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Abstract: In this paper we introduce a mechanistic model through which exercise may enhance
episodic memory, specifically via attenuating proactive and retroactive memory interference.
We discuss the various types of memory, different stages of memory function, review the mechanisms
behind forgetting, and the mechanistic role of exercise in facilitating pattern separation (to attenuate
memory interference).

Keywords: cognition; exercise; proactive memory interference; retroactive memory interference

1. Introduction

Given the importance of enhancing and maintaining memory function, the focus of this review
is to discuss the potential role that physical exercise may play in minimizing cognitive memory
interference, which in turn, may help to facilitate memory function. Further, we discuss a hypothetical
model detailing potential mechanisms through which physical exercise may attenuate cognitive
memory interference, which is displayed in Figure 1. This model, which is unpacked throughout this
paper, suggests that acute physical exercise may increase neural activity (via muscle spindle [1–3] and
vagus nerve activation) in several key memory related brain structures (e.g., amygdala, hippocampus,
and medial prefrontal cortex), which, in turn, may help facilitate pattern separation, and ultimately,
attenuate memory interference. Pattern separation refers to the ability to distinguish target information
from other similar information (which often creates competition upon retrieval). For example, if an
individual was instructed to learn a list of words which was comprised of types of fruits and vegetables,
but they were not told this, they may be able to distinguish between the material independently by
cognitively “separating” it in their minds into the subcategories of fruits and vegetables. On the other
hand, and as displayed in Figure 1, chronic physical exercise may increase the functional connectivity
across these key brain structures (via increased integrity of white matter tracts connecting these
structures), as well as increase hippocampal neurogenesis, collectively, which may help attenuate
memory interference via hippocampal pattern separation. Where appropriate, we discuss these
pathways among both animal and human studies. We then conclude this paper with recommendations
for future research on this emerging line of inquiry.
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neurons that are formed within key memory-related structures, such as the hippocampus [12]. 

Figure 1. Mechanisms through which exercise may attenuate memory interference.

2. Types of Memory

There are a multitude of memory types, including non-declarative (e.g., implicit memory,
procedural memory) and declarative memory (see Figure 2) [1]. Implicit memory may occur
subconsciously, not requiring conscious thought after a learning period (e.g., driving, walking,
etc.). Declarative memories are consciously formed, where semantic memory refers to the retrospective
recall of non-contextual information. In contrast, episodic memory involves the retrospective
recall of information that is contextually bound into a temporal-spatial context. That is, episodic
memory involves the integration of what-where-when aspects of a memory and is considered
autobiographical [4]. Research on memory interference, when specifically utilizing word lists, may be
considered episodic memory as it can address the what, where, and when aspect of episodic memories.
See Tulving’s conception of long-term memory for further readings on episodic memory [4–7].
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3. Episodic Memory Stages

Forming an episodic memory involves several stages, including encoding, consolidation,
reconsolidation, storage, and retrieval [9–11]. Encoding occurs when a stimulus (i.e., new information)
creates a memory trace, or engram, within the brain [12]. These memory traces are collections of
neurons that are formed within key memory-related structures, such as the hippocampus [12]. During
consolidation, the memory trace is stabilized, assimilating into previous long-term knowledge, making
it more likely to survive [12]. The final stage, retrieval, occurs when stored memories are recalled.
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4. The Role of Exercise

Physical exercise, including both acute and chronic, has been demonstrated repeatedly to improve
memory function [13,14]. In the case of memory improvement, we are specifically referring to exercise
(planned and structured) compared to unstructured, physical activity. The narrative that follows
will briefly highlight the mechanisms through which acute and chronic exercise influence memory
function, particularly episodic memory function. Specifically, aerobic exercise has demonstrated to be
an effective method of inducing neuroplasticity, although the mechanisms are not fully understood [15].
Evidence can be detected at the molecular, cellular, and systems levels. At the molecular level, aerobic
exercise has been shown to alter the concentration of peripheral brain-derived neurotrophic factor
(BDNF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF), which are
responsible for promoting neuroplasticity, brain development, and providing a vascular environment
suitable for neurogenesis [15]. These alterations cause cellular changes in the brain, which are discussed
further in the following sections [15].

5. Chronic Exercise

Exercise has been shown to produce structural and functional changes within the brain [16].
In human studies, structural changes are measured as increased hippocampal and prefrontal cortex
(PFC) volume and white matter integrity, potentially mediated via neurogenesis, brain-derived
neurotrophic factor (BDNF) [16,17] and other related mechanisms [18]. These neuronal changes lead
to neuroplasticity, increased efficiency of BDNF uptake, and upregulated transcription and signaling
cascades [15]. Increases in synaptic size and density are demonstrated in human and animal studies
along with other structural changes that are not explained by novel or enriched environments [19,20].
As early as 1999, researchers demonstrated that wheel running in mice increased the number of
new neurons (i.e., neurogenesis) within the hippocampus [19]. The connection between exercise and
brain volume has also been identified in children using magnetic resonance imaging (MRIs), where
VO2 max (maximal oxygen uptake) is positively associated with hippocampal volume [19]. Chronic
aerobic exercise also induces increases in circulating BDNF (brain-derived neurotrophic factor), IGF-1
(insulin-like growth factor 1), and VEGF (vascular endothelial growth factor), all of which promote
gliogenesis, neurogenesis, synaptogenesis, and angiogenesis [15]. These effects may mediate increases
in grey and white matter volume, neural activity, and cerebral blood flow [15]. This may, in turn,
increase synaptic plasticity, ultimately affecting episodic memory [15,21,22].

6. Acute Exercise

In experiments examining the role of acute exercise on memory of humans, walking, jogging, and
stationary cycling are the most evaluated modes of exercise [13]. A recent meta-analysis demonstrated
that walking may be the most effective mode to improve episodic short-term memory (e.g., immediate
recall), while cycling may be most effective for improving long-term memory (i.e., recall longer than
2 minutes after exposure) [13]. Acute (i.e., single bouts) aerobic exercise has been found to positively
affect long-term memory in the majority of experiments examined [13]. There is a positive trend
towards acute (48% of studies) aerobic exercise improving short-term memory, however, these findings
are not consistent across the literature [13]. For example, Hotting et al. found that an acute bout of
exercise after learning did not improve the number of words recalled, but the high intensity exercise
group forgot less vocabulary at a 24-hour follow up [23]. In a 2016 study, Etnier et al. found that
different acute exercise intensities did not influence free recall, but did have an effect of long-term
memory recognition [24]. Thomas et al., on the other hand, found that high intensity acute (45 minutes)
exercise enhances long-term retention of information [25].

This inconsistency may be due to a variety of potential moderators, including age, sex, exercise
mode, exercise duration, intensity of exercise, and fitness level of the participants [13,26,27]. Acute
aerobic exercise has also been shown to increase levels of peripheral BDNF and VEGF, increase
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neurotransmitter concentration, and increase glucose and oxygen metabolism [15]. Acute exercise
also increases cerebral blood flow, neural activity, and receptor activity, which may lead to increased
neuroplasticity [15], and ultimately, enhanced memory function. Recent work demonstrates that acute
exercise may induce neuroplasticity via I-BAR gene expression [28].

As we have reviewed elsewhere [29], acute exercise is likely to induce these neural responses by
increasing neural excitability in various memory-related brain structures, such as the hippocampus
and prefrontal cortex. Such effects likely occur from acute exercise-induced activation of muscle
spindles [1–3] and afferent fibers of the vagus nerve, which will be detailed further in Section 11 below.

7. Memory Interference

Although studies that investigate the effects of exercise on memory are accumulating, considerably
less research has focused on the effects of exercise on forgetting. Only a small amount of information we
encode is consolidated and added to our long-term memory. Most information is lost—forgotten—either
temporarily or permanently. There are a multitude of mechanisms through which forgetting occurs,
including via passive and active mechanisms, which affect the integrity of memory engrams [30].
Passive forgetting occurs when memory traces, or engrams, decay naturally [30]. When parts of an
engram are unable to respond to activation, it can become difficult to retrieve the memory [30]. The
form of forgetting discussed herein, which is of central focus of this paper, is memory interference,
which occurs when competing information occurs before, after, or during the encoding of target
information [30]. Interference is more likely to occur if the competing information is similar, such as a
list of semantically related words (e.g., doze, bed, slumber, dreams, and nap) [31,32].

There are two main types of memory interference—proactive and retroactive. Proactive interference
(PI) occurs when previously acquired knowledge interrupts the acquisition of new information.
In essence, you have “old” information inhibiting the recall of “new” information (old → new).
For example, calling a new student in your class by a previous student’s name. See Figure 3a for
another example. This type of interference causes difficulty in learning and retaining new knowledge.

Medicina 2019, 55, x FOR PEER REVIEW 4 of 15 

 

This inconsistency may be due to a variety of potential moderators, including age, sex, exercise 

mode, exercise duration, intensity of exercise, and fitness level of the participants [13,26,27]. Acute 

aerobic exercise has also been shown to increase levels of peripheral BDNF and VEGF, increase 

neurotransmitter concentration, and increase glucose and oxygen metabolism [15]. Acute exercise 

also increases cerebral blood flow, neural activity, and receptor activity, which may lead to increased 

neuroplasticity [15], and ultimately, enhanced memory function. Recent work demonstrates that 

acute exercise may induce neuroplasticity via I-BAR gene expression [28]. 

As we have reviewed elsewhere [29], acute exercise is likely to induce these neural responses by 

increasing neural excitability in various memory-related brain structures, such as the hippocampus 

and prefrontal cortex. Such effects likely occur from acute exercise-induced activation of muscle 

spindles [1–3] and afferent fibers of the vagus nerve, which will be detailed further in section 12 below. 

7. Memory Interference 

Although studies that investigate the effects of exercise on memory are accumulating, 

considerably less research has focused on the effects of exercise on forgetting. Only a small amount 

of information we encode is consolidated and added to our long-term memory. Most information is 

lost—forgotten—either temporarily or permanently. There are a multitude of mechanisms through 

which forgetting occurs, including via passive and active mechanisms, which affect the integrity of 

memory engrams [30]. Passive forgetting occurs when memory traces, or engrams, decay naturally 

[30]. When parts of an engram are unable to respond to activation, it can become difficult to retrieve 

the memory [30]. The form of forgetting discussed herein, which is of central focus of this paper, is 

memory interference, which occurs when competing information occurs before, after, or during the 

encoding of target information [30]. Interference is more likely to occur if the competing information 

is similar, such as a list of semantically related words (e.g., doze, bed, slumber, dreams, and nap) 

[31,32].  

There are two main types of memory interference—proactive and retroactive. Proactive 

interference (PI) occurs when previously acquired knowledge interrupts the acquisition of new 

information. In essence, you have “old” information inhibiting the recall of “new” information (old 

→ new). For example, calling a new student in your class by a previous student’s name. See Figure 

3a for another example. This type of interference causes difficulty in learning and retaining new 

knowledge.  

 

Figure 3. (a) An example of proactive memory interference. Not being able to recall where you parked 

your car today at work since you park in the same parking lot repeatedly. (b) An example of 

Figure 3. (a) An example of proactive memory interference. Not being able to recall where you
parked your car today at work since you park in the same parking lot repeatedly. (b) An example
of retroactive memory interference. Remembering what you ate for lunch today (Wednesday) and
yesterday (Tuesday), but not being able to recall what you ate for lunch on Monday.

Retroactive interference (RI) occurs in the opposite direction, new knowledge interrupts the recall of
previously established knowledge (old← new), which potentially disrupts memory consolidation [30].
Following the previous example, this would be calling a previous student by a new student’s name.
See Figure 3b for another example. Retroactive interference is argued by some to occur more frequently
and be more detrimental to memory when compared to proactive interference [33].
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8. Consequences of Memory Interference

Research on memory interference began as early as 1892, when John A. Bergstrom conducted
an experiment where participants sorted two decks of cards into two separate piles [34]. When the
location for the second pile was subsequently changed, the sorting speed became significantly slower,
demonstrating an interference effect (proactive) of the first set of rules on the new set of rules [34].
As such, interference is likely to occur when learned stimuli is associated with a new response [34,35].

There are multiple theories of memory interference. Some theorists argue that retroactive
interference (new information impeding recall of old information) may be misidentified when a
person has, in reality, simply forgotten the past material. Additionally, the temporal-distinctiveness
theory focuses on how recollection of information depends on its isolation in psychological time [36].
This theory claims that discriminability and retrievability of to-be-remembered items is a direct function
of their isolation in time. The closer the to-be-remembered items and competing items are in time—the
more likely interference is to occur [36]. Another theory, the dual mechanisms of control theory, details
that there are reactive and proactive control mode processes that respond to memory interference [37].
The reactive control mode is stimulated after detection of interference, whereas proactive control
modes occur when information is maintained in a pre-emptive manner over a period of time, even
before interference is introduced [37]. Both of these theories involve the temporal periods of target
information and interfering information, as they play a significant role in memory function [36,37].

9. The Effect of Exercise on Cognitive Memory Interference

The literature on exercise and memory interference is scarce. In our first experiment on this topic,
we conducted a between-subject study that addressed the effects of exercise on memory interference [38].
Participants were randomly assigned to one of four temporal periods: control, exercise before encoding,
exercise during encoding, or exercise after encoding. There were two separate exercise protocols
imposed, in which 88 participants completed a 15-minute bout of moderate intensity treadmill walking
and another 88 participants completed a 15-minute bout of high-intensity treadmill exercise. The Rey
Auditory Verbal Learning Task (RAVLT) was utilized as an assessment of proactive memory interference,
which involved learning two separate lists of words. During a RAVLT protocol, participants learn a list
(List 1) of 15 unrelated words over five different trials and are asked to repeat them. After the first five
trials of list 1, another list (List 2) of 15 unrelated words are given and the participant must again repeat
them. Performance on the second list was lower than performance on the first list, demonstrating
evidence of proactive memory interference. The results demonstrated that high intensity exercise
prior to memory encoding produced a non-significant tendency to attenuate a memory interference
effect, as shown by a greater performance on the second list following exercise when compared to a
non-exercise condition.

Our second experiment also evaluated the temporal effects of exercise on attenuating a proactive
memory interference effect [39]. This was a within-subject, counterbalanced design with four laboratory
visits, including: a control visit, exercising prior to memory encoding, exercising during memory
encoding, and exercising after memory encoding. The exercise comprised of 15-minutes of moderate
intensity treadmill walking. The RAVLT was utilized as the memory interference task. The sample
comprised of 24 young adults and results demonstrated that exercise occurring prior to the memory task
had the strongest impact on improving memory performance of the second list of words, suggesting
an attenuated proactive interference effect.

Retroactive interference may impair long-term memory consolidation, therefore, we designed a
study that focused solely on the ability of acute exercise to reduce this effect [40]. Three experimental
studies were employed in this paper. Experiment 1 was a between-subject randomized control
trial (RCT), which included a 15-minute bout of moderate intensity walking. Experiment 2 was a
between-subject RCT, which included a 15-minute bout of high intensity jogging. Experiment 3 was a
within-subject design that included a 15-minute bout of moderate intensity walking. For the memory
task, the RAVLT was employed post exercise for the 112 participants. Based on our aggregate analyses,
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the pooled effect size (standardized mean difference was −0.35, 95% CI: −0.64 to −0.06) across the
experiments was statistically significant (p = 0.01), providing evidence for acute exercise to attenuate a
retroactive interference effect. These findings align with our earlier experiment [41].

We conducted a randomized controlled experiment (N = 40) to evaluate the role of sex as a
potential moderator [42]. Half of the sample were males and half were females, all of which completed
two counterbalanced visits (exercise and no exercise). The exercise visit included a 15-minute bout
of moderate intensity treadmill exercise, while the control visit included a 15-minute seated task.
Participants completed the RAVLT as the memory assessment after the bout of exercise. A repeated
measures ANOVA indicated that, when examining List B outcomes, there was a main effect for
condition (p = 0.02), but there was no sex by condition interaction (p = 0.23). When examining Trial
1—List B, there was, again, no sex by condition interaction (p = 0.14), but there was a main effect for
condition (p = 0.02). These findings suggest that acute moderate intensity exercise was beneficial for
reducing memory interference, but the effect was not influenced by biological sex.

To summarize the results of our previous studies, exercising prior to a memory interference
task tends to improve memory outcomes by lessening the memory interference effect. There is some
evidence that exercise may attenuate both a proactive and retroactive interference effect, but further
research is still needed, especially surrounding potential moderators of the relationship, as there are
individual differences that may impact the relationship between exercise and memory interference,
such as age or depression symptomology [43]. Further work should also consider whether the memory
interference protocol (e.g., RAVLT, AB/AC) influences the effects of exercise on attenuating memory
interference, as they differ in their effectiveness, structure, and ability to measure PI and/or RI.

Animal studies demonstrate some evidence of exercise improving memory function and
attenuating memory interference. In a study by Bolz (2015), mice were divided into the following
groups for several weeks: sedentary, voluntary running, and voluntary running within an enriched
environment. The mice were subsequently exposed to a Novel Object Recognition (NOR) task to
examine if there was a measurable difference in pattern separation (the importance of which will be
addressed later) [44]. Mice were exposed to two identical objects (cones or pyramids) within their
arena for a six-minute sample phase. Subsequently, one of the objects was replaced with a new,
different object and memory was assessed by comparing time spent exploring the novel object with
time spent examining the familiar object. This testing phase lasted five minutes, with delayed testing
phases occurring after 1.5 hours and 24 hours. The results from this study demonstrated three main
findings. First, voluntary running increased the number of, and dendritic length of, newly generated
young neurons, with running mice demonstrating a four-fold increase in the number of young granule
cell dendrites [44]. Second, running improved pattern separation during novel object recognition,
as observed by time spent exploring novel versus familiar objects. The final result from the study
demonstrated that exercise inhibited temporal decay of pattern separation after learning [44]. The
object recognition memory for mice in the control condition decayed within 24 hours, whereas the
voluntary running mice, in both conditions, maintained their memory after a 24-hour delay period [44].
A potential mechanism of this significant difference is the exercise-induced increase in new synapses
and dendrites [44]. Overall, running demonstrated a meaningful improvement of hippocampal
(functional connectivity) pattern separation in regard to object recognition, and thus, attenuated a
memory interference effect [45]. Notably, however, these findings may need to be interpreted cautiously
as it was unclear how distinct the new and old objects were. The perirhinal cortex also plays a significant
role in object recognition tasks, as it assists with recognition memory [46,47]. Exercise-induced changes
in BDNF levels within the perirhinal cortex have also been demonstrated, along with increases in
functional connectivity, afferent input to the hippocampus, and short-term synaptic plasticity [48–51].
Therefore, both the perirhinal cortex and the hippocampus may play a role in attenuating a memory
interference effect.
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10. Mechanisms of Attenuating Memory Interference

When competing stimuli are encoded, for example by completing an AB/AC paired-associative
learning task and learning two lists of similar word pairs (e.g., house—table, house—sugar) [14], there
is overlap within the memory trace—see Figure 4. When the engram is eventually integrated into a
larger population of engrams, during consolidation, the original engrams are separated, minimizing
overlap, and in turn, create two distinct engrams [35]. When memories are encoded within the
hippocampus, the medial prefrontal cortex (mPFC) reduces memory interference by distinguishing
patterns and separating them accordingly—see Figure 5 [35]. Within an engram, independent neural
circuits may also facilitate pattern separation from a three-dimensional point of view—see Figure 6.
That is, and as indicated elsewhere [35], certain brain structures, such as the cerebellar cortex, induce
pattern separation by expanding the dimensionality, enabling a downstream decoder neuron to linearly
classify them. This pattern separation is thought to facilitate associative learning by making the neural
representations more distinct, ultimately making the unconditioned stimulus less likely to be activated
mistakenly [52]. Figures 4–6 have been adapted from Cayco-Gajic and Silver [52].
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Pattern separation is vital to reducing memory interference. Mechanistically, there is evidence of
communication between the amygdala and the hippocampus in assisting with pattern separation of
emotional memories [53]. Further, in addition to the amygdala and hippocampus working in concert to
facilitate pattern separation, and in addition to the medial prefrontal cortex, recent work demonstrates
that the lateral prefrontal cortex and hippocampus also work together to assist in pattern separation [54].
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The hippocampus may be a facilitator of pattern separation, particularly temporal pattern separation
(i.e., elapsed period of time), while the amygdala moderates the strength of the specific memory [53,55].
Using intracranial recordings, brain waves, measured utilizing specific oscillatory modes of frequency,
directionality, and phase information, may facilitate pattern separation specifically through theta wave
oscillations [53]. That is, coordinated theta wave oscillations between the amygdala and hippocampus
may help facilitate pattern separation of emotional information. These findings support a bidirectional
relationship between the amygdala and hippocampus in supporting pattern separation [53]. Exercise
has been demonstrated to not only increase theta wave activity [56], but also increase neural activity
within the amygdala and hippocampus [57–59].

Other research has also demonstrated that the dentate gyrus, a region within the hippocampus,
uses pattern separation to process spatial and episodic memories, as animals with a damaged dentate
gyrus have a diminished ability to distinguish between two similar objects [60,61]. The dentate
gyrus contains over four times more neurons than upstream (entorhinal cortex) or downstream (CA3)
pathways [62]. Input from relatively fewer cells is processed by a much larger neural network in
the dentate gyrus before a condensed output is generated. As such, the dentate gyrus functions as
a pattern separator by partially de-correlating inputs [63,64]. Although most of this research has
been conducted on animals, there is also evidence of increased dentate gyrus activity during pattern
separation activities in humans [60]. Exercise may also help facilitate pattern separation through
increased neural activity in the dentate gyrus [45]. Adult neurogenesis, which occurs in this region of
interest, is associated with an increased ability to distinguish patterns, as when neurogenesis is ablated
in mice, performance severely decreases in pattern separation tasks [60]. Adult neurogenesis is also
increased by exercise, providing another means through which exercise may attenuate a cognitive
memory interference effect [60,65]. In addition to exercise-induced neural changes in the dentate gyrus,
and exercise-induced neurogenesis in the hippocampus, exercise may also facilitate pattern separation
by altering limbic tract integrity [66,67]. That is, exercise may facilitate white matter integrity, which has
been shown to play a critical role in pattern separation, supporting the notion that pattern separation
relies on broad neural networks that connect to the hippocampus [68]. One such network involves
the mPFC. Other work, such as that by Frankland, Kohler, and Josselyn (2013), examined a different
perspective of how neurogenesis may affect memory interference. This case suggests that ongoing
neurogenesis produces retroactive interference regardless of content [69]. These authors predict that, in
animal studies, increasing hippocampal neurogenesis should weaken existing hippocampal memories,
whereas decreasing hippocampal neurogenesis should have the opposite effect and protect existing
memories within the hippocampus [69].

The mPFC also influences memory interference [31,35]. Patients with prefrontal lobe damage
perform as well as their healthy counterparts on basic memory tasks, yet exhibit poor performance
on paired associate learning tasks and other memory interference tasks (e.g., RAVLT), suggesting
that the mPFC is necessary for memory interference [31,35]. In a rat model, Guise and Shapiro (2017)
demonstrated that the completion of a plus maze task requires both the hippocampus and mPFC [35].
When the mPFC was inactivated, rats were still able to learn spatial cues and retrieve memories,
but they were incapable of task switching—learning new responses to previously associated and
learned cues [35]. In other words, an inactive mPFC impaired the rats’ ability to change spatial rules
(e.g., turn left at the fork instead of right), suggesting that the mPFC sends task-specific rules to the
hippocampus—distinguishing between competing memories and retrieving the relevant one [35].

Figure 7 schematically illustrates the integral role of the mPFC in attenuating memory interference.
Upon encoding of similar material (e.g., AB/AC paired associate learning task), the original engram has
initial overlap. The mPFC induces pattern separation within the hippocampus, creating a distinguishing
pattern between List 1 and List 2, similar to Figure 4; Figure 5. During retrieval of a target list, the
mPFC also differentially activates the relevant list, shown in the figure by a bolded line versus a dotted
line. The final hypothesized mechanism is through neurogenesis, which we discussed previously,
where the creation of new neurons may separate established engrams, removing the initial overlap.
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Figure 7. Memory interference attenuation. Memory interference attenuation via mechanisms related
to pattern separation, differential activation, and neurogenesis. The learning of List 1 and List 2 creates
a shared memory trace (engram). The mPFC induces pattern separation during encoding within the
hippocampus, creating distinct patterns for each list (dotted versus solid line). During retrieval of
List 1, the mPFC differentially activates the corresponding memory trace (represented by the bold
line). Lastly, exercise-induced neurogenesis may also induce pattern separation by the creation of new
neurons between the existing traces (represented by the new dashed lines).

Additionally, the ventral lateral prefrontal cortex (VLPFC) and dorsal lateral prefrontal cortex
(DLPFC) are also found to be involved in memory interference, especially proactive interference in
working memory [70]. Dulas et al. [70] investigated age-related changes in overcoming proactive
interference in associative memory, which found that under conditions of high interference, older adults
showed reduced associative memory accuracy effects in the DLPFC and anterior PFC. Both lesion [71]
and transcranial magnetic stimulation studies (TMS) [72] observed that disrupting the left VLPFC
results in both increased errors and increased response time in proactive interference tasks. Some
fMRI studies suggest that older adults show reduced sensitivity to proactive interference in working
memory [73]. Therefore, one study examined older adults’ proactive interference, which showed that
the activity of left mid-VLPFC increased with increasing interference level in both correct associative
memory responses and incorrect associative memory responses during proactive interference [70].
Taken together, although it remains largely unknown, mPFC, VLPFC and DLPFC may play different
roles in memory interference.

11. Hypothesized Mechanisms through Which Aerobic Exercise May Attenuate
Memory Interference

There are multiple hypothesized pathways through which acute (single bout) exercise may
activate these key brain regions involved in attenuating memory interference, two of which we detail
in the following section. The first pathway involves the activation of the vagus nerve (see Figure 8,
pathway 1). The vagus nerve (afferent fibers) may become stimulated by activation of various tissues
during exercise (e.g., heart, lungs) or exercise-induced increases in catecholamines [29]. Afferent
sensory fibers of the vagus nerve send information from the peripheral tissues to the nucleus of the
tractus solitarius (NTS), which again projects directly to the hippocampus and PFC [29]. Through the
muscle spindle pathway [1–3] (see Figure 8, pathway 2), skeletal muscles are activated during exercise,
causing muscle spindles to become activated, which, in turn, generate action potentials [29]. These
action potentials are transmitted by afferent peripheral nerves and are sent to the spinal cord and brain
stem [29]. Within the brain stem, the NTS has a direct projection to the prefrontal cortex and locus
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coeruleus (LC) [12,29]. The PFC, again, plays a major role in pattern separation [29], while the LC has
direct projections to hippocampal structures, which have also been established to influence pattern
separation [53]. These described routes detail the anatomical pathway through which exercise may,
although they need to be more thoroughly investigated, increase brain activity in key memory-related
brain structures (e.g., hippocampus and PFC), thereby potentially facilitating the attenuation of memory
interference and improving episodic memory function.
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Figure 8. Hypothesized schematic of two routes through which acute exercise may activate the
medial prefrontal cortex (mPFC), and in turn, attenuate memory interference. Pathway 1 includes
exercise-induced skeletal muscle spindle activation, which activates peripheral nerves, sending action
potentials to the brainstem, ultimately activating the mPFC. Pathway 2 includes exercise-induced
activation of the mPFC via vagus nerve stimulation (e.g., afferent vagus nerve stimulation from lung
expansion and increased myocardial contractility, as well as increased catecholamine production) [14].

In summary, memory is imperative for daily functioning, and methods to reduce memory
impairment should be continuously pursued. Memory interference is a candidate mechanism as to
why information is forgotten. Several brain regions (e.g., hippocampus, mPFC and amygdala) are
involved in pattern separation, which are vital for reducing memory interference. Exercise may help
to facilitate memory function and attenuate memory interference via several potential mechanisms,
including, for example, increased neural activity in key brain regions involved in pattern separation
(e.g., hippocampus, mPFC), increased neurogenesis in these brain regions, and increased functional
connectivity across these brain regions by enhancing white matter integrity in the tracts that connect
these structures.
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12. Future Directions

Due to its scarcity, there is a broad range of future directions for memory interference research to
explore. First and foremost, future work should confirm the potential hypothesized mechanisms and
pathways that are mentioned in this review. More human based, in addition to rodent, experiments
need to be conducted. Investigating the hypothesized pathways of exercise-induced activation of
muscle spindles and the vagus nerve would allow for further expansion on the mechanisms behind
exercise’s ability to improve memory function (other feedback pathways, such as those coming from
skin and joint receptors, should also be considered). As stated previously, Guise and Shapiro detail
the relationship between the hippocampus and mPFC and the importance of mPFC activation for a
task-switching task. Due to its strong implications in memory interference, more work is also required
to examine this relationship of distinguishing between competing information and identifying the
relevant information in human studies. Moreover, identifying respective functions among DLPFC,
VLPFC as well as mPFC could deepen our understanding of the neural correlates underlying memory
interference. Within the current body of human research evaluating the effects of acute exercise on
memory interference, most studies have focused on short-term memory. Thus, future research should
evaluate this topic using long-term memory interference protocols. Additional work should evaluate
whether acute exercise can attenuate memory interference when the acute bout of exercise occurs
during the memory consolidation phase. Further, most of the human studies on this topic have focused
on an acute exercise paradigm, and as such, additional work should evaluate the effects of chronic
exercise on memory interference. Some emerging work suggests that habitual exercise engagement is
associated with better pattern separation on a visual-based mnemonic similarity task [43]. Lastly, given
that there are notable individual differences in memory function, future work should evaluate whether
individual differences in memory moderates the effects of exercise on memory interference. These
directions, although few, will strengthen the field and expound our knowledge of the relationship
between exercise and memory interference.
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NTS nucleus of the tractus solitarius
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RI retroactive interference
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