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Abstract: Conservation agriculture practices (CAs) have been internationally promoted and used for
decades to enhance soil health and mitigate soil loss. An additional benefit of CAs has been mitigation
of agricultural runoff impacts on aquatic ecosystems. Countries across the globe have agricultural
agencies that provide programs for farmers to implement a variety of CAs. Increasingly there is a
need to demonstrate that CAs can provide ecological improvements in aquatic ecosystems. Growing
global concerns of lost habitat, biodiversity, and ecosystem services, increased eutrophication and
associated harmful algal blooms are expected to intensify with increasing global populations and
changing climate. We conducted a literature review identifying 88 studies linking CAs to aquatic
ecological responses since 2000. Most studies were conducted in North America (78%), primarily the
United States (73%), within the framework of the USDA Conservation Effects Assessment Project.
Identified studies most frequently documented macroinvertebrate (31%), fish (28%), and algal (20%)
responses to riparian (29%), wetland (18%), or combinations (32%) of CAs and/or responses to
eutrophication (27%) and pesticide contamination (23%). Notable research gaps include better
understanding of biogeochemistry with CAs, quantitative links between varying CAs and ecological
responses, and linkages of CAs with aquatic ecosystem structure and function.

Keywords: conservation; ecology; habitat; eutrophication; pesticides; agroecosystems

1. Introduction

Proper management of water resources including water quality and water quantity in
agricultural watersheds is a key component to maintaining healthy aquatic ecosystems.
Healthy aquatic ecosystems are sustainable ecosystems that exhibit resilience in their
structure (i.e., biodiversity) and function (i.e., organic matter processing) in response
to external stress [1] and subsequently able to provide a variety of ecosystem services
including clean water, climate regulation, habitat for plants and animals, nutrient cycling,
and productivity [2–4]. Ecosystem management approaches that focus on maximizing
one ecosystem service result in declines of biodiversity and other ecosystem services [5]
Agricultural land use within agricultural watersheds has impacted the ecosystem structure
and function of lentic and lotic ecosystems via altered hydrology and increased erosion as a
result of land use change and channelization and increased pollution resulting from excess
inputs of nutrients, pesticides, and other agricultural contaminants [6]. Subsequently, there
is an interest in reducing the impacts of agriculture on aquatic ecosystem structure and
function with the use of conservation agriculture practices (CAs) that have been widely
implemented in developed regions of the world including Europe, North America, Asia,
and Australia [7–10] through various agricultural agency conservation programs. However,
developing countries often have very low CA implementation that greatly limits effective
water resource management [11]. Additionally, most agricultural land within the developed
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regions of the world is privately owned and subsequently the approach towards managing
agricultural watersheds differs from that of public wilderness tracts. The management of
agricultural watersheds focuses on cropland production and addressing the subsequent
water quality issues via the voluntary adoption by individual landowners of CAs and
management of public wilderness tracts focuses on conservation via management by
government agencies [3,12].

The agricultural community traditionally has viewed CAs as methods for managing
soil and water resources and to improve agricultural production. Many of these same
practices are increasingly being viewed as practices that are capable of mitigating environ-
mental impacts of agriculture on aquatic ecosystems. There are numerous publications that
provide information on the results of field and plot scale studies examining the physical,
chemical, and/or hydrological impacts of conservation practices (see reviews by [13–18]).
Unfortunately, information on the ecological effects of agricultural CAs on aquatic ecosys-
tems at larger spatial scales such as sub-watershed to watershed levels is still limited.
Ecological effects are typically documented with field research involving the assessment of
changes in biota, physical habitat variables, and/or chemical variables that represent the
responses of ecosystem structure and/or function to the implementation of CAs and the
assessment of stressor response relationships between the biota, physical habitat variables,
or chemical variables with selected ecosystem stressors [19,20]. In an attempt to address
the limited information on the effects of CAs on aquatic ecosystems at sub-watershed and
watershed scales, several countries have enlisted the resources of government agencies
including, but not limited to, The French Ministry of Agriculture and Food, Agriculture and
Agri Food Canada, Chinese Ministry of Agriculture, Australia Department of Agriculture
and Food, New Zealand Ministry for Business, Innovation and Employment’s—Clean Wa-
ter, and The United States Department of Agriculture (USDA) [21–25]. The French Ministry
of Agriculture and Food, Territoires d’Innovation projects are agroecosystem living labora-
tory approaches to enhance innovation in sustainability and resilience to protect soil and
biodiversity in agricultural watersheds [21]. Similarly, AAFC also utilizes an agroecosystem
living laboratory approach to address agriculturally sourced environmental issues affecting
soil and water management and biodiversity with a changing climate. The AAFC living
labs projects allow rapid adoption of sustainable practices through close collaboration
among researchers, stakeholders, and land-use managers (e.g., farmers) [21]. Within China,
Chinese Nationally Important Agricultural Heritage Systems (China—NIAHS) are selected
agricultural systems that demonstrate long-term (at least 100 years) sustainable historic
agricultural practices providing resilience to extreme conditions (e.g., drought, flooding).
These valuable heritage systems provide valuable lessons for biodiversity conservation,
soil and water conservation, climate regulation, and nutrient cycling while providing food
and livelihood security for the rural community [22]. In Australia, Townsend et al. [23]
assessed economic valuation of multiple ecosystem services through tradeoffs between re-
forestation and agricultural land use as payments for ecosystem services (PES) in a process
called ‘bundling’. Ecosystem services via reforestation could include water conservation,
carbon sequestration, eco-tourism, and conservation of biodiversity. Townsend et al. [23]
suggested that the greatest likelihood for success of such a program would need to be
through government establishing appropriate mechanisms to subsidize PES payments
for water quality improvement. McDowell et al. [24] discussed in detail New Zealand’s
water quality policy as outlined in the country’s National Policy Statement on Freshwater
Management that requires integrated and sustainable water resource management. New
Zealand has a combination of mandatory regulation and voluntary initiatives coinciding
with monitoring and evaluation assessment programs to demonstrate successful imple-
mentation and regulatory compliance. By comparison, the United Kingdom (UK) has
many similar policies and programs as New Zealand. However, unlike New Zealand, the
UK utilizes subsidy payments or financial incentives in addition to the previous policies
and programs to further encourage stakeholders and land managers to investment in con-
servation agriculture practices. The USDA initiated the Conservation Effects Assessment
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Project (CEAP) as a multi-agency collaboration of the Natural Resources Conservation
Service (NRCS), Agricultural Research Service (ARS), and National Institute of Food and
Agriculture [25]. One of the goals of CEAP is to quantify the effects of CAs at the sub-
watershed and watershed scales and to develop sound science for managing agricultural
watersheds to maintain or improve ecosystem services [25,26]. As of 2019, CEAP has
23 active watershed projects (Figure 1). The USDA ARS’s Watershed Assessment Study
consists of in-depth studies conducted within 14 watersheds in the United States to provide
information on the effects of conservation practices at the watershed scale that will assist
with the National Assessment’s modeling efforts.
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Figure 1. Map of the United States Department of Agriculture, Natural Resources Conservation Service, Conservation
Effects Assessment Project Watershed Assessment study watersheds within the United States. The map is available at
https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/ceap/ws/ (accessed on 20 March 2021).

These 14 watersheds were selected because they were sites involved in long-term
watershed research that was anticipated to continue in the future. By comparison, Agricul-
ture and Agri Food Canada, Agriculture and Environment, Living Laboratories Initiative
has a similar focus to France’s Territoires d’Innovation and USDA’s CEAP in addressing
sustainable agriculture and agri-environmental issues [21]. Canada’s Living Laboratories
Initiative goals include working with farmers and producers to mitigate water contam-
ination, improve soil and water conservation, and enhance habitat and biodiversity in
agricultural watersheds.

Thus, ecological research conducted in conjunction with CA research efforts can
provide information on the ecological effects of CAs at broad scales. Our objective is to
summarize and synthesize research conducted to quantify ecological responses to CAs since
2000. We will also identify critical ecological data gaps and future research needs to better
assess how agricultural conservation practices may improve aquatic ecosystem services.

https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/ceap/ws/
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2. Methods

Identification and collection of studies reported globally in this synthesis included
peer-reviewed journal articles and non-peer reviewed book chapters, government re-
ports, student graduate theses, and proceedings papers published from years 2000–2020
(Figure 2). These were obtained through web-based search engines including SCOPUS,
Google Scholar, BioOne, and the US Department of Agriculture National Agricultural
Library (NAL). Because the focus of the synthesis is on aquatic ecosystems, initial keyword
and syntax used for the literature search included this focus: stream, river, lake, and pond.
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Figure 2. World map of the number of studies assessed from different countries from a delineated literature search for
aquatic ecological responses to conservation agriculture practices from 2000–2020 [13–20,27–111].

Keywords and syntax used to delineate the literature search for CAs included: (a) con-
servation agriculture; (b) agricultural conservation practices; (c) best management practices;
(d) vegetated buffers; (e) riparia (n); (f) wetland; (g) bioreactor; and (h) integrated pest man-
agement. Ecological structure keywords and syntax used in conjunction with CA variables
above to further refine the search included: (a) biodiversity; (b) habitat; (c) community;
(d) assemblage; (e) fish; (f) invertebrate; (g) amphibian; (h) mammal; (i) algae; and (j) plant.
Ecological function keywords and syntax used in conjunction with above CA variables to
further refine the search included: (a) nutrients (nitrogen, phosphorus); (b) carbon; (c) pes-
ticides; (d) toxicity; (e) eutrophication; (f) brownification; and (g) denitrification. Using
these criteria, 114 studies were selected for further assessment to ascertain the absence or
presence of qualitative or quantitative links between measured aquatic ecological response
variables and CAs within the study. After this second selection stage, 88 studies from
2000–2020 were selected for summary analysis (Figure 3). No published studies were
observed for the years 2000 and 2018 while the most published studies occurred for the
years 2008 and 2012 with 10 and 13 publications, respectively.

Information collected from the previously described literature search was tabulated
and summarized using excel spreadsheets that included the continent, country, CA practice,
ecological structure, ecological function, the ecological response to CAs (positive, negative,
neutral, unknown), and the study authors. Descriptive and summary statistics were used to
synthesize the data and determine the frequency of occurrence for the above listed variables.
The tabulated information was used to discern where studies are being conducted globally,
what CAs are being assessed, and what ecological responses are being measured.
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3. Results and Discussion
3.1. Study Locations and Conservation Agriculture Practices

The synthesis of the literature from 2000–2020 delineated that research on aquatic
ecological responses to CAs occurred on six continents within 17 countries [13–20,27–111].
Most studies were reported between 2007 and 2015 with 2018 being the only year without
at least one report (Figures 2 and 3). Approximately 78% of all published studies were
conducted in North America and primarily in the United States, of which 41% resulted from
USDA CEAP research within three U.S. watersheds, in the Europe, within the European
Union, was next most frequent with approximately 8%, while remaining global regions
accounted for less than 14% of the published literature (Figure 4a). Chu et al. [38] in Canada
used modeling scenarios to assess potential fish diversity responses to changes in climate
and land management resulting from climate change and associated land-use changes.
The study provided modeled scenarios indicating conservation management priorities,
including use of CAs, would most likely increase for watersheds along the eastern and
western maritime coastlines to maintain fish diversity in these regions. Chu et al. [38]
concluded that, ‘To be effective, conservation and management of aquatic habitats and
resources should aim to keep pace with changes in the types and concentration of human
activities and environmental change across the landscape.’ Smiley and Gillespie [17] in their
literature review on fishes in channelized agricultural headwater streams found that only 8
of 33 studies published between 1963 and 2009 provided information on the effects of CAs
(dam removal, instream habitat structures, riparian buffers) on fishes in the United States,
which was similar to this review’s findings highlighting the need for more information on
the ecological effects of CAs from Europe and other parts of the world. Globally, riparian
(29.5%) and wetland (18.2%) CAs were the most frequently assessed CAs individually for
aquatic ecological responses. A literature review of riparian forest CAs by Broadmeadow
and Nisbet [14] assessed how riparian functions are affected by design and management
of the CAs. Specifically, Broadmeadow and Nisbet [14] reviewed how riparian width
and vegetative structure and species could protect aquatic ecosystems within silviculture
watersheds. In general, riparian widths near 30 m provided greater protection for water
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quality and greater ecosystem services such as denitrification, habitat, native animal and
plant diversity, temperature moderation, and sediment removal. However, a majority of
studies (31.8%) assessed a combination of CAs influencing aquatic ecological responses
(Figure 4b). Few studies assessed aquatic ecological responses to more specific CAs such
as buffers and tillage practices [16], water control structures [54], or integrated pest man-
agement systems [89]. Christensen et al. [37] documented that percentage agricultural
land retirement through Conservation Reserve Program was positively correlated with
fish community structure at smaller reach scales, but not at the watershed scale in the
Minnesota River basin in Minnesota. Additionally, Christensen et al. [37] suggested their
fish-habitat relationships suggested that land retirement adjacent to streams may result
in improved physical habitat quality, but they did not directly assess the relationships
between percentage of land retirement and physical habitat quality. The influence of CAs
on physical habitat quality has not been widely assessed. Smiley et al. [86,88] found that
herbaceous riparian buffers planted as part of the Conservation Reserve Enhancement
Program adjacent to channelized agricultural headwater streams in Ohio only widen the
riparian habitats and did not alter vegetative type, vegetative structure, or instream habitat
variables. The linkages between CAs and physical habitat quality have not been widely
explored because most CAs are designed to improve water quality, not physical habitat
quality and as such this is an area that future research needs to explore in more detail.
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Figure 4. Studies from 2000–2020 assessing influence of conservation agriculture practices on aquatic ecological responses
as: (a) Frequency across locations North America (NA), South America (SA), Europe (EU), Australia (AU), Africa (AF), Asia
(AS), and New Zealand; (b) Frequency among conservation agriculture practices riparian (RIP), wetlands (WET), buffers
(BUF), other (OTH), mixed practices (MIX), and unknown (UNK) [13–20,27–111].

The value of assessing mixed CAs is demonstrated in studied USDA CEAP stream
watersheds, Cedar Creek in northeast Indiana, and Upper Big Walnut Creek in central Ohio
evaluating ecological responses to conservation practices are located in the Midwestern
Corn Belt, a region of highly intensive agriculture that is a significant contributor of
agriculturally derived nutrients and pesticides that have resulted in the formation of
hypoxic conditions in the Gulf of Mexico and the Great Lakes. These sites are also of
international interest since the majority of the headwater streams in both watersheds
consist of channelized agricultural headwater streams. Channelized agricultural headwater
streams (i.e., agricultural drainage ditches) are common in agricultural watersheds in the
Midwestern United States, Canada, and Europe [17,87,88]. These are first to third order
streams that have been modified or created for agricultural drainage [17]. Channelized
agricultural headwater streams are characterized by trapezoidal, straightened, widened
over-enlarged channels dominated by herbaceous vegetation [17,88]. Dominant land
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use in both watersheds is cropland consisting of corn (Zea mays) or soybean (Glycine
max). Increased loadings of nutrients and pesticides from agricultural fields and bacteria
from failed septic tanks are non-point source pollutants of concern. Notable combined
(mixed) CA initiatives within these watersheds have included: (1) implementation of
the USDA NRCS Environmental Quality Incentive Program (EQIP) for the improvement
and/or development of animal waste systems to reduce pathogen inputs to the watershed;
(2) integrated pest management for the reduction of atrazine concentrations; (3) promotion
of riparian buffers via Conservation Reserve Enhancement Program to improve water
quality; and (4) educational outreach initiatives to promote the adoption of agricultural
best management practices [17,87,89]. Additionally, portions of Cedar Creek are designated
as part of the Indiana State Natural, Scenic, and Recreational River System, which provides
those reaches with protection from construction, dam, and drainage projects and has led to
the upper reaches of the watershed as being designated an EQIP priority area. Another
example within USDA CEAP of assessing combinations of CAs in a lake watershed is
Beasley Lake in western Mississippi. Beasley Lake is a riverine lake watershed with >50% of
land-use in row crop agriculture planted in soybeans, cotton (Gossypium hirsutum), and corn.
Implemented CA practices include conservation tillage practices, specialized drainage
culverts (i.e., slotted board risers) to reduce runoff flow rates, and the planting of temporally
stable vegetated buffers and grassed filters, conversion of highly erodible cropland to
vegetative cover via the Conservation Reserve Program, constructed wetland, wildlife
habitat vegetative buffers, and a two-celled sediment retention pond (Figure 5) [63,67,70].
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3.2. Ecological Responses to Conservation Agriculture

Synthesis of ecological responses to CAs among the 88 studies indicated that CAs
can have positive, neutral, and occasionally negative influences on aquatic ecosystems. Of
the studies assessed, 39.8% indicated a positive ecological response to CAs (e.g., increased
biodiversity) [16,20,33,37,39,44,48,49,51,53,54,60,61,64–66,72,74–76,78,81,82,84–86,90–92,94,
99,106,111] and 40.9% had no discernable ecological influence [17,27,30,31,34,35,52,57–
59,62,63,67–71,77,79,80,88,89,95–98,102,103,105,107–110]. Only two studies that evaluated
fish responses [36,83] documented negative influences of CAs. For 17% of the studies
assessed, ecological responses to CAs could not be determined. A summary of the common
structural and functional responses used to evaluate CAs at sub-watershed and watershed
scales are presented in Figure 6.
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as: (a) Frequency of studies assessing structural ecological responses of fish (FISH), macroinvertebrate (INVERT), algae
(ALGAE), heterotrophic bacteria (MICROBE), aquatic plant (PLANT), amphibian (AMPHIP), and mammal (MAMM); (b)
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algal blooms (HAB), carbon cycling (C), stressor-response ecotoxicology (TOX), and non-specified (N/A) [13–19,27–111].

A conceptual model depicting linkages between CAs, influenced agricultural stressors,
and potential ecological structural and functional responses is presented in Figure 7. There
are a wide variety of ecological responses that can be assessed in both lotic and lentic
aquatic ecosystems at a variety of spatiotemporal scales. Ecological structural responses
(i.e., changes in biodiversity, abundance, or species composition) can occur at lower trophic
levels of the ecosystem, such as autotrophic (algae and plants) and heterotrophic (bacte-
ria and fungi) microorganisms, that are often the aquatic communities responding the
quickest spatially and temporally to water quality changes resulting from implemented
conservation practices [111]. Delineation of the literature assessing CA influences on algae
accounted for about 20.5% while studies with aquatic plants were only 4.5% of the liter-
ature. Heterotrophs accounted for 13.6% and were almost exclusively bacteria. Aquatic
macroinvertebrates and fish communities are sensitive indicators of ecosystem health and
ecological integrity and information from these higher trophic levels of consumers can
provide valuable insights regarding the impacts of the physical and chemical changes
caused by conservation practices. Studies of CA effects on fish occurred in 28.4% of the
studies while macroinvertebrate studies were the most frequent at 30.7%. Studies with
amphibians and mammals were rare (<2%) with only one study on amphibians [88] and
one study on mammals, specifically beaver (Castor fiber) [94], were found. Ecological
functional responses include physical processes of hydrology, morphology, and physical
and chemical components that affect ecosystem responses [112–118]. Aspects of biogeo-
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chemistry including uptake, transport, and storage of nutrients are also important elements
of lotic and lentic aquatic ecosystems that can assist with understanding ecosystem re-
sponses to agricultural conservation practices [14,49,69,112]. To date, ecological research
in agricultural watersheds has encompassed a broad suite of ecological responses scaling
along the hierarchy of biological organization including nitrogen biogeochemistry, micro-
bial ecology of phytoplankton and heterotrophic bacteria, a multitude of ecotoxicological
assessments ranging from standard toxicity bioassays to biomarker assessments, and fish
ecology assessments involving population and community ecology (see: Figure 6a,b).
However, most studies are conducted using comparisons of watersheds across a gradient
of CA and/or stressor conditions, such as comparisons of ecological responses between a
reference watershed and agriculturally impacted watershed. Far fewer assessments include
before-after, control-impact (BACI) experimental designs [89] that provide more robust
linkages between CAs and ecological responses and better forecasting of CA effectiveness.
This would require pre-CA conditions being measured and, for many ecological responses,
long-term (decadal) ecosystem assessments.
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3.3. Structural Ecological Responses

Structural ecological components of aquatic systems encompass the diversity, abun-
dance, and species composition of biota from heterotrophic bacteria to algae, macroin-
vertebrates, and vertebrates among populations and communities. These structural com-
ponents interact with the physical and chemical external aquatic environment and can
be altered by agricultural implementation of conservation practices in the watershed
(Figure 7) [112–115]. Macroinvertebrate and fish ecology are the two most commonly stud-
ied components in assessing environmental quality in streams and lakes [115,116] and were
the most frequent ecological responses to CAs measured [16,17,29,31,36–38,40,41,43–48,51–
53,55,56,58,60–62,64–66,68,70,72,74–78,81–86,89,91,92,95,108] (Figure 6a). Fish community
assessments conducted in USDA CEAP watersheds indicated that implementation of sin-
gle CAs (i.e., herbaceous riparian buffers or atrazine reduction practices) implemented to
improve water quality conditions will not benefit fish communities within the watersheds
of channelized agricultural headwater streams in the Midwestern United States [88,89].
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These results are supported by extensive information on fish-habitat relationships within
these streams that indicates that fish community structure is being influenced mostly by
instream habitat rather than water chemistry [86,119–122]. In contrast, fishery assessments
of the influence of multiple CAs (i.e., herbaceous buffers, slotted board risers, forested
buffers, conservation tillage) implemented to improve water quality within an oxbow
lake of the Mississippi Delta in western Mississippi, USA documented that the imple-
mentation of these practices lead to changes in fish community structure [61,62,123]. Fish
communities and populations in stream ecosystems are strongly influenced by instream
habitat [17,86,119,120] and other physical habitat variables (land use, watershed soil type,
geomorphology, and percent fines) [121,122]. Stream channelization has resulted in phys-
ical habitat degradation that impacts fish communities within channelized agricultural
headwater streams in the Midwestern United States and Canada [17]. Subsequent assess-
ment of nutrients and pesticides with USDA CEAP watersheds in Indiana and Ohio has
documented that while these streams experience periodic episodes of elevated levels of
nutrient and pesticide concentrations [17,87,120,124], average and median concentrations
are typically below the chronic and acute toxicity levels for fish [17,81,119]. Additionally,
the implemented CAs within channelized agricultural headwater streams did not result in
improved water quality conditions or physical habitat quality within these streams [88,89].
Thus, implementation of CAs designed to improve water chemistry conditions within
channelized agricultural headwater streams in the Midwestern United States did not
address the primary degradation factor (i.e., physical habitat degradation) influencing
fishes within these streams. In contrast, the implementation of multiple CAs within USDA
CEAP Beasley Lake Watershed in the Mississippi Delta of western Mississippi, USA, was
specifically intended to reduce suspended sediment loads, which is the primary source of
degradation within this ecosystem type [58]. The concerted implementation of multiple
CAs over a 15-year period reduced total suspended sediment concentrations that led to
a cascade of associated physicochemical changes such as improved visibility, increased
phytoplankton productivity, and ultimately changes in the structure of fish communities
and populations [61,62,123]. These combined cross-watershed results suggest implementa-
tion of CAs will not benefit fishes within small agricultural watersheds unless multiple
CAs are implemented specifically to address the primary factor (or factors) contributing
to the degradation of fish populations and communities. This conclusion has important
ramifications within the United States for current USDA NRCS guidelines related to imple-
mentation of CAs. USDA NRCS implementation of CAs within agricultural watersheds of
the United States occurs as a result of voluntary adoption of CAs by farmers and landown-
ers. Additionally, USDA NRCS guidelines currently limit landowner compensation to
the adoption of only one practice on the same property at one time. These two policies
combined typically result in haphazard implementation of single CAs within agricultural
watersheds in the United States that may potentially delay or hinder the recovery of aquatic
ecosystems from the impacts of agriculture. USDA NRCS policy changes that enable the
targeted implementation of multiple CAs within agricultural sub-watersheds are needed
to positively benefit fish communities and populations.

Global climate change can have long-term and watershed-scale influences on CA
effectiveness in mitigating transport of agricultural pollutants to streams and lakes. Collec-
tively, these multiple stressors can alter the health and diversity of aquatic ecosystems and
fish communities [38,45,51,82,83]. Recent research has attempted to address how expected
global climate change might affect long-term effectiveness of present-day CAs to try and
reduce uncertainty and protect water quality and fish biodiversity with conservation plan-
ning [39]. Recent research by Fraker et al. [45] and Hall et al. [51] in the U.S. and Canada
integrated the use of several models to attempt to forecast global climate change scenarios
to estimate CA effectiveness and resiliency under altered precipitation patterns relative
to protecting fish community diversity. The studies indicated that changes in climate are
likely to increase the need for CAs to protect diversity [51], but that efforts to improve water
quality through CAs may come with costs to other ecosystem services such as unintended
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shifts in fish communities [39]. Studies by Sarkar et al. [82,83] in India indicated that fish in
the region were maturing earlier, due in part to warming temperatures from climate change
and alterations in hydrology from human activity such as irrigation for agriculture. As a
result, Sarkar et al. [83] emphasized the need to maintain and enhance riparian floodplain
wetland conservation as a means to ameliorate the impacts of agriculture and climate
change to protect fish diversity in watersheds of India.

3.4. Functional Ecological Responses

Functional aquatic ecological components incorporate ecosystem processes of biogeo-
chemistry, eutrophication affecting nutrient cycling, food webs, and system metabolism, and
cause-effect stressor-response relationships involving ecotoxicology (Figure 7) [124–127].
Approximately 45% of studies assessing ecological responses to CAs incorporated a
functional ecological component [20,29,32–35,41,47,50,60,65,66,68–70,73,75–80,84,89–92,96–
103,105–107,109,112]. Of these studies, four assessed harmful algal blooms [30,32,33,50],
six studied components of carbon cycling [73,90,96,97,103,105], 10 examined aspects of
nutrient (nitrogen, phosphorus) cycling [20,34,35,79,80,100–102,106,107,112], and the re-
mainder assessed ecotoxicology (Figure 6b). Since most studies did not contain components
of ecosystem function, this area of research is in greater need to assess how CAs could
influence aquatic ecosystem processes.

Eutrophication induced by elevated nitrogen and/or phosphorus alters the func-
tion of aquatic ecosystems through a variety of pathways including, but not limited to,
production of harmful algal blooms (HABs) [30,32,33,50], changes in algal nutrient limita-
tion [34,35], hypoxia (i.e., dissolved oxygen stress induced by concentrations at or below
2 mg/L) [30,80,106], and alteration of aquatic ecosystem metabolism [79]. Ecosystem ser-
vices of CAs such as wetlands and wetland vegetation allowed to grow and flourish in
constructed wetlands or drainage ditches implemented in an agricultural watershed allow
for the processing, uptake, mineralization, and cycling of carbon, nitrogen, and phospho-
rus [20,111]. Furthermore, understanding the relationships between eutrophication, nutri-
ent source (e.g., internal catchment loading), legacy nutrients, system lag-times, and ecosys-
tem biogeochemistry in agricultural landscapes (Figure 7) can provide greater success in
CAs controlling the deleterious effects of eutrophication [79,80,100,102,106,107,112]. About
half (48.7%) of the reviewed studies focused on assessments with CAs (as ecosystem ser-
vices) on carbon [73,90,96,97,103,105], nutrients (N, P) [20,34,35,79,80,100–102,106,107,112],
and harmful algal blooms [30,32,33,50] in relation to eutrophication. While several studies
measured some CA mitigation in eutrophication [20,33,90,100,106,112], most studies had
either neutral or unknown CA influences [30,32,34,35,50,73,79,80,96,97,102,103,105,107].
Nutrient dynamics in streams, rivers, and lakes of agricultural watersheds are often linked
to upland terrestrial legacy nutrients such as phosphorus [6,100] and/or subsurface trans-
port of nitrogen, often as nitrate [20,49,50]. This increase in nutrients can then alter transport
and fate, increase productivity, and potentially elicit HABs [50,54]. While alteration of
nutrient dynamics can occur within the lotic or lentic system [20,54,71], CAs can be uti-
lized to harness some watershed ecosystem functions [9,20,49,107]. Denitrification and
phosphorus sequestration (e.g., plant uptake) that mitigate alteration of nutrient dynamics.
The framework proposed by Goeller et al. [49] using multiple stacked CAs combined with
in-stream management to enhance ecological processes such as denitrification could be
used to control nutrients such as nitrogen. Also, managing channelized agricultural head-
water streams for both drainage (i.e., drainage ditches) and enhanced ecological processes
can be enlisted to further control excess nutrients that alter nutrient dynamics in streams,
rivers, and lakes [20]. Currently, a research gap remains between measured reductions in
nutrients with CAs and how these reductions shift or alter nutrient dynamics in impacted
agricultural watershed water bodies and future research is needed.

Biogeochemical processes can be harnessed within a framework of integrated or
stacked CAs and stream habitat restoration to improve nutrient cycling and increase
nutrient attenuation in agricultural watersheds. Goeller et al. [49] proposed a framework
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of stacked CAs including edge-of-field practices (e.g., grassed filter strips, retention ponds),
riparian buffers (e.g., constructed wetlands) combined with in-stream habitat structures
(e.g., woody debris, low-grade weirs) to enhance biogeochemical attenuation of nitrogen
in New Zealand agricultural watersheds. Goeller et al.’s [49] framework is flexible to
allow researchers, stakeholders, land-owners, and farmers a variety of options that are
field to farm-specific and increase the likelihood for success in assessing the most effective
measures for mitigating farm nutrient runoff. Biogeochemistry (e.g., nutrient cycling)
studies conducted in USDA CEAP watersheds included Ullah et al. [99] 2005 comparison
of denitrification rates and N2O emission rates (greenhouse gas) in cultivated row-crop
soils to mature bottomland hardwood riparian forest soils within Beasley Lake Watershed
in western Mississippi, USA. With the addition of NO3, riparian forest soils showed a
more than two-fold increase in denitrification potential compared with cultivated soils.
In contrast, N2O:N2 emission ratios were consistently greater in cultivated soils than in
riparian forest soils with or without the addition of NO3. These results indicated that
differences in land use leads to differences in the watershed’s capacity for denitrification
and is a direct result of different physiochemical properties of the two soil types where
wetter soils, greater soil porosity, and greater soil organic carbon loads found in forested
riparian soils significantly increases denitrification compared with cultivated soils. In
addition, many of these same soil properties also allow greater N mineralization and lower
levels of N2O emission in forested riparian soils further highlighting the value of using
forested riparian buffers as a CA practice. Similarly, Keating et al. [100] measured soil
denitrification gene (nosZ) abundances and N2O emissions in CAs and cropland within
Beasley Lake Watershed in Mississippi during summer 2013. Keating et al. [100] observed
highest N2O in cropland and riparia, although measured soil genetic and chemical data
suggested a difference in N2O sources between these two sites. Denitrification gene
(nosZ) abundances in soils indicated denitrification-derived N2O products in intermittently
flooded wetland and riparia sites, while soil inorganic nitrogen concentrations indicated
greater nitrification-derived N2O products in dry cropland sites in the watershed. A
more comprehensive assessment of soil denitrification potential across land-use types
was conducted in a USDA CEAP Beasley Lale Watershed from 2002 to 2003 by Ullah and
Faulkner [101]. Multiple land-use types including upland cultivated soils, vegetated and
unvegetated channelized headwater stream soils, constructed wetland soils, and forested
riparian soils were examined. Soil denitrification potentials were 6.3-fold greater in forested
riparian soils and two-fold greater in constructed wetland soils than comparable cultivated
soils [101]. Additionally, denitrification potentials within soils collected from vegetated
and unvegetated channelized headwater streams were less than wetland and forested
riparian soils [101]. These results provide support for the use of forested riparian soils and
constructed wetlands to mineralize nitrogen and reduce nitrogen runoff into agricultural
lakes like Beasley Lake.

Examples of heterotroph functional ecology was observed with Zablotowicz et al. [108]
that documented that a significant fraction (33–100%) of Beasley Lake water borne popu-
lations of the colony-forming heterotrophic gram-negative bacterioplankton, fluorescent
Pseudomonas sp., were capable of metabolizing and/or co-metabolizing three commonly
used herbicides, metolachlor, propanil, and trifluralin. Metolachlor was transformed by
fluorescent Pseudomonas sp. via glutathione conjugation, while propanil was transformed
via aryl acylamidase hydrolosis and trifluralin was transformed via aromatic nitroreduc-
tion. Although herbicide biotransforming fluorescent Pseudomonas sp. did not exhibit
responses to specific CAs within Beasley Lake, these results are important because they
indicate that CAs that can result in increased abundance of fluorescent Pseudomonas sp.
may help with decreasing herbicide concentrations within aquatic ecosystems. One of the
more detailed microbial studies conducted in Beasley Lake included assessments of extra
cellular enzyme activity such as fluorescein diacetate hydrolysis (1997 to 1999), alkaline
phosphatase, and substrate utilization (2000 to 2003) [109,128], as well as evaluations of
phytoplankton and bacterioplankton populations with a suite of diagnostic photosynthetic
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pigment biomarkers (e.g., chlorophylls, xanthophylls, carotenoids, etc.) and spiral plating
assays (2000 to 2003). Despite the extensive microbiological assessment, observations
of heterotrophic bacteria and associated extra cellular enzyme activity were similar to
those of Cullum et al. [39] where implementation of CAs from 1995 to 2003 appeared to
have minimal impact on these microbial endpoints [109,128]. Cullum et al. [39] did not
observe any effects of CAs on either coliform or enterococci bacteria counts. However, algal
biomass, as chlorophyll concentration, clearly increased four years after implementation of
CAs coinciding with decreases in suspended sediments indicating algal populations were
primarily light limited but not nutrient limited [39].

Functional ecological response studies focusing on ecotoxicology accounted for 51.3%
of these studies and exclusively examined the effects of CAs on mitigating pesticide effects
both in surface waters and river or lakebed sediments (Figures 6b and 7). Ecotoxicology
research was conducted primarily (70%) on macroinvertebrate responses (communities to
individuals) [29,47,60,65,66,68,76–78,84,89,91,92,98] with only 15% of studies assessing fish
and 15% assessing microbial (algae and/or bacteria) responses [41,70,89,98,109]. Studies
by Gagliardi and Pettigrove [47] in Australia, Schäfer et al. [84] in Europe, and Tsaboula
et al. [98] in Greece, were among the more comprehensive ecosystem assessments of
pesticides on non-target aquatic organism monitoring and assessing suites of current-
use and/or legacy pesticides (e.g., ΣDDT) at dozens to >100 river and stream sites to
demonstrate pesticide mitigation using CAs. Additionally, a number of studies conducted
at various scales in the United States attempted to directly link more specific CAs with
pesticide mitigation and ecological impacts.

Ecotoxicological bioassays and biomarker assessments conducted within channelized
agricultural headwater streams in the Midwestern United States [41,81,119] and oxbow
lakes of the Mississippi Delta in western Mississippi, USA [60,65,66,75–77] provided in-
dications of the potential for sublethal effects of agricultural contaminants on the biota
within small agricultural streams and lakes. Experimental animals in these bioassays and
biomarker assessments were exposed to realistic concentrations of agricultural contam-
inants as a result of being exposed to water or sediment obtained directly from USDA
CEAP sampling sites. This is a significant contrast to typical laboratory assessments of
agricultural contaminants with experimental animals exposed to a wide range of concen-
trations that do not represent real-world conditions. A common finding among all the
USDA CEAP ecotoxicology research in both watersheds was that exposure to realistic
concentrations of agricultural contaminants below acute and chronic toxicity levels did
not reduce survival of experimental animals, but instead resulted in the occurrence of
sublethal responses involving reduced growth or reproduction. The potential for sub-
lethal effects within aquatic macroinvertebrates and fishes suggests that CAs that can
lead to water quality improvements below the current regulatory standards may benefit
the biota within small agricultural streams and lakes. From a management perspective,
this cross-watershed conclusion suggests that CA plans for small agricultural watersheds
that attempt to go beyond simply meeting the state and federal regulatory requirements
for water quality will provide greater ecological benefits than those that simply attempt
to meet the regulatory requirements. From a research perspective, this cross-watershed
conclusion suggests that ecological responses to water quality improvements as a result of
CAs are likely to be expressed in more subtle ways than ecological responses to extreme
physical habitat degradation or chemical contamination. Sublethal responses to water
chemistry changes are difficult to detect [117] and future assessments of CAs will require
concerted research efforts involving tiered assessments across watershed, field, mesocosm,
and laboratory scale experiments.

4. Conclusions

Our summaries and synthesis of CAs and aquatic ecology research results across
watersheds and ecosystem types provided insights regarding the ecological effects of CAs
that can be used to reduce the potential impacts of agriculture on streams, rivers, and lakes.
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Key findings from this synthesis highlight the importance of using combinations of CAs
to address primary factors responsible for ecosystem degradation and the importance of
tiered assessments to detect subtle, sublethal responses of the biota to water chemistry
changes as a result of conservation practices.

Despite the body of information produced by ecological research effort over the past 20
years, there are still several critical information gaps of ecological processes and functions
that still need to be addressed to improve our understanding of the ecological effects of
CAs at the watershed scale. Notable gaps include: (1) improved understanding of how
stream and lake nutrient spiraling, cycling, and internal loading (retention) are affected
by CAs; (2) clarifying how and to what extent stream and lake trophic states and inter-
actions are altered with changes in water quality; (3) better understanding of the effect
of CAs on physical habitat quality as well as water quality; (4) the influence of changing
nutrient-pesticide mixtures on the biota as a result of water quality improvements due
to implementation of CAs; (5) documentation of which combinations of CAs provide the
greatest ecological benefits; and (6) quantifying the minimum percentages of agricultural
watersheds that need to receive implementation of CAs to mitigate the effects of agriculture
on the biota within agricultural watersheds. Particularly, new research efforts involving
the individual (e.g., genetic, biochemical, physiological) and population level (e.g., repro-
ductive output) impacts of agricultural contaminants would assist with understanding the
sublethal impacts of agricultural contaminants and the potential benefits of water quality
improvements beyond the current regulatory standards. Novel research that documents
the influence of CAs on ecosystem structure and function within and among watersheds
would be useful to further our understanding of whether conservation practices can re-
store aquatic ecosystems. One example would be expanding existing research tools and
techniques to assess nutrient dynamics from multiple stacked or integrated CAs to runoff
to downstream receiving waterbodies using geographic information system framework
with empirically measured denitrification rates across the landscape and into streams,
rivers and lakes to map hot spots of nitrogen transport and transformation. Coinciding
with this would be assessments of HABs nutrient limitation and nutrient sensitivities to
determine how nitrogen affects HABs and possible nitrogen thresholds needed to mitigate
HABs. Another example would be to expand the above efforts to include carbon cycling
and aquatic system metabolism using state-of-the-art dissolved oxygen monitoring and
models across an empirically measured (e.g., area in ha) gradient of CAs within or among
multiple watersheds. A third example would be utilizing and expanding research networks
across disciplines (engineering, biology, soil science, agronomy, social science) and multiple
watersheds at national and international scales. For example, USDA-ARS Long-Term
Agroecosystem Research Network (LTAR; https://ltar.ars.usda.gov/ (accessed on 9 June
2021)) can provide research opportunities to examine the influence of CAs on ecosystem
services at large (continental) scales and include scientists from government, academic,
and private sectors.

Although water samples for measurement of nutrients and pesticides are collected
across a variety of watersheds globally, there is currently a lack of coordinated effort
across watersheds to assess similar and comparable ecological endpoints. Development
of more coordinated ecological assessments globally across watersheds would strengthen
research efforts and other similar research initiatives designed to evaluate the influence
of CAs and restoration practices. Guidelines for developing ecological assessments of
CAs are in place [19] and available to assist with developing new coordinated ecological
assessments. Ideal ecological endpoints are those that are ecologically relevant, accurate,
precise, repeatable, and can be applied and/or implemented widely across multiple water-
sheds simultaneously. Too often, ecological research on CAs is site or watershed specific
with ecological assessments focusing on localized impairment of water quality, habitat, or
other ecosystem services. Although such studies are important for determining ecological
impacts within a specific site or watershed, results are often limited and do not readily
translate across multiple watersheds.

https://ltar.ars.usda.gov/
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