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This work reports the first observation of azimuthal asymmetries around the thrust axis in eþe−

annihilation of pairs of back-to-back charged pions in one hemisphere, and π0 and ηmesons in the opposite
hemisphere. These results are complemented by a new analysis of pairs of back-to-back charged pions.
The π0 and η asymmetries rise with the relative momentum z of the detected hadrons as well as with the
transverse momentum with respect to the thrust axis. These asymmetries are sensitive to the Collins
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fragmentation function H⊥
1 and provide complementary information to previous measurements with

charged pions and kaons in the final state. In particular, the η final states will provide additional information
on the flavor structure of H⊥

1 . This is the first measurement of the explicit transverse-momentum
dependence of the Collins fragmentation function from Belle data. It uses a dataset of 980.4 fb−1 collected
by the Belle experiment at or near a center-of-mass energy of 10.58 GeV.

DOI: 10.1103/PhysRevD.100.092008

I. INTRODUCTION

A description of the three-dimensional partonic structure
of the nucleon is an essential test for our understanding
of quantum chromodynamics (QCD). Successful tools for
the study of the nucleon have been semi-inclusive hard
reactions, particularly the use of leptonic probes such as
electrons and muons. At high enough momentum transfers,
QCD factorization theorems can be applied, and the
process can be described using a convolution over parton
distribution functions (PDFs), fragmentation functions
(FFs), and the matrix element describing the elementary
hard scattering of the probe off the parton inside the
nucleon. PDFs [1] can be interpreted as the leading
coefficients of the wave function of the nucleon on the
light-cone in a Q2 expansion, where Q2 is the squared
4-momentum transfer, and have a probabilistic interpreta-
tion in the parton model as the probability of finding a
parton q in the nucleon carrying a momentum fraction x
of the parent nucleon. So-called unintegrated PDFs also
carry a dependence on the transverse momentum of the
struck quark. Fragmentation functions [2], on the other
hand, describe the hadronization of a quark into final-
state hadrons containing at least one detected hadron.
Fragmentation functions depend on the dimensionless
variable z, which, in a partonic picture, can be interpreted
as the momentum fraction of the struck quark carried by the
detected hadron. In addition, unintegrated FFs depend on
the transverse momentum Ph⊥ of the hadron with respect to
the initial quark direction. Since FFs encode the depend-
ence of the properties of the detected hadron with the
quantum numbers of the struck quark, knowledge of them
is essential for the extraction of information on the partonic
structure of the nucleon from semi-inclusive hard scattering
experiments. This is in particular true for the transverse spin
structure of the nucleon. The large single transverse spin
asymmetries of π0 and η mesons observed in pp collisions
[3–7] were at odds with the expectation that they would
vanish due to the suppression of spin-flip amplitudes in the
hard scattering [8]. However, Collins showed [9] that spin-
flip amplitudes for soft components of the cross section,
the PDFs and FFs, are not necessarily suppressed. In the
collinear picture, in which the dependence of the PDFs and
FFs on intrinsic transverse momenta is integrated over, the
PDF that corresponds to the spin-flip amplitude is the so-
called transversity PDF h1 [10–13]. This can be interpreted

as the probability of finding a transversely polarized quark
in a transversely polarized nucleon with its polarization
direction along the polarization of the parent nucleon and is
one of the three leading-twist PDFs needed to describe the
nucleon in a collinear picture. It is a chiral-odd function,
and since chiral-odd amplitudes are strongly suppressed in
perturbative QCD [8], h1 has to be coupled to another
chiral-odd function to construct a chiral-even observable
such as a cross section. Experimentally, the most relevant
channels to access transversity are transverse single spin
asymmetries in semi-inclusive deep-inelastic scattering
(SIDIS) or pp scattering. Here transversity couples, for
instance, to the transverse polarization dependent chiral-
odd Collins FFH⊥

1 [9] or the di-hadron interference FFH∢
1

[14,15]. Since both the transversity PDF as well as the
transverse polarization dependent FFs are a priori
unknown, an independent measurement of the FF is
needed. Such a measurement can be performed in eþe−
annihilation, where a back-to-back qq̄ pair is created and
hadronizes. The azimuthal dependence of the cross section
of back-to-back production of hadrons can be described by
the product of the quark and antiquarkH⊥

1 together with the
polarization averaged FFs. This allows access to the Collins
FF without the complication of other, potentially unknown,
functions that cannot be calculated in perturbative QCD.
A disadvantage of eþe− annihilation at the energies
relevant for FF measurements is the small sensitivity to
gluon fragmentation as well as to the flavor of the
fragmenting quark. This is because the production prob-
ability of all light quarks solely depend on e2q, where eq is
the electric charge of the quark, and it is assumed that
eþe− annihilation into virtual photons dominates, as in
selected Belle data.
The first unambiguous observation of the Collins effect

came from SIDIS off transversely polarized protons [16].
The behavior of the observed πþ and π− asymmetries
indicated that the Collins FF had opposite signs for favored
versus disfavored fragmentation [cf. Eq. (11)], motivated
also by the Schäfer–Teryaev sum rule for the Collins
FFs [17]. These results spurred a wide range of both
theoretical and experimental activities. The first measure-
ment sensitive to the Collins FF for charged pions in eþe−
annihilation was performed at Belle [18,19]. It was sub-
sequently used, together with SIDIS data, for the first
extraction of transversity in a global fit [20]. The Belle
results were confirmed by BABAR [21]. Later, BABAR also
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reported the transverse momentum dependence as well as
the observation of a significant signal for asymmetries
involving kaons [22]. At lower energies, Collins asymme-
tries in eþe− annihilation have been measured by the
BESIII collaboration [23]. The Q2 dependence of the
Collins function might provide interesting insight into
the nontrivial evolution of transverse momentum dependent
functions (cf. Ref. [2] and references therein).
Here, we report the first measurement of azimuthal asym-

metries in back-to-back production of hadron pairs, where
one hadron is a charged pion and the other hadron a π0 or
an η. We report the fractional-energy and the transverse-
momentum dependence of these asymmetries as well as of
asymmetries for charged pions. These results provide addi-
tional constraints on the Collins function in global fits. The
final states including η mesons will provide sensitivity to
the fragmentation of strange quarks and are also of interest
since there are hints that the transverse spin asymmetries
of π0 and η mesons in pp collisions are different [6,7].
This paper is structured as follows: In Sec. II the

observables are introduced, Sec. III briefly describes the
Belle detector. Section IV details the analysis steps, Sec. V
reports the result, and Sec. VI provides the summary and
conclusion. Data tables are provided in two Appendices.
In the following we set c ¼ 1.

II. FORMALISM

The probability of a transversely polarized quark q↑ to
fragment into an unpolarized hadron h is given by [24]

Dhq↑ ¼Dq=h
1 ðz;P2

h⊥ÞþH⊥q=h
1 ðz;P2

h⊥Þ
ðk̂×Ph⊥Þ ·S⊥

zMh
; ð1Þ

where S⊥ is the transverse polarization of the quark, k̂ a
unit vector with the direction of the quark momentum k,
Mh is the hadron mass, and Dq=h

1 is the polarization-
averaged fragmentation function. Here, the fragmenting
quark of flavor q, as well as the identified hadron h in the
final state, has been added to the notation of the FFs in
order to indicate the dependence of FFs on the final
hadron to describe the cross section of back-to-back
production discussed below. Equation (1) describes an
azimuthal modulation of the hadron momenta around the
quark axis, with the strength of the modulation given by
the Collins FF H⊥

1 . As described in the Introduction, a
measurement of the effect given by Eq. (1) in single
inclusive hadron production in eþe− annihilation, i.e., in
the process eþe− → hþ X, is not possible due to the
chiral oddness of H⊥

1 . Instead, the process eþe− →
h1h2jback-to-back þ X is considered, where two back-to-
back hadrons are detected. In this case, the Collins effect
can be probed because it appears in a product of two
chiral-odd quantities: the quark and antiquark Collins FF.
The specific azimuthal modulation is in turn sensitive to the
correlation of the transverse polarizations of the produced
quark and antiquark.
The corresponding cross section for inclusive back-to-

back production of two hadrons can be expressed as

dσðeþe− → h1h2jback-to-back þ XÞ
dydz1dz2dP2

t1dP
2
t2dϕ1dϕ2

∝
X
q;q̄

3α2

Q2

e2q
4
z21z

2
2

��
1

2
− yþ y2

�
Dq=h1

1 ðz1;P2
1⊥Þ ⊗ Dq̄=h2

1 ðz2;P2
2⊥Þ

þ yð1 − yÞ cosðϕ1 þ ϕ2ÞH⊥q=h1
1 ðz1;P2

1⊥Þ ⊗ H⊥q̄=h2
1 ðz2;P2

2⊥Þ
�
; ð2Þ

with ⊗ signifying convolutions over transverse momenta.
The invariant y ¼ ðP1 · lÞ=ðP1 · ðlþ l0ÞÞ can be calculated
from the 4-momenta of h1, the electron, and the positron,
P1, l, and l0, respectively, and zi ¼ 2Ehi=

ffiffiffi
s

p
, with Ehi the

energy of hadron i. The dependence on the quark polari-
zation appearing in Eq. (1) is now contained in the
dependence on the azimuthal angles ϕ1 and ϕ2, which
are measured between the hadron planes and the event
plane as shown in Fig. 1. The observable transverse
momenta of the hadrons with respect to the thrust axis,
which is defined below in Eq. (4), are denoted Pti and serve
as a proxy for the parton level Pi⊥.
Equation (2) can be written more compactly as

dσ ∼ AðyÞDq=h1
1 Dq̄=h2

1 þ BðyÞ cosðϕ1 þ ϕ2ÞH⊥q=h1
1 H⊥q̄=h2

1 :

ð3Þ

In the eþe− center-of-mass (c.m.) system, used in the
following for all calculations, the kinematic factors A and B
can be expressed as A ¼ 1

4
ð1þ cos2 θÞ and B ¼ 1

4
ðsin2 θÞ.

The angle θ is the angle between the qq̄ axis and the beam
axis [25]. Since the transverse projection of the polarization
can be calculated in QED as ðsin2 θÞ=ð1þ cos2 θÞ, the
appearance of these factors is a reflection of the transverse-
polarization dependence of H⊥

1 . In a leading-order partonic
picture, the angles ϕi would be measured around the qq̄
axis. As this quantity is not accessible, it is approximated
by using the thrust axis. The thrust axis is defined as the
unit vector n̂ that maximizes the thrust T:

T ¼
X
p

jPp · n̂j
jPpj

; ð4Þ
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where the sum runs over all charged tracks and photons in
the event.
Using the thrust axis, it can be determined whether or

not the hadrons h1 and h2 in a given pair are in different
hemispheres (“back-to-back”) by requiring for their respec-
tive three-momenta Pi:

ðP1 · n̂ÞðP2 · n̂Þ < 0: ð5Þ

The azimuthal angles ϕi are calculated as

ϕi ¼ sgnfn̂ · ½ðẑ × n̂Þ × ðn̂ × PiÞ�g

× arccos

�
ẑ × n̂
jẑ × n̂j ×

n̂ × Pi

jn̂ × Pij
�
: ð6Þ

Here, ẑ is the unit vector along the eþ beam direction.
In the following, the Collins angle of a hadron pair is

defined as ϕ12 ≡ ϕ1 þ ϕ2. In terms of ϕ12, the hadron pair
yield over all events for a given kinematic bin is given by
N12 ≡ N12ðϕ12Þ. The normalized yield is computed from
N12 by dividing by the average yield: R12ðϕ12Þ ¼
ðN12ðϕ12ÞÞ=ðhN12iÞ. Considering only a cosðϕ12Þ modu-
lation, R12 can be parametrized as R12 ¼ 1þ a12ðθ; z1; z2;
P2
t1;P

2
t2Þ cosðϕ12Þ, with the azimuthal asymmetry1

a12ðθ; z1; z2;P2
t1;P

2
t2Þ

¼ sin2θ
1þ cos2θ

P
q;q̄e

2
qH

⊥q=h1
1 ðz1;P2

1⊥Þ⊗H⊥q̄=h2
1 ðz2;P2

2⊥ÞP
q;q̄e

2
qD

q=h1
1 ðz1;P2

1⊥Þ⊗Dq̄=h2
1 ðz2;P2

2⊥Þ
:

ð7Þ

Note that in the expression for a12 above, the full
dependence of the asymmetry a12 on θ, zi, and P2

ti is kept.
In the measurements presented in this work, at most two
variables are kept differential; the other ones are integrated
over their accepted ranges.
Measured azimuthal distributions can be strongly dis-

torted due to acceptance and radiation effects. To remedy
those effects the double ratio (DR) method can be used.
A DR is the ratio of normalized distributions from different
kinds of hadron pairs. Under the assumption that the effects
are quark-/hadron-flavor independent, they largely cancel
in double ratios [19,26,27]. In the previous charged-pion
analysis [18,19,21], one double ratio was defined as the
ratio of the normalized yield of unlike-sign (πþπ−) to that
of like-sign pairs (πþπþ and π−π−). In the current analysis
this is extended to include neutral mesons:

Rπ0
12 ¼

R0�
12

RL
12

¼ π0πþ þ π0π−

πþπþ þ π−π−
;

Rη
12 ¼

Rη�
12

RL
12

¼ ηπþ þ ηπ−

πþπþ þ π−π−
: ð8Þ

Here, R0�
12 ðRη�

12 ; R
L
12Þ denote the normalized yields of

π0πþ þ π0π− ðηπþ þ ηπ−; πþπþ þ π−π−Þ pairs and the
“þ” sign between different combinations means that both
pair combinations are considered for the yields. For charged
pions, asymmetries of like-sign pairs (L), unlike-sign pairs
(U), or pairs that are summed over both charges (C) can be
considered. From these combinations the following two
double ratios have traditionally been constructed:

RUL
12 ¼ RU

12

RL
12

¼ πþπ− þ π−πþ

πþπþ þ π−π−
;

RUC
12 ¼ RU

12

RC
12

¼ πþπ− þ π−πþ

πþπþ þ π−π− þ πþπ− þ π−πþ
: ð9Þ

Analogue to the definition of RL
12 for like-sign pairs, R

U
12 and

RC
12 denote the normalized yields of the unlike-sign and

charge-summed pairs. From RC
12 and RL

12 the double ratio

RCL
12 ¼ RC

12

RL
12

¼ πþπþ þ π−π− þ πþπ− þ π−πþ

πþπþ þ π−π−
ð10Þ

is constructed, which is interesting in the context of neutral
pions as being equal to the π0 double ratioRπ0

12 due to isospin
symmetry [28].

FIG. 1. Coordinate system used for this measurement. The
thrust axis is denoted n̂ and forms the angle θ in the c.m. system
with the beam axis (blue). The thrust axis and beam axis span
the event plane. The back-to-back hadrons with momenta Pi
(i ¼ 1, 2) form the azimuthal angles ϕi with the event plane. The
transverse momenta of the hadrons with respect to the thrust axis
are denoted Pti.

1The parameters of the functional forms of the single ratios are
denoted with small letters while capital letters are used for the
parametrization of the later-introduced double ratios.
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The double ratios (8)–(10) contain the fragmentation
functions of interest in various combinations. To simplify
expressions, fragmentation functions are often categorized
into favored and disfavored, depending on whether or not
the fragmenting-quark flavor is part of the valence structure
of the hadron formed. For pions, employing charge and
isospin symmetry, the nonstrange FFs are [28,29]

Dfav ≡Du=πþ ¼ Dd=π− ¼ Dū=π− ¼ Dd̄=πþ ;

Ddis ≡Du=π− ¼ Dd=πþ ¼ Dū=πþ ¼ Dd̄=π− ;

Du=π0 ¼ Dū=π0 ¼ Dd=π0 ¼ Dd̄=π0 ¼ 1

2
ðDdis þDfavÞ: ð11Þ

Besides up and down quarks, the contribution of strange
quarks is considered here.2 Employing the same symmetry
arguments as before, the probability for strange-quark
fragmentation is the same for all pion states, thus

Ddis
s→π ¼ Ds=π− ¼ Ds=πþ ¼ Ds=π0

¼ Ds̄=π− ¼ Ds̄=πþ ¼ Ds̄=π0 : ð12Þ

In a similar way the number of FFs for η production can be
reduced to

Du=η ¼ Dd=η ¼ Dū=η ¼ Dd̄=η ¼ 1

2
ðDfavη þDdisηÞ;

Ds→η ¼ Ds=η ¼ Ds̄=η: ð13Þ

Since strange quarks are part of the η valence structure, the
respective fragmentation function is not disfavored as is the
case of the π0 fragmentation functions.
The various double ratios can then be expressed in terms

of these FFs [28]. Using only the first term of a Taylor
expansion in cosðϕ12Þ one obtains

RUL
12 ≈ 1þ cosðϕ12Þ

sin2ðθÞ
1þ cos2ðθÞ ×

�
5ðH⊥;fav

1 ⊗ H⊥;fav
1 þH⊥;dis

1 ⊗ H⊥;dis
1 Þ þ 2H⊥;dis

1;s→π ⊗ H⊥;dis
1;s→π

5ðDfav
1 ⊗ Dfav

1 þDdis
1 ⊗ Ddis

1 Þ þ 2Ddis
1;s→π ⊗ Ddis

1;s→π

−
10H⊥;fav

1 ⊗ H⊥;dis
1 þ 2H⊥;dis

1;s→π ⊗ H⊥;dis
1;s→π

10Dfav
1 ⊗ Ddis

1 þ 2Ddis
1;s→π ⊗ Ddis

1;s→π

�
; ð14Þ

RUC
12 ≈ 1þ cosðϕ12Þ

sin2ðθÞ
1þ cos2ðθÞ ×

�
5ðH⊥;fav

1 ⊗ H⊥;fav
1 þH⊥;dis

1 ⊗ H⊥;dis
1 Þ þ 2H⊥;dis

1;s→π ⊗ H⊥;dis
1;s→π

5ðDfav
1 ⊗ Dfav

1 þDdis
1 ⊗ Ddis

1 Þ þ 2Ddis
1;s→π ⊗ Ddis

1;s→π

−
5ðH⊥;fav

1 þH⊥;dis
1 Þ ⊗ ðH⊥;fav

1 þH⊥;dis
1 Þ þ 4H⊥;dis

1;s→π ⊗ H⊥;dis
1;s→π

5ðDfav
1 þDdis

1 Þ ⊗ ðDfav
1 þDdis

1 Þ þ 4Ddis
1;s→π ⊗ Ddis

1;s→π

�
; ð15Þ

and in particular

Rπ0
12 ¼

R0�
12

RL
12

≈ 1þ cosðϕ12Þ
sin2ðθÞ

1þ cos2ðθÞ ×
�
5ðH⊥;fav

1 þH⊥;dis
1 Þ ⊗ ðH⊥;fav

1 þH⊥;dis
1 Þ þ 4H⊥;dis

1;s→π ⊗ H⊥;dis
1;s→π

5ðDfav
1 þDdis

1 Þ ⊗ ðDfav
1 þDdis

1 Þ þ 4Ddis
1;s→π ⊗ Ddis

1;s→πÞ

−
10H⊥;fav

1 ⊗ H⊥;dis
1 þ 2H⊥;dis

1;s→πH
⊥;dis
1;s→π

10Dfav
1 ⊗ Ddis

1 þ 2Ddis
1;s→π ⊗ Ddis

1;s→π

�
: ð16Þ

Using Eq. (13) results in the following expression for the η double ratio:

Rη
12 ¼

Rη�
12

RL
12

≈ 1þ cosðϕ12Þ
sin2ðθÞ

1þ cos2ðθÞ ×
�
5ðH⊥;favη

1 þH
⊥;disη
1 Þ ⊗ ðH⊥;dis

1 þH⊥;fav
1 Þ þ 4H⊥

1;s→η ⊗ H⊥;dis
1;s→π

5ðD⊥;favη
1 þD

⊥;disη
1 Þ ⊗ ðD⊥;dis

1 þD⊥;fav
1 Þ þ 4D1;s→η ⊗ Ddis

1;s→πÞ

−
10H⊥;fav

1 ⊗ H⊥;dis
1 þ 2H⊥;dis

1;s→π ⊗ H⊥;dis
1;s→π

10D⊥;fav
1 ⊗ D⊥;dis

1 þ 2Ddis
1;s→π ⊗ Ddis

1;s→π

�
: ð17Þ

In the measurement presented here, a parametrization of the form 1þ A12 cosðϕ12Þ is fitted to the double ratios. The
amplitude A12 of the cosðϕ12Þmodulation is the azimuthal asymmetry that is presented for various meson combinations and
binnings in z and Pt.

2Charm is qualitatively different due to its mass and the dominance of weak decay channels in pion production. In particular the
Collins effect for charm quarks is expected to be small and found so in charm enhanced data samples at Belle and BABAR [18,19,21].
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III. EXPERIMENT

The Belle experiment [30] at the KEKB storage
ring [31] recorded about 1 ab−1 of eþe− annihilation data.
The data were taken mainly at the ϒð4SÞ resonance atffiffiffi
s

p ¼ 10.58 GeV, but also at other ϒð1SÞ to ϒð5SÞ reso-
nances and at a continuum setting of

ffiffiffi
s

p ¼ 10.52 GeV.
This analysis used data from all these sources for a total
integrated luminosity of 980.4 fb−1. The Belle instrumenta-
tion used in this analysis includes a central drift chamber
(CDC) and a silicon vertex detector, which provide precision
tracking for tracks in 0.30 rad < θLab < 2.62 rad, and
electromagnetic calorimeters (ECL) [32] covering the
same region. The complete ECL consists of 8736 CsI(Tl)
counters, which are subdivided into the barrel region
(0.56 rad < θLab < 2.25 rad) and the end caps. This
analysis uses the barrel ECL for the reconstruction of π0

and η mesons. Particle identification is performed using
information on dE/dx in the CDC, a time-of-flight system
in the barrel, aerogel Cherenkov counters in the barrel and the
forward end cap, as well as a muon and KL identification
system embedded in the flux return steel outside the super-
conducting solenoid coils. The magnet provides a 1.5 T
magnetic field. Using these systems, the selection of charged
pions in the barrel, which is used in this analysis, achieves a
purity of 97% over all kinematic bins.

IV. ANALYSIS

As in previous similar Belle extractions of azimuthal
asymmetries of hadrons and di-hadron pairs [18,19,33],
hadronic events are selected by requiring at least three
tracks with a minimum visible energy of 7 GeVand a thrust
T > 0.8. These constraints reduce the contribution of B
mesons to below 1% and allow the inclusion of all on- and
off-resonance data in the analysis. The contribution of τ
leptons after these constraints is restricted mainly to the
highest z1, z2 bin, where it amounts to about 10–15% for
the unlike-sign pion pairs. The fraction is lower for like-
sign pairs and even more suppressed for the neutrals in this
analysis. A number of fiducial constraints are applied in
the c.m. system with the goal to minimize effects from
variations of the acceptance of the detector on the extracted
asymmetries. For this reason only mesons reconstructed
from tracks and photons in the barrel region of the detector
are considered. Table I lists the fiducial as well as the
other constraints applied. This work expands the previous
charged-pion analysis [18,19] to π0 and η mesons, which
requires adaptation of several differing or additional selec-
tion requirements. They are highlighted in Table I. No
correction of the asymmetries for these kinematic restric-
tions are applied, i.e., the asymmetries extracted are
averages in the so-defined phase space.
To minimize the impact of the fiducial constraints on the

extracted asymmetry, a hierarchical set of opening-angle
constraints on photons, hadron momenta, and the thrust

axis is applied. This ensures that the detector acceptance
of all mesons is radially symmetric around the thrust axis
and the acceptance in z and Pt of charged and neutral
mesons is approximately equal. All photons used for the
reconstruction of π0 and η mesons have a maximal opening
angle of 0.5 rad from the thrust axis. All charged and
reconstructed neutral mesons used in the asymmetry
computation are required to have a maximal opening angle
of 0.3 rad from the thrust axis in the c.m. system. Finally,
dictated by the geometric acceptance of the ECL, the thrust-
axis polar angle is restricted to 1.34 rad < θ < 2.03 rad to
ensure the radial symmetry of the acceptance for photons
inside the barrel around the thrust axis. To reconstruct
π0 and η mesons, pairs of photons are used for which a
minimum energy of 50 MeVand 150 MeV, respectively, is
required to reduce background due to combinatorics.
The yields of π0 and η mesons in each kinematic bin

are extracted from a fit to the two-photon invariant-mass
distribution, with a Crystal-Ball [34] function for the signal
and a fifth-order polynomial for the background. The signal
to background ratio determined in this way is then used to
correct the measured raw asymmetry for the background
contribution in the respective kinematic bin in the way
described below. Some exemplary fits for π0 and η mesons
are shown in Fig. 2. The measured invariant-mass distri-
butions from experimental data were compared with those
from simulations. The simulations used in this analysis
employ Pythia [35] and EvtGen [36] for various physics
processes not including the polarization-dependent Collins
effect, and GEANT3 [37] for the detector effects. For low-z
bins some disagreement between the shape of the invariant-
mass distributions of reconstructed π0s in experimental data
and simulation was observed. Therefore an almost non-
parametric method, which does not rely on the fit of the
signal, was evaluated as well. The method is based on the
observation that the background, defined as any pair of
electromagnetic clusters in the ECL that do not come from
the same π0, is well described by the simulation in the

TABLE I. Constraints applied in the analysis. The ones that are
different in this analysis compared to previous Belle Collins
analyses [18,19] are set in bold. (See text for description.)

Description Constraint

Minimum visible energy Evis Evis > 7 GeV
Thrust T T > 0.8
Opening angle αO of
reconstructed meson w.r.t. n̂

αO < 0.3 rad

Thrust axis polar angle θ 1.34 rad < θ < 2.03 rad
Minimum photon energy Eγ;π0

for π0
Eγ;π0 > 50 MeV

Minimum photon energy Eγ;η
for η

Eγ;η > 150 MeV

Opening angle αO;γ for photons
w.r.t. n̂

αO;γ < 0.5 rad
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sideband region both in magnitude and shape. Hence, instead
of fitting the entire invariant-mass spectrum with a back-
ground and a signal component, a background description
using a quadratic function fitted to 20 points in the upper and
lower sidebands obtained from MC, respectively, is used.
Once determined in this way, the background is subtracted
from the measured invariant-mass spectrum leaving the
remaining yield as the signal. The difference between the
two extraction methods for the final asymmetry is small,
typically less than one per mille in absolute asymmetry value,
and is added to the systematic uncertainties.
Using the reconstructed π0 and η mesons, as well as

charged pions that are reconstructed using the Belle
tracking and particle identification subsystems described
in Sec. III, pairs of “back-to-back” hadrons are constructed.
This is done by assigning a hemisphere to each meson in
the event based on the projection on the thrust axis n̂ and
then considering all combinations of hadrons in the first
hemisphere with those in the second. Utilizing the thrust
axis, the azimuthal angles ϕ1 and ϕ2 for these “back-to-
back” pairs of mesons are computed using Eq. (6).
Double ratios of ϕ12-dependent yields are constructed

for the various meson pairs. A cosine function is fitted to
the data in order to extract raw asymmetries binned in
various combinations of zi and Pti. Here, i ¼ 1 always

refers to the neutral meson in the pair when applicable. For
pairs of charged pions, the assignment of the first and
second pion in a pair is random. Since smearing effects
are largest and the Collins effect is smallest at low z, a
constraint of z1 > 0.2 is used, with the exception of the
results that are binned in both z1 and z2, where zi > 0.1 is
used. The bin boundaries for the Pt binning are 0, 0.15, 0.3,
0.5, and 3 GeV. For the binning in zi, bin boundaries differ
between results only binned in z1 and those binned in both
z1 and z2. In the former case, bins of ½0.2 − 0.3�, ½0.3 − 0.4�,
½0.4 − 0.5�, ½0.5 − 0.6�, ½0.6 − 0.7�, ½0.7 − 1.0� and in the
latter case, bins of ½0.1 − 0.2�, ½0.2 − 0.3�, ½0.3 − 0.5�,
½0.5 − 0.7�, ½0.7 − 1.0� are used. For the η, due to its higher
mass, an additional constraint of z > 0.3 is added for all
mesons in the respective pairs.
To arrive at the final asymmetries, several corrections are

applied to the raw asymmetries as explained below.
First, the raw asymmetries for π0 and η mesons are

corrected for the contribution from the combinatorial
background. The background contribution is determined
by calculating asymmetries using γ pairs with a recon-
structed mass in the sideband region of the π0 (η) invariant-
mass distribution. Given the limited statistics in this
region, four values of the asymmetry are calculated,
two in the lower sideband and two in the upper sideband.
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FIG. 2. Typical two-photon invariant-mass distributions, fit using a Crystal-Ball function for the signal and a polynomial background
function, for π0 (top plots) and η (bottom plots) mesons. In each plot, the green dash-dotted line represents the fitted background using a
polynomial of fifth order, the red dashed line the fitted signal, and the blue dotted line is the combined background and signal fit. The
combined fit agrees well with the experimental data in black. The vertical dashed lines indicate the boundaries used in the analysis for
signal events.
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The observed background asymmetries on both sides of the
π0 (η) signal are consistent with each other and we use a
linear fit to extract the contribution of the background to
the asymmetry in the signal region using the signal-to-
background ratio extracted from the fits to the invariant-
mass spectra described earlier.
Second, false asymmetries, determined from simula-

tions, are subtracted. Since the simulation does not contain
the Collins effect, any residual asymmetry is a systematic
error. The overall distribution of the false asymmetries over
the kinematic bins is consistent with a distribution of zero
mean. However, in each bin, they can fluctuate away from
zero. The statistical uncertainties of the residual asymme-
tries is added to our final systematic uncertainties. The
relative contribution of these uncertainties ranges from the
subpercent level at low z to a few percent at high z. Finally,
the asymmetries are corrected for thrust-smearing and bin-
migration effects, with bin-migration effects only playing a
marginal role. The smearing of the reconstructed z values is
negligible due to the excellent momentum reconstruction of
the Belle apparatus. In contrast, bin migration is significant
for the reconstructed Pt. The reason for this is that Pt is
defined with respect to the thrust axis, the latter suffering
from sizable misreconstruction due to particles missed
outside of the detector acceptance.
To estimate and correct for the effect of the smearing in

Pt, a reweighted simulation sample was used. Reweighting
the existing simulation is necessary, as the original simu-
lation does not contain the Collins effect. The procedure
used weights for each reconstructed hadron pair by
assigning a weight wi ¼ 1þ A cosðϕi

12Þ, where A is the
amplitude of the injected Collins effect and ϕi

12 the Collins
angle of the ith pair.
The goal of the reweighting of the simulation is the

reproduction of the shape of the double-ratio asymmetries
observed in the data. The Pt dependence of the extracted
asymmetries, discussed in more detail in Sec. V, is well
described by a linear function in each z bin. Therefore, a
ðPt1; Pt2Þ-dependent amplitude of the form AðPt1; Pt2Þ ¼
1þ aN;DPt1Pt2 was chosen for the reweighting in each z
bin. The observed double ratios determine the amplitudes
of modulation in the numerator (aN) and denominator (aD)
only up to a common scaling factor. The dependence of the
smearing factor on this scaling factor and on reasonable
variations of the ratio aN=aD was observed to be negligible.
Using this reweighted simulation, a correction factor fS for
each bin is calculated as the ratio of the input double-ratio
asymmetries and the reconstructed double-ratio asymme-
tries. For the former, the generated kinematics of the
detected hadrons are used and the thrust axis is computed
taking all generated particles in the event into account,
including those that are outside of the acceptance of the
spectrometer.
The statistical uncertainties in fS contribute to the final

systematic uncertainty. Values for fS are between fS ¼ 1.2

and fS ¼ 1.3, with the exception of the kinematic boun-
daries in the lowest Pt bin or when both particles in the
pair are in the highest z bin. Here, the hadrons are close to
the thrust axis, enhancing smearing effects, and the
correction factor takes values between fS ¼ 1.4 and
fS ¼ 1.5, depending on the particle species. The relative
uncertainty on fS is again driven by the Monte Carlo
statistics and is below 2% in the single-z binning, while for
the binning in the z values of both hadrons it is below 3%
for most bins, but reaches 10% for the highest (z1, z2) bin.
The applied corrections for smearing effects, background

contributions, and false asymmetries can be summarized by

A12 ¼ ðAraw;bg-corrected − AMCÞfS: ð18Þ

Here, Araw;bg-corrected is the raw asymmetry after background
correction. AMC is the false asymmetry measured in
simulation. Finally, the asymmetry is corrected for smear-
ing using the smearing correction fS. Similarly, systematic
uncertainties that arise from the statistical uncertainties on
the smearing effects, the background contribution, and the
false asymmetries can be summarized by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA12Þ2

�
δfS
fS

�
2

þ ðfSδFÞ2 þ ðfSδAMCÞ2
s

: ð19Þ

Here, δF is the systematic uncertainty stemming from
the differences in extracted raw asymmetries using the two
different fit procedures.

V. RESULTS AND DISCUSSION

Azimuthal asymmetries are measured for double ratios
involving charged pions, neutral pions, and eta mesons.
Their cosine amplitudes are extracted in various kinematic
binnings including z, Pt, and a mixed z − Pt binning.
Significantly nonzero cosine amplitudes are found for all
double ratios examined, with magnitudes of mainly a few
percent but reaching up to 20% in certain kinematic
corners, as pointed out further below.
One novelty of the measurements presented here com-

pared to previous Belle analyses [18,19] is the inclusion of
explicit transverse-momentum dependence of the asymme-
tries. This should help significantly to better constrain
the transverse-momentum dependence of the Collins frag-
mentation function. The presented asymmetries, with the
exception of the comparison to the previous Belle analysis,
are not corrected for charm contributions as discussed
further below. Figure 3 shows the dependence of both AUC

12

and AUL
12 on the transverse momentum of each of the two

pions, where the superscriptsUC andUL denote the charge
sign combination as defined in (9). In general, AUL

12 is found
to be about double the size of AUC

12 , consistent with previous
analyses of these asymmetries [18,19,21]. Both asymme-
tries exhibit a clear rise with increasing, Pt1 and Pt2 without
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showing any indication of leveling out at larger values of
Pt1 and Pt2. In contrast, the largest asymmetry (in this
projection) of around 10% for AUL

12 is found in the last
(Pt1; Pt2) bin. This behavior is similar to what was found
by BABAR [21], which can be explained perhaps by the
limited reach in Pt. A direct quantitative comparison
of these results with those by BABAR is hampered by
the significantly different binning used here. Only in
the case of the (z1, z2) binning, a few bins at large z1
and z2 can be made out that have similar average z and Pt.
Still, the polar angular range of the thrust axis covered
by the two measurements is quite different leading to a
sin2θ=ð1þ cos2θÞ scaling of the cosine modulations
[cf. Eqs. (14)–(16)] that are in variance with each other.
However, those are simple scale factors that can be
divided out, leaving asymmetries that can be directly
compared. In the end, a discrepancy between Belle and
BABAR is apparent that cannot be explained easily by
charm contributions included here but corrected for at
BABAR. Such a discrepancy between Belle and BABAR is
not new and was observed already before for the large-z
region [38]. It is thought to be caused by differences in the
applied constraints, e.g., differences in the methodology
for removing τ contributions.
Since there are already published results from Belle for

charged-pion pairs for the ðz1; z2Þ binning, which cover
roughly the same kinematic region, a comparison between
the results presented here and those from the previous
publications [18,19] is provided. The previous results use a
smearing correction to correct back to the qq̄ axis extracted

from simulation. Since this is not an observable and can be
defined cleanly only at leading order, this correction is
replaced with a correction back to the thrust axis in the
present analysis. Therefore the comparison is performed
for asymmetries for which the smearing corrections are
removed. This corresponds to a division by the mean
smearing correction factor 1.66 for the previous analysis
whereas the available bin-by-bin correction is used for
this analysis. Further, the compared asymmetry values
have been corrected for the kinematic factor sin2ðθÞ=
ð1þ cos2ðθÞÞ bin-by-bin, which differs between the two
analyses as a result of the different fiducial constraints. The
analysis in Ref. [19] uses a constraint on the z projection of
the thrust axis of jTzj < 0.75, which corresponds to
0.72 rad < θ < 2.42 rad. Hence, for the previous analysis
the mean kinematic factor is 0.77 whereas it is 0.91 for
the presented analysis. The results after adjustments for
both the smearing and kinematic factors for the asymmetry
values and their uncertainties is the comparison shown
in Fig. 4.
There are two further noteworthy differences between

the two analyses: (i) The previous analysis does not apply
opening-angle constraints. One effect of this difference is
that the sampled Pt range is different, since high-z hadrons
tend to be closer to the thrust axis.
(ii) The previous Belle analysis corrects for the charm

contribution using a D� sample. In this analysis, the
charm contribution was not corrected for, since using the
D� sample can introduce a bias in phase space and
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12 (circles) for charged-pion pairs versus Pt1 for four bins in Pt2 (as labeled), integrating within the overall
limits of [0.2, 1.0] over z. Error bars represent statistical uncertainties while the colored bands indicate systematic uncertainties.
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introduces larger uncertainties. Instead, the fractional
contribution from charm to the event sample is given for
each bin in Appendix A, so it can be used for a global
extraction.

For the comparison in Fig. 4, it is assumed that the
Collins signal coming from charm fragmentation vanishes.
In that case, the charm contribution reduces to a simple
dilution of the asymmetry of size (1 − fc), where fc is the
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FIG. 4. Comparison of the values for AUL
12 extracted in this analysis and the previous Belle analysis in the (z1, z2) after undoing the

different smearing corrections, and after correcting for the different average transverse polarization of the qq̄ pairs in the two
measurements due to differences in the θ ranges probed. To make the comparison, the contribution of charm quarks was corrected for by
assuming a vanishing charm asymmetry. To avoid confusion with the corrected results, the symbol ÂUL

12 has been used to denote the
asymmetry. The lowest z bin was omitted, since the previous analysis used a constraint of z > 0.2. In the figure, data points of the
previous analysis are offset horizontally by 0.02 for better visibility.
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ratio of the number of events coming from cc̄ production
compared to the sum from cc̄ and light quarks (uds), which
in this analysis is extracted from Monte Carlo simulations
(see Appendix A for more details). As such the dilution
factor can be divided out.
Before discussing the comparison with the previous Belle

results, one word of caution on such a charm correction
is in place here: The observable of interest in this analysis is
the cosine moment of a double ratio, the latter being of the
form ½1þ ahadron pair 1

12 cosðϕ12Þ�=½1þ ahadron pair 2
12 cosðϕ12Þ�,

which is Taylor-expanded to 1þ cosðϕ12Þ½ahadron pair 1
12 −

ahadron pair 2
12 �. Clearly, the charm correction sketched above

works when both hadron pairs suffer the same amount of
dilution. However, it does not work in general when the
charm contribution is different for the two hadron pairs, as in
that case the dilution factors do not factor out. While this is
of a lesser problem for the π0 asymmetries presented here,
as the charm fractions are similar for charged-pion pairs
and those involving a π0 (cf. Tables II–VI), it is certainly
more difficult to make this argument for the η asymmetries.
It is also for that reason that both the π0 and η asymmetries

discussed further below are not corrected for charm con-
tributions. Figure 5 shows an example comparison of the
model-dependent charm fractions in the (z1, z2) used for
the Aπ0

12 and Aη
12 asymmetries extracted from the Belle

Monte Carlo. Here the superscripts refer to the charge
combinations as defined in (8). The charm fractions become
small and similar at large z, but deviate from each other for
π0 and η at lower values of z, where the charm fraction gets
as large as 20% in the case of π�η pairs.
Coming back to the comparison presented in Fig. 4, in

general a good agreement is visible with the exception of
one point in the third z1 and z2 bin, which seems to be an
outlier. However, a quantification of the agreement is
difficult, since the uncertainties of the measurements are
correlated. Disregarding this correlation and excluding
the outlier, one arrives at a χ2 per degree of freedom of
1.2. The consistency between the results indicates that the
assumption of a vanishing asymmetry for charm quarks is
justified.
A second novelty of this measurement is the inclusion of

double ratios involving neutral mesons, more specifically
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π0 and η. The fragmentation functions for neutral pions are
related to those of charged pions through isospin symmetry.
Similarly, the η fragmentation functions can be related to
those of pions through SU(3) flavor symmetry, which,
however, is known to be violated due to the substantially
larger mass of strange quarks.

Figure 6 displays the dependence of Aπ0
12 on z1 and z2. As

expected from the charged-pion results, significant asym-
metries that rise with z are observed. In the highest ðz1; z2Þ
bin, for which one expects the largest correlation between
the fragmenting quark, including its polarization and the
final-state hadron, they are reaching 20%. In the lowest z
bin, where a large amount of disfavored fragmentation
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contributes, the asymmetries are consistent with zero
within statistical and systematic precision on the sub-
percent level.
For the double ratios involving neutral mesons, the

asymmetries do not have to be symmetric under inter-
change of the hadron subscript on z and Pt as the neutral
meson in the numerator of the double ratios is identified
as hadron 1 and the charged pion in the opposite hemi-
sphere as hadron 2. As a result the z1 and Pt1 dependences
provide the most sensitivity to the π0 and η fragmentation
functions.
The transverse-momentum dependence is explored in

both a mixed z1 − Pt1 binning and a Pt1 − Pt2 binning.
Figure 7 shows the results for Aπ0

12 versus z1 and Pt1, and
Fig. 8 the results versus Pt1 and Pt2. For Pt1 approaching
zero, the asymmetry vanishes. The continuous rise with Pt1

is consistent with a linear behavior. Higher values of z1 are
again associated with larger values of Aπ0

12, following the
same behavior encountered for the charged-pion case.
The results for the η asymmetries have significantly

larger uncertainties than those from π0. They are extracted
from the Belle data imposing a minimum z of 0.3 for both
the η and the charged pions involved in the construction of
the double ratios. Figure 9 shows the results of Aη

12 binned
in ðz1; z2Þ. The rise with z is much less pronounced than the
one for charged and neutral pions. Indeed, for the sole z1
dependence, integrating over Pt1 as well as the kinematics
of the hadrons in the opposite hemisphere, the asymmetry
appears almost constant as shown in Fig. 10.
Figure 11 shows the results of Aη

12 binned in ðPt1; Pt2Þ.
A clear rise of the asymmetry with transverse momentum
can be identified that reaches up to 0.05 for the largest
values of Pti. Within large uncertainties, these results for
Aη
12 are mostly consistent with those of Aπ0

12.
In the case of the mixed (z1, Pt1) binning, displayed in

Fig. 12, no definite behavior is visible. While clearly rising
with Pt1 for the last z1 bin (z1 > 0.7), the asymmetry is
otherwise nearly consistent with a constant, especially as
one approaches the lowest z1 bin. Nevertheless, within the
much larger uncertainties the η asymmetries are consistent
with the Aπ0

12 results, which are shown explicitly in Fig. 13
for the (z1, Pt1) binning, and for which the z > 0.3
requirement was also applied to the π0 asymmetries.
One caveat of this direct comparison is the difference in
charm contributions to the π0 and η, which are about
20–30% larger for the η sample and cannot be eliminated
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easily as discussed above. On the other hand, for
bins with similar enough charm contributions, a compari-
son is better motivated. Considering Tables II–V, the best
candidates appear to be the first few bins in the ðPt1; Pt2Þ
binning, for which the η and π0 asymmetries are fully

consistent.

Direct extraction of the fragmentation functions for π0

and η from the double ratio results for comparison with
those for charged pions requires further assumptions on the
charged-pion fragmentation functions, and is hampered
by the complexity of the double ratios. This becomes
apparent when recalling the rather involved parton-model
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expressions (14)–(17) for the various meson combinations.

The expression for Aπ0
12 is equal to that of AUL

12 − AUC
12 as a

result of the isospin relations (11) and (12). Figure 14

displays both Aπ0
12 and the difference between A

UL
12 and AUC

12 ,
and indeed good agreement is found. The comparison is to
be taken with caution as not all potential correlations
between the three asymmetries are taken into account.
The nonvanishing asymmetries for double ratios involv-

ing π0 and η mesons do not necessarily point to non-
vanishing Collins fragmentation functions for these two. It
is plausible for nonvanishing asymmetries to arise in the
case of vanishing Collins functions for π0 and η due to the
presence of the second ratio term in Eqs. (16) and (17),

which involves only the charged pions.3 The first ratio term
can be rewritten in terms of products of only π0 fragmen-
tation functions (in the case of Aπ0

12) or of π0 and η
fragmentation functions (in the case of Aη

12); i.e., the first
ratio is governed by neutral-meson fragmentation functions
only, while the second term by charged-pion fragmentation
functions. Taking into account that the favored and dis-
favored pion Collins fragmentation functions are on aver-
age of similar magnitude but opposite in sign, thus leading
to cancellation effects in the combination relevant for
the π0, a scenario is plausible in which the π0 Collins
fragmentation is small and the observed signal is due to the
term containing the charged-pion fragmentation functions.
This is also consistent with the vanishing π0 Collins
asymmetries observed in semi-inclusive DIS [39]. The
nonvanishing results for Aπ0

12 and A
η
12 would then mainly be

a reflection of the nonvanishing azimuthal modulation in
the denominator of those double ratios.

VI. SUMMARY AND CONCLUSION

An analysis of azimuthal asymmetries related to the
Collins mechanism has been presented for pairs of back-to-
back neutral and charged pions as well as η mesons and
charged pions. The analysis substantially differs from
previous Belle analyses in that results are only presented
in the thrust-axis frame, correcting to the generated thrust
axis, not the qq̄ axis, the opening angle of the hadrons to the
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3As a reminder, the second term enters because of using
charged-pion pairs in the denominator of the double ratios.
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thrust axis was limited to 0.3 (which effectively corre-
sponds to a z-dependent upper limit on Pt), and asymme-
tries were not corrected for charm contributions. Instead,
the charm fraction is included and its impact can more
properly be treated in future analyses when relevant results
on charm azimuthal asymmetries become available, e.g.,
from Belle II [40]. More importantly, this measurement
significantly expands the scope of previous Belle measure-
ments by a) including π0 and η mesons; and b) exploring
the transverse-momentum dependence of the azimuthal
asymmetries. Significant asymmetries for all channels
are observed. Asymmetries mostly rise, within the given
kinematic coverage, with z and Pt. The signal for η and π0

mesons agrees within uncertainties. We show the results for
charged-pion pairs agree well with previous Belle mea-
surements [18,19].
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APPENDIX A: CHARM FRACTIONS

The fraction of events originating from charm production
is given for the various meson combinations and kinematic
binning listed in Tables II–VI. Here, the charm fraction is
defined as the ratio of meson pairs that come out from cc̄
production over those coming out of qq̄ (q ¼ u, d, s, c)
production as determined from Pythia and EvtGen

Monte Carlo simulations employing the Belle default tune.
The charm fractions generally are largest at low values of z,
reaching fractions as large as 40%, and decrease rapidly
with increasing z to a negligible level in the very last z bins.
A much milder dependence on Pt is observed for all hadron
pairs. The fractions are in average larger for pairs involving
η mesons compared to those involving only pions.

TABLE II. Charm fraction in z1 bins. All numbers are in
percent. The minimum zi for pions is raised to z1;2 > 0.3 in the
last two columns to align with the zi constraint for pairs involving
η mesons.

π�π� π0π� ηπ� π0π� (z > 0.3)
z1 [%] [%] [%] [%]

[0.2,0.3] 22 24
[0.3,0.4] 18 19 20 16
[0.4,0.5] 16 16 17 14
[0.5,0.6] 15 14 16 11
[0.6,0.7] 10 9 13 7
[0.7,1.0] 5 4 7 3

TABLE III. Charm fraction in Pt1 bins. All numbers are in
percent.

π�π� π0π� ηπ� π0π� (z > 0.3)
Pt1 [GeV] [%] [%] [%] [%]

[0,0.15] 20 21 16 13
[0.15,0.30] 20 21 16 14
[0.30,0.50] 19 19 18 15
[0.50,3.0] 19 18 21 15
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TABLE IV. Charm fraction in combined z1 − z2 bins. All numbers are in percent. Empty bins do not fulfill
zi > 0.3 required for those columns.

π�π� π�π0 ηπ� π0π� (z > 0.3)
z1 z2 [%] [%] [%] [%]

[0.1,0.2] [0.1,0.2] 37 42 � � � � � �
[0.1,0.2] [0.2,0.3] 31 35 � � � � � �
[0.1,0.2] [0.3,0.5] 25 29 � � � � � �
[0.1,0.2] [0.5,0.7] 19 22 � � � � � �
[0.1,0.2] [0.7,1.0] 6 8 � � � � � �
[0.2,0.3] [0.1,0.2] 31 33 � � � � � �
[0.2,0.3] [0.2,0.3] 26 27 � � � � � �
[0.2,0.3] [0.3,0.5] 21 22 � � � � � �
[0.2,0.3] [0.5,0.7] 16 17 � � � � � �
[0.2,0.3] [0.7,1.0] 5 6 � � � � � �
[0.3,0.5] [0.1,0.2] 25 25 � � � � � �
[0.3,0.5] [0.2,0.3] 21 21 � � � � � �
[0.3,0.5] [0.3,0.5] 16 16 20 16
[0.3,0.5] [0.5,0.7] 12 12 15 12
[0.3,0.5] [0.7,1.0] 4 4 5 4

[0.5,0.7] [0.1,0.2] 19 18 � � � � � �
[0.5,0.7] [0.2,0.3] 16 15 � � � � � �
[0.5,0.7] [0.3,0.5] 12 11 16 11
[0.5,0.7] [0.5,0.7] 8 8 11 8
[0.5,0.7] [0.7,1.0] 3 3 3 3

[0.7,1.0] [0.1,0.2] 7 5 � � � � � �
[0.7,1.0] [0.2,0.3] 6 5 � � � � � �
[0.7,1.0] [0.3,0.5] 4 3 8 3
[0.7,1.0] [0.5,0.7] 3 2 5 2
[0.7,1.0] [0.7,1.0] 1 1 2 1

TABLE V. Charm fraction in (Pt1, Pt2) bins. All numbers are in percent.

π�π� π0π� ηπ� π0π� (z > 0.3)
Pt1 [GeV] Pt2 [GeV] [%] [%] [%] [%]

[0,0.15] [0,0.15] 20 22 14 12
[0,0.15] [0.15,0.30] 20 22 15 12
[0,0.15] [0.30,0.50] 19 21 16 14
[0,0.15] [0.50,3.0] 19 21 18 15

[0.15,0.30] [0,0.15] 20 22 14 12
[0.15,0.30] [0.15,0.30] 20 21 15 12
[0.15,0.30] [0.30,0.50] 19 21 17 14
[0.15,0.30] [0.50,3.0] 19 21 18 16

[0.30,0.50] [0,0.15] 19 20 16 13
[0.30,0.50] [0.15,0.30] 19 20 17 13
[0.30,0.50] [0.30,0.50] 18 19 19 15
[0.30,0.50] [0.50,3.0] 18 19 21 17

[0.50,3.0] [0,0.15] 20 19 19 14
[0.50,3.0] [0.15,0.30] 19 19 20 14
[0.50,3.0] [0.30,0.50] 18 18 21 16
[0.50,3.0] [0.50,3.0] 17 17 24 17
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APPENDIX B: TABLES OF RESULTS

In the Tables VII–XVIII, all asymmetry results are tabulated together with the averages in the kinematic variables z1, z2,
Pt1, and Pt2, as well as of the quantity sin2 θ=ð1þ cos2 θÞ, which corresponds to a measure of the size of transverse
polarization of the quark–antiquark pair produced. The tabulated values are obtained from the hadron pairs with the same
kinematics that are used to bin the data. Then the average of hadron pairs that appear in the double ratio is taken.

TABLE VI. Charm fraction in (z1, Pt1) bins. All numbers are in percent.

Pt1 [GeV] π�π� π0π� ηπ�
z1 [%] [%] [%] [%]

[0.2,0.3] [0,0.15] 23 25 � � �
[0.2,0.3] [0.15,0.30] 22 24 � � �
[0.2,0.3] [0.30,0.50] 22 23 � � �
[0.2,0.3] [0.50,3.0] � � � � � � � � �
[0.3,0.5] [0,0.15] 16 17 20
[0.3,0.5] [0.15,0.30] 16 17 23
[0.3,0.5] [0.30,0.50] 18 18 27
[0.3,0.5] [0.50,3.0] 21 20 28

[0.5,0.7] [0,0.15] 11 16 16
[0.5,0.7] [0.15,0.30] 11 16 21
[0.5,0.7] [0.30,0.50] 13 17 24
[0.5,0.7] [0.50,3.0] 16 19 26

[0.7,1.0] [0,0.15] 3 10 10
[0.7,1.0] [0.15,0.30] 4 10 11
[0.7,1.0] [0.30,0.50] 5 11 15
[0.7,1.0] [0.50,3.0] 6 14 19

TABLE VII. Charged-pion Collins asymmetries AUC
12 and AUL

12 binned in Pt. Uncertainties are statistical and systematic, respectively.
The table contains data binned in Pt1 while integrated over the other variables, as well as data simultaneously binned in Pt1 and Pt2.

Pt1 [GeV] hPt1i [GeV] z1 hz1i Pt2 [GeV] hPt2i [GeV] z2 hz2i h sin2ðθÞ
1þcos2ðθÞi AUL

12 [%] AUC
12 [%]

[0,0.15] 0.10 [0.2, 1.0] 0.32 [0,3.0] 0.32 [0.2, 1.0] 0.36 0.91 1.34� 0.19� 0.07 0.67� 0.15� 0.05
[0.15,0.3] 0.23 [0.2, 1.0] 0.31 [0,3.0] 0.32 [0.2, 1.0] 0.36 0.91 2.25� 0.10� 0.03 1.12� 0.08� 0.03
[0.3,0.5] 0.38 [0.2, 1.0] 0.36 [0,3.0] 0.32 [0.2, 1.0] 0.36 0.91 3.18� 0.10� 0.03 1.59� 0.08� 0.03
[0.5,3.0] 0.63 [0.2, 1.0] 0.51 [0,3.0] 0.32 [0.2, 1.0] 0.36 0.91 5.53� 0.18� 0.07 2.76� 0.14� 0.06

[0,0.15] 0.10 [0.2, 1.0] 0.32 [0,0.15] 0.10 [0.2, 1.0] 0.32 0.91 −0.05� 0.40� 0.13 −0.02� 0.31� 0.1
[0,0.15] 0.10 [0.2, 1.0] 0.32 [0.15,0.3] 0.23 [0.2, 1.0] 0.31 0.91 1.06� 0.31� 0.11 0.53� 0.25� 0.09
[0,0.15] 0.10 [0.2, 1.0] 0.32 [0.3,0.5] 0.38 [0.2, 1.0] 0.36 0.91 1.74� 0.30� 0.11 0.87� 0.24� 0.09
[0,0.15] 0.10 [0.2, 1.0] 0.32 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 2.38� 0.51� 0.20 1.19� 0.40� 0.16

[0.15,0.3] 0.23 [0.2, 1.0] 0.31 [0,0.15] 0.10 [0.2, 1.0] 0.32 0.91 1.50� 0.34� 0.13 0.75� 0.27� 0.1
[0.15,0.3] 0.23 [0.2, 1.0] 0.32 [0.15,0.3] 0.23 [0.2, 1.0] 0.31 0.91 1.74� 0.16� 0.05 0.87� 0.12� 0.04
[0.15,0.3] 0.23 [0.2, 1.0] 0.31 [0.3,0.5] 0.38 [0.2, 1.0] 0.36 0.91 2.12� 0.15� 0.05 1.06� 0.12� 0.04
[0.15,0.3] 0.23 [0.2, 1.0] 0.31 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 4.63� 0.26� 0.11 2.32� 0.21� 0.09

[0.3,0.5] 0.38 [0.2, 1.0] 0.36 [0,0.15] 0.10 [0.2, 1.0] 0.32 0.91 1.39� 0.29� 0.1 0.69� 0.23� 0.08
[0.3,0.5] 0.38 [0.2, 1.0] 0.36 [0.15,0.3] 0.23 [0.2, 1.0] 0.31 0.91 2.70� 0.15� 0.05 1.35� 0.12� 0.04
[0.3,0.5] 0.38 [0.2, 1.0] 0.36 [0.3,0.5] 0.38 [0.2, 1.0] 0.36 0.91 3.31� 0.15� 0.05 1.66� 0.12� 0.04
[0.3,0.5] 0.38 [0.2, 1.0] 0.36 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 5.36� 0.26� 0.11 2.67� 0.21� 0.08

[0.5,3.0] 0.63 [0.2, 1.0] 0.51 [0,0.15] 0.10 [0.2, 1.0] 0.32 0.91 2.35� 0.53� 0.21 1.18� 0.41� 0.17
[0.5,3.0] 0.63 [0.2, 1.0] 0.51 [0.15,0.3] 0.23 [0.2, 1.0] 0.31 0.91 4.07� 0.27� 0.11 2.04� 0.21� 0.08
[0.5,3.0] 0.63 [0.2, 1.0] 0.51 [0.3,0.5] 0.38 [0.2, 1.0] 0.36 0.91 5.60� 0.26� 0.11 2.80� 0.20� 0.08
[0.5,3.0] 0.63 [0.2, 1.0] 0.52 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 9.89� 0.52� 0.24 4.95� 0.4� 0.19
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TABLE VIII. Charged-pion Collins asymmetries AUL
12 and AUC

12 binned in z. Uncertainties are statistical and systematic, respectively.
The table contains data binned in z1 while integrated over the other variables, as well as data simultaneously binned in z1 and z2.

z1 hz1i Pt1 hPt1i [GeV] z2 hz2i Pt2 hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi AUL

12 [%] AUC
12 [%]

[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.90 2.47� 0.09� 0.03 1.24� 0.08� 0.03
[0.3,0.4] 0.35 [0, 3.0] 0.32 [0.2,1.0] 0.35 [0, 3.0] 0.32 0.91 2.75� 0.12� 0.04 1.38� 0.09� 0.03
[0.4,0.5] 0.45 [0, 3.0] 0.39 [0.2,1.0] 0.35 [0, 3.0] 0.32 0.91 2.85� 0.16� 0.06 1.43� 0.12� 0.04
[0.5,0.6] 0.55 [0, 3.0] 0.45 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.91 3.86� 0.22� 0.08 1.93� 0.17� 0.06
[0.6,0.7] 0.64 [0, 3.0] 0.48 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.91 4.64� 0.29� 0.13 2.32� 0.22� 0.10
[0.7,1.0] 0.78 [0, 3.0] 0.44 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.90 6.81� 0.36� 0.20 3.41� 0.27� 0.15

[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.91 0.87� 0.11� 0.04 0.44� 0.09� 0.04
[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.91 1.16� 0.13� 0.05 0.58� 0.10� 0.04
[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.90 1.44� 0.12� 0.05 0.72� 0.10� 0.04
[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.90 2.49� 0.23� 0.10 1.25� 0.18� 0.08
[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.7,1.0] 0.78 [0, 3.0] 0.42 0.90 3.76� 0.52� 0.30 1.88� 0.41� 0.24

[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.91 1.20� 0.12� 0.04 0.60� 0.10� 0.04
[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.91 1.98� 0.15� 0.05 0.99� 0.12� 0.04
[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.90 2.35� 0.14� 0.05 1.18� 0.11� 0.04
[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.90 3.97� 0.27� 0.11 1.99� 0.21� 0.08
[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.7,1.0] 0.78 [0, 3.0] 0.43 0.90 4.62� 0.55� 0.28 2.31� 0.42� 0.22

[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.91 1.17� 0.12� 0.04 0.58� 0.09� 0.04
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.91 2.03� 0.14� 0.05 1.01� 0.11� 0.04
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 2.97� 0.15� 0.05 1.48� 0.12� 0.04
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.91 4.41� 0.28� 0.11 2.21� 0.22� 0.08
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.7,1.0] 0.78 [0, 3.0] 0.44 0.91 5.95� 0.56� 0.29 2.97� 0.43� 0.22

[0.5,0.7] 0.58 [0, 3.0] 0.46 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.91 2.01� 0.22� 0.09 1.01� 0.17� 0.07
[0.5,0.7] 0.58 [0, 3.0] 0.46 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.91 3.09� 0.26� 0.10 1.54� 0.20� 0.08
[0.5,0.7] 0.58 [0, 3.0] 0.46 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 4.33� 0.28� 0.10 2.17� 0.22� 0.08
[0.5,0.7] 0.58 [0, 3.0] 0.47 [0.5,0.7] 0.58 [0, 3.0] 0.47 0.91 6.09� 0.50� 0.22 3.06� 0.38� 0.17
[0.5,0.7] 0.58 [0, 3.0] 0.47 [0.7,1.0] 0.78 [0, 3.0] 0.44 0.91 11.10� 1.05� 0.65 5.59� 0.77� 0.49

[0.7,1.0] 0.78 [0, 3.0] 0.42 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.91 2.57� 0.48� 0.26 1.28� 0.36� 0.21
[0.7,1.0] 0.78 [0, 3.0] 0.43 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.91 5.07� 0.53� 0.29 2.55� 0.40� 0.22
[0.7,1.0] 0.78 [0, 3.0] 0.44 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.90 6.72� 0.57� 0.29 3.37� 0.44� 0.23
[0.7,1.0] 0.78 [0, 3.0] 0.44 [0.5,0.7] 0.58 [0, 3.0] 0.47 0.90 8.76� 0.96� 0.58 4.39� 0.71� 0.43
[0.7,1.0] 0.78 [0, 3.0] 0.46 [0.7,1.0] 0.78 [0, 3.0] 0.46 0.90 25.38� 2.43� 2.40 12.81� 1.7� 1.78

TABLE IX. Collins asymmetries Aπ0
12 binned in z. Uncertainties are statistical and systematic, respectively. The table contains data

binned in z1 while integrated over the other variables, as well as data simultaneously binned in z1 and z2.

z1 hz1i Pt1 hPt1i [GeV] z2 hz2i Pt2 hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi Aπ0

12 [%]

[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.91 1.25� 0.12� 0.06
[0.3,0.4] 0.35 [0, 3.0] 0.32 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.91 1.72� 0.13� 0.04
[0.4,0.5] 0.45 [0, 3.0] 0.39 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.91 1.72� 0.16� 0.06
[0.5,0.6] 0.54 [0, 3.0] 0.45 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.91 2.08� 0.22� 0.11
[0.6,0.7] 0.64 [0, 3.0] 0.49 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.90 2.51� 0.28� 0.13
[0.7,1.0] 0.77 [0, 3.0] 0.44 [0.2,1.0] 0.36 [0, 3.0] 0.32 0.90 3.86� 0.36� 0.20

[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.91 0.16� 0.19� 0.04
[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.91 0.18� 0.22� 0.06
[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 0.47� 0.22� 0.07
[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.91 1.02� 0.41� 0.11
[0.1,0.2] 0.15 [0, 3.0] 0.15 [0.7,1.0] 0.78 [0, 3.0] 0.43 0.90 2.52� 0.92� 0.25
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TABLE X. Collins asymmetries Aη
12 binned in z. Uncertainties are statistical and systematic, respectively. The table contains data

binned in z1 while integrated over the other variables, as well as data simultaneously binned in z1 and z2.

z1 hz1i Pt1 hPt1i [GeV] z2 hz2i Pt2 hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi Aη

12 [%]

[0.3,0.4] 0.35 [0, 3.0] 0.30 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.91 2.52� 0.89� 0.11
[0.4,0.5] 0.45 [0, 3.0] 0.38 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.91 2.61� 0.65� 0.14
[0.5,0.6] 0.55 [0, 3.0] 0.43 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.91 2.82� 0.60� 0.20
[0.6,0.7] 0.64 [0, 3.0] 0.47 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.91 2.63� 0.65� 0.31
[0.7,1.0] 0.77 [0, 3.0] 0.43 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.91 2.80� 0.64� 0.42

[0.3,0.5] 0.39 [0, 3.0] 0.33 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 2.15� 0.63� 0.10
[0.3,0.5] 0.39 [0, 3.0] 0.33 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.91 3.59� 1.13� 0.19
[0.3,0.5] 0.39 [0, 3.0] 0.33 [0.7,1.0] 0.78 [0, 3.0] 0.43 0.91 3.25� 2.38� 0.50

[0.5,0.7] 0.58 [0, 3.0] 0.45 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 2.15� 0.51� 0.19
[0.5,0.7] 0.58 [0, 3.0] 0.45 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.91 4.91� 0.98� 0.40
[0.5,0.7] 0.58 [0, 3.0] 0.45 [0.7,1.0] 0.78 [0, 3.0] 0.44 0.91 3.84� 2.18� 1.10

[0.7,1.0] 0.77 [0, 3.0] 0.43 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 2.17� 0.73� 0.46
[0.7,1.0] 0.77 [0, 3.0] 0.43 [0.5,0.7] 0.58 [0, 3.0] 0.47 0.91 3.15� 1.38� 0.96
[0.7,1.0] 0.77 [0, 3.0] 0.45 [0.7,1.0] 0.77 [0, 3.0] 0.46 0.90 15.42� 3.99� 4.05

TABLE IX. (Continued)

z1 hz1i Pt1 hPt1i [GeV] z2 hz2i Pt2 hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi Aπ0

12 [%]

[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.91 0.74� 0.15� 0.04
[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.91 1.07� 0.19� 0.05
[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 1.07� 0.19� 0.11
[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.91 1.85� 0.37� 0.12
[0.2,0.3] 0.25 [0, 3.0] 0.24 [0.7,1.0] 0.78 [0, 3.0] 0.43 0.90 4.33� 0.77� 0.32

[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.91 0.71� 0.13� 0.04
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.91 1.40� 0.15� 0.05
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 1.63� 0.16� 0.06
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.91 2.83� 0.30� 0.10
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.7,1.0] 0.78 [0, 3.0] 0.44 0.91 4.07� 0.65� 0.28

[0.5,0.7] 0.58 [0, 3.0] 0.46 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.91 1.46� 0.22� 0.09
[0.5,0.7] 0.58 [0, 3.0] 0.46 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.91 1.54� 0.26� 0.16
[0.5,0.7] 0.58 [0, 3.0] 0.46 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 2.49� 0.26� 0.10
[0.5,0.7] 0.58 [0, 3.0] 0.46 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.91 3.39� 0.49� 0.24
[0.5,0.7] 0.58 [0, 3.0] 0.47 [0.7,1.0] 0.78 [0, 3.0] 0.44 0.90 4.94� 1.06� 0.60

[0.7,1.0] 0.77 [0, 3.0] 0.43 [0.1,0.2] 0.15 [0, 3.0] 0.15 0.90 1.56� 0.45� 0.26
[0.7,1.0] 0.77 [0, 3.0] 0.44 [0.2,0.3] 0.25 [0, 3.0] 0.24 0.90 1.53� 0.53� 0.28
[0.7,1.0] 0.77 [0, 3.0] 0.44 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.90 4.95� 0.57� 0.31
[0.7,1.0] 0.77 [0, 3.0] 0.45 [0.5,0.7] 0.58 [0, 3.0] 0.47 0.90 6.17� 1.04� 0.64
[0.7,1.0] 0.77 [0, 3.0] 0.47 [0.7,1.0] 0.77 [0, 3.0] 0.46 0.90 18.92� 2.49� 2.64

TABLE XI. Collins asymmetries Aπ0
12 with z > 0.3 binned in z. Uncertainties are statistical and systematic, respectively. The table

contains data binned in z1 while integrated over the other variables, as well as data simultaneously binned in z1 and z2.

z1 hz1i Pt1 hPt1i [GeV] z2 hz2i Pt2 hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi Aπ0

12 [%]

[0.3,0.4] 0.35 [0, 3.0] 0.32 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.91 2.19� 0.09� 0.22
[0.4,0.5] 0.45 [0, 3.0] 0.39 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.91 2.00� 0.22� 0.08
[0.5,0.6] 0.54 [0, 3.0] 0.45 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.91 2.65� 0.29� 0.11
[0.6,0.7] 0.64 [0, 3.0] 0.49 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.90 3.02� 0.37� 0.17

(Table continued)
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TABLE XII. Collins asymmetries Aπ0
12 binned in Pt. Uncertainties are statistical and systematic, respectively. The table contains data

binned in Pt1 while integrated over the other variables, as well as data simultaneously binned in Pt1 and Pt2.

Pt1 [GeV] hPt1i [GeV] z1 hz1i Pt2 [GeV] hPt2i [GeV] z2 hz2i h sin2ðθÞ
1þcos2ðθÞi Aπ0

12 [%]

[0,0.15] 0.10 [0.2, 1.0] 0.31 [0,3.0] 0.32 [0.2, 1.0] 0.36 0.91 0.52� 0.26� 0.10
[0.15,0.3] 0.23 [0.2, 1.0] 0.31 [0,3.0] 0.32 [0.2, 1.0] 0.36 0.91 1.16� 0.12� 0.05
[0.3,0.5] 0.38 [0.2, 1.0] 0.36 [0,3.0] 0.32 [0.2, 1.0] 0.36 0.91 1.71� 0.10� 0.08
[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0,3.0] 0.32 [0.2, 1.0] 0.36 0.91 2.95� 0.16� 0.08

[0,0.15] 0.10 [0.2, 1.0] 0.31 [0,0.15] 0.10 [0.2, 1.0] 0.32 0.91 0.12� 0.61� 0.14
[0,0.15] 0.10 [0.2, 1.0] 0.31 [0.15,0.3] 0.23 [0.2, 1.0] 0.31 0.91 0.49� 0.42� 0.11
[0,0.15] 0.10 [0.2, 1.0] 0.31 [0.3,0.5] 0.38 [0.2, 1.0] 0.36 0.91 0.24� 0.41� 0.17
[0,0.15] 0.10 [0.2, 1.0] 0.31 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 1.83� 0.71� 0.19

[0.15,0.3] 0.23 [0.2, 1.0] 0.30 [0,0.15] 0.10 [0.2, 1.0] 0.32 0.91 0.99� 0.39� 0.11
[0.15,0.3] 0.23 [0.2, 1.0] 0.31 [0.15,0.3] 0.23 [0.2, 1.0] 0.31 0.91 0.92� 0.19� 0.05
[0.15,0.3] 0.23 [0.2, 1.0] 0.31 [0.3,0.5] 0.38 [0.2, 1.0] 0.36 0.91 1.16� 0.18� 0.08
[0.15,0.3] 0.23 [0.2, 1.0] 0.31 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 1.92� 0.31� 0.13

[0.3,0.5] 0.38 [0.2, 1.0] 0.35 [0,0.15] 0.10 [0.2, 1.0] 0.32 0.91 0.70� 0.35� 0.12
[0.3,0.5] 0.38 [0.2, 1.0] 0.36 [0.15,0.3] 0.23 [0.2, 1.0] 0.31 0.91 1.41� 0.17� 0.08
[0.3,0.5] 0.38 [0.2, 1.0] 0.36 [0.3,0.5] 0.38 [0.2, 1.0] 0.36 0.91 1.93� 0.16� 0.08
[0.3,0.5] 0.38 [0.2, 1.0] 0.36 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 2.74� 0.28� 0.17

[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0,0.15] 0.10 [0.2, 1.0] 0.32 0.91 1.18� 0.49� 0.22
[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0.15,0.3] 0.23 [0.2, 1.0] 0.31 0.91 2.43� 0.25� 0.11
[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0.3,0.5] 0.38 [0.2, 1.0] 0.36 0.91 2.72� 0.24� 0.10
[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 5.87� 0.48� 0.24

TABLE XI. (Continued)

z1 hz1i Pt1 hPt1i [GeV] z2 hz2i Pt2 hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi Aπ0

12 [%]

[0.7,1.0] 0.77 [0, 3.0] 0.45 [0.3,1.0] 0.44 [0, 3.0] 0.38 0.90 5.76� 0.49� 0.28
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 1.63� 0.16� 0.06
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.91 2.83� 0.30� 0.10
[0.3,0.5] 0.38 [0, 3.0] 0.35 [0.7,1.0] 0.78 [0, 3.0] 0.44 0.91 4.07� 0.65� 0.28

[0.5,0.7] 0.58 [0, 3.0] 0.46 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.91 2.49� 0.26� 0.10
[0.5,0.7] 0.58 [0, 3.0] 0.46 [0.5,0.7] 0.58 [0, 3.0] 0.46 0.91 3.39� 0.49� 0.24
[0.5,0.7] 0.58 [0, 3.0] 0.47 [0.7,1.0] 0.78 [0, 3.0] 0.44 0.90 4.94� 1.06� 0.60

[0.7,1.0] 0.77 [0, 3.0] 0.44 [0.3,0.5] 0.38 [0, 3.0] 0.35 0.90 4.95� 0.57� 0.31
[0.7,1.0] 0.77 [0, 3.0] 0.45 [0.5,0.7] 0.58 [0, 3.0] 0.47 0.90 6.17� 1.04� 0.64
[0.7,1.0] 0.77 [0, 3.0] 0.47 [0.7,1.0] 0.77 [0, 3.0] 0.46 0.90 18.92� 2.49� 2.64

TABLE XIII. Collins asymmetries Aη
12 binned in Pt. Uncertainties are statistical and systematic, respectively. The table contains data

binned in Pt1 while integrated over the other variables, as well as data simultaneously binned in Pt1 and Pt2.

Pt1 [GeV] hPt1i [GeV] z1 hz1i Pt2 [GeV] hPt2i [GeV] z2 hz2i h sin2ðθÞ
1þcos2ðθÞi Aη

12 [%]

[0,0.15] 0.10 [0.2, 1.0] 0.43 [0,3.0] 0.38 [0.2, 1.0] 0.44 0.91 1.29� 1.20� 0.21
[0.15,0.3] 0.23 [0.2, 1.0] 0.43 [0,3.0] 0.38 [0.2, 1.0] 0.44 0.91 1.75� 0.64� 0.11
[0.3,0.5] 0.40 [0.2, 1.0] 0.44 [0,3.0] 0.38 [0.2, 1.0] 0.44 0.91 1.81� 0.45� 0.10
[0.5,3.0] 0.63 [0.2, 1.0] 0.53 [0,3.0] 0.37 [0.2, 1.0] 0.44 0.91 2.91� 0.48� 0.19

[0,0.15] 0.10 [0.2, 1.0] 0.43 [0,0.15] 0.10 [0.2, 1.0] 0.42 0.91 −0.63� 3.45� 0.66
[0,0.15] 0.10 [0.2, 1.0] 0.43 [0.15,0.3] 0.23 [0.2, 1.0] 0.42 0.91 −3.59� 3.63� 0.85
[0,0.15] 0.10 [0.2, 1.0] 0.44 [0.3,0.5] 0.40 [0.2, 1.0] 0.42 0.91 2.66� 1.76� 0.37
[0,0.15] 0.10 [0.2, 1.0] 0.44 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 2.66� 2.07� 0.46

(Table continued)
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TABLE XIV. Collins asymmetries Aπ0
12 with z > 0.3 binned in Pt. Uncertainties are statistical and systematic, respectively. The table

contains data binned in Pt1 while integrated over the other variables, as well as data simultaneously binned in Pt1 and Pt2.

Pt1 [GeV] hPt1i [GeV] z1 hz1i Pt2 [GeV] hPt2i [GeV] z2 hz2i h sin2ðθÞ
1þcos2ðθÞi Aπ0

12 [%]

[0,0.15] 0.10 [0.2, 1.0] 0.42 [0,3.0] 0.38 [0.2, 1.0] 0.44 0.91 0.38� 0.54� 0.20
[0.15,0.3] 0.23 [0.2, 1.0] 0.41 [0,3.0] 0.38 [0.2, 1.0] 0.44 0.91 1.59� 0.24� 0.09
[0.3,0.5] 0.40 [0.2, 1.0] 0.41 [0,3.0] 0.38 [0.2, 1.0] 0.44 0.91 2.15� 0.17� 0.10
[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0,3.0] 0.37 [0.2, 1.0] 0.44 0.91 3.60� 0.22� 0.09

[0,0.15] 0.10 [0.2, 1.0] 0.41 [0,0.15] 0.10 [0.2, 1.0] 0.43 0.91 −1.57� 1.88� 0.64
[0,0.15] 0.10 [0.2, 1.0] 0.42 [0.15,0.3] 0.23 [0.2, 1.0] 0.42 0.91 0.35� 1.07� 0.37
[0,0.15] 0.10 [0.2, 1.0] 0.42 [0.3,0.5] 0.40 [0.2, 1.0] 0.42 0.91 0.28� 0.80� 0.29
[0,0.15] 0.10 [0.2, 1.0] 0.42 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 1.10� 1.09� 0.35

[0.15,0.3] 0.23 [0.2, 1.0] 0.41 [0,0.15] 0.10 [0.2, 1.0] 0.43 0.91 1.22� 1.13� 0.33
[0.15,0.3] 0.23 [0.2, 1.0] 0.41 [0.15,0.3] 0.23 [0.2, 1.0] 0.42 0.91 0.61� 0.46� 0.18
[0.15,0.3] 0.23 [0.2, 1.0] 0.41 [0.3,0.5] 0.40 [0.2, 1.0] 0.42 0.91 1.77� 0.36� 0.10
[0.15,0.3] 0.23 [0.2, 1.0] 0.41 [0.5,3.0] 0.63 [0.2, 1.0] 0.51 0.91 2.42� 0.47� 0.16

[0.3,0.5] 0.40 [0.2, 1.0] 0.41 [0,0.15] 0.10 [0.2, 1.0] 0.43 0.91 1.55� 0.77� 0.28
[0.3,0.5] 0.40 [0.2, 1.0] 0.41 [0.15,0.3] 0.23 [0.2, 1.0] 0.42 0.91 1.68� 0.34� 0.12
[0.3,0.5] 0.40 [0.2, 1.0] 0.41 [0.3,0.5] 0.40 [0.2, 1.0] 0.42 0.91 2.01� 0.24� 0.11
[0.3,0.5] 0.40 [0.2, 1.0] 0.42 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 3.13� 0.33� 0.15

[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0,0.15] 0.10 [0.2, 1.0] 0.43 0.91 2.43� 0.86� 0.33
[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0.15,0.3] 0.23 [0.2, 1.0] 0.42 0.91 2.70� 0.43� 0.17
[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0.3,0.5] 0.40 [0.2, 1.0] 0.42 0.91 3.03� 0.30� 0.12
[0.5,3.0] 0.62 [0.2, 1.0] 0.50 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 5.78� 0.47� 0.24

TABLE XIII. (Continued)

Pt1 [GeV] hPt1i [GeV] z1 hz1i Pt2 [GeV] hPt2i [GeV] z2 hz2i h sin2ðθÞ
1þcos2ðθÞi Aη

12 [%]

[0.15,0.3] 0.23 [0.2, 1.0] 0.43 [0,0.15] 0.10 [0.2, 1.0] 0.43 0.91 −1.73� 2.16� 0.48
[0.15,0.3] 0.23 [0.2, 1.0] 0.43 [0.15,0.3] 0.23 [0.2, 1.0] 0.42 0.91 0.34� 1.34� 0.21
[0.15,0.3] 0.23 [0.2, 1.0] 0.43 [0.3,0.5] 0.40 [0.2, 1.0] 0.42 0.91 1.52� 0.97� 0.16
[0.15,0.3] 0.23 [0.2, 1.0] 0.43 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 4.77� 1.28� 0.27

[0.3,0.5] 0.40 [0.2, 1.0] 0.43 [0,0.15] 0.10 [0.2, 1.0] 0.43 0.91 0.44� 1.91� 0.38
[0.3,0.5] 0.40 [0.2, 1.0] 0.44 [0.15,0.3] 0.23 [0.2, 1.0] 0.42 0.91 0.98� 0.94� 0.19
[0.3,0.5] 0.40 [0.2, 1.0] 0.44 [0.3,0.5] 0.40 [0.2, 1.0] 0.42 0.91 1.89� 0.69� 0.15
[0.3,0.5] 0.40 [0.2, 1.0] 0.44 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 2.95� 0.94� 0.23

[0.5,3.0] 0.63 [0.2, 1.0] 0.53 [0,0.15] 0.10 [0.2, 1.0] 0.44 0.91 1.47� 1.66� 0.62
[0.5,3.0] 0.63 [0.2, 1.0] 0.53 [0.15,0.3] 0.23 [0.2, 1.0] 0.42 0.91 1.22� 0.94� 0.34
[0.5,3.0] 0.63 [0.2, 1.0] 0.53 [0.3,0.5] 0.40 [0.2, 1.0] 0.42 0.91 2.67� 0.67� 0.26
[0.5,3.0] 0.62 [0.2, 1.0] 0.53 [0.5,3.0] 0.62 [0.2, 1.0] 0.51 0.91 5.26� 1.04� 0.46

TABLE XV. Collins asymmetries AUC
12 binned in (z1, Pt1). Uncertainties are statistical and systematic, respectively. The fourth row is

empty because the hadron pairs have to possess low z and high Pt kinematics simultaneously, which is unlikely to happen.

z1 hz1i z2 hz2i Pt1 [GeV] hPt1i [GeV] Pt2 [GeV] hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi AUC

12 [%]

[0.2,0.3] 0.24 [0.2,1.0] 0.36 [0,0.15] 0.10 [0,3.0] 0.32 0.91 0.55� 0.11� 0.05
[0.2,0.3] 0.24 [0.2,1.0] 0.36 [0.15,0.30] 0.23 [0,3.0] 0.32 0.91 0.96� 0.07� 0.03
[0.2,0.3] 0.26 [0.2,1.0] 0.36 [0.30,0.50] 0.35 [0,3.0] 0.32 0.90 1.43� 0.10� 0.04
[0.2,0.3] 0.00 [0.2,1.0] [0.50,3.0] [0,3.0]

(Table continued)
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TABLE XVI. Collins asymmetries Aπ0
12 binned in (z1, Pt1). Uncertainties are statistical and systematic, respectively. Again, the fourth

row is empty due to kinematic constraints.

z1 hz1i z2 hz2i Pt1 [GeV] hPt1i [GeV] Pt2 [GeV] hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi Aπ0

12 [%]

[0.2,0.3] 0.24 [0.2,1.0] 0.36 [0,0.15] 0.10 [0,3.0] 0.32 0.91 0.50� 0.33� 0.11
[0.2,0.3] 0.24 [0.2,1.0] 0.36 [0.15,0.30] 0.23 [0,3.0] 0.32 0.91 1.08� 0.15� 0.05
[0.2,0.3] 0.26 [0.2,1.0] 0.36 [0.30,0.50] 0.35 [0,3.0] 0.32 0.91 1.53� 0.18� 0.11
[0.2,0.3] [0.2,1.0] [0.50,3.0] [0,3.0]

[0.3,0.5] 0.37 [0.2,1.0] 0.36 [0,0.15] 0.10 [0,3.0] 0.32 0.91 0.39� 0.52� 0.13
[0.3,0.5] 0.37 [0.2,1.0] 0.36 [0.15,0.30] 0.23 [0,3.0] 0.32 0.91 1.24� 0.24� 0.09
[0.3,0.5] 0.37 [0.2,1.0] 0.36 [0.30,0.50] 0.40 [0,3.0] 0.32 0.91 1.72� 0.16� 0.07
[0.3,0.5] 0.42 [0.2,1.0] 0.36 [0.50,3.0] 0.57 [0,3.0] 0.32 0.91 2.41� 0.27� 0.12

[0.5,0.7] 0.49 [0.2,1.0] 0.36 [0,0.15] 0.10 [0,3.0] 0.32 0.91 0.48� 0.70� 0.21
[0.5,0.7] 0.49 [0.2,1.0] 0.36 [0.15,0.30] 0.23 [0,3.0] 0.32 0.91 1.16� 0.31� 0.12
[0.5,0.7] 0.49 [0.2,1.0] 0.36 [0.30,0.50] 0.40 [0,3.0] 0.32 0.91 1.88� 0.21� 0.11
[0.5,0.7] 0.53 [0.2,1.0] 0.36 [0.50,3.0] 0.64 [0,3.0] 0.32 0.91 2.43� 0.20� 0.10

[0.7,1.0] 0.72 [0.2,1.0] 0.36 [0,0.15] 0.10 [0,3.0] 0.32 0.90 −0.64� 1.53� 0.77
[0.7,1.0] 0.69 [0.2,1.0] 0.36 [0.15,0.30] 0.23 [0,3.0] 0.32 0.90 1.45� 0.79� 0.32
[0.7,1.0] 0.68 [0.2,1.0] 0.36 [0.30,0.50] 0.40 [0,3.0] 0.32 0.90 2.68� 0.50� 0.24
[0.7,1.0] 0.68 [0.2,1.0] 0.36 [0.50,3.0] 0.70 [0,3.0] 0.32 0.90 6.01� 0.45� 0.27

TABLE XV. (Continued)

z1 hz1i z2 hz2i Pt1 [GeV] hPt1i [GeV] Pt2 [GeV] hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi AUC

12 [%]

[0.3,0.5] 0.37 [0.2,1.0] 0.36 [0,0.15] 0.10 [0,3.0] 0.32 0.91 0.49� 0.17� 0.07
[0.3,0.5] 0.37 [0.2,1.0] 0.36 [0.15,0.30] 0.23 [0,3.0] 0.32 0.91 0.98� 0.10� 0.04
[0.3,0.5] 0.38 [0.2,1.0] 0.36 [0.30,0.50] 0.40 [0,3.0] 0.32 0.91 1.41� 0.08� 0.03
[0.3,0.5] 0.42 [0.2,1.0] 0.36 [0.50,3.0] 0.58 [0,3.0] 0.32 0.91 1.97� 0.16� 0.07

[0.5,0.7] 0.56 [0.2,1.0] 0.35 [0,0.15] 0.10 [0,3.0] 0.31 0.91 0.23� 0.30� 0.12
[0.5,0.7] 0.56 [0.2,1.0] 0.35 [0.15,0.30] 0.23 [0,3.0] 0.31 0.91 1.04� 0.20� 0.09
[0.5,0.7] 0.56 [0.2,1.0] 0.35 [0.30,0.50] 0.40 [0,3.0] 0.31 0.91 1.71� 0.15� 0.07
[0.5,0.7] 0.58 [0.2,1.0] 0.36 [0.50,3.0] 0.67 [0,3.0] 0.32 0.91 2.47� 0.16� 0.08

[0.7,1.0] 0.81 [0.2,1.0] 0.35 [0,0.15] 0.09 [0,3.0] 0.33 0.91 0.34� 0.48� 0.28
[0.7,1.0] 0.77 [0.2,1.0] 0.35 [0.15,0.30] 0.23 [0,3.0] 0.32 0.91 1.07� 0.37� 0.22
[0.7,1.0] 0.75 [0.2,1.0] 0.35 [0.30,0.50] 0.40 [0,3.0] 0.32 0.91 2.24� 0.33� 0.2
[0.7,1.0] 0.75 [0.2,1.0] 0.36 [0.50,3.0] 0.72 [0,3.0] 0.31 0.90 5.14� 0.33� 0.24

TABLE XVII. Collins asymmetries Aη
12 binned in (z1, Pt1). Uncertainties are statistical and systematic, respectively.

z1 hz1i z2 hz2i Pt1 [GeV] hPt1i [GeV] Pt2 [GeV] hPt2i [GeV] h sin2ðθÞ
1þcos2ðθÞi Aη

12 [%]

[0.3,0.5] 0.38 [0.3,1.0] 0.44 [0,0.15] 0.10 [0,3.0] 0.38 0.91 2.52� 1.77� 0.32
[0.3,0.5] 0.38 [0.3,1.0] 0.44 [0.15,0.30] 0.23 [0,3.0] 0.38 0.91 2.55� 1.19� 0.16
[0.3,0.5] 0.38 [0.3,1.0] 0.44 [0.30,0.50] 0.40 [0,3.0] 0.38 0.91 1.08� 0.90� 0.14
[0.3,0.5] 0.43 [0.3,1.0] 0.44 [0.50,3.0] 0.58 [0,3.0] 0.37 0.91 1.93� 1.31� 0.34

[0.5,0.7] 0.50 [0.3,1.0] 0.44 [0,0.15] 0.10 [0,3.0] 0.38 0.91 1.48� 1.06� 0.31
[0.5,0.7] 0.50 [0.3,1.0] 0.44 [0.15,0.30] 0.23 [0,3.0] 0.38 0.91 1.06� 0.66� 0.17
[0.5,0.7] 0.51 [0.3,1.0] 0.44 [0.30,0.50] 0.40 [0,3.0] 0.38 0.91 2.23� 0.48� 0.16
[0.5,0.7] 0.55 [0.3,1.0] 0.44 [0.50,3.0] 0.65 [0,3.0] 0.37 0.91 2.94� 0.53� 0.24

[0.7,1.0] 0.73 [0.3,1.0] 0.44 [0,0.15] 0.10 [0,3.0] 0.39 0.91 −2.62� 1.45� 0.89
[0.7,1.0] 0.70 [0.3,1.0] 0.44 [0.15,0.30] 0.23 [0,3.0] 0.38 0.91 1.33� 0.86� 0.42
[0.7,1.0] 0.69 [0.3,1.0] 0.44 [0.30,0.50] 0.40 [0,3.0] 0.38 0.91 3.74� 0.78� 0.42
[0.7,1.0] 0.69 [0.3,1.0] 0.44 [0.50,3.0] 0.70 [0,3.0] 0.38 0.91 6.60� 0.68� 0.46
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