1SÞ and ϒð2SÞ inclusive decays (Bðϒð1S; 2SÞ → Rþþ þ anythingÞ × BðRþþ → DþD�þ

s Þ), the
product values of Born cross section and branching fraction in eþe− collisions (σðeþe− →
Rþþ þ anythingÞ × BðRþþ → DþD�þ

s Þ) at
ffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV under different
assumptions of Rþþ masses varying from 4.13 to 4.17 GeV=c2 and widths varying from 0 to 5 MeV
are obtained.

DOI: 10.1103/PhysRevD.102.112001

I. INTRODUCTION

In 2003, a narrow resonance near 2.32 GeV=c2, the
D�

s0ð2317Þþ, was observed by BABAR [1] via its decay
to Dþ

s π
0. The D�

s0ð2317Þþ was subsequently confirmed by
CLEO [2] and Belle [3]. The observed low mass and
narrow width of theD�

s0ð2317Þþ strongly disfavor the inter-
pretation of this state as a P-wave cs̄ state, both in potential
model [4–9] and lattice Quantum Chromodynamics (QCD)
[10,11] descriptions. Inclusion of charge-conjugate decays
is implicitly assumed throughout this analysis. Instead, it
has been proposed as a possible candidate for a DK
molecule [12–17], a ðcqÞðs̄ q̄Þ tetraquark state [18–20],
or a mixture of a cs̄ state and tetraquark [21–28]. The
absolute branching fraction of D�

s0ð2317Þþ → Dþ
s π

0 was

measured by BESIII to be 1.00þ0.00
−0.14 � 0.14 [29]. This

result indicates that the D�
s0ð2317Þþ has a much smaller

branching fraction to D�þ
s γ than to Dþ

s π
0, and this agrees

with the expectation of the conventional cs̄ state hypothesis
[30] or the hadronic molecule picture ofDK [31,32]. There
have been theoretical interpretations of the D�

s0ð2317Þþ
and Ds1ð2460Þþ as chiral partners, with production
mechanisms related to the spontaneous breaking of chiral
symmetry [33,34].
By exchanging a kaon, a DþD�

s0ð2317Þþ molecular state
can be formed with a binding energy of 5–15 MeV,
regardless of whether the D�

s0ð2317Þþ is treated as a cs̄
state or a DK molecule [35]. In Ref. [36], the authors
studied the DDK system in a coupled-channel approach,
where an isospin 1=2 state, denoted the Rþþ, is formed at
4140 MeV=c2 when the D�

s0ð2317Þþ is generated from
the DK subsystem. The Rþþ can be interpreted as a
DþD�

s0ð2317Þþ moleculelike state with exotic properties:
doubly charged and doubly charmed. Hereinafter, we also
refer to this predicted state as Rþþ.
An Rþþ, with the properties described above, would

be able to decay via Rþþ → DþD�
s0ð2317Þþ, where

*Now at University of Hiroshima.
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D�
s0ð2317Þþ → Dþ

s π
0 is an isospin-violating process. The

alternative processes are via triangle diagrams into Rþþ →
DþD�þ

s and Rþþ → Dþ
s D�þ [36–38]. The mass of Rþþ is

predicted to be in the range of 4.13 to 4.17 GeV=c2 [38].
The predicted partial decay width of Rþþ → DþD�þ

s is
much larger than that of Rþþ → Dþ

s D�þ; they are
ΓðRþþ → DþD�þ

s Þ ¼ ð2.30–2.49Þ MeV and ΓðRþþ →
Dþ

s D�þÞ ¼ ð0.26–0.29Þ MeV [38], respectively.
The question whether QQq̄q̄ tetraquarks with two heavy

quarks Q and two light antiquarks q̄ are stable or unstable
against decay into two Qq̄ mesons has a long history [39].
It has been largely undecided, mainly due to a lack of
experimental information about the strength of the inter-
action between two heavy quarks. The discovery of the
doubly charmed baryon Ξþþ

cc by LHCb [40] has provided
the crucial experimental input [41,42]. In Ref. [42], the
authors predicted the existence of novel narrow doubly
heavy tetraquark states of the form QQq̄q̄ with the method
based on the heavy-quark symmetry and found that a
doubly charmed tetraquark with a mass of 4156 MeV=c2

and a JP of 1þ decaying into a final state of DþD�þ
s can be

formed. Thus, the DþD�þ
s final state is a good channel to

search for such a tetraquark state.
In this paper, we search for a doubly charged DDK

bound state in the DþD�þ
s final state in ϒð1SÞ and

ϒð2SÞ inclusive decays and via direct production in
eþe− collisions at

ffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV.
We report a search for the Rþþ with masses varying
from 4.13 to 4.17 GeV=c2 and widths varying from 0
to 5 MeV.

II. THE DATA SAMPLE AND THE
BELLE DETECTOR

This analysis utilizes ð5.74� 0.09Þ fb−1 of data col-
lected at the ϒð1SÞ peak [ð102� 3Þ million ϒð1SÞ events],
ð24.91� 0.35Þ fb−1 of data collected at the ϒð2SÞ peak
[ð158� 4Þ millionϒð2SÞ events], a data sample of ð89.5�
1.3Þ fb−1 collected at

ffiffiffi
s

p ¼ 10.520 GeV, a data sample
of ð711.0� 10.0Þ fb−1 collected at

ffiffiffi
s

p ¼ 10.580 GeV
[ϒð4SÞ peak], and a data sample of ð121.4� 1.7Þ fb−1
collected at

ffiffiffi
s

p ¼ 10.867 GeV [ϒð5SÞ peak]. All the data
were collected with the Belle detector [43] operating at the
KEKB asymmetric-energy eþe− collider [44]. The Belle
detector is described in detail in Ref. [43]. It is a large-solid-
angle magnetic spectrometer consisting of a silicon vertex
detector, a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter comprising
CSI(TI) crystals (ECL) located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field. An iron
flux return comprising resistive plate chambers (RPCs)
placed outside the coil is instrumented to detect K0

L mesons
and to identify muons (KLM).

Monte Carlo (MC) signal samples are generated with
EvtGen [45] to determine signal shapes and efficiencies.
Initial-state radiation (ISR) is taken into account by
assuming that the cross sections follow a 1=s dependence
in eþe− → Rþþ þ anything reactions, where s is the
center-of-mass energy squared. The mass of Rþþ is chosen
from 4.13 to 4.17 GeV=c2 in steps of 2.5 MeV=c2, with a
width varying from 0 to 5 MeV in steps of 1 MeV. These
events are processed by a detector simulation based on
GEANT3 [46].
Inclusive MC samples of ϒð1S; 2SÞ decays, ϒð4SÞ →

BþB−=B0B̄0, ϒð5SÞ → Bð�Þ
s B̄ð�Þ

s , and eþe− → qq̄ (q ¼ u,
d, s, c) at

ffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV corre-
sponding to four times the integrated luminosity of data are
used to study possible peaking backgrounds.

III. COMMON EVENT SELECTION CRITERIA

For well-reconstructed charged tracks, except those from
K0

S → πþπ− decays, the impact parameters perpendicular
to and along the beam direction with respect to the nominal
interaction point (IP) are required to be less than 0.5 cm and
2 cm, respectively, and the transverse momentum in the
laboratory frame is required to be larger than 0.1 GeV=c.
For the particle identification (PID) of a well-reconstructed
charged track, information from different detector subsys-
tems, including specific ionization in the CDC, time mea-
surement in the TOF and the response of the ACC, is
combined to form a likelihood Li [47] for particle species i,
where i ¼ π or K. Tracks with RK ¼ LK=ðLK þ LπÞ < 0.4
are identified as pions with an efficiency of 96%, while 5%
of kaons are misidentified as pions; tracks with RK > 0.6
are identified as kaons with an efficiency of 95%, while 4%
of pions are misidentified as kaons. Except for tracks from
K0

S decays, all charged tracks are required to be positively
identified by the above procedures.
An ECL cluster is taken as a photon candidate if it does

not match the extrapolation of any charged track. The
energy of the photon is required to be greater than 50 MeV.
The K0

S candidates are first reconstructed from pairs of
oppositely charged tracks, which are treated as pions, with
a production vertex significantly separated from the aver-
age IP, then selected using an artificial neural network [48]
based on two sets of input variables [49]. The ϕ and
K̄�ð892Þ0 candidates are reconstructed using KþK− and
K−πþ decay modes, respectively. The invariant masses of
the K0

S and ϕ candidates are required to be within
7 MeV=c2 of the corresponding nominal masses (>90%
signal events are retained).
We reconstruct Dþ mesons in the K−πþπþ and

K0
Sð→ πþπ−Þπþ decay channels andDþ

s mesons in the ϕπþ

and K̄�ð892Þ0Kþ decay channels. We perform vertex- and
mass-constrained fits for Dþ and Dþ

s candidates and
require χ2vertex=n:d:f: < 20, where n.d.f. is the number of
degrees of freedom (> 97% selection efficiency according

Y. LI et al. PHYS. REV. D 102, 112001 (2020)
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to MC simulation). The selectedDþ
s candidate is combined

with a photon to form a D�þ
s candidate, and a mass-

constrained fit is performed to improve its momentum
resolution.
The signal mass windows for K̄�ð892Þ0, Dþ, Dþ

s , and
D�þ

s candidates have been optimized by maximizing
the Punzi parameter S=ð3=2þ ffiffiffiffi

B
p Þ [50]. Here, S is the

number of Rþþ signal events in the MC-simulated
ϒð2SÞ → Rþþ þ anything sample with the mass and
width of Rþþ fixed at 4.13 GeV=c2 and 2 MeV assuming
Bðϒð2SÞ→Rþþþ anythingÞ×BðRþþ →DþD�þ

s Þ ¼ 10−4,
and B is the number of background events in the Rþþ
signal window. The number of background events is
obtained from the normalized MDþ and MD�þ

s
side-

bands in the data requiring 4.12 GeV=c2 < MDþD�þ
s

<
4.14 GeV=c2 as the Rþþ signal region (about 3σ according
to signal MC simulations). The optimized signal regions
are jMK−πþ −mK̄�ð892Þ0 j < 60 MeV=c2, jMK−πþπþ=K0

Sπ
þ −

mDþj < 6 MeV=c2, jMϕπþ=K̄�ð892Þ0Kþ −mDþ
s
j<6MeV=c2,

and jMγDþ
s
−mD�þ

s
j < 9 MeV=c2 for K̄�ð892Þ0, Dþ, Dþ

s ,
and D�þ

s candidates (> 80% signal events are retained
for each intermediate state), respectively, where mK̄�ð892Þ0 ,
mDþ

s
, mDþ , and mD�þ

s
are the nominal masses of

K̄�ð892Þ0, Dþ
s , Dþ, and D�þ

s mesons [51]. For the process
ϒð1SÞ → Rþþ þ anything and eþe− → Rþþ þ anything at

ffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV, the optimized
signal regions of intermediate states are the same.
Finally, when the Dþ and D�þ

s candidates are combined
to form Rþþ candidates, all the combinations are preserved
for further analysis. The fraction of events where multiple
combinations are selected as Rþþ candidates is 14% in
data, which is consistent with the MC simulation.

IV. ϒð1S; 2SÞ → R++ + ANYTHING

In this section, we search for the doubly charged DDK
bound state in ϒð1SÞ and ϒð2SÞ inclusive decays. After
applying the aforementioned common event selections,
the invariant-mass distributions of the Dþ

s , Dþ, and D�þ
s

candidates from the ϒð1SÞ and ϒð2SÞ data samples are
shown in Figs. 1 and 2, respectively, together with results
of the fits described below. When drawing each distribution,
the signal mass windows of other intermediate states are
required. No clearDþ

s ,Dþ, andD�þ
s signals are observed. In

the fits, the Dþ
s and Dþ signal shapes are described by

double-Gaussian functions, and the D�þ
s signal shape is

described by aNovosibirsk function [52],where thevalues of
parameters are fixed to those obtained from the fits to the
corresponding signalMCdistributions. The backgrounds are
parametrized by first-order polynomial functions forDþ

s and
Dþ, and a second-order polynomial function for D�þ

s .
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FIG. 1. The invariant-mass spectra of the (a) Dþ
s , (b) Dþ, and (c) D�þ

s candidates summed over four reconstructed modes from ϒð1SÞ
data. The points with error bars represent the data, the solid curves show the results of the best fits to the data, and the blue dashed curves
are the fitted backgrounds. The red dashed lines show the required signal regions.
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FIG. 2. The invariant-mass spectra of the (a) Dþ
s , (b) Dþ, and (c) D�þ

s candidates summed over four reconstructed modes from ϒð2SÞ
data. The points with error bars represent the data, the solid curves show the results of the best fits to the data, and the blue dashed curves
are the fitted backgrounds. The red dashed lines show the required signal regions.

SEARCH FOR A DOUBLY CHARGED DDK BOUND STATE IN … PHYS. REV. D 102, 112001 (2020)

112001-5



Figure 3 shows the scatter plots of MD�þ
s

versus MDþ

from ϒð1SÞ and ϒð2SÞ data samples, respectively. The
central solid boxes show the signal regions ofDþ andD�þ

s .
To check possible peaking backgrounds, the MDþ and
MD�þ

s
sidebands are selected, represented by the blue

dashed (the total number of sideband events is denoted
as N1) and red dash-dotted boxes (the total number of
sideband events is denoted as N2) in Fig. 3. The back-
ground contribution from the normalized MDþ and MD�þ

s

sidebands is estimated to be 0.5 × N1 − 0.25 × N2.
Figure 4 shows the invariant-mass distributions of

DþD�þ
s in the ϒð1SÞ and ϒð2SÞ data samples, together

with the backgrounds from the normalized MDþ and MD�þ
s

sidebands. There are no evident signals for Rþþ states at
the expected masses. An unbinned extended maximum-
likelihood fit repeated with MRþþ from 4.13 to
4.17 GeV=c2 in steps of 2.5 MeV=c2, and ΓRþþ from 0
to 5 MeV in steps of 1 MeV is performed to the MDþD�þ

s

distribution. The signal shapes of Rþþ are described by
a Gaussian function (ΓRþþ ¼ 0) or Breit-Wigner (BW)

functions convolved with Gaussian functions (ΓRþþ ≠ 0),
where the parameters are fixed to those obtained from the
fits to the corresponding MC simulated distributions. The
mass resolution of the MDþD�þ

s
is ð1.7� 0.1Þ MeV=c2.

There are no peaking backgrounds found in the MDþ and
MD�þ

s
sidebands or in the ϒð1S; 2SÞ inclusive MC samples

[53], so first-order polynomial functions with free param-
eters are taken as background shapes. The fitted results with
the Rþþ mass fixed at 4.14 GeV=c2 and width fixed at
2 MeV are shown in Fig. 4 as an example. Assuming a
Gaussian shape of the likelihoods, the local Rþþ signifi-
cance is calculated using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnðL0=LmaxÞ

p
, where L0

and Lmax are the likelihoods of the fits without and with a
signal component, respectively. The fitted Rþþ signal
yields at typically assumed mass points with ΓRþþ fixed
at values ranging from 0 to 5 MeV in steps of 1 MeV
and the corresponding statistical significances are listed
in Table I.
The branching fraction, Bðϒð1S; 2SÞ → Rþþþ

anythingÞ × BðRþþ → DþD�þ
s Þ, is calculated using
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FIG. 3. The scatter plots of MD�þ
s

versus MDþ from (a) ϒð1SÞ and (b) ϒð2SÞ data samples. The central solid boxes define the signal
regions, and the red dash-dotted and blue dashed boxes show the MDþ and MD�þ

s
sideband regions described in the text.
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Nfit

Nϒð1S; 2SÞ ×
P

iεiBi
;

where Nfit is the fitted number of signal events, Nϒð1SÞ ¼
1.02 × 108 and Nϒð2SÞ ¼ 1.58 × 108 are the total numbers
of ϒð1SÞ and ϒð2SÞ events, the index i runs for all final-
state modes with εi being the corresponding efficiency and
Bi the product of all secondary branching fractions of
the mode i [B1 ¼ BðDþ → K−πþπþÞBðD�þ

s → Dþ
s γÞ×

BðDþ
s → ϕð→ KþK−ÞπþÞ, B2 ¼ BðDþ → K0

Sπ
þÞBðK0

S →
πþπ−ÞBðD�þ

s →Dþ
s γÞBðDþ

s → ϕð→ KþK−ÞπþÞ, B3 ¼
BðDþ → K−πþπþÞBðD�þ

s → Dþ
s γÞBðDþ

s → K̄�ð892Þ0 ×
ð→ K−πþÞKþÞ, B4 ¼ BðDþ → K0

Sπ
þÞBðK0

S → πþπ−Þ×
BðD�þ

s → Dþ
s γÞBðDþ

s → K̄�ð892Þ0ð→ K−πþÞKþÞ]. The

calculated values of Bðϒð1S; 2SÞ → Rþþ þ anythingÞ ×
BðRþþ → DþD�þ

s Þ at typically assumed mass points are
listed in Table I.
Since the statistical significance in each case is less than

3σ, Bayesian upper limits at the 90% credibility level (CL)
on the numbers of signal events ðNULÞ assuming it follows
a Poisson distribution with a uniform prior probability
density function are determined by solving the equationR
NUL

0 LðxÞdx=Rþ∞
0 LðxÞdx ¼ 0.9, where x is the number of

fitted signal events and LðxÞ is the likelihood function in
the fit to data. Taking into account the systematic uncer-
tainties discussed below, the likelihood curve is convolved
with a Gaussian function whose width equals the corre-
sponding total multiplicative systematic uncertainty.

TABLE I. Summary of the 90% CL upper limits on the product branching fractions for ϒð1S; 2SÞ → Rþþ þ anything with Rþþ →
DþD�þ

s under typical assumptions of Rþþ mass (MRþþ in GeV=c2) and width (ΓRþþ in MeV) as examples, where Nfit is the number of
fitted signal events, NUL is the 90% CL upper limit on the number of signal events taking into account systematic uncertainties, ΣðσÞ is
the local Rþþ significance, ΣiðϵiBiÞ is the sum of product of the detection efficiency and the product of all secondary branching fractions
for each reconstruction mode, σmulti is the total multiplicative systematic uncertainty, σadd is the additive systematic uncertainty, B
(Bðϒð1S; 2SÞ → Rþþ þ anythingÞ × BðRþþ → DþD�þ

s Þ) is the product branching fraction for ϒð1S; 2SÞ → Rþþ þ anything with
Rþþ → DþD�þ

s , and BUL (BULðϒð1S; 2SÞ → Rþþ þ anythingÞ × BðRþþ → DþD�þ
s Þ) is the 90% CL upper limit on the product

branching fraction with systematic uncertainties included.

ϒð1SÞ=ϒð2SÞ → Rþþ þ anything, Rþþ → DþD�þ
s

MRþþ ΓRþþ Nfit NUL ΣðσÞ ΣiðϵiBiÞ (×10−5) σmultið%Þ σaddð%Þ Bð×10−5Þ BULð×10−5Þ
4.13 0 −4.2� 3.7=−2.6� 2.7 2.7=5.4 -/- 22.4=21.0 8.0=8.1 3.5=5.9 −18.4� 16.2=−7.8� 8.1 11.8=16.3
4.13 1 −4.0� 3.9=−3.3� 3.3 2.9=6.1 -/- 22.1=20.8 8.0=8.1 3.8=6.2 −17.7� 17.3=−10.0� 10.0 12.9=18.6
4.13 2 −4.1� 4.3=−3.9� 3.8 3.3=6.9 -/- 21.9=20.4 8.0=8.1 6.5=7.8 −18.4� 19.2=−12.1� 11.8 14.8=21.4
4.13 3 −4.5� 4.8=−4.5� 4.3 3.8=7.7 -/- 21.8=20.0 8.0=8.1 11.8=8.9 −20.2� 21.6=−14.2� 13.6 17.1=24.4
4.13 4 −4.8� 5.2=−5.1� 4.9 4.4=8.5 -/- 21.5=20.3 8.0=8.1 12.8=9.0 −21.9� 23.7=−15.9� 15.3 20.1=26.5
4.13 5 −5.2� 5.8=−5.8� 5.6 5.0=9.5 -/- 21.7=20.1 8.0=8.1 15.9=9.2 −23.5� 26.2=−18.3� 17.6 22.6=29.9
4.14 0 3.7� 2.9=4.3� 4.0 9.7=12.0 1.6=1.2 22.5=20.9 8.0=8.1 7.6=8.6 16.1� 12.6=13.0� 12.1 42.3=36.3
4.14 1 3.7� 3.0=4.9� 4.5 9.9=13.4 1.5=1.2 22.1=20.8 8.0=8.1 7.9=9.7 16.4� 13.3=14.9� 13.7 43.9=40.8
4.14 2 3.7� 3.2=5.6� 5.1 10.5=15.2 1.3=1.2 21.9=20.5 8.0=8.1 9.8=12.2 16.6� 14.3=17.3� 15.7 47.0=46.9
4.14 3 3.6� 3.5=6.4� 5.6 11.0=17.0 1.2=1.3 21.7=20.1 8.0=8.1 12.0=13.5 16.3� 15.8=20.2� 17.6 49.7=53.5
4.14 4 3.5� 3.7=7.2� 6.3 11.5=19.0 1.0=1.3 21.5=20.2 8.0=8.1 14.7=14.7 16.0� 16.9=22.6� 19.7 52.4=59.5
4.14 5 3.1� 4.0=7.8� 6.7 12.0=20.5 0.8=1.3 21.6=20.1 8.0=8.1 15.8=15.8 14.1� 18.2=24.6� 21.1 54.5=64.6
4.15 0 0.0� 2.1=2.2� 3.6 5.4=9.7 -=0.6 22.5=20.9 8.0=8.1 3.7=13.2 0.0� 9.2=6.7� 10.9 23.5=29.4
4.15 1 −0.2� 2.3=3.2� 4.5 5.6=12.0 -=0.8 22.2=20.7 8.0=8.1 3.8=14.8 −0.9� 10.2=9.8� 13.8 24.7=36.7
4.15 2 −0.3� 2.6=4.7� 5.2 6.1=14.7 -=1.0 21.8=20.5 8.0=8.1 5.2=13.3 −1.3� 11.7=14.5� 16.1 27.4=45.4
4.15 3 −0.5� 2.8=5.9� 5.9 6.7=16.8 -=1.1 21.7=20.2 8.0=8.1 6.8=11.3 −2.3� 12.7=18.5� 18.5 30.3=52.6
4.15 4 −0.7� 3.1=7.5� 6.4 7.3=19.4 -=1.3 21.5=20.2 8.0=8.1 9.0=9.3 −3.2� 14.1=23.5� 20.1 33.3=60.8
4.15 5 −1.0� 3.5=8.8� 7.0 7.9=21.8 -=1.4 21.4=20.1 8.0=8.1 9.7=9.9 −4.6� 16.0=27.7� 22.0 36.2=68.6
4.16 0 1.0� 2.1=−1.9� 3.4 5.7=6.7 0.5=- 22.5=20.9 8.0=8.1 3.9=6.3 4.4� 9.2=−5.8� 10.3 24.8=20.3
4.16 1 0.9� 2.3=−1.6� 3.8 6.0=7.5 0.4=- 22.2=20.7 8.0=8.1 5.2=5.6 4.0� 10.2=−4.9� 11.6 26.5=22.9
4.16 2 0.7� 2.7=−1.6� 4.3 6.6=8.3 0.3=- 21.8=20.5 8.0=8.1 5.3=5.1 3.1� 12.1=−4.9� 13.3 29.7=25.6
4.16 3 0.6� 3.0=−1.5� 4.8 7.1=9.4 0.2=- 21.6=20.2 8.0=8.1 6.2=5.6 2.7� 13.6=−4.7� 15.0 32.2=29.5
4.16 4 0.6� 3.2=−1.7� 5.3 7.5=10.2 0.2=- 21.5=20.2 8.0=8.1 2.3=6.2 2.7� 14.6=−5.3� 16.6 34.2=32.0
4.16 5 0.5� 3.5=−1.7� 5.7 8.0=11.0 0.1=- 21.3=20.0 8.0=8.1 3.1=5.8 2.3� 16.1=−5.4� 18.0 36.8=34.8
4.17 0 −2.9� 2.0=−2.1� 2.8 4.1=5.6 -/- 22.5=20.8 8.0=8.1 5.8=7.3 −12.6� 8.7=−6.4� 8.5 17.9=17.0
4.17 1 −2.4� 2.2=−2.6� 3.2 4.7=6.1 -/- 22.2=20.6 8.0=8.1 6.2=7.8 −10.6� 9.7=−8.0� 9.8 20.8=18.7
4.17 2 −2.5� 2.5=−3.2� 3.7 5.1=6.8 -/- 21.7=20.5 8.0=8.1 6.4=9.1 −11.3� 11.3=−9.9� 11.4 23.0=21.0
4.17 3 −2.3� 2.8=−3.9� 4.4 5.6=7.6 -/- 21.5=20.3 8.0=8.1 6.7=12.4 −10.5� 12.8=−12.2� 13.7 25.5=23.7
4.17 4 −2.4� 3.1=−4.4� 4.8 6.1=8.2 -/- 21.5=20.2 8.0=8.1 7.0=13.3 −10.9� 14.1=−13.8� 15.0 27.8=25.7
4.17 5 −2.6� 3.3=−5.0� 5.4 6.5=8.9 -/- 21.2=20.0 8.0=8.1 6.8=14.5 −12.0� 15.3=−15.8� 17.1 30.1=28.2
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The calculated 90% CL upper limits on the numbers
of signal events and the product branching fractions
ðBULðϒð1S; 2SÞ→Rþþþ anythingÞ×BðRþþ →DþD�þ

s ÞÞ
in ϒð1SÞ and ϒð2SÞ inclusive decays at typically assumed
mass points with width fixed at values ranging from 0 to
5 MeVare listed in Table I. The 90% CL upper limits on the
product branching fractions for all hypothetical Rþþ

masses with widths varying from 0 to 5 MeV are graphi-
cally shown in Fig. 5.

V. e+ e − → R++ + ANYTHING ATffiffi
s

p
= 10.520, 10.580, AND 10.867 GeV

In this section, we search for the doubly charged DDK
bound state via direct production in eþe− collisions atffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV. After the applica-
tion of the selection criteria, the invariant-mass distribu-
tions of Dþ

s , Dþ, and D�þ
s candidates from

ffiffiffi
s

p ¼ 10.520,
10.580, and 10.867 GeV data samples are shown in
Figs. 6–8, respectively, together with results of the fits.

)2 (GeV/c++RM
4.13 4.14 4.15 4.16 4.17

)
*+ s

D+
D

+
+

B
(R

�
+

an
yt

hi
ng

)
+

+
R

(1
S

)
�(

U
L

B

4�10

3�10

=0MeV�

=1MeV�

=2MeV�

=3MeV�

=4MeV�

=5MeV�

)2 (GeV/c++RM

4.13 4.14 4.15 4.16 4.17

)
*+ s

D+
D

+
+

B
(R

�
+

an
yt

hi
ng

)
+

+
R

(2
S

)
�(

U
L

B

4�10

3�10

=0MeV�

=1MeV�

=2MeV�

=3MeV�

=4MeV�

=5MeV�

(a) (b)

FIG. 5. The 90% CL upper limits on (a) Bðϒð1SÞ → Rþþ þ anythingÞ × BðRþþ → DþD�þ
s Þ and (b) Bðϒð2SÞ → Rþþ þ anythingÞ×

BðRþþ → DþD�þ
s Þ as a function of the assumed Rþþ masses with widths varying from 0 to 5 MeV in steps of 1 MeV.
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FIG. 6. The invariant-mass spectra of the (a) Dþ
s , (b) Dþ, and (c) D�þ

s candidates summed over four reconstructed modes fromffiffiffi
s

p ¼ 10.520 GeV data. The points with error bars represent the data, the solid curves show the results of the best fits to the data, and the
blue dashed curves are the fitted backgrounds. The red dashed lines show the required signal regions.
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FIG. 7. The invariant-mass spectra of the (a) Dþ
s , (b) Dþ, and (c) D�þ

s candidates summed over four reconstructed modes fromffiffiffi
s

p ¼ 10.580 GeV data. The points with error bars represent the data, the solid curves show the results of the best fits to the data, and the
blue dashed curves are the fitted backgrounds. The red dashed lines show the required signal regions.
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When drawing each distribution, the signal mass windows
of other intermediate states are required. Since the

ffiffiffi
s

p ¼
10.520 GeV data sample is below the BðsÞB̄ðsÞ threshold,
there are no Dþ

s , Dþ, or D�þ
s candidates from the BðsÞB̄ðsÞ

decays, and due to the limited data-set size, no clear Dþ
s ,

Dþ, or D�þ
s signals are observed in this data sample. In theffiffiffi

s
p ¼ 10.580 and 10.867 GeV data samples, evident Dþ

s
and Dþ signals and weak D�þ

s signals are seen. In the fits,
the Dþ

s and Dþ signal shapes are described by double-
Gaussian functions, and the D�þ

s signal shape is described
by a Novosibirsk function [52], where the values of

parameters are fixed to those obtained from fits to cor-
responding signal MC distributions. The backgrounds
are parametrized by first-order polynomial functions for
Dþ

s and Dþ and a second-order polynomial function
for D�þ

s .
The scatter plots of MD�þ

s
versus MDþ from the

ffiffiffi
s

p ¼
10.520, 10.580, and 10.867 GeV data samples are shown in
Figs. 9(a), 9(b), and 9(c), respectively. The central solid
boxes show the Dþ and D�þ

s signal regions and the blue
dashed and red dash-dotted boxes show the MDþ and
MD�þ

s
sidebands. The background contribution from the
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FIG. 8. The invariant-mass spectra of the (a) Dþ
s , (b) Dþ, and (c) D�þ

s candidates summed over four reconstructed modes fromffiffiffi
s

p ¼ 10.867 GeV data. The points with error bars represent the data, the solid curves show the results of the best fits to the data, and the
blue dashed curves are the fitted backgrounds. The red dashed lines show the required signal regions.
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normalizedMDþ andMD�þ
s
sidebands is estimated using the

same method as described in Sec. IV.
Figure 10 shows the invariant-mass distributions of

DþD�þ
s from

ffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV data
samples, respectively, together with the backgrounds from
the normalized MDþ and MD�þ

s
sidebands. There are no

significant signals for Rþþ states in any of the data samples.
An unbinned extended maximum-likelihood fit is per-
formed to the MDþD�þ

s
distribution in a way similar to

the methods in Sec. IV. The fitted results with the MRþþ

fixed at 4.14 GeV=c2 and ΓRþþ fixed at 2 MeVare shown in
Fig. 10 as an example. The local Rþþ significance is
calculated using the same method as described in Sec. IV.
The fitted Rþþ signal yields at typically assumed mass
points with ΓRþþ fixed at values ranging from 0 to 5 MeV in
steps of 1 MeV, and the corresponding statistical signifi-
cances are listed in Table II.
The product of Born cross section and branching fraction

σðeþe− → Rþþ þ anythingÞ × BðRþþ → DþD�þ
s Þ is cal-

culated from the following formula:

Nfit × j1 −Q j2
L ×

P
iεiBi × ð1þ δÞISR

;

where Nfit is the number of fitted signal yields in data,
j1 −Q j2 is the vacuum polarization factor, L is the
integrated luminosity, the index i runs for all final-state
modes, with εi being the corresponding efficiency and Bi
the product of all secondary branching fractions of the
mode i, and ð1þ δÞISR is the radiative correction factor.
The radiative correction factors ð1þ δÞISR are 0.710, 0.710,
and 0.707 calculated using formulae given in Ref. [54] forffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV, respectively; the
values of j1 −Q j2 [55] are 0.931, 0.930, and 0.929 forffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV. In the calculation
of ð1þ δÞISR, we assume that the dependence of the cross
section on s is 1=s. The calculated values of σðeþe− →
Rþþ þ anythingÞ × BðRþþ → DþD�þ

s Þ at
ffiffiffi
s

p ¼ 10.520,
10.580, and 10.867 GeV under typical assumptions of
Rþþ mass are listed in Table II.

Since the statistical significance in each case is less than
3σ, Bayesian upper limits at the 90% CL on NUL are
obtained using the same method as described in Sec. IV.
The results for NUL and product values of the Born cross
section and branching fraction (σULðeþe− → Rþþ þ
anythingÞ × BðRþþ → DþD�þ

s Þ) in eþe− collisions atffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV under typical
assumptions of Rþþ mass with ΓRþþ fixed at values ranging
from 0 to 5 MeV are listed in Table II. The 90% CL upper
limits on the product values of the eþe− → Rþþ þ
anything cross sections and the branching fraction of
Rþþ →DþD�þ

s at
ffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV
for all hypothetical Rþþ masses with widths varying from
0 to 5 MeV are shown in Figs. 11(a)–11(c), respectively.

VI. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties in the branching fraction
and Born cross section measurements can be divided into
two categories: multiplicative systematic uncertainties and
additive systematic uncertainties.
The sources of multiplicative systematic uncertainties

include detection-efficiency-related uncertainties, the stat-
istical uncertainty of the MC efficiency, the modeling of
MC event generation, branching fractions of intermediate
states, energy dependence of the cross sections, the total
numbers of ϒð1S; 2SÞ events, as well as the integrated
luminosity.
The detection-efficiency-related uncertainties include

those for tracking efficiency (0.35% per track), particle
identification efficiency (1.8% per kaon, 1.0% per pion),
as well as momentum-weighted K0

S selection efficiency
(2.2%) [56]. The photon reconstruction contributes
2.0% per photon, as determined from radiative Bhabha
events. The above individual uncertainties from different
reconstructed modes are added linearly, weighted by the
product of the detection efficiency and the product of all
secondary branching fractions (ϵi × Bi). Assuming these
uncertainties are independent and adding them in quad-
rature, the final uncertainty related to the reconstruction
efficiency is 6.6%.
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FIG. 11. The 90% CL upper limits on the product values of the eþe− → Rþþ þ anything cross sections and the branching fraction of
Rþþ → DþD�þ

s at (a)
ffiffiffi
s

p ¼ 10.520 GeV, (b)
ffiffiffi
s

p ¼ 10.580 GeV, and (c)
ffiffiffi
s

p ¼ 10.867 GeV as a function of the assumed Rþþ masses
with widths varying from 0 to 5 MeV in steps of 1 MeV.
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The MC statistical uncertainties are estimated using the
yields of selected and generated events; these are 1.0% or
less. We use the EvtGen generator to generate the signal
MC samples. By changing the recoil mass of the Rþþ, the
efficiencies are changed by (1–3)%. To be conservative, we
take 1% and 3% as the systematical uncertainties related to
signal MC statistics and generation.
The relative uncertainties of branching fractions for

Dþ → K−πþπþ, Dþ → K0
Sπ

þ, K0
S → πþπ−, D�þ

s → γDþ
s ,

Dþ
s → ϕð→ KþK−Þπþ, and Dþ

s → K̄�ð892Þ0ð→K−πþÞKþ
are taken from Ref. [51] and summed in quadrature to
obtain the total uncertainty of the branching fractions of the
intermediate states for each reconstructed mode. The above
individual uncertainties from different reconstructed modes
are added linearly with a weighting factor of ϵi × Bi to
obtain 2.5% as the uncertainty due to the branching
fractions of intermediate states.
Changing the s dependence of the cross sections of

eþe− → Rþþ þ anything from 1=s to 1=s4, the radiative
correction factors ð1þ δÞISR become 0.712, 0.711, and
0.709 for

ffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV, res-
pectively. The differences are less than 0.3%. Thus, the
systematic uncertainty related to the radiative correction
factors is negligible with respect to the other sources.
The uncertainties on the total numbers of ϒð1SÞ and

ϒð2SÞ events are 2.0% and 2.3%, respectively, which are
mainly due to imperfect simulations of the charged track
multiplicity distributions from inclusive hadronic MC
events. The total luminosity is determined to 1.4% pre-
cision using wide-angle Bhabha scattering events.
Additive systematic uncertainties due to the mass res-

olution and fit are considered as follows. The uncertainty
due to the mass resolution is studied by using the control
sample of B0 → D−D�þ

s ; the difference in mass resolution
between MC simulation and data is around 10%. Thus, the
uncertainty due to the mass resolution is estimated by
enlarging the mass resolution by 10% when fitting the
DþD�þ

s invariant-mass distributions. To estimate the uncer-
tainties associated with the fit, the order of the background
polynomial is changed from first to second or third, and the
range of the fit is changed by �30 MeV=c2.
The upper limits on the branching fraction and the Born

cross section at the 90% CL are determined, and the
systematic uncertainties are taken into account in two steps.
First, when we study the additive systematic uncertainties
described above, we take the most conservative upper limit
at the 90% CL on the number of Rþþ signal yields. The
differences between the most conservative upper limits and
the nominal fits are in the range of 2.3%–16.4% (see Tables I
and II for detailed vaules), depending on the center-of-mass
energy, the mass, and width of the Rþþ state. Then, to take
into account the multiplicative systematic uncertainties, the
likelihood with the most conservative upper limit is con-
volved with a Gaussian function whose width is the corre-
sponding total multiplicative systematic uncertainty.

The sources of uncertainties are assumed independent,
and the total multiplicative systematic uncertainties are
obtained by adding all uncertainties in quadrature. The total
multiplicative systematic uncertainties are listed in Tables I
and II for the measurements of Bðϒð1S; 2SÞ → Rþþ þ
anythingÞ × BðRþþ → DþD�þ

s ÞÞ and σðeþe− → Rþþþ
anythingÞ × BðRþþ → DþD�þ

s Þ at
ffiffiffi
s

p ¼ 10.520, 10.580,
and 10.867 GeV, respectively.

VII. CONCLUSION

In summary, using the data samples of 102 million
ϒð1SÞ events and 158 million ϒð2SÞ events, as well as
89.45 fb−1, 711 fb−1, and 121.06 fb−1 collected at

ffiffiffi
s

p ¼
10.520, 10.580, and 10.867 GeV, we search for the doubly
charged DDK bound state decaying to DþD�þ

s , referred
to as Rþþ, both in ϒð1S; 2SÞ inclusive decays and in
eþe− annihilations. No evident signals are observed in all
studied reactions. We determine the 90% CL upper limits
on Bðϒð1S; 2SÞ→ Rþþ þ anythingÞ×BðRþþ → DþD�þ

s Þ
and σðeþe− → Rþþ þ anythingÞ × BðRþþ → DþD�þ

s Þ atffiffiffi
s

p ¼ 10.520, 10.580, and 10.867 GeV under different
assumptions of Rþþ masses varying from 4.13 to
4.17 GeV=c2 in steps of 2.5 MeV=c2 and widths varying
from 0 to 5 MeV in steps of 1 MeV.
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