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ABSTRACT In this paper, we consider the performance of exclusive-OR (XOR) rule in detecting the
presence or absence of a deterministic signal in bivariate Gaussian noise. Signals, when present at the
two sensors, are assumed unequal, whereas the noise components have identical marginal distribution but
are correlated. The sensors send their one-bit quantized data to a fusion center, which then employs the
XOR rule to arrive at the final decision. Here we prove that, in the limit as the correlation coefficient
r approaches 1, the optimum fusion rule for both parallel and tandem topologies is XOR with identical,
alternating partitions (XORAP) of the observations at the sensors. We further quantify the asymptotic
decrease of the Bayes error of XORAP towards zero as a constant multiplied by

√
1− r , as r approaches

1. When compared to the asymptotic Bayes error of CLRT, which decreases to zero exponentially fast, as a
function of 1/(1− r), the Bayes error of XORAP decreases to zero much slower.

INDEX TERMS Gaussian noise, multiple sensors, noise correlation, signal detection.

I. INTRODUCTION
A collection of sensors are employed in a variety of
situations in order to enhance information gathering and
processing operations. Depending upon the capability of
sensor networks, either condensed information or the raw
data from the sensor sites may be transmitted to a fusion
center (FC), where a final decision with regard to the presence
(hypothesis H1) or absence (hypothesis H0) of a signal (or
target) is made. The former case is usually referred to as
decentralized detection, whereas the latter case is termed as
the centralized detection [1]. Due to the bandwidth constraint
in the reporting channels, decentralized detection is often
expected in practice. It is well known that the complexity of
finding optimal solutions to decentralized detection problems
is, in general, formidable [1]–[3]. The usual performance
criterion employed is either Bayes error (or cost) or Neyman-
Pearson (NP) test.

In this paper, we employ Bayes error criterion and restrict
consideration to a two-sensor network, with one-bit quantiza-

The associate editor coordinating the review of this manuscript and

approving it for publication was Chengpeng Hao .

FIGURE 1. Diagram of a two-sensor decentralized detection system with
the parallel topology (left) and with the tandem topology (right).
FC stands for the fusion center. In tandem topology, the second sensor
also acts as the FC.

tion of sensor observations. Fig. 1 shows configurations for
parallel and tandem topologies in a decentralized detection
system. Even in our case of two sensors, with each sensor
sending one-bit quantized information to a FC, which then
makes a final decision on the true hypothesis, finding the
optimal decentralized decision scheme, i.e., quantization
schemes at the two sensors and the decision rule at the FC,
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is still a difficult problem. In the parallel topology, the optimal
quantizers at the two sensors need not be identical, even if
the marginal distributions are identical [1], [2], [4]. This is
applicable for both correlated observations and statistically
independent observations [1]. In the case of one-bit quantized
data from two sensors, the number of possible FC Boolean
rules are limited to 22

2
, out of which the non-trivial ones

are the Boolean AND, OR, XOR, and ‘‘ignoring one of the
sensors,’’ excluding the other equivalent rules. A method
to find the optimal solution to the decentralized detection
problem is to assume a particular fusion rule, optimize the
quantizers at the sensors for that fusion rule, and then pick
the best fusion rule along with the corresponding quantizers
at the sensors as the optimal solution. In the simplest case
of each sensor sending one-bit information, the optimal
quantizer turns out as the partitioning of the real line (i.e., the
observation) into quantization intervals, where the intervals
are represented as a bit ‘1’ (possibly also for the intervals
represented by the bit ‘0’) could be non-contiguous.

At sensor 1 (2), assume that a known signal s1 (s2) is
present in Gaussian noise, when the hypothesis H1 is true.
When H0 is true, there is no signal at each sensor, and the
sensor observation is simply noise. The noise components at
the sensors are assumed jointly Gaussian with a correlation
coefficient r and identical variance (non-identical variance
case can simply be handled by dividing each observation at
a sensor with the corresponding standard deviation of the
noise component). In the seminal paper by Willett et al. [4],
for the parallel topology, the authors identified regions for
the optimality of the Boolean AND (or OR) rule in the
(s1, s2) signal plane, which includes the region where the
quantization intervals for both bits ‘1’ and ‘0’ are contiguous
(called simply the ‘Good’ region), the region where it may
be optimal to ignore one sensor data (‘Bad’ region), and the
region where the exclusive-OR (XOR) rule could outperform
both AND and OR rule. However, [4] did not examine the
performances of those rules when the correlation coefficient r
is closer to 1. As will be shown in this paper, the performance
of XOR rule is of significance, as r approaches 1.
Reference [5] extended the results in [4] to two-sensors tan-

dem case and obtained ‘Good’ region solution. Reference [6]
discussed the detection of Gaussian signals in Gaussian noise
for the same tandem case. It was pointed out in [6] that [7]
made an incorrect assumption that the first sensor in a tandem
network could employ a simple likelihood ratio test without
compromising the global optimality. A recent contribution
discusses the joint estimation of unknown parameters and
detection in a joint copula probability distribution model [8].
All the above results and those in [9]–[12] show the difficulty
in finding an optimal solution when the sensors’ observations
are correlated. In this paper, we consider the detection
problem with completely known parameters and the XORAP
rule. It must be mentioned that the term XOR refers to the
case where the Boolean fusion rule at the FC is exclusive-
OR, without any specific reference to the one-bit quan-
tization schemes that the sensors would employ. XORAP

FIGURE 2. Local one-bit quantizers at the two sensors for XOR fusion in
XORAP rule. Partition of Xi (i = 1, 2): Vi = 1, Xi ∈ RVi

; Vi = 0, Xi ∈ RVi
.

specifies identical alternating quantization intervals of length,
D , |s1 − s2|, representing bits ‘1’ and ‘0’ at both the
sensors, in addition to the specification of XOR fusion rule
(see Fig. 2).

A. MOTIVATION FOR INVESTIGATING THE XOR
PERFORMANCE
The first reason for the investigation is the optimality of the
XORAP rule. If each sensor makes its decision based on
the comparison of its observation against a single threshold,
then XOR as a fusion rule is not meaningful in the case of
independent observations. This is because the XOR rule is not
a monotone fusion rule, a condition needed for optimality in
the case of independent observations [1], [13]. Consider the
situation when sensors utilize multiple quantization intervals,
each interval designated as either a bit ‘1’ or a bit ‘0’. In that
case, for example, a bit ‘1’ received at the FC from a sensor
might be the result of its observation falling in any one
of the multiple intervals marked as bit ‘1’ by the sensor,
and therefore this bit is not a local decision in favor of a
hypothesis. The alternating partitioning intervals of span D
for XOR decision was first mentioned in [14]. It showed
the optimality of XORAP rule for the case of two-sensor
parallel topology, in the sense of achieving perfect decision,
when r = 1. The partitioning was arrived at heuristically.
A theoretical proof that it is optimal for both parallel and
tandem topologies is needed.

The second reason for the investigation is the behav-
ior of different fusion rules as the correlation coefficient
increases from 0 to 1. As shown in [15], for the case
of centralized likelihood ratio test (CLRT), as r increases
from 0, the Bayes error keeps increasing up to the point
r = min(s1, s2)/max(s1, s2), after which it monotonically
decreases towards 0. That is, the increasing correlation
is detrimental to the probability of error performance in
detection, but that is only up to the point determined by the
signal levels at the two sensors. This behavior is seen for
the number of sensors exceeding 2 as well, but the point
of inflection is not the above simple formula given for two
sensors. Any increase in correlation coefficient beyond that
point aids in the detection of signals, ultimately leading to
zero Bayes error as r → 1. Similar behavior is also exhibited
when sensors employ multi-bit quantization, see [14], [16].
Hence, given that XORAP is the best one-bit fusion rule as
r → 1, and that the CLRT is the best fusion rule without
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any quantization of sensor data, it will be of interest to
compare the performances of the two for large values of r ,
knowing well that the performance of any reasonable scheme
improves, once the correlation becomes increasingly larger.

Finally, it should be noted that although the correlation
coefficient close to 1 might be rarely seen in practice,
investigation of this limiting case has its own theoretical
importance that contributes to a better understanding of how
the local decisions and the fusion rules would change with
respect to the change of correlation coefficient, as well as the
corresponding performance.

B. CONTRIBUTION
Contribution in this paper is two-fold. First, in Theorem 1
to be presented in the next section, we will present a proof
asserting that XORAP is the optimal rule for the two-sensor
tandem topology, as r → 1. For a two-sensor network, since
the optimal rule in the parallel case can never outperform the
optimal rule in the tandem case (see [1], [13]) and theXORAP
is also a parallel decision rule, other parallel fusion rules with
one-bit quantization cannot outperform the XORAP rule in
the parallel case, in terms of the rate of decrease of the Bayes
error as r approaches 1. This proves that the XORAP is the
optimal rule for both tandem and parallel cases as r → 1.
Second, in Theorem 2 we will prove that the Bayes error of
the XORAP rule decreases to zero as a constant multiplied
by
√
1− r , as r → 1 and then compare it with the case of

centralized detection.
The rest of the paper is organized as follows. Section II

describes the problem formulation, proof of the optimality of
the XORAP rule for the two-sensor tandem topology, and the
derivation of the asymptotic (as r → 1) Bayes error for both
CLRT and XORAP. Additionally, random number generation
to corroborate the theoretical results, graphical explanation
for the asymptotic error behavior of XORAP, and results of
suboptimal solution obtained from a genetic algorithm based
simulation study are also presented in this section. Section III
concludes this paper.

II. PROBLEM FORMULATION AND SOLUTION
Consider two sensors monitoring a region of interest to
ascertain the presence of a signal (hypothesis H1) or its
absence (H0). When a signal is present in the region, the
signal components at the two sensors, which are assumed to
be deterministic and known, are received in additive Gaussian
noise. Otherwise, the observations at the sensors have only
noise components. The two hypotheses can be stated as the
following equation:

H1 : X = S + N

H0 : X = N , (1)

where XT = [X1,X2], NT
= [N1,N2], ST = [s1, s2].

As in [4], N is assumed to be distributed as bivariate
Gaussian with zero means, unit variances and correlation
coefficient r . Since s1 and s2 could assume negative or

TABLE 1. Definition of symbols.

positive values, without any loss of generality we can restrict
r to be in the interval [0, 1]. Assuming prior probabilities
for the hypotheses, namely P(H0) = π0,P(H1) = π1 =

1 − π0, we consider the Bayes error Pe = π0P(D1|H0) +
π1P(D0|H1) as the performance criterion for a decision rule,
where Dj, (j = 0, 1), is the decision favoring hypothesis
Hj. Here, the first conditional probability is the probability
of false alarm Pf , that is, the probability that the decision
rule decides hypothesis H1, when the true hypothesis is
H0. Similarly, the second conditional error probability is
the probability of miss, Pm. As shown below, the optimality
of XORAP and its asymptotic error are valid for any prior
probabilities. For simplicity, the asymptotic error rate of
CLRT is derived for the case of equal prior. Similarly, in the
simulation studies of sections II. D and II. F we assume
equal prior. If needed, similar analyses can easily be done for
unequal prior probabilities. The notations used in this paper
are listed in Table 1.

A. XORAP RULE AND ITS OPTIMALITY
In a tandem decentralized detection system with two sensors,
see Fig. 1, assume the decision rule of sensor 2 (FC) is
denoted by W2 and the decision rule of sensor 1 is given
by W1, with RW1 as the region in which sensor 1 makes
a decision favoring H1. Since we consider one-bit sensor
reports, both W1 and W2 take values from {0, 1}. Referring
to Fig. 2, we have the following Theorem.
Theorem 1: For a two-sensors decentralized detection

system with tandem topology, as r → 1, the optimum
decision rule W2 can be expressed as the Exclusive-OR
(XOR) rule between W1 and I (x2 ∈ RW1 ), where I (·) is the
indicator function which takes value 1, if x2 ∈ RW1 , and
value 0, otherwise. The optimum partitions of both sensors’
observations, as bits ‘1’ and ‘0’, are the same and are given
by alternating segments of fixed length, D = |s2 − s1|,
assuming that the length is not zero.

Proof: Appendix A proves in detail that the optimal
detection rule for the two-sensor tandem topology, with
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one-bit quantization, is exactly the XOR rule with alternating
partitions as shown in Fig. 2, as r → 1. This result is valid
for any prior probability. �

B. ASYMPTOTIC ERROR ANALYSIS OF CLRT
Let the covariance matrix of noise N be denoted as 6, with
611 = 622 = 1 and 612 = 621 = r . Since CLRT
is a LRT based on the observation X , it can be easily seen
from [15] that the Bayes error PeC for CLRT, with π0 =
π1 = 1/2, is given by Q(

√
K/2), where K is the SNR

defined as K = ST6−1S, Q(z) = 1 − 8(z), and 8(z) is
the standard normal cumulative distribution function (CDF).
By simplifying K , we get K = (s21 − 2rs1s2 + s22)/(1 −
r2). As r → 1, PeC → Q(|s1 − s2|/(2

√
1− r2)). Using

asymptotic expansion for the Q(·) function as the argument

becomes infinitely large, we get limr→ 1 PeC = e−
D2

16(1−r) .
Hence, the Bayes error decreases to zero exponentially fast,
with increasing 1/(1− r).

C. ASYMPTOTIC ERROR ANALYSIS OF XORAP
We begin by evaluating the probability of correct decision
of the XORAP rule when H0 is true, that is the probability,
Pc0 = P(XORAP decidesH0|H0). The contributions to this
probability come from two distinct probabilities P1 and P2,
which are defined below in the following two equations.

P1 =
∞∑

i=−∞

∫ (i+1)D

iD

∫ (i+1)D

iD
f (x, y; r)dxdy (2)

P2 =
∞∑

i=−∞

∞∑
k=1

∫ (i+1)D

iD

∫ (i+1)D±2kD

iD±2kD
f (x, y; r)dxdy, (3)

where f (x, y; r) denotes bivariate Gaussian density with zero
means, unit variances and correlation coefficient r . P1 is
nothing but the probability that both the sensor observations
fall in the same interval (iD, (i + 1)D) in Fig. 2. Therefore,
when this happens, XORAP will correctly decide H0.
By looking at Fig. 2, it is plain that, under H0, XORAP
will also decide correctly when X1 ∈ (iD, (i + 1)D) and
X2 ∈ (iD ± 2kD, (i + 1)D ± 2kD), k is an integer, thereby
contributing to the probability P2.
Theorem 2: By using the result by G Pólya in [17],

we show below that

lim
r→1

1− P1 =

[√
2
π

(1− r)
1
2 (1+ 2

∞∑
i=1

(e−0.5D
2
)i
2
)

]
. (4)

Proof: Based on the partition and the XOR rule shown
in Fig. 2, we have P1 =

∑
∞

i=−∞ Ji, where

Ji ,
∫ (i+1)D

iD

∫ (i+1)D

iD
f (x, y; r)dxdy. (5)

Wewill be utilizing a result from [17] to evaluate Ji, as r → 1.
The notation L(·) below and its arguments from this reference
are restated here for our use.

L(a, a′; b, b′; r) ,
∫ b

a

∫ b′

a′
f (x, y; r)dxdy. (6)

In our case, a = a′ = iD, b = b′ = (i+ 1)D. Therefore,

Ji = L(a, a; b, b; r). (7)

Define the following three variables [17],

α ,
a+ a′

21/2(1+ r)1/2
, β ,

b+ b′

21/2(1+ r)1/2
, δ′ ,

−a+ b′
√
2(1− r)

.

We have

lim
r→1

α = iD, lim
r→1

β = (i+ 1)D.

Direct application of (6.8) in [17] gives

lim
r→1

Ji ∼ 2Ji1 + 2Ji2, (8)

where

Ji1 = [G(β)− G(α)]G(δ′),

Ji2 = −ρ(g(α)+ g(β))(g(0)− g(δ′)).

G(x) is defined as the area under the standard Gaussian

density, g(y), over y ∈ (0, x), and ρ =
( 1−r
1+r

) 1
2 . Based on (2),

(5)-(8) and considering r → 1,

P1 = I1 −
2ρ
√
2π

I2, (9)

where

I1 =
∞∑

i=−∞

[G((i+ 1)D)− G(iD)]

= G(∞)− G(−∞) = 1,

I2 =
∞∑

i=−∞

g(iD)+ g((i+ 1)D).

We will show that I2 <∞. Since g(−iD) = g(iD),

I2 = 4
∞∑
i=1

g(iD)+ 2g(0), (10)

or, I2 = 4
√
2π

∑
∞

i=1(e
−
D2
2 )i

2
+

2
√
2π

< ∞. Now, using (9),
I1 = 1, ρ given above and this asymptotic expansion of I2,
we arrive at (4). �
We will show in Appendix B that P2 decreases to zero

exponentially fast and can be neglected when compared to
1−P1. Hence, the probability of false alarm, Pf = 1−Pc0 =
1− P1 − P2 goes to zero as a constant multiplied by

√
1− r

(4). The other conditional probability of error, the probability
of miss, is exactly the same as Pf . This can be seen from the
following argument. Since the error in XORAP is caused by
the pair of noise samples, whenever XORAP makes an error
under H0, the same noise pair would also cause an error if
H1 were true. Similar comments apply to non-error-causing
events. Hence, the Bayes error of XORAP is PeX = Pf , for
any prior probability.
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TABLE 2. Bayes error performance of CLRT and XORAP for
s1 = 1, s2 = 0.5, and different r values.

D. SIMULATION OF XORAP ERROR
In this subsection, we study the probability of error behavior
of XORAP, by generating bivariate Gaussian samples with
different values of correlation coefficient r , which can be
simulated by using the following equation.

N2 = N1 + εZ , (11)

where N1 and Z are i.i.d as Gaussian with zero mean and
unit variance, i.e. ∼ Gaussian (0, 1), and ε =

√
1− r2/r .

Table 2 shows how the Bayes error PeC and PeX , respectively
for CLRT and XORAP, decrease towards zero as r increases
towards 1. The Bayes error probabilities for CLRT are
based on exact theoretical expression, assuming equal prior,
π0 = π1 =

1
2 . The PeX values shown in the Table 2 for

r = (0.99, 0.999, 0.9999, 0.99999) are remarkably close
to what one gets from the asymptotic error expression for
PeX ≈ 1−P1, shown as the last column in the Table 2. Since
Pf = Pm for XORAP, PeX is independent of prior probability.
In this simulation study and the asymptotic error analysis,

we assumed that the origin coincided with T0 in Fig. 2. As can
be seen from the proof of Theorem 2, if the origin were offset
from T0, then the asymptotic error still decays as

√
1− r ,

but the proportionality constant in (4) will slightly be altered.
Similarly, PeX values in Table 2 will change slightly.
The following subsection provides a graphical illustration

of why Bayes error of XORAP decreases at a much slower
rate when compared to the CLRT rate of decrease.

E. GRAPHICAL ILLUSTRATION OF DIFFERENCE IN
PERFORMANCES OF CLRT AND XORAP
Consider an example with s1 = 1, s2 = 0.5, η = π0/π1 = 1.
The illustration in Fig. 3 shows the decision regions of CLRT
and XORAP in the (X1,X2) plane with D = |s1 − s2| = 0.5.
The CLRT separation line is given by [4]

(s1 − rs2)X1 + (s2 − rs1)X2
H1
≷
H0

(1− r2)lnη +
s21 + s

2
2 − 2rs1s2
2

. (12)

Assume ε = 1 − r , as r → 1, ε → 0. Then (12) is reduced
to

X1
H1
≷
H0

1− 2ε
1+ ε

X2 +
0.25+ ε
1+ ε

. (13)

FIGURE 3. Graphical Illustration of XORAP and CLRT: Hatched green area
XORAP decides H1, CLRT decides H0; Hatched red area XORAP decides
H0, CLRT decides H1.

According to Taylor series expansion, by ignoring the
second and higher orders of ε, the CLRT separation line can
be obtained as

X1
H1
≷
H0

(1− 3ε)X2 +
1+ 3ε

4
. (14)

The CLRT divides the plane into two parts, with those
points (X1,X2) falling below the straight line (X2 = X1 −
0.25, ε → 0) classified as decision H1 and those falling
above the line classified as decisionH0.

In Fig. 3, the line above the CLRT separation line is the line
through the origin, with slope 1 and the line below the CLRT
separation line is represented as X2 = X1 − 0.5. At r = 1,
the probability distribution of (X1,X2) is degenerate along
the line X1 = X2, when H0 is true, and the distribution is
degenerate along the line X2 = X1−0.5, whenH1 is true. The
shaded green area corresponds to the region where XORAP
decidesH1, whereas CLRT decidesH0. The opposite is true
for the shaded red area. UnderH0, as r gets closer and closer
to 1, the probability distribution keeps increasingly getting
concentrated along the X1 = X2 line. Hence, the CLRT will
make less and less error (error happens when samples fall
below the CLRT separation line) as r gets closer and closer to
1. In the area above theX1 = X2 line, there are regions labeled
as ‘01’ or ‘10’, where the XORAP decides H1, resulting
in decision errors for XORAP, when H0 is true. However,
the probability of this happening will be negligible and will
decrease exponentially to zero as r → 1.
Now, consider hypothesis H0 being true. What differenti-

ates the rates of decrease of the probabilities of false alarm
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of CLRT and XORAP is the difference in the probability
mass over the areas within the band, flanked by the lines,
X2 = X1 and X2 = X1−0.5, where the two decision schemes
make decision H1. The probability mass over the green
shaded area, where XORAP decision differs from CLRT,
contributes to XORAP making an incorrect decision, H1.
In the shaded red area, where XORAP decision differs from
CLRT, the XORAPmakes the correct decision,H0. Since the
probability mass is increasingly getting concentrated along
the X2 = X1 line, as r tends to 1, the probability mass over
the red area, which is below, and touching at points along the
X2 = X1 − 0.25 line, decreases to zero very fast. Hence, this
addition to the probability of correct decision for the XORAP
has no impact on the rate at which XORAP probability of
error (Pf for XORAP) approaches zero. In contrast, as r tends
to 1, the probability mass over the green area, which is closer
to, and touching at points along the X2 = X1 line, goes to
zero at a slower rate. Although one cannot predict from the
graph the rate at which the error would decrease to zero,
the analytical expression in Theorem 2 shows that this is of
the order

√
1− r . A similar conclusion can be drawn when

H1 is true.

F. SUBOPTIMAL SOLUTIONS FROM THE GENETIC
ALGORITHM (GA)
Finding the sensor decision rules and the fusion rule that min-
imize the Bayes error is an non-linear integer programming
problem [14]. In this subsection, the GA is used to find sub-
optimal solutions for both parallel and tandem topologies.
The flowchart of this GA-based method is shown in Fig. 4.

1) GA OPERATIONS
Key operations carried out in the GA are as follows.
Initialization: In the beginning, np numbers of solutions are

randomly generated, each of which is a binary sequence that
is converted from the sensors’ decision rules as follows.

1) Divide the observation range of the k-th (k = 1, 2)
sensor into a number of sub-intervals, such as Sk , with
equal space division.

2) Assume that sensor k has Bk reporting bits. Sensor
observation Xk is quantized by assigning each sub-
interval with one value from the set {1, 2, . . . ,Qk}
where Qk = 2Bk . Quantized values of all sub-intervals
are concatenated into a sequence.

3) Represent each value of the above sequence with its
binary format to obtain a binary sequence bk with a
length of BkSk bits, k = 1, 2.

4) In the parallel topology, the solution is represented
as bP = [b1b2], which is obtained by concatenating
binary sequences from both sensors and is of length
B1S1 + B2S2. In the tandem topology, bT = b1 with
length of B1S1 only, because given the decision rule of
sensor 1, the rule of sensor 2 can be obtained by utiliz-
ing a person-by-person optimal decision, according to
the tests in (15) and (16), see Appendix A.

FIGURE 4. The flowchart of the GA implemented for decentralized
detection problem.

Bayes error calculation:As the fitness criterion, the Bayes
error for each of the np solutions is evaluated using the log-
likelihood test at the FC.
Selection: A number of nc2 pairs of solutions (i.e., parents),

as determined by the crossover probability pc, are selected
by the roulette wheel selection, where solutions with a lower
Bayes error are more likely to be selected.
Crossover and mutation: For each pair of the selected

solutions, uniform crossover [18] with a crossover probability
pc is performed to generate a new pair of solutions (i.e.,
offsprings). In the mutation step, each bit in one solution
will be flipped with a probability µc from ‘0’ to ‘1’ or vice
versa [18].

As a final step in each iteration, the total of nc new
offsprings are merged with the np solutions at the beginning
of the iteration, among which np solutions with lower Bayes
error are chosen as input for the next iteration. At the end of
the final iteration, the solution with the lowest Bayes error
will be output as the final sub-optimal solution. Furthermore,
for one-bit quantization, by checking the result of the log-
likelihood test used for this final solution, the corresponding
fusion rule, either AND rule, OR rule, XOR rule, or ‘‘ignoring
one of the sensors’’ rule, can be decided. A similar algorithm
and discussion of complexity can be found in [14].

2) SIMULATION RESULTS
The parameters in this simulation are np = 500, pc = 0.8,
nc = 400, µc = 0.02, and |I | = 1000.
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FIGURE 5. Rates of Bayes error decreasing to zero as correlation
coefficient approaches 1 from 0.9: decentralized detection cases and
CLRT.

First, we consider one-bit quantization for sensor obser-
vations, i.e., B1 = B2 = 1. For several testing points of
correlation coefficient r ∈ (0.93, 0.9999), s1 = 0.5, s2 =
1, σ 2

= 1, and η = 1 (same parameters used in Table 2),
we studied how one-bit quantization pattern might change if
LRT fusion with one-bit quantized data is optimized using
the GA in the two-sensor parallel topology, like the one used
in [16]. It is interesting to notice that the best rules identified
by GA are as follow. It is ‘‘ignoring sensor 1’’ for r = 0.93,
AND rule for r = 0.95, and XORAP for r ≥ 0.999. For
r = 0.99, GA yields the XOR rule which is slightly different
from XORAP, where the quantization intervals of the GA
alternate over a certain segment around the origin, but at the
two ends, only one interval happens for the remaining parts
of the real line. Although the GA can only claim sub-optimal
solutions, nevertheless, it also shows that XORAP could be
the optimal one-bit fusion rule for r close to 1.

Second, we study the variation of the Bayes error when
using both one-bit and two-bit quantizations as r approaches
1 from 0.9, and s1 = 2, s2 = 4, σ 2

= 1, η = 1. From
Fig. 5, we can observe that the rates of the Bayes errors
decreasing to zero, for the two-sensor decentralized detection,
with the quantized case are very slow when compared to the
exponential decrease exhibited by the CLRT. The coarseness
of one-bit parallel scheme is evident from Fig. 5. The average
Bayes error remains high for values of r up to about 0.99,
before it starts to drop. In contrast, tandem schemes with
both one-bit and two-bit sensor reports, as well as the parallel
scheme with two-bit sensor reports, show decreasing Bayes
error trends over the span of r . Hence, the benefits of
using two-bit quantization over one-bit quantization can be
observed. Moreover, as to be expected, the tandem scheme
exhibits superior performance when compared to the parallel
scheme, when both schemes utilize the same number of bits
for quantization.

G. DISCUSSION
A special case is what happens when s1 = s2 and r → 1.
Partition interval in the XORAP rule cannot be of zero length.

Since observations at both sensors nowwill be identical under
hypothesisH1 and identical underH0 (identical but with only
noise) also, the FC essentially has information from any one
sensor. The CLRT in such a case will have the performance
of a single sensor. Hence, the Bayes error reaches a threshold
that is bounded away from zero, determined only by the
signal-to-noise ratio (SNR) of a single sensor, as r → 1.
An extension of analysis to the general case of n > 2

sensors would have to address several complex issues. The
first issue one has to deal with is the general nature of
n × n covariance matrix of the noise components at the n
sensors. For analyzing the effect of strong noise correlations,
in general, one has to examine the effect of n(n− 1)/2
pairwise correlation parameters on the Bayes error perfor-
mance. Basically, the covariance matrix is not dependent
upon one correlation, but several correlation parameters. One
can restrict attention to some structured covariance matrices,
such as the one based on an autoregressive model (AR-1) or
an equicorrelated model [15]. In both cases, the covariance
depends upon a single correlation parameter r . In [14] GA
based solution for three sensors has been presented. For the
CLRT, the SNR parameter K can be calculated, as was done
for the two-sensor case, and its variation with respect to
r examined. In general, K grows unbounded, as r → 1,
except for the case of all identical signals at the sensors.
However, for any decentralized detection rule, finding the rate
of convergence ofPe, as r approaches 1, is a difficult problem.
For one reason, the optimal partitions for quantizers at the
n > 2 sensors and the corresponding fusion center rule are
difficult to find, even for one-bit quantization. XOR rule can
be defined only for n = 2.

III. CONCLUSION
In this paper, we considered the performance of an exclusive-
OR fusion rule for detecting the presence or absence of
a known deterministic signal in correlated Gaussian noise.
The XORAP’s performance is perfect when the correlation
coefficient r equals 1, but far worse than the centralized
likelihood ratio test when 0.99 < r < 1. Our contributions
are 1) to prove the optimality of the XORAP rule for two-
sensor tandem and parallel topologies; and 2) to analyti-
cally quantify the asymptotic Bayes error of the XORAP,
as r → 1, and observe the pronounced difference in
the asymptotic performances between XORAP and the
centralized likelihood ratio test. Since XORAP is opti-
mal for both two-sensor parallel and tandem topologies,
as r → 1, this error convergence result applies to both
network topologies.

APPENDIX A
PROOF OF THEOREM 1
Before we prove Theorem 1, we prove the necessary
conditions that the decision rules at the two sensors in the
tandem configuration need to satisfy for the final decision
to be globally optimal. Although these conditions have been
stated in [5], [16], we state this as a theorem and provide the
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proof here. Also, these conditions are for any bivariate dis-
tributions, not necessarily restricted to the bivariate Gaussian
family.
Theorem 3: For the global optimality of two-sensor tan-

dem scheme, the decision rules at the two sensors need to
satisfy the following coupled equations

RW2|W1=1 =

{
x2 : L1(x2) ≡

∫
RW1

p(x1, x2|H1)dx1∫
RW1

p(x1, x2|H0)dx1
≥ η

}
,

(15)

RW2|W1=0 =

{
x2 : L0(x2) ≡

∫
RW1

p(x1, x2|H1)dx1∫
RW1

p(x1, x2|H0)dx1
≥ η

}
,

(16)

where η = π0
π1

is the decision threshold. L1 and L0 are
corresponding functions in (15) and (16),

RW1 =

{
x1 : π1

[ ∫
RW2|W1=1

p(x1, x2|H1)dx2

−

∫
RW2|W1=0

p(x1, x2|H1)dx2
]

> π0
[ ∫

RW2|W1=1

p(x1, x2|H0)dx2

−

∫
RW2|W1=0

p(x1, x2|H0)dx2
]}
. (17)

Proof: The decision variables of sensors, Wi, i = 1, 2,
are defined in Table 1. Since the final decision is W2, the
Bayes error can be written as

C(W2) = π0P(W2 = 1|H0)+ π1P(W2 = 0|H1)

= π1 + π0P(W2 = 1|H0)− π1P(W2 = 1|H1). (18)

The person-by-person optimal solution is obtained by first
treating one of the sensor rules, say sensor 1, as fixed and
then sensor 2 rule is optimized for minimum Bayes error,
followed by the reverse operation of treating the sensor 2
rule being fixed and optimizing the sensor 1 rule. In the
tandem structure, since the sensor 2 decision W2 depends
upon the first sensor decision, which could be either a bit
‘1’ or a bit ‘0,’ decision regions where W2 = 1, that is,
where sensor 2 decides H1, would generally be different
for W1 = 0 and W1 = 1. Hence, the decision regions
where W2 decides H1 are denoted as RW2|W1=i, i = 0, 1.
For sensor 1, the decision region for H1 decision is denoted
as RW1 . Obviously, the regions where sensors decide H0 are
denoted as the complements of these regions. First, assuming
that the sensor 2 decision rules are fixed, we will minimize
C(W2) by optimizing sensor 1 decision rule. Expanding
equation (18), we get.

P(W2 = 1|H0) =
∑
W1

∫
x1

∫
x2
P(W2 = 1|W1, x2, x1)

·P(W1|x2, x1) · p(x1, x2|H1)dx2dx1. (19)

SinceW2 depends uponW1 and x2 only, andW1 depends upon
x1 only, equation (19) can be reduced to

P(W2 = 1|H0)

=

∑
W1

∫
x1

∫
x2
P(W2 = 1|W1, x2)

·P(W1|x1) · p(x1, x2|H0)dx2dx1

=

∫
x1

∫
x2
P(W2 = 1|W1 = 0, x2)p(x1, x2|H0)dx2dx1

+

∫
x1
P(W1 = 1|x1)dx1 ·

∫
x2

[
P(W2 = 1|W1 = 1, x2)

−P(W2 = 1|W1 = 0, x2)
]
· p(x1, x2|H0)dx2. (20)

Similarly,

P(W2 = 1|H1)

=

∫
x1

∫
x2
P(W2 = 1|W1 = 0, x2)

·p(x1, x2|H1)dx2dx1 +
∫
x1
P(W1 = 1|x1)dx1

·

∫
x2

[
P(W2 = 1|W1 = 1, x2)− P(W2 = 1|W1 = 0, x2)

]
·p(x1, x2|H1)dx2. (21)

Therefore,

C(W2)

= π1 + π0

∫
x1

∫
RW2|W1=0

p(x1, x2|H0)dx2dx1

−π1

∫
x1

∫
RW2|W1=0

p(x1, x2|H1)dx2dx1

+

∫
x1
P(W1 = 1|x2) ·

{
π0
[ ∫

RW2|W1=1

p(x1, x2|H0)dx2

−

∫
RW2|W1=0

p(x1, x2|H0)dx2
]

−π1
[ ∫

RW2|W1=1

p(x1, x2|H1)dx2

−

∫
RW2|W1=1

p(x1, x2|H0)dx2
]}
dx1. (22)

To minimize C(W2), if the item inside the curly bracket of
equation (22) is negative, P(W1 = 1|x2) = 1; otherwise,
P(W1 = 1|x2) = 0. The condition in (17) is reached. Next,
we assume that sensor 1 rule is fixed so that we can find
the sensor 2 decision regions in order to minimize C(W2).
Rewrite the Bayes error as

C(W2) = π1 + (
∫
RW2|W1=1

[π0

∫
RW1

p(x1, x2|H0)dx1

−π1

∫
RW1

p(x1, x2|H1)dx1]dx2)

+(
∫
RW2|W1=0

[π0

∫
RW1

p(x1, x2|H0)dx1

−π1

∫
RW1

p(x1, x2|H1)dx1]dx2). (23)

VOLUME 10, 2022 8099



X. Sun et al.: Performance of XOR Rule for Decentralized Detection of Deterministic Signals

Each of the two integrals within the parentheses in the
above equation, which contribute to the Bayes error, can
be individually minimized as they correspond to the cases
of W1 = 1 and W1 = 0, respectively. The first integral
is minimized by assigning all points x2 to RW2|W1=1 that
make the integrand within the square brackets negative. This
leads to equation (15) above. Similarly, the second integral is
minimized by assigning all points x2 to RW2|W1=0 that make
the integrand within the square brackets negative. This leads
to the equation (16) above. �
Degenerate distributions:As shown below, bivariate Gaus-

sian distribution becomes degenerate distributions, as r → 1,
under both the hypotheses. Let ε = 1 − r , then ε → 0 as
r → 1. The joint probability density function (PDF) of
bivariate Gaussian is given by

lim
r→1

p(x1, x2|H1) = lim
ε→0

p(x1, x2|H1)

= lim
ε→0

1

2π
√
1− (1− ε)2

·e
−

(x1−s1)
2
−2(1−ε)(x1−s1)(x2−s2)+(x2−s2)

2

2[1−(1−ε)2]

∼
1

√
2π
√
2ε
e−

[(x1−s1)−(x2−s2)]
2

4ε

·
1
√
2π

e−
2ε(x1−s1)(x2−s2)

4ε

∼ δ(x1 − (x2 + s1 − s2)) ·
1
√
2π

e−
(x2−s2)

2

2

∼ δ(x1 − (x2 + s1 − s2)) · p(x2|H1), (24)

where p(x2|H1) is the marginal PDF of sensor 2 under H1.
Similarly, underH0,

lim
r→1

p(x1, x2|H0) ∼ δ(x1 − x2) · p(x2|H0) (25)

Therefore, the joint pdf p(x1, x2) is degenerate with support
x1 = x2 + s1 − s2 underH1 and x1 = x2 underH0.
We now proceed to prove Theorem 1 by showing that

the XORAP rule is the unique solution satisfying both (15)
and (16) when r → 1, and then showing that this solution
also satisfies (17) when r → 1, which hence establishes
the optimality of the XORAP rule in the two-sensor tandem
topology.

First, by applying (24) and (25) to (15) and (16), we have

L1(x2) =
p(x2|H1)
p(x2|H0)

·∫
RW1

δ
(
x1−(x2+s1−s2)

)
dx1∫

RW1
δ(x1−x2)dx1

,

(26)

and

L0(x2) =
p(x2|H1)
p(x2|H0)

·

∫
RW1

δ
(
x1 − (x2 + s1 − s2)

)
dx1∫

RW1
δ(x1 − x2)dx1

.

(27)

Decision W2 is arrived by examining L1(x2) in (26)
and L0(x2) in (27), as long as they are not indeterminate.

We considerW1 = 1 andW1 = 0within each of the following
four cases.

1) x2 + s1 − s2 ∈ RW1 AND x2 ∈ RW1
When W1 = 0, due to

∫
RW1

δ
(
x1 − (x2 + s1 − s2)

)
dx1 =∫

RW1
δ(x1 − x2)dx1 = 0, L0(x2) is indeterminate and after

multiplying both sides with the denominator of the left-hand
side of (16), it shows that W2 can be either a ‘1’ or a ‘0’,
without affecting the Bayes error.

WhenW1 = 1,

L1(x2) = e−
s22
2 · es2x2 · 1

W2=1
≷

W2=0
η. (28)

2) x2 + s1 − s2 ∈ RW1 AND x2 /∈ RW1
When W1 = 1, L1(x2) = ∞ ⇒ W2 = 1, and when W1 = 0,
L0(x2) = 0⇒ W2 = 0.

3) x2 + s1 − s2 /∈ RW1 AND x2 ∈ RW1
When W1 = 1, L1(x2) = 0 ⇒ W2 = 0, and when W1 = 0,
L0(x2) = ∞⇒ W2 = 1.

4) x2 + s1 − s2 /∈ RW1 AND x2 /∈ RW1
When W1 = 1, since

∫
RW1

δ
(
x1 − (x2 + s1 − s2)

)
dx1 =∫

RW1
δ(x1 − x2)dx1 = 0, L1(x2) is indeterminate and after

multiplying both sides with the denominator of the left-hand
side of (15), it shows that W2 can be either a ‘1’ or a ‘0’,
without affecting the Bayes error. WhenW1 = 0,

L0(x2) = e−
s22
2 · es2x2 · 1

W2=1
≷

W2=0
η. (29)

In case 1), W2 = 1 only when L1(x2) ≥ η, with
x2 satisfying condition 1). Hence, such a decision in this case
will not lead to the zero probability of error, as r → 1.
Contrast this with the XORAP rule, which will have zero
probability of error as r → 1 (see section II and [14] when
r = 1). Hence, the case 1) x2 + s1 − s2 ∈ RW1 and x2 ∈ RW1

cannot be in the optimal rule as r → 1.
Similarly in case 4), W2 = 1 only when L0(x2) ≥ η, with

x2 satisfying condition 4). Hence, such a decision in this case
will not lead to the zero probability of error, as r → 1.
Contrast this with the XORAP rule, which will have zero
probability of error as r → 1. Hence, the case 4) x2+s1−s2 /∈
RW1 and x2 /∈ RW1 cannot be in the optimal rule as r → 1.

Therefore, optimal decision rule of sensor 1 will not
encounter the cases of (x2 + s2 − s1 ∈ RW1 , x2 ∈ RW1 ) and
(x2 + s2 − s1 ∈ RW1 , x2 ∈ RW1 ). Since x2 is an arbitrary
real number, both x2 + s2 − s1 and x2 cannot simultaneously
fall in RW1 or simultaneously fall in RW1 . This tells us that
the optimum partition of X1 to obtain RW1 and RW1 has to be
alternating segments of length |s1 − s2| as shown in Fig. 2.
Since only either x2+ s1− s2 or x2 can be in any particular

interval, let us focus onwhere x2 falls in the partition in Fig. 2.
Consider the case W1 = 1, if x2 ∈ RW1 (i.e., x2 falls in
decision region ‘1’), from case 3),W2 = 0 due to L1(x2) = 0;
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if x2 ∈ RW1 , from case 2), W2 = 1 due to L1(x2) = ∞. As a
result,

W2 = (W1 = 1)⊕ I (x2 ∈ RW1 ). (30)

Now consider the case W1 = 0, if x2 ∈ RW1 from case
2), W2 = 0 due to L0(x2) = 0; if x2 ∈ RW1 , from case 3),
W2 = 1 due to L0(x2) = ∞. As a result,

W2 = (W1 = 0)⊕ I (x2 ∈ RW1 ). (31)

Therefore, according to (30) and (31), decision W2 can be
expressed as the Exclusive-OR (XOR) rule between W1 and
the condition of x2 ∈ RW1 , i.e.W2 = W1 ⊕ I (x2 ∈ RW1 ).

Next, we show that this XOR rule with alternating
partition also satisfies the other coupling condition given
by (17). Applying the degenerate distributions to (17),
we obtain

RW1 =

{
x1 :

[ ∫
RW2|W1=1

δ(x2 − (x1 + s2 − s1))dx2

−

∫
RW2|W1=0

δ(x2 − (x1 + s2 − s1))dx2
]

>
π0

π1

p(x1|H0)
p(x1|H1)

[ ∫
RW2|W1=1

δ(x2 − x1)dx2

−

∫
RW2|W1=0

δ(x2 − x1)dx2
]}
. (32)

Now, starting from the XOR rule with alternating partition
obtained in the above equations (30) and (31), and noticing
that RW2|W1=1 = RW1 and RW2|W1=0 = RW1 , it is easy to see
that the XORAP rule satisfies the inequality in (32). In other
words, theW1 partition of X1 by applying (17) to the original
partition and XOR rule that are obtained from (15), (16),
results in no change to the original XORAP partition. Hence,
identical XORAP partition forW1 andW2 satisfy the coupled
necessary conditions for the optimality of tandem system,
which closes the loop and asserts the global optimality of the
rule when r → 1.

APPENDIX B
RATE OF DECREASE OF P2 AS r APPROACHES 1
Consider the term P2 =

∑
∞

i=−∞
∑
∞

k=1 Sik , where
Sik =

∫ (i+1)D
iD

∫ (i+1)D±k(2D)
iD±k(2D) f (x, y; r)dxdy.

Since f (x, y; r) = f (x)f (y|x; r), where f (x) ∼

Gaussian(0, 1), f (y | x; r) ∼ Gaussian(rx, (1− r2)),

Sik =
∫ (i+1)D

iD
g(x)

[
8

(
(i+ 1)D± k (2D)− rx

√
1− r2

)
−8

(
iD± k (2D)− rx
√
1− r2

)]
dx, (33)

where8(·) is the CDF of standard Gaussian random variable
and g(·) is the standard Gaussian density. Without loss of
generality, consider +k(2D) in the above integral. Similar
analysis for −k(2D) leads to the same conclusion.

As r → 1 ,

Sik =
∫ (i+1)D

iD
g(x)

[
Q
(
(i+ 2k)D− x
√
1− r2

)
−Q

(
(i+ 2k)D+ D− x
√
1− r2

)]
dx. (34)

Let z = x − iD, t = 2kD−z√
1−r2

. Observe that k = 1, 2, . . . ,

lim
r→1

Sik =
∫ D

0
g (z+ iD)

·

[
Q (t)− Q

(
t +

D
√
1− r2

)]
dz. (35)

As r → 1, t → ∞, both Q(·) terms above go towards 0.
Using the asymptotic expansion of Q(·) function, we get the
difference of two Q(·) terms as

lim
t→∞

1

t
√
2π

e
−t2
2 −

1
√
2π
(
t + D√

1−r2

)e− 1
2

(
t+ D√

1−r2

)2

= lim
t→∞

1

t
√
2π

e−
t2
2 .

Also, g(z+ iD) ≤ g(iD), 1
2kD−z ≤

1
2kD−D . Hence,

lim
r→1

Sik ≤
g(iD)

√
2π ((2k − 1)D)

√
1− r2

·

∫ D

0
e
−
(2kD−z)2

2(1−r2) dz. (36)

Since
∫ D
0 e
−

(2kD−z)2

2(1−r2) dz < De
−

[(2k−1)D]2

2(1−r2) ,

lim
r→1

Sik ≤ g(iD)

√
1− r2

√
2π (2k − 1)

e
−

((2k−1)D)2

2(1−r2) . (37)

Consider T ∗ ,
∑
∞

k=1

√
1−r2

√
2π(2k−1)

e
−
((2k−1)D)2

2(1−r2) . T ∗ is indepen-

dent of i and the exponential term goes to zero as r → 1.
Hence, T ∗ goes to zero exponentially. Therefore,

lim
r→1

P2 ≤
∞∑

i=−∞

g(iD)T ∗

=

(
1+

2
√
2π

(e−
D2
2 + e−

4D2
2 + ..)

)
T ∗. (38)

goes to zero exponentially fast.
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