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ARMA model development and
analysis for global temperature
uncertainty

Mahmud Hasan*, Gauree Wathodkar* and Mathias Muia*

Department of Mathematics, University of Mississippi, Oxford, MS, United States

Temperature uncertainty models for land and sea surfaces can be developed
based on statistical methods. In this paper, we developed a novel time-series
temperature uncertainty model, which is the autoregressive moving average
(ARMA) (1,1) model. The model was developed for an observed annual mean
temperature anomaly X(t), which is a combination of a true (latent) global
anomaly Y(t) for a year (t) and normal variable w(t). The uncertainty is taken
as the variance of w(t), which was divided into land surface temperature (LST)
uncertainty, sea surface temperature (SST) uncertainty, and the corresponding
source of uncertainty. The ARMA model was analyzed and compared with
autoregressive (AR) and autoregressive integrated moving average (ARIMA) for
the data obtained from the NASA Goddard Institute for Space Studies Surface
Temperature (GISTEMP) Analysis. The statistical analysis of the autocorrelation
function (ACF), partial autocorrelation function (PACF), normal quantile–quantile
(normal Q-Q) plot, density of the residuals, and variance of normal variable w(t)
shows that ARMA (1,1) fits better than AR (1) and ARIMA (1,d,1) for d = 1,2.

KEYWORDS

ARMA, AR, GISTEMP, LST, SST, ACF, PACF, ARIMA

1 Introduction

Temperature uncertainty can have a significant impact on astronomical research in
several ways. Observations made using telescopes and other astronomical instruments are
often temperature sensitive. As the temperature changes, so do the sensitivity and response of
the instrument, leading tomeasurement errors if the temperature is not accuratelymonitored
and corrected.The quality of astronomical data is also affected by temperature variations. For
example, fluctuations in the temperature of the detectors used to observe light from stars
can introduce noise into the data that is difficult to distinguish from true signals. Therefore,
temperature control and accurate temperature measurements are important considerations
in many areas of astronomical research, and researchers often go to significant lengths to
minimize the impact of temperature uncertainty on their results.

Temperature uncertainty in sea surface temperature (SST) (Rayner et al., 2003) and
land surface temperature (LST) (Quattrochi and Luvall, 2004) is typically modeled using
statistical methods. One common time-series model for temperature uncertainty is the
autoregressive moving average (ARMA) (Shumway and Stoffer, 2006) model. In this
model, the temperature at a given timepoint is modeled as a function of its past values
and the residuals (errors) from previous timepoints. It is possible to develop an ARMA
model based on SST and LST uncertainty discussed in this paper. There are other time-
series models such as autoregressive, autoregressive integrated moving average (ARIMA)
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(Shumway and Stoffer, 2006), seasonal autoregressive integrated
moving average (SARIMA) (Shumway and Stoffer, 2006), and
generalized autoregressive conditional heteroskedasticity (GARCH)
(Shumway and Stoffer, 2006) which can be used for temperature
uncertainty data.

Land surface temperatures are available from the Global
Historical Climate Network-monthly (GHCNm) (Menne et al.,
2018b). Sea surface temperatures are determined using the extended
reconstructed sea surface temperature (ERSST) (Huang et al., 2016)
analysis. The ERSST (Freeman et al., 2016) uses the most recently
available International Comprehensive Ocean–Atmosphere Data
Set (ICOADS) (Freeman et al., 2016) and statistical methods such
as ARMA and ARIMA that allow stable reconstruction using sparse
data.

James Hansen defined the GISS temperature analysis scheme
in the late 1970s as a method of estimating global temperature
changemodels for comparison with one-dimensional global climate
models. The analysis method was fully documented by Hansen and
Lebedeff (1987). The analysis sub-sampled a long run of the GISS-
ER (Hansen et al., 2007; Hansen et al., 2010; Huang et al., 2015;
Hawkins et al., 2017) climate model, according to the periods of
the station network on the Earth during these three time periods.
Another sophisticated uncertainty model based on global and
regional average temperature anomaly time-series analysis was
developed by Rohde1 et al. (2021). Very recently, Morice et al.
(2012) made an interpolation approach to generate a Kriging-based
field using an assumed distance-based optimization technique.
In this paper, we are developing a statistical uncertainty model
inspired by Lenssen et al. (2019) that shows better performance than
some other models. However, optimizing the data for the model
must be explored, for which research could be conducted in the
future by the corresponding optimization technique (Menne et al.,
2010; Hasan et al., 2015; Hasan et al., 2017; Menne et al.,
2018a).

The uncertainty models are based on existing methods and
make predictions of temperature uncertainty. Those models are the
improvement of uncertainty analysis for the Goddard Institute for
Space Studies Surface Temperature (GISTEMP) data based on the
probability estimation for the previous year’s data. In this paper, we
develop a temperature uncertainty model known as ARMA (1,1). If
we consider the annual mean temperature anomaly X(t) as a linear
combination of a true (latent) global anomaly Y(t) for time (year)
(t) and random variable w(t) ∼ N (0,σ2), the uncertainty is defined
as the variance of w(t) that can be divided into LST uncertainty, SST
uncertainty, and the corresponding source of uncertainty.Moreover,
a difference series derived by X(t) and Y(t) yields an ARMA model
after introducing systematic bias.

The ARMA model was validated by comparing it with AR and
ARIMA models using a number of time-series properties, such
as autocorrelation function (ACF), partial autocorrelation function
(PACF), and density residual. We added a new property uncertainty
that measures the model’s fitness for the corresponding data. For
analyzing the model, we are using data obtained from the NASA
Goddard Institute for Space Studies Surface Temperature Analysis,
the source of a comprehensive global surface temperature dataset
spanning 1880 to the present at amonthly resolution.Themodel was
developed for the corresponding data using the auto_arima function
in Python. We organized the paper into different sections.

In Section 2, we developed the ARMA model for the observed
annual mean temperature anomaly X(t) at time t. The variable X(t)
was divided into a true (latent) global anomaly Y(t) of temperature
for a year t and normal variable w(t). Then, the normal variable was
divided into land temperature and sea temperature anomalies with
a true anomaly at t− 1 equal to the observed mean temperature
anomaly X(t). We used the data using the auto_arima function in
Python for all the models.

In Section 3, after developing the model, we find that the
proposed model is ARMA (1,1), which gives the scope of discussing
attributes such as the ACF, PACF, normal quantile–quantile (normal
Q-Q) plot, and density of residuals that affect the ARMA model.
The variance for the variable w(t) affects the model, which was
explained in the data analysis and discussion section. Each attribute
was explained by mathematical evaluation and the role of the
corresponding parameter.

In Section 4, a detailed analysis and discussion of our results
were carried out. First, the non-stationarity of GISTEMP data was
verified using the augmented Dickey–Fuller (ADF) test. Then, there
are detailed analyses for AR (1), ARMA (1,1), ARIMA (1,1,1),
and ARIMA (1,2,0) models along with the diagnosis and residual
analysis. The comparison of the models was explained based on
parameter estimation. We used the data using the auto_arima
function in Python for all the models.

The last section concludes the results we found through
theoretical findings and the numerical analysis.

1.1 Preliminary and definition of a model

We can obtain the corresponding definition and notations for
the model from Shumway and Stoffer (2006). In this section, we
will discuss the preliminary definition and corresponding coefficient
parameter of the models AR, ARMA, and ARIMA.

1.1.1 Autoregressive
An autoregressive,AR(p), model of order p for the current value

of time t
is expressed as

Xt = ϕ1Xt−1 +ϕ2Xt−2 +ϕ3Xt−3 +⋯⋯⋯+ϕpXt−p +wt. (1)

Xt is stationary, and parameters ϕ1,ϕ2,ϕ3,………ϕp are
constants with ϕp ≠ 0 and wt ∼WN(0,σ2w). A backshift operator
AR(p) can be written as

ϕ (B)Xt = ϵt, (2)

where ϕ(B) = (1−ϕ1B−ϕ2B
2 −⋯⋯−ϕpB

p). The ACF of AR (1) is

ρ (h) =
γ (h)
γ (0)
= ϕh, h ≥ 0, (3)

where autocovariance function ρ(h) satisfies ρ(h) = ϕψ(h − 1), h = 1,
2,⋯.

1.1.2 Autoregressive moving average
A time series as xt ; t = 0,±1,±2,… is the ARMA (p,q) if it is

stationary and

Xt = ϕ1Xt−1 +ϕ2Xt−2 +ϕ3Xt−3 +⋯⋯⋯+ϕpXt−p + θ1wt−1

+ θ2wt−2 + θ3wt−3 +⋯⋯⋯+ θqwt−q, (4)
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FIGURE 1
Time series of global temperature anomaly data.

FIGURE 2
ACF and PACF for global temperature data. (A) Autocorrelation functions for global temperature data. (B) Partial autocorrelation function.

where ϕp,θq ≠ 0 and σ2w ≥ 0. The parameters p and q are called the
autoregressive and the moving average orders, respectively.

1.1.3 Autoregressive integrated moving average
A process Xt is said to be an ARIMA (p,d,q) if

∇dXt = (1−B)dXt, (5)

is ARMA (p andq)for the seasonality parameter d and backshift
parameter B. In general, we will write the model as

ϕ (B) (1−B)dXt = θ (B)wt. (6)

The coefficients of AR, ARMA, and ARIMA models play a crucial
role in determining the model’s ability to capture the behavior of a

time series, and their choice can have a significant impact on the
model’s predictions. In our model, the coefficient parameter has
been introduced as the variance of temperature which affects the
comparability of the model with other attributes.

2 Uncertainty ARMA model

Let Y(t) be the true (latent) global anomaly of temperature
for a year t; we view the calculated (the observed) annual mean
temperature anomaly as

X (t) = Y (t) +w (t) . (7)
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FIGURE 3
First difference time series of global temperature anomaly data.

The random variable w(t) ∼ N (0,σ2). The uncertainty in our
calculation of the global mean anomaly is then defined as

W (t) = σ2. (8)

We can divide the total uncertainty as

W (t) = σ2 = σ2L + σ
2
S. (9)

Here, uncertainty is divided into two components: the uncertainty in
the globalmean anomaly due to uncertainties in the land calculation
σ2L and uncertainty in the global mean anomaly due to uncertainties
in the sea surface calculation σ2S. This means there must exist a
random variable for an anomaly due to uncertainties in the land
wL(t) ∼ N(0,σ2L) and anomaly due to uncertainties in the sea surface
wS(t) ∼ N(0,σ2S) for which we can write (Eq. 1) as

X (t) = Y (t) +wL (t) +wS (t) . (10)

Reduced coverage global annual means, Xi(t), are calculated for
each of the 14 decadal time periods using a modified GISTEMP
procedure, where i represents the decade used and t represents the
time in a year. The difference series for decade i is

Di (t) = Y (t) −Xi = wiL (t) +wiS (t) . (11)

We introduce a potential systematic additive bias αi and
multiplicative bias βi. Then, (Eq. 1) can be formulated as

Xi (t) = αi + βiY (t) +wiL (t) +wiS (t) . (12)

Then, dividing the land temperature and sea temperature anomalies
with the true anomaly for t− 1 equals an observedmean temperature
anomaly X(t). Then, we can write

Xi (t) = αi + βiX (t− 1) +wiL (t) +wiS (t− 1) . (13)

2.1 Remark

Equation 13 represents the ARMA (p andq) model for
p = 1 andq = 1, where Xi(t) = αi + βiX (t− 1) is autoregressive of
order one, i.e., AR (1), and Xi(t) = wiL(t) +wiS (t− 1) is a moving
average of order one, i.e., MA (1). The coefficients wiL and wiS of
MA (1) represent the land surface and sea surface temperature
uncertainties. Using data obtained from the NASA Goddard

Institute for Space Studies Surface Temperature Analysis shows
that this coefficient affects the ARMA model (13) to fit better than
AR (1) and ARIMA. In addition to coefficients, we also found that
other time-series properties, such as ACF, PACF, normal Q-Q plot,
and the density of residuals for (13) fit better.

3 Statistical characteristics of
ARMA(1,1)

In this section, we will explain the time-series property that
justifies fitting the better model. In our case, the properties, such
as the ACF, PACF, normal Q-Q plot, and the density of residuals,
affect the ARMA model. Another property is the variance for the
variable w(t), affecting the models that are discussed in the data
analysis section.

3.1 Autocorrelation function

If we write ARMA (1,1) in its casual form, it represents Xt =
∑∞j=1ψjwt−j,

Xt = wiL (t) + (1+ βi)wiS (t− 1) , for 0 < βi < 1,

then,

Xt = wiL (t) + (1+ βi)wiS (t− 1) .

The corresponding ACF from Shumway and Stoffer (2006) can be
given as

ρ (h) =
(1+ βi)

2

2(1− βi)
βh−1i =

1
2
(1+ βi)β

h−1
i . (14)

In Eq. 14, h represents the time difference and βi are parameter
coefficients. Depending on the parameter value, we have to justify
the model’s fitness. The ACF defines how data points in a time
difference, i.e., lag, are related, on an average, to the preceding data
points.

3.2 Partial autocorrelation function

However, AR (1) and ARMA (1,1) processes are fully correlated,
and their ACF tails off and never becomes zero, though it may be
very close to zero. In such cases, sometimes it may not be possible to
identify the process on the ACF basis only. So, we will consider the
PACF,which alongwith theACFwill help to identify themodels.The
PACF of a zero-mean stationary time-series {Xt}t=0,1,2,⋯ is defined as

ϕ11 = corr(X1,X0) = ρ (1) ,

ϕττ = corr(Xτ − f(τ−1),X0 − f(τ−1)) , τ ≥ 2,
(15)

where

fτ−1 = f (Xτ,…,X1) ,

minimizes the mean square linear prediction error

E(Xτ − f(τ−1))
2.
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FIGURE 4
ACF and PACF of first differences. (A) ACF of the first difference. (B) PACF of the first difference.

FIGURE 5
Second difference time series of global temperature data.

The subscript at the f function denotes the number of variables the
function depends on. ϕττ is the correlation between variables Xt and
Xt−τ with the linear effect. Basically, the parameter value ϕ estimates
the fitness of the ARMAmodel.

3.3 Normal quantile–quantile plot

A normal quantile–quantile (Q-Q) plot is a graphical method
for assessing whether a set of sample data is approximately normally
distributed. It compares the quantiles of the sample data to the
quantiles of theoretically normal distribution.

In the context of an ARMA model, a normal Q-Q plot can
be used to assess the normality of the residuals, which are the
differences between the observed values and the values predicted
by the ARMA model. If the residuals are normally distributed, it
indicates that the ARMA model has captured the majority of the
systematic patterns in the data, and the remaining differences are
randomnoise that can bewell-approximated by normal distribution.

In other words, if the residuals of an ARMA model are well-
approximated by a normal distribution, it suggests that the model is
a good fit for the data. However, if the residuals deviate significantly

from normality, it may indicate that the ARMAmodel is not a good
fit and that other modeling techniques or modifications made to the
ARMAmodel should be considered.

3.4 Forecasting

Here, we present the forecasting method for ARMA though
forecasting cannot be used as the property, but we can obtain
parameter estimation. The goal of forecasting is to predict future
values of a time series based on the collected present data. For the
data x1,x2…xn, we write the forecasting model as

Xn+1 = βiXn +wiL (n) +wiS (n) ,

where βi is the AR parameter coefficient. A one-step-ahead
truncated forecast is

X̃n
n+1 = βiXn + 0+ w̃n

n.

Using the truncated forecast, w̃n
0 = 0, w̃

n
1 = X1. Then,

w̃n
t = Xt − βiXt−1 − w̃

n
t−1, t = 2,…,n.

Approximate prediction (Shumway and Stoffer, 2006) is expressed as

pnn+m = γ
2
w[1+ (1+ β

2
i )

m−1

∑
j=1

β2i (j− 1)]

pnn+m = γ
2
w
[[

[

1+ (1+ βi)
2
(1− β2(m−1)i )

(1− βi)
2
]]

]

.

1− α prediction intervals are Xn
n+m ±Cα/2√p

n
n+m, where Cα/2 is the

degree of confidence.
When computing prediction intervals from the data, we

substitute estimates for parameters, giving approximate prediction
intervals. The prediction interval gives the estimates of coefficient
parameter βi. In general, we require better estimates from the
truncated forecast, and it is possible to check the model’s stability
and forecasting ability by withholding data.
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FIGURE 6
ACF and PACF of second differences. (A) ACF of the second difference. (B) PACF of the second difference.

FIGURE 7
Diagnostics for the AR (1) model.

4 Numerical data analysis and
discussion

We will consider the annual global temperature anomaly
data from NASA Goddard Institute for Space Studies Surface
Temperature (GISTEMP) temperature data since 1880.

Different aspects of GISTEMP data were discussed by
Lenssen et al. (2019). They discussed the annual mean confidence
intervals of the data and also provided confidence intervals for

ocean temperature anomalies. Furthermore, they suggested that
AR (1) can be a reasonable model for comparing these data for
short time periods. In this article, we attempt to conduct a detailed
analysis for the AR (1) model and extend this discussion further
to complex models, such as ARMA (1,1) and ARIMA (1,d,1), for
d = 1,2.

Figure 1 shows the time-series plot for the annual average global
temperature anomaly. Since we are considering the annual average
temperature anomalies, this graph does not have seasonality. Here,
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FIGURE 8
Density of residuals for AR (1).

we can observe that earlier, the global temperature anomaly had a
trend which was oscillating about some average value until 1960.
However, since 1960, there has been a clear uptrend in the global
temperature anomaly graph. It has increased in significant amounts,
and thus, predicting future data for global temperature anomaly is
very important.

Figure 2A shows the autocorrelation function for the global
temperature anomaly time series. The autocorrelation values for the
first 20 lags can be seen.Here, the shaded region shows the threshold.
In this graph, we can see that the autocorrelation declines slowly.
Therefore, there is a possibility that the time series is not stationary,
and the spikes of the ACF plot are over the threshold region.

Figure 2B shows the PACF for the time series for the global
temperature anomaly. Here, the first two lags are outside the
threshold, and then the PACF shows a sudden drop such that all
other lags have PACFs inside the threshold.

Using the ADF test (Mushtaq, 2011), we will check if the
time series is stationary or not. For this, the Python package
statsmodels.tsa.stattools was used. The result for the ADF test was
generated as follows:

When we perform an ADF test on the data, the p-value obtained
is greater than the significance level of 0.05, and the ADF statistic is
higher than any of the critical values; that means there is no reason
to reject the null hypothesis.Therefore, the time series is in fact non-
stationary.

Thus, we attempt to find a stationary time series. For that, we
take the first difference of the given data. Figure 3 shows the first
difference of the given time series. It is certainly not up-trending. It
shows the mean reversion behavior throughout the data.

Additionally, we plot the autocorrelation for the first difference
time series (Figure 4A). Here, after the first lag, we observed a
sudden sharp decrease in the ACF, although there is very less
difference between the second and the third lag. Almost all lags after
that have ACFs within the threshold value. However, the second and
third lags have values outside the threshold.Then, we plot the partial
autocorrelation for the first difference time series (Figure 4B). We
notice that after the first lag, the PACF shows a sudden decrease, but
it decays slowly after that.Thefirst four lags are outside the threshold.
This shows that it is not a good model for the given time series.

Figure 5 shows the second difference for global temperature
data. This also shows the mean reversion. Furthermore, we plot the
ACF and PACF for the second difference. Figure 6A shows the ACF
for the second difference time series. Here, the first two lags are
much outside the threshold bymagnitudes. Lags after that are inside
the threshold. From the behavior of the first two lags, we can say
that there is a possibility that the time series is over-differenced.
Figure 6B shows the PACF graph for the second difference time
series.Thefirst four lags here are outside the threshold, and they have
very highmagnitudes compared to the threshold.This confirms that
the time series is overly differenced here, and thus, this is not the best
fitted model for the given global data temperature.

4.1 Fitting an AR (1) model

We attempt to fit the AR (1) model in the given data using the
auto_arima function in Python.The following is the summary of the
results:

For the AR (1) model, we obtain the coefficients ϕ = 0.9786
and σ = 0.0122. This model fits with the skew −0.17 and kurtosis
2.42.

Figure 7 shows the diagnostics for the AR (1) model. The first
figure shows us standardized residuals. The second figure shows
the histogram for the data and standard normal (0,1) curve (in
green) and the kernel density estimation (KDE) graph (in orange),
which smooths the given data. Third is the normal Q-Q plot,
where we can clearly observe that most of the sample quantiles
and theoretical quantiles fit the normal distribution near the mean.
However, outside the two standard deviations, it deviates from
the reference line. Also, as we move away from the first to the
second standard deviation, the data points start moving away from
the reference line. Finally, we have a correlogram. Here, we can
observe that this ACF graph is very similar to the ACF plot of
the first difference of the original time series, so this is not the
best fitting model, and we need to find a better model for these
data.

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2023.1098345
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Hasan et al. 10.3389/fspas.2023.1098345

FIGURE 9
Diagnostics for the ARMA (1,1) model.

FIGURE 10
Density of residuals for ARMA (1,1).

Figure 8 shows the density of residuals. Most of the residuals
are near 0. Also, from the residual analysis, we can observe that
the maximum value we have for residuals for the AR (1) model is
0.266279.

4.2 Fitting ARMA (1,1) model

To obtain a better fit, we attempt to fit the ARMA (1,1) model
in the given data using the auto_arima function in Python. The
following is the summary of the results:

For the ARMA (1,1) model, we obtain the coefficients
ϕ = 0.9938, θ = −0.4365, and σ = 0.0111. This model fits with the
skew −0.13 and kurtosis 2.17.

Figure 9 shows the diagnostics for the ARMA (1,1) model.
The first figure shows the standardized residuals. Comparing the
histogram of ARMA (1,1) to that of AR (1), we can see that the
KDE graph fits better and is closer to the standard normal graph.
In the third graph, we can see that most of the sample quantiles
and theoretical quantiles fit the normal distribution near the mean.
Here, between the first and second standard deviation, very few
points are away from the reference line. This plot clearly shows
that as compared to the AR (1) graph, ARMA (1,1) has a better fit
to the given data. The correlogram here is different from the ACF
plot of the original time series, and the second lag is inside the
threshold.

Figure 10 shows the density of residuals. Most of the residuals
are near 0. From the analysis of residuals of ARMA (1,1), we can
see that the maximum value we have for residuals is 0.232144,
which is less than the maximum residual value for the AR
(1) model. Thus, ARMA (1,1) is a much better model than
AR (1).
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FIGURE 11
Diagnostics for the ARMA (1,1,1) model.

FIGURE 12
Density of residuals for ARIMA (1,1,1).

4.3 Fitting ARIMA (1,1,1) and ARIMA (1,2,0)
models

In general situations, we are aware that ARIMA (p,d,andq)
models fit better than ARMA models. So, we attempt to fit ARIMA
models with the difference 1 and 2 in the GISTEMP data. For d = 1,
a simulation shows that ARIMA (1,1,1) is the best model, and for
d = 2, we find ARIMA (1,2,0) as the best fitting model.

Similar to previous fittings, we attempt to fit the
ARIMA (1,1,1) model using the auto_arima function in
Python. The following is the summary of the results:

For the ARIMA (1,1,1) model, the coefficients are ϕ = 0.3652,
θ = −0.7617, and σ = 0.0104.Thismodel fits with the skew −0.13 and
kurtosis 2.20.

Figure 11 shows the diagnostics for the ARIMA (1,1,1) model.
The first figure shows the standardized residuals. Comparing the
histogram of ARMA (1,1) to ARIMA (1,1,1), we can see that
the KDE graph fits better in ARMA (1,1) and is closer to the
standard normal graph.The normal Q-Q graph and the correlogram
for ARIMA (1,1,1) do not look much different from that of
ARMA (1,1).

Figure 12 shows the density of residuals. Most of the residuals
are near 0.1. From the analysis of residuals of ARIMA (1,1,1), we
can see that the maximum value we have for residuals is 0.240199,
which is higher than the maximum residual value for the ARMA
(1,1) model. Thus, ARMA (1,1) is a better model than ARIMA
(1,1,1).

Furthermore, we attempt to fit an ARIMAmodel with difference
d = 2.The auto_arima function in Python shows that ARIMA (1,2,0)
is the best fitting model for the given data, p ≤ 1 and q ≤ 1. When we
fit ARIMA (1,2,0), we obtain the following results:
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FIGURE 13
Diagnostics for the ARMA (1,2,0) model.

For the ARIMA (1,2,0) model, the coefficients are ϕ = −0.4902,
θ = 0, and σ = 0.0227. This model fits with the skew −0.23 and
kurtosis 2.64.

Figure 13 shows the diagnostics for the ARIMA (1,2,0) model.
The first figure shows the standardized residuals. Comparing the
histogram of ARMA (1,1) and ARIMA (1,2,0), we can see that the
KDE graph here does not have a better fit. The normal Q-Q graph
for ARIMA (1,2,0) does not lookmuch different from that of ARMA
(1,1). However, in a correlogram, we can see different behaviors of
the ACF. Here, the ACF drops suddenly after the first lag, and the
second and third lags are outside the threshold. After that, most of
the lags are inside, but they are clearly not converging towards zero.
This clearly shows that this model is not a good fit.

Furthermore, the density of residuals shown in Figure 14
confirms the result. Most of the residuals for ARIMA (1,2,0) are near
0. From the analysis of residuals, we can see that themaximum value
we have for residuals is 0.398333, which is higher compared to the
maximum residual value for the ARMA (1,1) model.

Hence, from the analysis of best fitting models for differences
d = 1 and d = 2, i.e., ARIMA (1,1,1) and ARIMA (1,2,0) models,

FIGURE 14
Density of residuals for ARIMA (1,2,0).

we can see that the ARMA (1,1) model is a better fit than those
models.

5 Conclusion

Our new development of ARMA (1,1) based on uncertainty
in the global mean anomaly due to uncertainties in the land and
sea surface was analyzed and compared with AR (1), ARIMA
(1,1,1), and ARIMA (1,2,0). In general theory, ARIMA (p,d,q)
models are considered to have a better fit than that of ARMA
(p,q) models. However, for the GISTEMP data from 1880 to the
present, we found different results. Here, the ARMA (1,1) model
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is a better fitting model than the ARIMA (1,1,1) and ARIMA
(1,2,0). Also, from simulations, it was evident that ARIMA (1,2,0)
was a better fitting model than ARIMA (1,2,1), so it concludes the
fact that ARMA (1,1) is a better model for the given data than
ARIMA (1,d,1) for d = 1 and d = 2.

The forecast for ARMA (1,1) is unbiased, and the forecast error
variance increases without bounds as the lead time increases. For
non-stationary series, when we forecast far into the future, we have a
significant amount of uncertainty about the forecast.Moreover, from
the normal Q-Q plot, correlograms, and KDE plot, we can say that
the ARMA (1,1) model is a better fit. Furthermore, residual analysis
confirms the result.

These results are true only for the GISTEMP data, and authors
want to specify that the analysis in this article and resultsmay ormay
not hold true for other data.
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