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ABSTRACT 

The focus of this thesis is to examine the added benefits of actively managing 

a portfolio of securities from an individual investor’s perspective. More specifically, 

managing a market portfolio with the combination of a selected few actively managed 

securities can, in some instances, create excess return. The active portfolios are 

formed based on the firms’ specific industries or region in which they operate. The 

idea is that an investor can forecast that a specific industry will outperform or 

underperform other industries during different periods in the market. Using the 

investor’s forecasts can provide excess returns if the forecast is accurate. On the other 

hand, investors can hold beliefs about local companies and use those beliefs to 

forecast firm performance. The logic here is that an investor in his or her local region 

may have more knowledge about a local company’s performance with the notion that 

company information is more readily available to locals compared to remote 

investors.   

 I collected data on the securities that make up the S&P 500 from CRSP. I then 

made separate portfolios based on the location of the company headquarters and the 

company industry. I followed a formulation model derived by Jack Treynor and 

Fischer Black (1973). The purpose of this model is to show how combining a market 

portfolio with an actively managed portfolio consisting of a few securities can create 

excess return if predicted returns are correct. If the combined portfolio, a portfolio of 

selected mispriced securities and the market index, result in an increased slope of the 
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Capital Allocation Line when compared to the CAL of the market portfolio, then the 

actively managed portfolio has created an alpha return. 

My findings show that the implementation of this model for an individual 

investor is not plausible. I found that creating accurate forecasts of security prices 

must involve a team of skilled security and economic analysts. Using historical price 

returns for my empirical testing provided no definite pattern and therefore I believe 

that empirical testing may have produced superior results if I forecasted security 

prices and returns during some prior period and analyzed my accuracy with the 

portfolio model discussed in this thesis for today’s price returns.  
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I. Introduction 

 

A “portfolio” has many definitions that range from a “flat case for carrying 

documents or drawings” to “securities held by an investor”(Webster Dictionary, 

2015). For the purpose of defining “portfolio” in the context of this thesis, we will 

assume that a portfolio is a collection of securities held by an investor. These 

investments, or financial assets, constitute shares of companies (sometimes called 

equities), fixed income securities, commodities (such as oil, wheat, corn, etc.), 

derivatives (options, futures, forwards, etc.), mutual funds, and other various complex 

financial instruments. Investors and portfolio managers concentrate their efforts on 

achieving the best possible trade-off between risk and return. For a portfolio 

constructed from a fixed set of assets, the risk/return profile varies with the portfolio 

composition. Portfolios that maximize the return, given the risk, or, conversely, 

minimize the risk for the given return, are termed optimal portfolios in that they 

define a line in the risk/return plane called the efficient frontier (Roychoudhury, 

2007).  

Active investors buy and sell investments in order to exploit profitable 

conditions. On the other side, passive investors purchase investments with the 

intention of long-term appreciation with limited turnover. Active and passive 

investments can serve different needs in the same portfolio. Though most evidence 

suggests that passive management outperforms active management, some studies 
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suggest that truly active and skilled managers can and do generate returns above the 

market net of fees (Goldman Sachs, 2010).  

The objective of this paper is to study active management by way of seeking 

alpha, the financial term for excess return. In order to do so, I will gather daily and 

monthly stock return data for 100 companies that are members of the S&P 500. I will 

create portfolios based on the company headquarters geographical location. Regional 

economies throughout the United States respond differently to macroeconomic, and 

even microeconomic, events. Investors can alter their stock portfolio to encompass 

the effects of economic swings in a way that may create excess returns. I will make 

another set of portfolios that are specifically based on a company’s industry. 

Industries either outperform or underperform the market every year. If an investor 

holds a higher percentage of stocks in an industry that outperforms the market then he 

or she may create an excess return for his portfolio. Using empirical testing, I will test 

whether or not a portfolio formed through an active management model will be able 

to generate a pattern of consistent alpha returns. If this study finds that active 

management provides returns over that of the market, I will then study the effect of 

the biased portfolios, in terms of regional or industry construction, have on providing 

excess returns.  

Before studying active management directly, I will explain the basic concepts 

of portfolio management theory, as these concepts are crucial in the understanding of 

advanced portfolio models. This section will introduce the concepts of risk and return, 

the effect of correlation between assets, and the process of introducing risk aversion 

to the creation of an optimal portfolio that lies on the efficient frontier. 
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II.  Portfolio Management Theory 

 

When investing in a company’s stock, investors expect return in the form of 

dividends or capital gains, or both. The stock return at any time, 𝑟𝑟𝑡𝑡, is simply the sum 

of dividends, 𝐷𝐷𝑡𝑡, and the capital gains, (𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1), relative to the stock price at time 

𝑃𝑃𝑡𝑡−1. Return, 𝑟𝑟𝑡𝑡, is given by:  

 

𝑟𝑟𝑡𝑡 =
𝐷𝐷𝑡𝑡 + (𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1)

𝑃𝑃𝑡𝑡−1
 

 

In the portfolio context, the expected return of a portfolio, 𝐸𝐸�𝑟𝑟𝑝𝑝�, is the 

weighted average of the expected returns on the individual assets in the portfolio, 

with weights being the percentage of the total portfolio invested in each asset. 

𝐸𝐸�𝑟𝑟𝑝𝑝� = 𝑤𝑤𝑎𝑎𝐸𝐸(𝑟𝑟𝑎𝑎) + 𝑤𝑤𝑏𝑏𝐸𝐸(𝑟𝑟𝑏𝑏) + ⋯𝑤𝑤𝑛𝑛𝐸𝐸(𝑟𝑟𝑛𝑛) 

𝐸𝐸�𝑟𝑟𝑝𝑝� = �𝑤𝑤𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝐸𝐸(𝑟𝑟𝑖𝑖) 

Risk, from a financial point of view, is a statistical measure of the dispersion 

of outcomes around the mean of expected returns. Portfolio risks can be calculated, 

like calculating the risk of a single investment, by taking the standard deviation of 

actual returns of the portfolio over time or by projecting the expected risk based on 

the probabilities of expected returns. Standard deviation, as applied to investment 

returns, is a quantitative statistical measure of the variation of specific returns relative 
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to the average of those returns. The variance, 𝜎𝜎𝑝𝑝2, and standard deviation, 𝜎𝜎𝑝𝑝, for a 

portfolio consisting of assets a and b is expressed, respectively, as  

 
𝜎𝜎𝑝𝑝2 = 𝑤𝑤𝑎𝑎2𝜎𝜎𝑎𝑎2 + 𝑤𝑤𝑏𝑏

2𝜎𝜎𝑏𝑏2 + 2𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏𝜌𝜌𝑎𝑎𝑏𝑏𝜎𝜎𝑎𝑎𝜎𝜎𝑏𝑏 
 

𝜎𝜎𝑝𝑝 = �𝜎𝜎𝑝𝑝2 

 

In general, portfolio standard deviation will be less than the weighted average 

of standard deviations of the individual assets in the portfolio. Each individual asset 

has an expected return and a level of risk associated with holding the asset for a 

period of time. In the context of a portfolio, holding many assets can, and many times 

will, greatly diversify risk across the entire portfolio of assets. Diversification is the 

epitome of “not putting all your eggs in one basket,” but instead investing across a 

number of assets to reduce risk (Roychoudhury, 2007). 

Covariance is the statistical measure of how one asset’s returns in relation to 

another asset’s. The covariance of a two-asset portfolio is simply the product of the 

two deviations: the deviation of the returns of security A from its mean, multiplied by 

the deviation of the returns of security B from its mean (Elton, Gruber, Brown, 

Goetzmann, 2014). If both assets are increasing in value at the same time or 

decreasing in value at the same time, they are said to have a positive covariance, and 

regardless of which way the asset’s returns move, if they move in a parallel fashion 

the product of the two deviations results in a positive number. The opposite is true for 

assets that move inversely to each other and is called a negative covariance. Because 

many times the product of deviations can result in a large number, the covariance can 
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be simplified (or normalized) to a correlation coefficient, which like the covariance, 

measures the degree of correlation between the two assets.  

𝜌𝜌𝑎𝑎𝑏𝑏 =
𝜎𝜎𝑎𝑎𝑏𝑏
𝜎𝜎𝑎𝑎𝜎𝜎𝑏𝑏

 

Dividing by the product of the two standard deviations does not change the 

properties of the covariance, rather it scales the covariance to have a value between          

-1≤ 𝜌𝜌𝑎𝑎𝑏𝑏 ≥1. Intuitively, +1 is perfect positive correlation in that assets a and b move 

in direct proportion to each other. Conversely, -1 is a perfect negative correlation in 

that assets A and B move in negative proportion to each other.  

Another key concept in optimizing one’s portfolio is utility theory. A utility 

function measures an investor’s relative preference for different levels of expected 

return (Norstad, 1999). 

𝑈𝑈 = 𝐸𝐸(𝑟𝑟) −
1
2
𝐴𝐴𝜎𝜎2 

A is a measure of risk aversion, which is measured as the marginal reward that 

an investor requires to accept additional risk. More risk-averse investors require 

greater compensation for accepting additional risk. Thus, A is higher for more risk-

averse individuals.  
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Figure 1 Indifference Curves (CFA Institute) 

 

Several conclusions can be drawn from the utility function in Figure 1. First, 

utility is unbounded on both sides. It can be highly positive or highly negative (CFA 

Institute). Second, higher return contributes to higher utility (CFA Institute). Third, 

higher variance, and thus higher standard deviation, reduces the utility but the 

reduction in utility is amplified by the risk aversion coefficient, A (CFA Institute). 

Utility can always be increased, albeit marginally, by getting higher return or lower 

risk. Fourth, utility does not indicate or measure satisfaction (CFA Institute). It can be 

useful only in ranking various investments. For example, a portfolio with a utility of 4 

is not necessarily two times better than a portfolio with a utility of 2. The portfolio 

with a utility of 4 could increase our happiness 10 times or just marginally. By 

definition, all points on any one of the three curves have the same utility. Referring to 

Figure 1, an investor does not care whether he or she is at point a or point b on 

indifference curve 1. Point a has lower risk and lower return than point b, but the 
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utility of both points is the same because the higher return at point b is offset by the 

higher risk. 

Like indifference curve 1, all points on indifference curve 2 have the same 

utility and an investor is indifferent about where he or she is on curve 2. When 

comparing point c with point b, point c has the same risk but significantly lower 

return than point b, which means that the utility at point c is less than the utility at 

point b. Given that all points on curve indifference 1 have the same utility and all 

points on indifference curve 2 have the same utility and point b has higher utility than 

point c, indifference curve 1 has higher utility than indifference curve 2. Therefore, 

risk-averse investors with utility functions represented by indifference curves 1 and 2 

will prefer indifference curve 1 to curve 2. The utility of risk-averse investors always 

increases as you move northwest-higher return with lower risk. Because all investors 

prefer more utility to less, investors want to move northwest to the indifference curve 

with the highest utility. 

Another important concept is mondern portfolio theory is the efficient 

frontier, shown in Figure 2, which models the risk-return trade off. The frontier is 

depicted in a graphic form as a curve comparing portfolio risk against the expected 

return.  
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Figure 2 The Efficient Frontier (CFA Institute) 

 

Every possible asset combination can be plotted in risk-return space, and the 

collection of all such possible portfolios defines a region in this space. The portfolios 

that have the least risk for each possible level of return are known as the minimum 

variance frontier. The curve (from z rightward) along the upper edge of this region is 

known as the efficient frontier. Combinations along this line represent portfolios with 

the lowest risk for a given level of required return or the highest required return for a 

given level of risk. Conversely, for a given amount of risk, the portfolio lying on the 

efficient frontier represents the combination offering the best possible return. 

Consider points A, B, and X in Figure 2 and assume that they are on the same 

horizontal line by construction. Thus, the three points have the same expected return, 

𝐸𝐸(𝑟𝑟1), as do all other points on the imaginary line connecting A, B, and X. Given a 

choice, an investor will choose the point with the minimum risk, which is point X. 

Point X, however, is unattainable because it does not lie within the investment 

opportunity set. Thus, the minimum risk that we can attain for 𝐸𝐸(𝑟𝑟1), is at point A. 

Point B and all points to the right of point A are feasible but they have more risk. 
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Therefore, a risk-averse investor will choose only point A in preference to any other 

portfolio with the same return.  

Before proceeding further, we must introduce a risk-free asset, 𝑟𝑟𝑓𝑓. A risk-free 

rate is the rate one can earn by investing in risk-free assets such as Treasury bills or 

money market funds. Treasury bills are determined to be a riskless investment 

because: 1) Treasury bills are the original issue discount instruments, 2) that are 

short-term (maturity at issue of one year or less), and 3) Treasury bills are issued by 

the U.S Treasury Department and thus, investors believe that the U.S government will 

not default on payments. We know that the set of investment possibilities created by 

all combinations of risky and risk-free assets is the Capital Allocation Line (CAL). 

An investor can vary the amounts allocated to the risky portfolio and risk-free asset to 

move along the CAL. This is an important concept for a risk-averse investor. The 

CAL represents a line tangent to the minimum-variance frontier at the investor’s 

desired risk/return trade off point and is calculated by: 

𝐸𝐸�𝑟𝑟𝑝𝑝� = 𝑟𝑟𝑓𝑓 + �
𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑓𝑓
𝜎𝜎𝑖𝑖

� 𝜎𝜎𝑝𝑝 
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Figure 3 Capital Allocation Line 

 

Points under the preferred CAL may be attainable, but are not preferred by 

any pragmatic investor because the investor can get a higher return for the same risk 

by moving to an asset located on the CAL. Points above the CAL are desirable but 

not achievable with available assets. 

William Sharpe introduced the Sharpe ratio, also known as the reward-to-

volatility ratio, as the average return in excess of the risk-free rate per unit of 

volatility or total risk (Bodie, Kane, & Marcus, 2010). By adding the risk-free asset, 

investors can choose a portfolio that increases the Sharp ratio (increased risk-

premium for given amount of risk) while still maintaining a position along the 

efficient frontier. Graphically, as seen in Figure 4, the portfolio with maximum 

Sharpe ratio (point P) is the point where a line through the origin is tangent to the 

efficient frontier, in mean-standard deviation space, because this point has the 
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property that has the highest possible mean-standard deviation ratio. The Sharpe ratio 

is calculated by: 

𝑆𝑆𝑖𝑖 =
𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓

𝜎𝜎𝑖𝑖
 

 

Figure 4 Capital Allocation Line and the optimal risky portfolio (CFA Institute) 

 

When the CAL is combined with the efficient frontier, we can mathematically 

determine the one portfolio that would be preferred by all pragmatic investors. In 

theory, we can have as many CALs as we have portfolios along the efficient frontier, 

however, only one of these CALs is preferred. Refer to points P and A located on the 

efficient frontier in Figure 3. Both points can be combined with the risk-free asset to 

form a CAL. Pragmatic investors will prefer the CAL that combines the risk-free 

asset with portfolio P [CAL(P)] to the CAL that passes through portfolio A [CAL(A)] 

as all points along CAL(P) yield a higher rate of return for a given level of risk than 

the points along CAL(A). The CAL that passes through a portfolio on the efficient 
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frontier and provides the optimal risk-return trade-off is the CAL, and hence 

portfolio, that all investors would prefer. These statistical concepts or measures are 

the centerpiece for any portfolio optimizing method. Every investor has a set of 

preferences and objectives that are used to construct his or her optimal portfolio. To 

simplify and help visualize the way a portfolio can be constructed, I will use a simple 

model of a portfolio containing two risky assets with normally distributed returns. 

Again, this model assumes that the investor is risk averse, meaning that if there are 

two assets with identical returns, the investor will prefer the less risky asset.  
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III.  The Risk-Return Trade Off With Two Risky 

Assets 

 

Assume the two risky assets, A and B, are available for consideration in an 

investment portfolio. Also assume there are no transaction costs or taxes. A risk-free 

asset in the form of U.S Treasury bills allows borrowing and lending at the risk-free 

rate. The portfolio return is as follows: 

 
𝑟𝑟 = 𝑤𝑤𝑎𝑎𝑟𝑟𝑎𝑎 + 𝑤𝑤𝑏𝑏𝑟𝑟𝑏𝑏 

 
The asset weights (or proportions) need to add up to one: 
 

𝑤𝑤𝑎𝑎 + 𝑤𝑤𝑏𝑏 = 1 
 
The expected return equals: 

 𝐸𝐸�𝑟𝑟𝑝𝑝� = 𝑤𝑤𝑎𝑎𝐸𝐸(𝑟𝑟𝑎𝑎) + 𝑤𝑤𝑏𝑏𝐸𝐸(𝑟𝑟𝑏𝑏) 
 
Portfolio variance is: 

 𝜎𝜎𝑝𝑝2 = 𝑤𝑤𝑎𝑎2𝜎𝜎𝑎𝑎2 + 𝑤𝑤𝑏𝑏
2𝜎𝜎𝑏𝑏2 + 2𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏𝜌𝜌𝑎𝑎𝑏𝑏𝜎𝜎𝑎𝑎𝜎𝜎𝑏𝑏 

 
Simplified to a standard deviation of: 
 

𝜎𝜎𝑝𝑝 = �𝑤𝑤𝑎𝑎2𝜎𝜎𝑎𝑎2 + (1 − 𝑤𝑤𝑎𝑎)2𝜎𝜎𝑏𝑏2 + 2𝑤𝑤𝑎𝑎(1 − 𝑤𝑤𝑎𝑎)𝜌𝜌𝑎𝑎𝑏𝑏𝜎𝜎𝑎𝑎𝜎𝜎𝑏𝑏 

 

Now, assume that 𝜌𝜌𝑎𝑎𝑏𝑏 = 1, implying that assets 𝐴𝐴 and 𝐵𝐵 are perfectly positively 

correlated. We know this indicates perfect correlation to each other, thus implying 
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there are no gains to be had from diversification. The opposite is true for 𝜌𝜌𝑎𝑎𝑏𝑏 = −1, 

where 𝐴𝐴 and 𝐵𝐵 are perfectly negatively correlated. With this type of correlation, a 

perfect hedging opportunity is presented as diversification benefits are maximized 

(Bodie, Kane, & Marcus, 2011). An investor can reduce portfolio risk simply by 

holding instruments that are not perfectly correlated. In other words, investors can 

reduce their exposure to individual asset risk by holding a diversified portfolio of 

assets. Diversification allows for a weighted average portfolio return with reduced 

risk. 

  

Figure 5 Relationship between expected return and standard deviation of return for various 

correlation coefficients (CFA Institute) 

 

Figure 5 depicts the relations between the expected return and standard 

deviation of returns for portfolios of two stocks with various correlation coeffecients. 

The uncurved dashed line where correlation between assets is 1 indicates there is no 

benefit to diversification. The solid line represents a correlation of -1. When this is 
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the case, all risk can be eliminated by investing a positive amount in the two stocks. 

Because most assets are not perfectly correlated, portfolio combinations of most 

multi-asset portfolios will lie on a curve that curves to the left.  Thus, as the 

correlation becomes smaller, as it approaches zero, the curve becomes more defined 

as the benefit of diversification pushes the curve northwest given that a smaller 

correlation coefficient reduces the portfolio standard deviation.  

For two risky assets, we know that the various portfolios curve to the left in an 

expected return/standard deviation graph if they are less than perfectly correlated.  

The concepts discussed in the preceding pages are important in understanding 

the concepts of portfolio theory. I will now explain the background of how these 

concepts can be interpreted by introducing Harry Markowitz’s Modern Portfolio 

Theory. 
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IV. Modern Portfolio Theory 

 

Prior to Harry Markowitz’s 1952 “Portfolio Selection” article in the Journal 

of Finance, the process of using diversification in holding securities was a well-

established practice, but lacked an adequate theory. Markowitz formally established 

the effects of diversification when risks are correlated, distinguished between 

efficient and inefficient portfolios, and analyzed risk-return trade-offs for the 

portfolio as a whole (Markowitz, 1952).  By formalizing the concept of 

diversification, Markowitz proposed that investors should focus on selecting 

portfolios based on their joint risk-reward features instead of merely compiling 

individually attractive securities regardless of their relation to the other securities in 

their portfolios (Markowitz, 1952). The Modern Portfolio Theory maintains that the 

“essential aspect pertaining to the risk of an asset is not the risk of each asset in 

isolation, but the contribution of each asset to the risk of the aggregate portfolio” 

(Royal Swedish Academy of Sciences, 1990). The expected return of a portfolio is a 

weighted average of the returns on the individual securities and the variance of return 

on the portfolio is a particular function of the variances of, and the covariance 

between, securities and their weights in the portfolio. Furthermore, Markowitz 

proposed that means, variances, and covariance of securities be estimated by a 

combination of statistical analysis and security analyst judgment. Using the estimates 
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found by these analytical models, the set of efficient mean-variance combinations can 

be derived and presented to an investor for choice of the desired risk-return 

combination (Markowitz, 1952). This practice became known as the Modern 

Portfolio Theory (MPT). 

Uncertainties about future economic events make economic indicators 

unpredictable and cause turbulence in financial markets. The criticism of the MPT is 

that the theory focus’ on highly complex statistics-based mathematical modeling and 

formulas that are not easily calculated. The theory requires mathematical calculations 

on expected values, based on past performance to measure the correlations between 

risk and return. However, past performance is not a guarantee of future performance 

and thus, taking into account only past performances is frequently misleading.  

Markowitz portfolio selection assumes the market is efficient, thus meaning, 

the mean and variance of data represent the true performance of those assets. A 

shortfall of this assumption is the MPT relies on asset prices making it vulnerable to 

various market vagaries such as environmental, personal, strategic, or social 

investment decision dimensions.  

Realizing the shortcomings of his theory due to the complexity of the 

computational procedures and amount of input data needed to perform portfolio 

analysis, Markowitz became interested in simplifying the portfolio selection problem. 

His original mean-variance analysis presented difficulties in implementation: to find a 

mean-variance efficient portfolio, one needs to calculate the variance-covariance 

matrix with N(N- 1)/2 elements. Thus, a reasonably sized portfolio of 100 securities 

requires the daunting task calculating 4,950 variances and covariances.  
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100(100 − 1)
2

= 4,950 

Markowitz’s Modern Portfolio Theory is a valuable tool to learn as a basis for 

portfolio construction theory, but implementation of this theory in a strict sense is not 

practical, because to build an efficient portfolio for an investor we need to know the 

expected returns, expected variances and expected covariances of all possible 

candidates for inclusion in the portfolio. Although the Markowitz portfolio theory has 

provided a fundamental breakthrough towards strengthening the mean-variance 

analysis framework, modifications, extensions and alternatives to the theory have 

been formed to simplify and prioritize assumptions of the theory and to address the 

limitations of the framework.  
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V. Capital Asset Pricing Model 

 

William Sharp, John Lintner, Jan Mossin, and Jack Treynor developed the 

Capital Asset Pricing Model (CAPM) to simplify the insights of Markowitz’s Modern 

Portfolio Theory (MPT). The CAPM predicts the relationship between risk and 

equilibrium returns on risky assets (Bodie, Kane, Marcus, 2010). Sharpe (1964) and 

Lintner (1965) add two key assumptions to the Markowitz model to identify a 

portfolio that must be mean-variance efficient. The first assumption is complete 

agreement: given market clearing asset prices at t-1, investors agree on the joint 

distribution of asset returns from t-1 to t (Fama & French, 2004). The second 

assumption is that there is borrowing and lending at a risk-free rate, which is the same 

for all investors and does not depend on the amount borrowed or lent (Fama & 

French, 2004). CAPM takes into account an asset’s sensitivity to non-diversifiable 

risk (systematic risk) while being held in a well-diversified portfolio. The expected 

return of an asset is driven by its systematic risk, 𝛽𝛽𝑖𝑖, which indicates how much, on 

average, the stock return changes for each additional 1% change in the market return. 

Beta is calculated as the covariance between an asset and the market return divided by 

the variance of the market return as follows: 

𝛽𝛽𝑖𝑖𝑖𝑖 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑖𝑖,𝑅𝑅𝑖𝑖)
𝜎𝜎2(𝑅𝑅𝑖𝑖)
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Therefore, the regression of the rate of return on the individual security 𝑖𝑖 is 

shown by: 

𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑓𝑓 + (𝑟𝑟𝑖𝑖 − 𝑟𝑟𝐹𝐹)𝛽𝛽𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝜖𝜖𝑖𝑖 

 

Because the market beta of asset 𝑖𝑖 is also the slope in the regression of its 

return on the market return, a common interpretation of beta is that it measures the 

sensitivity of the asset’s return to variation in the market return (Fama & French, 

2004). A larger value of beta implies greater financial risk since beta reflects 

volatility in expected returns compared to the market. The expected return on any 

asset 𝑖𝑖 is the risk-free interest rate, 𝑟𝑟𝑓𝑓 , plus a risk premium, which is the asset’s 

market beta, 𝛽𝛽𝑖𝑖𝑖𝑖, times the premium per unit of market risk, 𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓. 

𝐸𝐸(𝑟𝑟𝑖𝑖) = 𝑟𝑟𝑓𝑓 + [𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓]𝛽𝛽𝑖𝑖𝑖𝑖 

 

This equation tells us that the expected return on an individual security is 

determined by the risk-free rate, the market risk premium, and beta (Nam, 2011). The 

fact that there is no residual excess return explains that investors should hold the 

market portfolio under the assumption that all investors have the same expectations 

and the market is perfectly efficient. As a result, in this paper, we can use the 

expected return on the individual stock from the CAPM as a benchmark return and 

the market portfolio as a benchmark portfolio in order to measure residual return and 

risk.  

The assumption that investors care only about the mean and variance of 

distributions of one-period portfolio returns is extreme. Perhaps investors also care 
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about how their portfolio return covaries with labor income and future investment 

opportunities, so a portfolio’s return variance will miss important dimensions of risk 

(Fama & French, 2004). If so, market beta is not a complete description of an asset’s 

risk, and we should not be surprised to find that differences in expected return are not 

completely explained by differences in beta. In the late 1970’s research began to 

uncover variables like market capitalization, various price ratios, and momentum that 

add to the explanation of average returns provided by market beta.  
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VI. Active Management 

 

Through the previous sections, we look over the portfolio theories and, under 

perfect capital markets, the active portfolio management does not survive as all 

investors invest their money in a combination of risk-free asset and the market 

portfolio, which has the highest expected return given the level of risk depending on 

an investor's indifferent curve. However, the empirical test of this thesis will aim to 

find patterns that capture alpha returns by altering individual security weights in the 

market portfolio that reflect outperformance or underperformance by constraints of a 

company’s region or industry. In this section, we define the active portfolio with 

residual return (alpha), risk, and information ratio.  

 

We begin with the definition of active portfolio management:  

 

Active portfolio management is the implementation of a dynamic investment 

strategy that over-and underweights the predefined investment opportunities 

over a long-term basis, with the single objective of outperforming the 

predefined benchmark at a predefined time in order to add value to the 

portfolio (Nam, 2011) 
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Commonly applied benchmarks in active portfolio management are large and 

highly liquid indices such as the S&P 500 or the Dow Jones Index. The S&P 500 is a 

market-value-weighted index and is comprised of the largest 500 market 

capitalization companies in the United States. Because the index is made up of many 

companies it would be hard for an investor to purchase each individual security that 

comprise the index. In order to diversify assets without buying each security in the 

S&P 500, an investor can invest in an Exchange Traded Fund (ETF). An ETF tracks 

the overall index but quantifies the index into an asset or share that can be bought or 

sold. The advantage of this particular approach is that the benchmark’s underlying 

assets are likely to follow a somewhat similar return pattern as the overall market, 

making it less difficult to allocate portfolio assets. The SPDR (SPY) is an S&P 500 

ETF Trust that seeks to provide investment results that correspond generally to the 

price and yield performance of the S&P 500 Index (SPDR.COM). For the purpose of 

this thesis, we will us the (SPY) as a passive benchmark with which to compare our 

returns of active management.  

The key concept of the active portfolio construction is how to organize the 

residual alpha and risk from the alpha generating strategy into the current portfolio. 

Even though Markowitz's mean-variance portfolio optimization model is the starting 

point for the portfolio construction, this model is not quite applicable for investors 

due to the input sensitivity. In the next section I introduce the active asset allocation 

method used in this thesis.  
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VII. Treynor-Black Model 

 

The presumption of market efficiency is inconsistent with the existence of a 

vast industry engaged in active portfolio management. Jack Treynor and Fischer 

Black (1973) proposed a model to construct an optimal portfolio with respect to this 

assumption, when security analysts forecast abnormal returns on a limited number of 

covered securities (Kane, Kim, White, 2003). We will refer to this method as Treynor 

Black (TB).  

The purpose of the TB is to maintain the overall quantitative framework of the 

efficient markets approach to portfolio selection while simultaneously introducing a 

critical violation of the efficient markets theory: individual portfolio managers may 

possess information about the future performance of certain securities that is not 

reflected in the current price or projected market return of the asset. Because 

inefficiently priced securities have forecasted alpha returns, Treynor and Black 

attempt to explore and identify such mispriced securities to add to a passive index 

portfolio. In order to do so, there must be a method to measure these abnormal 

returns, thus the quantitative performance measure for a single asset used in in this 

model is alpha (𝛼𝛼), the projected return of the security over-and-above its market 

risk-adjusted return. In constructing this portfolio, the forecasted alpha securities are 

added to a diversified market portfolio to provide a return greater than what a 
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portfolio invested solely in the index fund would return. The optimal portfolio would 

then "tilt" towards securities with projected outperformance (alpha greater than zero) 

and away from securities with projected underperformance (alpha less than zero). The 

efficiency of the model depends critically on the ability to predict alpha returns. It 

follows that security analysts must submit quantifiable forecasts subjected to 

continuous and rigorous testing to evaluate the individual performance pertaining to 

the return over that of the market (Kane, Kim, White, 2003).  

The optimal portfolio must be a mix of the covered securities and the index 

portfolio that results in a new tangency portfolio along the Capital Allocation Line 

(CAL) (Bodie, Kane. & Marcus, 2011). Securities not covered by the analyst that 

make up the index portfolio are assumed to be priced efficiently as the active 

portfolio analyst can only cover a small number of securities that are believed to be 

inefficiently priced, thus the reason for seeking alpha. TB identifies the portfolio of 

only the covered securities (Active Portfolio, A) that can be mixed with the index 

(Passive Portfolio, M) to obtain the optimal risky portfolio.  

The initial weight of each security in the active portfolio should be 

proportional to the expected alpha return of the individual security, (𝛼𝛼𝑖𝑖), divided by 

the unsystematic risk squared, (𝜎𝜎2(𝑒𝑒𝑖𝑖)), where the unsystematic risk is the volatility 

in the security’s price, which is not due to macroeconomic factors.   

𝛼𝛼𝑖𝑖
𝜎𝜎2(𝑒𝑒𝑖𝑖)
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By way of this formula, we can assign initial weights to securities in the active 

portfolio and then scale these weights in a way such that the higher alpha of the 

security, the higher the weight assigned to the security.  This scaling is also used in 

measuring volatility in that the higher the volatility of security’s price, due to firm-

specific risk, the lower the weight assigned in the active portfolio. For a negative 

alpha, we can expect a negative weight in the active portfolio, representing a short 

position. The new scaled positions that form the new active portfolio weights must 

sum to 1 and is shown by: 

 𝑤𝑤𝑖𝑖 =
𝛼𝛼𝑖𝑖 𝜎𝜎2(𝑒𝑒𝑖𝑖)⁄

∑
𝛼𝛼𝑗𝑗

𝜎𝜎2(𝑒𝑒𝑗𝑗)
𝑛𝑛
𝑖𝑖=𝑗𝑗

 

Treynor and Black measure the added benefits of seeking alpha by way of the 

ratio of the portfolio alpha to the portfolio specific risk (nonsystematic risk). The 

portfolio alpha is the weighted average of the alpha for each asset, using the share in 

the portfolio as the weight, and the portfolio specific risk (square root of the portfolio 

variance), where the portfolio variance is the weighted sum of the asset-specific risks 

squared. We add specific risk together in this manner because it is, by definition, 

independent from asset to asset (Miller, 1999). 

𝛼𝛼𝐴𝐴 = �𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝛼𝛼𝑖𝑖 

𝛽𝛽𝐴𝐴 = �𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝛽𝛽𝑖𝑖 
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𝜎𝜎2(𝑒𝑒𝐴𝐴) = �𝑤𝑤𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

𝜎𝜎2(𝑒𝑒𝑖𝑖) 

After computing the alpha and residual standard deviation of the active 

portfolio we can determine the weight of the active portfolio in the overall portfolio. 

This model requires that the weight of the active portfolio should be: 

𝑤𝑤𝐴𝐴0 =
𝛼𝛼𝐴𝐴/𝜎𝜎𝐴𝐴2

(𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓)/𝜎𝜎𝑖𝑖2
1 

It is possible that the beta for the active portfolio exhibits high systematic risk 

or a high beta. In order to avoid having the overall portfolio be too risky, a correction 

can be made to have the weight of the active portfolio scaled further in such a way 

that the beta of the active portfolio does not change the beta of the overall portfolio. 

By doing so, an active portfolio with a large beta will be reduced to a smaller weight 

in the overall portfolio in order to have the original beta of the passive portfolio 

remain unchanged upon mixing the active and passive portfolios.  

𝑤𝑤𝐴𝐴∗ =
𝑤𝑤0

1 + (1 − 𝛽𝛽𝐴𝐴)𝑤𝑤0
 

Once the weight of the adjusted active portfolio is calculated, the weight of 

the passive portfolio can be found by subtracting the adjusted weight of the active 

portfolio from one. 

𝑤𝑤𝑖𝑖 = 1 − 𝑤𝑤𝐴𝐴∗ 

1 Note: 𝐸𝐸(𝑅𝑅𝑖𝑖) represents both the expected return on the market and return on passive portfolio.  
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The combination of the two weights must sum to 1 and represent the 

percentage of each portfolio that will be combined to form the overall optimal 

portfolio.  

Once the new weights are assigned to both active and passive portfolios, the 

risk-premium, 𝐸𝐸(𝑟𝑟𝑃𝑃), for the new combined portfolio is calculated by: 

𝐸𝐸�𝑟𝑟𝑝𝑝� = (𝑤𝑤𝑖𝑖 + 𝑤𝑤𝐴𝐴∗𝛽𝛽𝐴𝐴)𝐸𝐸(𝑟𝑟𝑖𝑖) + 𝑤𝑤𝐴𝐴∗𝛼𝛼𝐴𝐴 

 

And the variance for the combined portfolio is be calculated by: 

𝜎𝜎𝑐𝑐𝑝𝑝2 = (𝑤𝑤𝑖𝑖 + 𝑤𝑤𝐴𝐴∗𝛽𝛽𝐴𝐴)2𝜎𝜎𝑖𝑖2 + [𝑤𝑤𝐴𝐴∗𝜎𝜎(𝑒𝑒𝐴𝐴)]2 

 

To illustrate the performance of the new optimal risky portfolio, the Sharpe 

ratio of the passive, or market, portfolio, which measures the slope of the Capital 

Allocation Line, is added to the Information ratio of the active portfolio. The 

Information ratio measures the residual return to residual risk. The two ratios 

combined should produce a new Capital Allocation Line with a steeper slope, thus 

representing a higher expected return while maintaining the amount of risk equal to 

the passive portfolio. 

The Sharpe ratio for the passive portfolio, M, is shown by: 

𝑆𝑆𝑖𝑖 = �
𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓

𝜎𝜎
�
2

 

 The Information ratio of the active portfolio, which is also the Sharpe ratio of 

the active portfolio, is shown by: 

𝐼𝐼 = �
𝛼𝛼𝐴𝐴
𝜎𝜎𝐴𝐴
�
2
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The Capital Allocation Line for the new optimal portfolio, P, consisting of 

both the active and passive portfolios, includes the sum of active and passive Sharp 

ratios.  

𝑆𝑆𝑐𝑐𝑝𝑝 = �
𝐸𝐸(𝑟𝑟𝑖𝑖) − 𝑟𝑟𝑓𝑓

𝜎𝜎𝑖𝑖
�
2

+ ��
𝛼𝛼𝐴𝐴
𝜎𝜎𝐴𝐴
�
2𝑛𝑛

𝑖𝑖=1

 

If the two ratios added together result in a new Capital Allocation Line with a 

steeper slope than that of the passive portfolio’s Capital Market Line, then the 

addition of the active portfolio will result in a new efficient frontier that has a higher 

expected return for the same level of risk. That is, (𝑟𝑟𝑐𝑐𝑝𝑝 − 𝑟𝑟𝑓𝑓)/𝜎𝜎𝑝𝑝 > (𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑓𝑓)/𝜎𝜎𝑝𝑝. This 

points out the motivation of the Treynor Black model: an actively managed portfolio 

covering only a limited number of securities can be added to an already diversified 

market equilibrium portfolio, and will provide an added alpha premium return over 

the market risk premium for the market portfolio.  

 

Figure 6 The efficient frontier moves upwards from point M to point P because of the alpha 

return 
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Figure 6 accurately depicts the positive effects of active management as the 

new combined portfolio results in a CAL with a steeper slope than the market 

portfolio.  
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VIII. Empirical Example  

 

The purpose of this thesis is to explain active portfolio management, but also 

to empirically test the active management model derived by Treynor and Black to 

construct separate active portfolios in combination with the benchmark. More 

specifically, the empirical section of this thesis will use publicly available financial 

market information to implement the Treynor-Black model. Although we do not have 

private information to test empirically, we assume that it is possible some investors 

have such information and can therefore exploit price inefficiencies. Intuitively, if an 

investor can exploit price inefficiencies to create alpha with only public information, 

then an investor who holds private information will undoubtedly be able to do the 

same.  

Financial research has yielded a large number of in-depth studies concerning 

the investments by professional money managers, yet historically, relatively little has 

been known about individual investors’ money management, in no small part because 

of the shortage of reliable, high quality data available for academic research (Ivkovic 

& Weisbenner, 2005). In the world we live in, individual investors have many 

channels of finding quality information about a company, including, for example, 

media coverage, analyst valuation, and quarterly and yearly earning reports, in order 

to form opinions regarding particular companies. With this knowledge, one could 
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hypothesize that investors could gather relative and valuable information about 

companies local to them with greater ease than they could about remote companies 

that have little effect on an investor’s local economy. If investors, in fact, believe they 

have information about a company or a specific market sector that is not reflected in 

the current market price, then the investor can use that superior knowledge to enhance 

portfolio return beyond simply investing in the market.  

The next section of this chapter will relate to the data retrieved from the 

Center for Research in Security Prices (CRSP) and FederalReserve.gov to form 

portfolios for providing excess return for both an active portfolio invested solely in 

either location or industry biased constraints. More specifically, the aggregate data 

taken from the CRSP was on companies that made up the S&P 500. I gathered 

monthly returns for each of the securities in the index from 2000-2014 and then 

aggregated the months into yearly returns. I then chose companies with which I was 

familiar with to analyze the statistical components and annual returns of each security 

to derive my active portfolio. The return on the S&P 500 was used as the annual 

return on the market. The risk-free rates were taken from the Federal Reserve 

website. I selected one regional-based and one industry-based portfolio to use for 

illustrative purposes. These portfolios use the annual return for the year 2013. The 

portfolio return charts can be seen in the Appendix of this thesis as well as the tables 

holding the list of selected securities that make up both the region portfolio and 

industry based portfolio. 
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VIII-1. Data 
 
  

Referring to the table of selected securities in A-1, and the portfolio return 

chart in A-2, we can see that the active section of the combined portfolio provided a 

return over that of the market. We can see for each complete portfolio, that is, the 

active and market portfolio combined, with the identified weights set forth in the 

model, provide returns over that of market or index fund.  

Looking at the table of selected securities in A-3, and the portfolio return chart 

in A-4, we can see, once again, that the active section of the combined portfolio 

provided return greater than the return on the S&P 500. This portfolio may have some 

insight into the original hypothesis of this thesis in that investors may be able to 

predict a certain industry will outperform or underperform the market. In the case of 

portfolio A-4, three of the five securities included in the consumer discretionary 

industry have negative alphas and thus negative weights in the portfolio. As an 

investor, if I could forecast that these companies were to underperform the market in 

a given year, I could increase my overall return by selling these securities short.  
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The risk-free rate was essentially zero as the portfolios modeled in Appendix 

A-2 and A-4 tracked the annual returns during 2013 (when Treasury bill rates were 

almost zero). Thus, the risk premium, (𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑓𝑓), is almost equal to the expected 

return, and thus the CAL is going to be rather steep in slope. 

Portfolio A-2, and A-4, identifies the basic logic for Treynor-Black model in 

that excess return is possible if forecasts are accurate. The combination of the active 

and passive portfolios allow an investor who seeks to manage his or her money in an 

aggressive way the ability to potentially create returns over the market. Conversely, 

the market portfolio allows an investor the security of not investing all his or her 

money in an allocation method that may or may not play out, depending on the 

accuracy of the forecasts.  
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IX. CONCLUSION 
 

 

I formed 20 separate region-based portfolios and 20 separate industry-based 

portfolios for each year, 2000-2014 with the original notion of finding patterns in 

creating excess return by actively managing a combination of passive and active 

portfolios. I performed the analysis on all 40 portfolios. However, given that portfolio 

formation was based on historical information I used the prior years data to determine 

portfolio allocations rather than projections, the outcomes were not always feasible. 

For example, many portfolios had an extreme amount of leverage and were therefore 

not ultimately included in the study. Rather, I am showing a couple portfolios for 

illustrative purposes to show that the model can work.   

The work analyzed in this thesis supports the basis of active management and 

the Treynor-Black model, in that it makes sense that an analyst could perhaps analyze 

a few stocks allowing the formation of superior opinions regarding the future of those 

securities, thus allowing the weights of the active portfolio to represent the opinions 

set forth. When identifying securities that are mispriced, whether over or under, 

analysts can use the knowledge or opinions they hold about the mispriced security to 

create an active portfolio to mix or combine with a market portfolio so that not all of 

an investor’s money is invested in the riskier active portfolio. Although it appears my 

study has analyzed returns that successfully support the Treynor-Black model, there 

are some shortcomings to these successes. For one, I was unable to identify any real 
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pattern between excess returns for the active portfolios that were based on either 

region or industry, largely due to the fact that I had to use past performance as a 

forecast for the returns. As historical data allowed me to create inputs for the 

formation of my portfolios, it also hindered my hypothesis in that no real forecasting 

of industry or regional based performance occurred.  

Accurate forecasting is not an easy process-even for skilled security analysts. 

Researching active portfolio management with the Treynor-Black model has proven 

to me that success with this model is very forecast dependent, meaning successful 

implementation of this model is critically dependent on analysts successfully picking 

and forecasting accurate returns. In this thesis, we used historical data as a forecasting 

tool on the selected securities. As discussed in the preceding pages of this thesis, past 

performance is not a prediction of future performance.  

 Illustrating this model is the easy part as the financial and statistical concepts 

are consistent with the vast amount of portfolio optimization model in the world, 

however, after researching this method of active management, I can firmly state that 

this method is not easy for an individual investor to implement. To actively and 

successfully implement this method, it would take the work of a team of security and 

economic analysts to come up with the inputs (forecasts) for the mispriced securities 

and for the market as a whole. I simply do not believe many individual investors have 

of the economic and financial knowledge to efficiently identify and act upon the 

mispricing’s of such securities in a consistent and reliable manner.  
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APPENDIX 
 
 
 
 
A-1. Portfolio based on Region 
 
Companies in this region portfolio are all located in Northern California. Regional 
portfolio formation is based on the belief in that an investor could hold opinions 
regarding companies that affect their local economies over that of a remote investor. 
 
Security Ticker Symbol GICS Sector Headquarters 
Wells Fargo WFC Financials San Francisco, California 
Charles Schwab Corp. SCHW Financials San Francisco, California 
eBay Inc. EBAY Information Technology San Jose, California 
Cisco Systems CSCO Information Technology San Jose, California 
Altera Corp ALTR Information Technology San Jose, California 
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A-2: Combined portfolio returns for the combined active and passive portfolios based on region. 
 All of the results in this table are from the regression with �𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑓𝑓� = 𝛽𝛽�𝑟𝑟𝑚𝑚 − 𝑟𝑟𝑓𝑓� + 𝑒𝑒𝑖𝑖 

 
Ticker Symbol Standard Deviation (𝜎𝜎) 

 
 

Beta (𝛽𝛽) Alpha (𝛼𝛼) 
 

Annual Return 
 

Risk-Free Rate 
 ALTR 0.26399 1.41199 -0.18474 -0.03735 0.000583333 

CSCO 0.21955 1.07069 -0.00025 0.16491 0.000583333 
EBAY 0.26443 1.25378 0.48872 0.09679 0.000583333 
SCHW 0.18398 1.46657 0.10450 0.85499 0.000583333 
WFC 0.13919 1.32204 0.09273 0.33539 0.000583333 

S&P 500 0.08991 1.00000 - 0.28683  
 

 S&P 500 Active 
Portfolio A ALTR CSCO EBAY SCHW WFC Combined 

Portfolio P 
𝜎𝜎2(𝑒𝑒)   0.06969072 0.04820222 0.06992322 0.03384864 0.01937385  

𝛼𝛼 𝜎𝜎2⁄ (𝑒𝑒)  12.20695886 -2.65085501 -0.00518648 6.98938014 3.08727318 4.78634710  
𝑤𝑤𝑖𝑖   -0.21715933 -0.00042487 0.57257341 0.25291091 0.39209987 1.0000000 
𝛼𝛼𝐴𝐴  0.38273481 0.04011801 0.00000010 0.27982808 0.02642919 0.03635942  

𝜎𝜎2(𝑒𝑒𝐴𝐴)  0.03135382 0.00328648 0.00000000 0.02292365 0.00216509 0.00297858  
𝑤𝑤𝐴𝐴0  0.34403205 0.34403205 0.34403205 0.34403205 0.34403205 0.34403205  
𝑤𝑤∗ 0.61636189 0.38363810 0.38363810 0.38363810 0.38363810 0.38363810 0.38363810  

Beta (𝛽𝛽)  1.30008266 -0.30662681 -0.00045491 0.71788109 0.37091156 0.51837172 1.11512314 
Risk-Premium 0.28624666 0.75487914 0.00823757 -0.00006981 0.05508537 0.21608877 0.13127765 0.67519278 

Standard 
Deviation (𝜎𝜎) 0.08991000 0.17707112 0.0032864873 0.0000000087 0.0229236523 0.0021650922 0.0029785815 0.10967461 

Return 0.17679108 0.15775310      33.454418% 



A-3: Portfolio based on Industry 
 
Companies in the industry portfolio are represented in the consumer discretionary 
sector. An investor could hold opinions based on the cyclical or economic cycles that 
affect specific industries and act upon those opinions in hopes of outperforming the 
market. 
 
Security Ticker Symbol GICS Sector GICS Sub Industry 
Polo Ralph Lauren  RL Consumer Discretionary Apparel, Accessories & Luxury Goods 
Tiffany & Co. TIF Consumer Discretionary Apparel, Accessories & Luxury Goods 
Bed Bath & Beyond BBBY Consumer Discretionary Specialty Stores 
NIKE Inc. NKE Consumer Discretionary Apparel, Accessories & Luxury Goods 
The Walt Disney Co. DIS Consumer Discretionary Broadcasting & Cable TV 
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A-4: Combined portfolio returns for the combined active and passive portfolios based on industry. 
 All of the results in this table are from the regression with �𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑟𝑟𝑓𝑓� = 𝛽𝛽�𝑟𝑟𝑚𝑚 − 𝑟𝑟𝑟𝑟𝑓𝑓� + 𝑒𝑒𝑖𝑖 

 
Ticker 
Symbol 
 
 

Standard 
Deviation (𝜎𝜎) 
 
 

Beta (𝛽𝛽) Alpha (𝛼𝛼) 
 

Annual 
Return 
 

Risk-Free Rate 
 

BBBY 
 
 

0.27092 1.19901 -0.13631 0.45418 0.000583333 
DIS 

 
0.13491 0.94528 0.20723 0.55094 0.000583333 

NKE 
 

0.21279 0.68898 0.01761 0.54454 0.000583333 
RL 

 
0.22618 1.32054 -0.04484 0.19665 0.000583333 

TIF 
 

0.25546 1.11299 -0.20576 0.64830 0.000583333 
S&P 500 0.08991    1.00000 - 0.28683  

 
 

S&P 500 Active 
Portfolio A BBBY DIS NKE RL TIF Complete 

Portfolio P 
𝜎𝜎2(𝑒𝑒)   0.07339764 0.01820070 0.04527958 0.0511573 0.06525981  

𝛼𝛼 𝜎𝜎2⁄ (𝑒𝑒)  5.88814721 -1.8571440 11.38582075 0.38891699 -0.8765106 -3.1529358  
𝑤𝑤𝑖𝑖   -0.3154038 1.93368479 0.06605082 -.14886018 -0.5354716 1.0000000 
𝛼𝛼𝐴𝐴  0.56172688 0.04299269 0.40071750 0.00116315 0.00667489 0.11017864  

𝜎𝜎2(𝑒𝑒𝐴𝐴)  0.09539959 0.00730156 0.06805493 0.00019754 0.00113361 0.01871193  
𝑤𝑤𝐴𝐴0  0.16594725 0.16594725 0.16594725 0.16594725 0.16594725 0.16594725  
𝑤𝑤∗ 0.84185603 0.15814396 0.15814396 0.15814396 0.15814396 0.15814396 0.15814396  

Beta (𝛽𝛽) 1.00000000 0.70265854 -0.3781723 1.82787356 0.04550769 -0.1965758 -0.5959745 .95297724 
Risk-Premium 0.28624666 0.76286055 -0.1430661 1.06421631 0.03592878 0.02918651 -0.3468339 .35209969 
Standard 
Deviation (𝜎𝜎) 0.08991000 0.30886000 0.0085544 0.26087341 0.01405495 0.03366919 0.1367915 .14977610 

Return  0.24146956 0.09198315      33.345272% 
 


	The Power of an Actively Managed Portfolio: an Empirical Example Using the Treynor-Black Model
	Recommended Citation

	tmp.1566827647.pdf.70SkE

