University of Mississippi

eGrove

Open-File Reports

Mississippi Mineral Resources Institute

1983

A Study of Secondary and Tertiary Oil Recovery Potential in Mississippi

Clifford George

Follow this and additional works at: https://egrove.olemiss.edu/mmri_ofr

Recommended Citation

George, Clifford, "A Study of Secondary and Tertiary Oil Recovery Potential in Mississippi" (1983). *Open-File Reports*. 54. https://egrove.olemiss.edu/mmri_ofr/54

This Report is brought to you for free and open access by the Mississippi Mineral Resources Institute at eGrove. It has been accepted for inclusion in Open-File Reports by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.

A Study of Secondary and Tertiary Oil Recovery Potential in Mississippi

C

C

0

Ċ

0

0

Prepared For The Mississippi Mineral Resources Institute University, Mississippi

> By Clifford E. George Mississippi State University Mississippi State, Mississippi

> > August 1983

ACKNOWLEDGEMENTS

A number of people deserve thanks for helping to bring this study to a conclusion. Among these are the several Mississippi State University students who assisted in searching for data and putting it into computer format. D.O. Hill and J.L. Weeks offered the valuable support of the Mississippi State University Department of Chemical Engineering. Special thanks go to Professor C.H. Kuo for his encouragement and criticism during the course of this project.

A.R. Henderson of the Mississippi State Oil and Gas Board and his able Staff are to be commended for their patience in providing the author with information and relative personal remarks. Thanks also go to the Mississippi Mineral Resources Institute for the neccessary financial support during the course of the last year.

Personal thanks go to the 245 independent and major oil operators in the state who made this project possible. They offered their cooperation and candid comments concerning their respective oil production operations.

i

TABLE OF CONTENTS

C

C

0

C

C

0

Ċ.

0

U

Pag	e
LUY	\sim

ACKNOWLEDGEMENT	i
ABSTRACT	iii
I. INTRODUCTION	1
II. ENHANCED OIL RECOVERY	4
<pre>1. CHEMICAL FLOODING TECHNIQUES a. Polymer Flooding b. Surfactant Flooding c. Alkaline Flooding</pre>	4 4 5 6
2. MISCIBLE FLOODING (carbondioxide)	6
3. THERMAL RECOVERY METHODS a. Hot Water Stimulation b. Steam i. Steam soak proceedures ii. Steam drive	7 8 9 9
c. In-Situ Combustion 1	.0
III. RESERVOIR SCREENING 1	.2
IV. SURVEY OF OIL OPERATORS 1	.6
V. CONCLUSIONS 1	.9
REFERENCES 2	21
APPENDIX A, Survey questionnaire 2	3
APPENDIX B, List of oil fields considered 2	6

ABSTRACT

A study was made of Mississippi's oil reservoirs to determine to what extent the use of secondary and tertiary oil recovery methods may be expected to play in the future development of Mississippi's oil industry. A survey was made of the current state of the art of chemical flooding, miscible (COp) flooding, and thermal recovery techniques. The primary source of reservoir information was that made available as public record by the Mississippi Oil and Gas Board with some information being furnished by oil operators and their employees throughout the state. The bulk of this information was entered into computer data storage and examined by specified screening criteria. At least 600 of the 1063 reservoirs checked showed at least some technical potential for enhanced oil recovery (EOR). However, since the majority of these fields contain 40 acres or less and are at depths of over 6000 feet, implementation costs will prevent all but a few from ever seeing any EOR efforts. For the reason of excessive depths, the method of steam stimulation, a method which is popular in some other locations, is all but eliminated from consideration in Mississippi. A survey was made of 245 known oil operators in the State. 46% of those responding indicated that they had made EOR studies in the past. Most of these stated that in order for these projects to be viable, it would be necessary for crude prices to rise about 25% to \$40/barrel. The same result may be obtained by granting EOR projects total exemption from windfall profits tax. It was concluded that EOR is a way to increase the ultimate recovery of

0

iii

the State's oil thus sustaining the economic benifits of a healthy oil industry to this State. This study was supported and sponsored by a grant from the Mississippi Mineral Resources Institute.

iv

C

C

6

Ç .

(

Ċ.

INTRODUCTION

Enhanced Oil Recovery (EOR) is of vital importance to the development of society as we know it today. Each of our citizen's demand the right to consume energy in the form of petroleum products without regard to any restrictions being placed on that use because of finite limited supplies or the fact that the United States controls only a small fraction of the world's known petroleum reserves (1,9). It is incumbent on the oil industry to meet this demand by finding more reserves. One way to increase recovery efficiency is through the application of enhanced oil recovery techniques on existing known oil reservoirs.

(

Ċ.

Primary production methods can only hope to produce about 20% of the oil in place from a given reservoir. The percentage usually used when calculating proven reserve is 35%. During the past 35 years, about 2 billion barrels of crude has been produced from Mississippi's oil fields by primary production methods. The challange is to increase the amount of oil which can be recovered from a given oil bearing formation thereby increasing amounts of available crude.

Water flood techniques are used by some in an attempt to drive oil towards producting wells. Water is pumped into a formation by injection wells causing a net flow of water to proceed from the injection wells towards the producers. With this movement, some of the oil in the reservoir is carried along with the water stream to the producing well where it can be

pumped to the surface. However, even with a well designed and operated water flood operation, a majority of oil is left in the ground.(11)

EOR methods have been developed and tested which increase the recovery of oil. The methods used vary considerably and depend on the specific characteristics of the reservoir being considered for treatment. It is desired to use a method which will yield a reasonable amount of oil with minimal incremental cost increase of production. Unfortunately, by nature of the depth of most reservoirs, the cost of undertaking an EOR project is very great and it is often difficult to see sufficient economical justification for these projects. Capitial outlays and the cost of money too often outweigh benifits of an EOR project whose chance of technical success is always a matter of speculation.

There are some successful EOR projects being operated in the State of Mississippi at the present time. These projects have been developed in reservoirs that are rather large both in area and formation thickness. Some of these operations are being preformed at depths of up to 11,000 feet which adds greatly the the cost of development.(11,15)

C.L

O.

A major portion of Mississippi's oil is produced from small fields with pay sands 10 feet in thickness and less. Application of EOR techniques to these fields at the present time would not be economically justifiable. However, as new drilling technology and EOR technology is developed, EOR may become a viable process even in these small fields.

Reservoir data were collected from information made available from the Mississippi Oil and Gas'Board. This data was used in a computer based screening process to select reservoirs in the State which may have potential for EOR applications.

It was found that on initial examination, 600 out of the 1068 reservoirs may have some potential for EOR although economical limitations would certainly prevent all but a few from further consideration.

6

0

0

C

A survey of current state of the art techiques for EOR methods is included in this report. Also included are the results of a survey made of oil lease operators during the past year pertaining to present and future EOR operations in the state.

ENHANCED OIL RECOVERY

EOR methods may be divided into groups as follows:

1. Chemical Flooding Techniques

a. Polymer flooding

b. Surfactant flooding

c. Alkaline flooding

2. Miscible Flooding

(Carbon dioxide)

3. Thermal Recovery Methods

a. Hot Water Stimulation

b. Steam

i. Steam soak procedures

ii. Steam flood

c. In-situ Combustion

All of these methods have applications which depend on crude oil, reservoir, and economic considerations. Even with application of these techniques, all of the in place oil in a reservoir can never be captured.

Of the methods discussed, only in-situ combustion can be considered as an ultimate recovery method. Use of combustion requires a minimum consumption of 10% of in place oil with the possibility of recovering the remaining 90%.

Polymer Flooding

C.

Polymer flooding is a term used to describe the enhancement of a water flood operation by adding high molecular weight

polymers to the injected fluid. (13,16) The purpose of the polymer addition is to increase the sweep efficiency of the water drive and thus produce more oil for a given production cost. This is to say, the polymers inhibit driving fluid from flowing through larger pores in the formation and at the same time forcing more fluid through the smaller pores. The net result is that oil that would otherwise be bypassed is forced from the smaller pores.

To use polymer flooding, it is assumed that a water drive must be in operation. Thus, the use of this technique, as well as other chemical flooding, may well be limited to fields with sucessful water drive operations.

Surfactant Flooding

C.

0.

 \bigcirc

Surfactant is another term for surface active agent or soap. These a generally organic compounds which have a physical attraction for both water and oil. Hopefully, when a surfactant molecule is brought into contact with a glob of oil, it will cause the oil to become emulsified to some extent in the water phase. When this happens, both the oil and water are dispersed, one in the other, and they both have the same physical characteristics.(13,16)

This mixture will then move towards the producting well as one phase and there will be reduced tendency for separation of the oil and water either by gravity or by surface tension effects. Surfactant is introduced to the formation during water drive operations by mixing it with the injected water.

Alkaline Flooding

10

61

(

0

0

Alkaline or caustic flood is similar to surfactant flooding. Alkaline flood takes advantage of the chemical characteristics of the in place crude oil to create surface active effects by chemical combination of crude oil and caustic.(19) When this chemical combination takes place, it affects the physical characteristics of the water phase much like a soap reducing surface tension effects between the water phase and the oil phase. This surface tension reduction decreases mobility ratios and allows more effective sweeping of oil from the formation.

As with other chemical flood processes, alkaline flooding is used to improve efficiencies of water drive operations. Caustic is introduced at the injection well and is expected to move in the formation towards the producing well. Miscible Flooding (Carbon Dioxide)

Carbon dioxide injection has many effects on crude oil. Favorable characteristics for oil recovery are that it is a means of pressure maintenance, it reduces surface tension and apparent viscosity of the oil, it increases apparent volume of the oil in place, and, under the right conditions, a phenomena called miscible displacement takes place(13,20)

Production of oil from any oil bearing formation depends on the presence of a pressure driving force moving oil to the face of the producing well. One means of providing that force is to pump gas down hole to maintain a minimum pressure in the reservoir. Carbon dioxide has an advantage of being fairly

soluble in reservoir fluids which means that if a localized reduction in pressure occurs, as would happen during the course of flow, CO is available to come out of solution to offset some of that pressure drop thus creating a more uniform flow of fluid and forcing more oil from smaller interstices of the reservoir.

The effect on dissolved CC[^] in oil is seen in a reduction of both surface tension and oil viscosity. Both of these effects are favorable factors in the release of oil from the reservoir rock and flow towards the producing well.

An additional positive effect is caused by oil increasing in volume as CC[^] is dissolved into the hydrocarbon phase. If a droplet of oil is swollen, then there is a better chance for it to move along with a driving fluid.

Miscible displacement can also take place under the right conditions. This effect occurs at high reservoir pressures and is a result of the in place hydrocarbons vaporizing at reservoir temperature and maintaining a vapor-liquid equilibrium with a miscible GO2-oil phase. Thus, as the oil becomes part of this phase, the liquid oil is displaced by the carbon dioxide. The object of the operation is to maintain a miscible phase and make it move towards the producing well. Due to the sensitive nature of pressure, volume, and temperature relationships, this achievement is often difficult.

Thermal Recovery Methods

C

C

C.

In general, thermal recovery techniques introduce heat to the reservoir in a effort to reduce oil viscosity and surface tension to make the oil more mobile and more likely to move

towards the producing well. This means that thermal recovery would be more likely to be considered for a low gravity crude oil with high viscosity that for a light crude oil. In the case of the high viscosity oil, a small incremental temperature increase can significantly decrease oil viscosity and surface tension. (3, 6, 7, 8, 10, 21)

The major cost factor for thermal recovery is the cost of heat. Thus, heat loss considerations must be studied carefully. The heat sink which is the limiting characteristic common to all thermal recovery is heat losses to the cap and base rock of the formation. Therefore, as the thickness of a given producing section decreases, the heat efficiency decreases and the cost of energy per barrel of oil generally increases.

To be assured success, a reservoir should have sufficient thickness to offset the cost of energy lost through the cap and base rock. A general statement can be made that one would expect a reservoir with a 50 foot pay zone to have better chances of success with thermal recovery techniques than a reservoir with a thickness of 15 feet. This statement assumes all other factors are equal and considers only heat losses from the reservoir.

Hot Water Flooding

0

61

U

1.

Hot water stimulation has been reported in a few cases. Postitive effects are experienced due to heat from the injected water being introduced into the reservoir.

Use of hot water stimulation is limited by the depth of the formation due to heat losses from the water as it is being

pumped down hole. So rapid is this heat loss, that use of hot water in formations over 1,500 to 2,000 feet is impractical. This is to say, most all of the heat energy put into the water at the surface will be dissipated through the walls of the well bore before it ever reaches oil bearing sand. Steam Flooding

Steam flooding procedures share the same short falls as hot water injection due to heat loss from the steam through the injection string. However, since the energy content of steam is higher than that of hot water at the same temperature, it is able to deliver more heat per unit mass to the oil bearing formation at greater depths. Even so, energy losses become significant at depths of over 5000 feet.

Steam flooding procedures have been successful in several fields in other States and in Canada where formation thicknesses have exceeded 80 feet at depths of 1,000 to 3,000 feet.(16,19) There are two different kinds of steam recovery operations,

i. Steam Soak

C

0

0

C

C

U

U

Steam soak, sometimes called the huff and puff method, is effected by injecting steam into a formation for a period of a week to 30 days. At the end of this time, the steam is allowed to condense for a period of 3 to 10 days to allow time for the heat energy to be distributed throughout the formation. At the end of this soak period, oil is pumped from the same well which was used to inject the steam. The result of stimulation in this manner results in desirable oil production rates of several months in duration or until oil production tapers off to a

degree where pumping becomes uneconomicial.

0

C

01

C.,

U.

U

0

At the end of the production period, steam is injected once again and the cycle is repeated. This process of injection, heat soak, and production is repeated over a period of years. When steam soak procedures start yielding poor results, a given oil field may be converted over to a steam drive operation, ii. Steam Drive

Steam drive operates in a fashion similiar to a water drive project where a single injection well is surrounded by several producing wells in certain patterns. Steam is continiously injected into the formation in a effort to force the heated oil to flow toward the producing wells. The field is operated in this fashion until steam breaks through to the producing wells. Sometimes water injection is alternated with steam injection in an effort to make the oil and water move together in a front. In-Situ Combustion

In-Situ combustion or fireflood is a method of generating energy in a formation by burning a portion of the oil present in the reservoir. This is accomplished by pumping air or oxygen with or without water down an injection string, creating sufficient conditions for ignition, and sustaining sufficient air flow for continued combustion.(3)

Results from an operation such as this can vary but oil recoveries of up to 90% recovery of the oil in place at the time the project was started have been reported.(18) Exact procedures used for the combustion process differ greatly from field to field and even differ among several operators

conducting combustion within the same field. Water is normally injected down hole to 1.) prevent excessive temperatures near the well bore and 2.) generate steam within the formation in an effort to distribute heat ahead of the combustion zone.

In-Situ combustion projects are generally operated in larger multi-well fields.(4,5,12,15,17,21) One injection or combustion well is located so that it is surrounded by several producing wells such as with 5-spot or 7-spot patterns. However, some success has been reported with a 2-spot arrangement as an experiment.(2)

0

C

61

C.

U.

U

Several problems arise during the application of combustion techniques. The most important are mechanical problems encounted in keeping high pressure, high volume air compressors operating, corrosion problems at both injection wells and producing wells, and pollution problems caused by escaping combustion gasses at the surface production facilities. All of these problems add hidden operating costs to a given proj ect.(12,15)

Reservoir Screening

C

0

0

U

 \cup

U

Availiable published oil reservoir data were cataloged into a computer file so that pertinate data could be screened for the purpose of selecting those Mississippi reservoirs which have the greatest potential for EOR applications. Primary source of the information were production reports published by the Mississippi State Oil and Gas Board on a monthly basis. In some cases, inspection of discovery well electrical logs was made to fill in some details. Some of the data were incomplete so that it may be assumed that some reservoirs would not be selected in a screening process due to missing data. A list of the fields and production zones considered are given in the appendix.

Screening was preformed to seperated fields into three groups of EOR potential.(6,13) The groups were chemical flooding processes, CO2 miscible processes, and thermal recovery processes.

The chemical flooding group was further subdivided into the three additional catergories of surfactant flooding, polymer flooding, and alkaline flooding. The thermal recovery systems investigated were steam and in-situ combustion.

A field was said to have potential for surfactant flood if the reservoir met the basic criteria of oil gravity greater than 24 °API, a reservoir temperature less that 250 °F, and a permeablity greater than 20 millidarcies (md) .

The criteria for polymer flooding required that the reservoir temperature be less than 200 $^\circ$ F and the permeablity be

greater than 20 md.

0

6

 \bigcirc

0

Alkūne flooding should be most effective with oil gravities less than 35 °API and a temperature of less than 200 °F.

Carbon dioxide miscible flooding requires an °API gravity of 27 or greater and a reservoir temperature of less than 250 °F.

Thermal recover with steam is most sensitive to depth. Depths of over 5000 feet should not be considered for these processes. In addition, API gravity of the oil should be 25 or less and thickness of the pay zone should be a minimum of 20 feet or greater.

Reservoirs determined to be canidiates for in-situ combustion are those with oil gravities of 25 °API or less and pay thicknesses of 10 feet or greater.

Results of the screening of the reservoirs is given in Table 1.

Table 1 Initial Screening of 1068 Oil Reservoirs in Mississippi

EOR Process	Number	Percent of Total
Surfactant flooding	600	56
Polymer flooding	390	36
Alkaline flooding	151	14
Carbon Dioxide (Miscible)	208	19
Thermal (Steam)	5	0.5
Thermal (Combustion)	64	6

Table one shows a rather large percentage (56%) of oil fields passing an intial inspection as having potential for EOR by surfactant flooding. This is due to the fact that most oil horizons in the State have oil with an API greater than 24. In addition, no restrictions were placed on depth of the reservoir or pay thickness during the screening processes. Both considerations are important factors in calculating cost of implementation and ultimate oil recovery.

0

CL.

C

0

Polymer flooding also lends itself to a significant percentage of oil fields screened. A limiting reservoir temperature of 200 °F eliminates many prospects from consideration here. Again, this screening procedure does not address depth or pay thickness.

Temperature is also a factor in determining the number of alkaline flood candidates selected (must be below 200 °F). Although there is quite a number of prospects, detailed economic analysis will need to be considered.

Carbon dioxide flooding also seems to fit a good many reservoirs with an initial screening. Predominately higher gravities of over 27 $^{\circ}$ API is a major factor in the choice of these reservoirs. CO₂ flooding is a method of special interest due to potentially availiablity of naturally occuring CO₂ in Rankin County. Again, detailed economic analysis of a project such as this one must be done to insure success.

Table one reflects only a small percentage of know reservoirs in the state as being suitable for EOR by thermal

methods. Steam is all but eliminated as a candidate due to the excessive depths of most of the State's oil formations.

The thermal method of most interest is recovery by combustion processes. This recovery procedure has been a success in an operation in the State at Heidleberg.(6,15) Even so, the operator had to be very inovatitive to make the operation pay off due in part to the depth of the reservoir (11,000 feet).(15)

0

C

0

0

0

0

0

0

0

L

υ

Survey of Oil Operators

 \cap

C

0

0

0

U

U

U

U

A questionnaire was sent out to all known oil operators in Mississippi in order to determine what interest, if any, the operators have in EOR. A copy of the questionnaire and the cover letter sent is included in the appendix. Of 245 operators surveyed, 32 returned a completed form. A spot followup on those who did not return the form showed that most had little experiece in EOR and therefore felt that no contribution could be made by them sending the form in. Results are given below in Table 2.

Table 2

Summary of Results of

EOR Questionnaire

Question	Yes %	No %
1. Have you ever attempted EOR?	3	97
2. Were results successfull?	3	97
3. Have you conducted EOR studies? Break down of types of studies	46	44
Polymer flood Surfactant flood Alkaline flood CO ₂ Steam Combustion	23 0 0 92 27 23	
5. Are reservoir properties Well known Known within limits Not known at all	22 60 0	
6. Do you think EOR technology is adequate?	31	60
Note: Not all reapondents answered all	the guestions	

Note: Not all respondents answered all the questions.

Therefore percentages may not all up to 100%.

0

()

C1

0.0

O

It would seem from the survey that several oil operators (44% of those responding) have made some studies into secondary and tertiary recovery in their existing fields. At the same time, only one of these respondents has carried a project through to a successful conclusion (3%).

Question 8 of the questionnaire inquired as to what price crude oil would need to acheive in order for a EOR operation to be economically justified. The answers ranged from a low of \$11 a barrel to a high of \$50 a barrel with the average response being \$40 a barrel. The question was not clear as to what basis the price had (taxes, ect.) but it is assumed the operators responded with figures that include current severance tax and windfall profit tax structure.

Another question delt with amount of production increase that would be needed in order to justify an EOR operation. Apparently, most operators felt this question was too vague to answer with definite numbers. The respondents felt that incremental increases in pricing structures as being the real key of success to EOR.

Several operators throughout the state were contacted and interviewed either in person or by telephone. For the most part, operators feel general apathy towards EOR under current price and taxiation conditions. Of those interviewed, most felt that EOR technology has not progressed to a point where it will be feasible to conduct wide spread operations of this type in Mississippi. Some operators feel that they are achieving

upwards of 2/3 recovery of original oil in place during primary production operations. This belief, along with the magnitude of capitial required to undertake EOR operations in the deeper horizons around the State support a general feeling among operators that Mississippi is a long way from being involved in large scale EOR operations.

6

C

0

0

0

C

CI.

6

U.

U

U

CONCLUSIONS

Many of Mississippi's oil reservoirs have at least some possibility of being stimulated by EOR methods from a purely technical stand point. However, when examined from an economics point of view, applicablity of these methods may be limited due to constraints imposed by current technology.

EOR practices will need future development before EOR becomes a common place practice. If future developments are successful, then oil operators will be in a position to increase recoverable amounts of oil from existing reservoirs which will help stablize the general economy of the state. One fact is certain, however, the oil will remain in place until economics makes recovery justified.

G

0

0

0

U

 \cup

U

At the current time excessive taxes imposed on the oil industry in the form of windfall profits tax is impeading the development of EOR operations in the state. The survey made of oil operators indicates an incremental increase in price of crude oil could make several prospective EOR projects viable. The windfall profit taxes have the effect of suppressing increases seen by domestic operators while at the same time keeping prices to the consumer inflated. If EOR operations could be given a complete exemption from windfall profit tax, there is a potential for a flurry of activity in our State to implement and maintain EOR production.

EOR methods are certain to improve and become more competitive as price and demand increase. Ultimately, all current reservoirs will be subjected to some form of EOR in

order to recover amounts of oil remaining from primary production.

υ.

C

0

0

C

0

C.L

6

U.

0

REFERENCES

- Bois, C., "Reserves, Ressources et Disponibilités Mondiales en Hydrocarbures, "<u>Revue DE L·1</u> Institut Francais Du Petrole (March-April 1982), Vol. 37, No. 2, 135
- 2. Bowman, C.H., "A Two-Spot Combustion Recovery Project, " Journal of Petroleum Technology (Sept 1965), 994

C

0

U

U

U

- 3. Buchwald, R.W., W.C. Hardy, and G.S. Neinast, "Case Histories of Three In-Situ Combustion Projects, "<u>Journal</u> of <u>Petroleum Technology</u> (July 1973), 784
- 4. Burke, Robert G. , "Combustion Project is making a Profit," <u>Oil and Gas Journal</u> (Jan 18, 1975), 44
- Cato, R.W, and W.A. Frnka, "Getty Oil Reports Fireflood Pilot is Successful Project, "<u>Oil and Gas Journal</u> (Feb 12, 1968),93
- 6. Chu, Chieh, "State-of-the-Art Review of Fireflood Field Projects, " Journal of Petroleum Technology (Jan 1982), 19
- 7. Clark, G.A. and others, "The Fry In Situ Combustion Test-Field Operations, " <u>Journal of Petroleum Technology</u> (March 1965) 343
- 8. Fariuq Ali, S.M., "A Current Appraisal of In-Situ Combustion Field Tests, " <u>Journal</u> of <u>Petroleum Technology</u> (April 1972) 477
- 9. Enright, Robert J., "World Oil Flow, Refining Capacity Fall; Reserves Rise, "<u>Oil and Gas Journal</u> (Dec 27, 1982), Vol. 80 No 52, 75
- 10. Gates, C.F., "Combustion as a Primary Recovery Process-Midway Sunset Field, "<u>Journal of Petroleum</u> <u>Technology</u> (Aug 1975), 983
- 11. Geffen, Ted M., "Oil Production to Expect From Known Technology, "<u>Oil and Gas Journal</u> (May 7, 1973), 66
- 12. "Getty expands Bellevue fire flood, " <u>Oil and Gas Journal</u> (Jan 13, 1975), 45
- 13. Haynex, H.J., Chairman, Committee on EOR, "Enhanced Oil Recovery, "National Petroleum Council, 1976
- 14. lyoho, A.W., "Selecting Enhanced Oil Recovery Processes, " <u>World Oil</u> (Nov 1978), 61

15. Mace, Charles, "Deepest combustion project proceeding successfully," <u>Oil and Gas Journal</u> (Nov 17, 1975), 75

0

0

0

0

0

С.

0

U

- 16. Matheny, S.L. Jr., " EOR Methods Help Ultimate Recovery", <u>Oil and Gas Journal</u> (Mar 31, 1980), 79
- 17. Parish, D.R. and others, "Evaluation of COFACAW as a Tertiary Recovery Method, Sloss Field, Nebraska, "<u>Journal</u> of Petroleum Technology (June 1974), 676
- 18. Poettmann, Fred H., "In situ combustion: a current appraisal, "<u>World Oil</u> (April 1964), 124
- 19. "Secondary and Tertiary Oil Recovery Processes, " Interstate Oil Compact Commission, Oklahoma City, OK 1974
- 20. Spooner, Michal, "Swelling Behavior of Carbon Dioxide-Hydrocarbon Systems, " M.S. Thesis, Louisiana State University, Baton Rouge, LA (1978)
- 21. "Texas Fireflood Looks Like a Winner, " <u>Oil and Gas Journal</u> (Feb 17, 1968) 52

C	
0	
C	
C	APPENDIX A

Survey Questionnaire

C.			

U .

0

C

C.

MISSISSIPPI STATE UNIVERSITY

MISSISSIPPI STATE, MISSISSIPPI 39762

DEPARTMENT OF CHEMICAL ENGINEERING

PHONE (601) 325-2480 P. O. Box CN

October 28, 1982

Re: Secondary and Tertiary Oil Recovery Potential in Mississippi

Dear Sirs:

C

C

A study is being made of the secondary and tertiary oil recovery potential in Mississippi under a grant from the Mississippi Mineral Resources Institute (MMRI). As part of the study, it would be most helpful to have input from you, the oilfield operator. This study is being made to help your awarness of present and future development of trends in Mississippi.

Therefore, a questionnaire is enclosed to determine what information you might be willing to share with us for the purpose of this research project.

This study is strictly for academic purposes. You are under no obligation whatever to answer this questionnaire. Any data you do provide will be kept confidential as to its source. The data may be included in the final report as a part of a statistical sample. It will not refer to your name or operation.

Should you have questions about: any aspect of this project, please feel free to give me a call. Thanks.

Very truly yours,

Clifford E. George, Y.E. Department of Chemical Engineering Mississippi State University Mississippi State University Department of Chemical Engineering

MMRI study of Secondary and Tertiary Oil Recovery Potential in Mississippi All questions relate to fields in Mississippi (do not consider water flooding operations)

1. Have you ever attempted any Secondary or Tertiary recovery operation s ?_____. Method used (Steam, combustion, C02,ect).

2. If so, were the results satisfactory?(yes/no)

3. Have you conducted any studies concerning secondary or tertiary recovery?(yes/no)

4. If so, what method (steam, combustion, CO2, ect.)

5. As a rule, would you say that the reservoir properties of your producing fields are well known _____, known within certain limits, or, not known at all.

6. Do you think existing secondary and tertiary technology is adequate?(yes/no)

7. In your opinion, what amount of production would be needed from a project to make secondary or tertiary recovery feasible? (BBL/Day)

8. What would the price of oil need to be in order for you to consider secondary and tertiary oil recovery methods? (\$/BBL)

9. Would you be willing to share some of your knowledge and experiences for the purpose of helping this research project?

10. Do you want a copy of the final report when the project is finished?(yes/no)

If your answer is yes to question 9, I will be in contact with you shortly. Thank you very much for your time.

Send completed form to: Clifford E. George, P.E. MMRI Project P.O. Drawer CN Mississippi State, MS 39762

Company Name

0

0

 C^{-}

0

 \odot

0

U

Person to contact Phone ()

C	
C	
C	
C	
C	APPENDIX B
C	List of Oil Fields in Survey
C	

6

U.

0

Ų.

ID FIELD

C

0

CI.

0

0

U

POOL

1 2 3 4 5 6 7 8 9 10 11 12 13 14	ABERDEEN ARLINGTON APTON ISH ASHWOOD BEAVER CREEK BOVINA COULSON BAYOU COULSON BAYOU COULSON BAYOU CYPRESS BAYOU NORTH DARBUN NORTH DARBUN NORTH DOLOROSO WEST FAIRCHILDS CREEK NORTH FORT ADAMS
15	GITANO
16 17	HUB HUB
18	HUB
19	KNOXO
20 21	SOUTH KNOXVILLE LADDS BRANCH
22	NORTH LESSLEY
2±	LOCKDALE
24	LOCKDALE
25	MAGEE
26 27	MAGEE EAST MAGEE
28	MAPLE BRANCH
29	MART INVILLE
30	MCKINLEY CREEK
31	MCKINLEY CREEK
32	MCKINLEY CREEK
33	MISSIONARY
34	MORGAN CREEK
35 36	EAST MORGANTOWN MOSSELLE
37	OAKGROVE
38	WEST OAKVALE
39	WEST OAKVALE
40	WEST OAKVALE
41	WEST OAKVALE
42	OLIVE
43 44	PINEVILLE PISTOL RIDGE
4 4 45	PISTOL RIDGE
46	PISTOL RIDGE
47	EAST QUITMAN
48	NORTHEAST QUITMAN
49	SOUTH SAMMY CREEK
50	SANDY HOOKE

MISSISSIPPIAN CARTER GAS THIRD SPARTA GAS ARTMAN OIL FRIO GAS TUSCALOOSA OIL RODESSA OIL TEW LAKE OIL 5800 WILCOX OIL BAKER OIL LOWER TUSCALOOSA OIL FIRST WILCOX OIL **BENBROOK OIL** ARTMAN OIL MINTER B OIL CHRISTMAS OIL DANTZLER GAS LOWER TUSCALOOSA OIL WASHITA-FREDERICKSBURG 2 GAS SLIGO GAS FIRST WILCOX OIL STEWART B. OIL WILCOX OIL MINTER OIL WILSON OIL HOSSTON OIL LOWER HELLS SANDSTONE OIL HOSSTON OIL MISSISSIPPIAN CARTER GAS 14050 HOSSTON DIL **DEVONIAN OIL** DEVONIAN LIME OIL MISSISSIPPIAN LEWIS OIL PALUXY OIL CAMPBELL OIL SIXTH HOSSTON GAS RODESSA OIL SLIGO GAS BASAL PALUXY GAS-HOSSTON BOOTH GAS HOSSTON HARPER GAS PALUXY GAS LOWER TUSCALOOSA OIL SMACKOVER OIL PALUXY OIL 10380 WASHITA-FREDERICKSBURG GAS-1100 WASHITA-FREDERICKSBURG GAS SMACKOVER C OIL SMACKOVER OIL COFFMAN OIL JAMES LIMESTONE GAS

ID FIELD

C

0

C

 \bigcirc

0

0

U

U

U

POOL

51	SHARON
52	ST.CATHERINES CREEK
53	SOUTH ST. CATHERINES CREEK
54	SOUTH ST.CATHERINES CREEK
55	STRONG FIELD
56	VICKSBURG FIELD
57	WHITESANDS
58	WHITES CREEK
59	WISHMORE
60	ABERDEEN
61	ABERDEEN
62	ALLOWAY
63	SOUTH AMORY
64	ANCHORAGE
65	ANCHORAGE
66	ANNA
67	ARLINGTON
68	ARMSTONG
69	ARNOT
70	ARTONISH
71	ARTONISH
72	AUBURN
73	AVERA
74	AVERA
75	AVERA
76	AVERA
77	BARBER CREEK
78	EAST BARBER CREEK
79	BARNETT
80	BEAVER BRANCH
81	BEAVER BRANCH
82	BEAVER BRANCH
83	BELWOOD FIELD
84	BENTON
85	BENTONIA
86	BENTONIA
87	BAY SPRINGS
88	BEANS FERRY
89	BEANS FERRY
90	BEAVER BRANCH
91	BEAVER BRANCH
92	BEAVER BRANCH
93	BEAVER BRANCH
94 95 96 97 98 99 100	BELWOOD BENTON BENTONIA BENTONIA BENTONIA BISLAND BAYOU

MISSISSIPPIAN CARTER GAS
WILCOX OIL TEW LAKE WILCOX OIL FIRST WILCOX GAS WILCOX OIL BARCKSDALE OIL JENKINS OIL LOWER TUSCALOOSA OIL EUTAW OIL MOORINGSPORT-RODESSA OIL RODESSA.OIL LOWER TUSCALOOSA OIL SMACKOVER OIL SMACKOVER OIL SMACKOVER OIL SMACKOVER OIL MINTER DIL WALKER OIL STEWART B.OIL SMACKOVER GAS HOSSTON OIL PALUXY OIL UPPER COTTON VALLEY OIL EVANS GAS LEWIS GAS BLANEY OIL MCKITTRICK OIL MINTER OIL STEWART B OIL SMACKOVER 6AS HOSSTON OIL LOWER TUSCALOOSA OIL WASHITA-FREDERICKSBURG OIL ARMSTRONG OIL

0

C

0

C

0

6

 \bigcirc

U

U

ID FIELD	
$\begin{array}{c} 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 133\\ 134\\ 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ \end{array}$	BISLANG BAYOU BLACKBURN BLACKBURN DALTON DALTON DALTON BOLTON BOLTON-WEST FAULT SEGMENT BOLTON-WEST FAULT SEGMENT BOLTON BOLTON NORTH BOLTON BONUS BOWIE CREEK BOYCE BOOKHAVEN BRYAN

POOL

-

4600 WILCOX OIL PALUXY OIL RODESSA OIL HOSSTON PALUXY OIL WEST RODESSA OIL RODESSA OIL LOWER RODESSA OIL SLIGO OIL WASHITA FREDERICKSBURG OIL LOWER RODESSA OIL LOWER TUSCALUOOSA OIL UPPER HOSSTON GAS SMACKOVER OIL 12300 LOWER TUSCALOOSA OIL COTTON VALLEY OIL HOSSTON OIL RODESSA OIL SLIGO OIL SMACKOVER OIL ARMSTRONG OIL FOSTER OIL LOWER TUSCALOOSA OIL LOWER TUSCALOOSA WILCOX OIL CAMPBELL OIL MISSISSIPPIAN CARTER GAS **MISSISSIPPIAN-LEWIS GAS** COTTON VALLEY GAS CLAYTON OIL PALUXY OIL EUTAW OIL LOWER TUSCALOOSA OIL HOSSTON GAS WILCOX OIL STEWART B OIL WILCOX OIL MISSISSIPPIAN CARTER GAS LOWER TUSCALOOSA OIL RODESSA OIL SLIGO OIL COTTON VALLEY OIL EUTAW OIL LOWER TUSCALOOSA OIL RODESSA OIL SLIGO OIL BAKER OIL LOWER TUSCALOOSA OIL SLIGO OIL

C

0

0

 \cap

C

POOL BENBROOK OIL PALUXY OIL HOSSTON GAS HOSSTON OIL FIRST WILCOX OIL 4600 WILCOX OIL STEWART B.OIL **BENBROOK-RATCLIFF OIL** WILCOX OIL WILCOX OIL LOWER TUSCALOOSA OIL WILCOX OIL BAKER OIL PARKER DIL WILSON OIL MISSISSIPPIAN-BUSKIRK-GAS MISSISSIPPI AN-L'F'PER CARTER GAS HISSISSIPPIAN-LOWER CARTER GAS **MISSISSIPPIAN -LEWIS GAS** MISS I SS I PPI AN-SANDERS GAS PENNSYLVANIAN-1900 SAND-GAS POOL PENNSYLVANIA-NASON GAS ARMSTRONG OIL JENKINS OIL TEW LAKE OIL LUCE OIL WILCOX-ARTMANIOIL WILCOX-6ILES OIL STRINGER OIL ARMSTRONG OIL FOSTER OIL MCKITTRICK OIL LOWER TUSCALOOSA GAS **BLAKE OIL** 3900 WILCOX GAS 4400 WILCOX OIL 5330 WILCOX OIL 5750 WILCOX OIL 5800 WILCOX OIL HOSSTON OIL WILCOX DIL WILCOX OIL FREEWOODS OIL JENKINS OIL WALKER OIL **JENKINS OIL** RODESSA DIL SMACKOVER OIL SMACKOVER A OIL

0

0

0

(

0

 \overline{O}

6

U

U

U.

U

ID	FIELD	POOL
201	DARBUN	UPPER PALUXY GAS '
202	DARRINGTON	WILCOX OIL
203	SOUTHEAST DARRINGTON	FREEWOODS OIL
204	SOUTHEAST DARRINGTON	PARKER OIL
205	DAVIS	P-52 PALUXY OIL
206	DAVIS	P-8 PALUXY OIL
207	DAVIS	P-16 OIL
20B	DAVIS	P-18 PALUXY OIL
209	DAVIS	P-48 PALUXY OIL
210	DAVIS	P-54 PALUXY OIL
211	DAVIS	P-62 PALUXY OIL
212	DAVIS	P-68 PALUXY OIL
213	DAVIS	LT-16 LOWER TUSCALOOSA OIL
214	DAVIS	WF-72 WASHITA-FREDERICKSBURG OIL
215	DAVIS	WF-48 WASHITA-FREDERICKSBURG OIL
216	DAVIS	WF-52 WASHITA FREDERICKSBURG OIL
217	DAVIS	WF-54 WASHITA FREDERICKSBURG OIL
218	DAVIS	WF-56 WASHITA FREDERICKSBURG OIL
219 220 221	DAVIS DAVIS	WF-5S WASHITA-FREDERICKSBURG OIL NF-68 WASHITA FREDERICKSBURG OIL WF-62 WASHITA FREDERICKSBURG OIL
222 223	DAVIS DAVIS- DAVIS	WF-68 WF-WASHITA FREDEREICKSBURG OIL
224	DAY CREEK	WILCOX OIL
225	SOUTH DAY CREEK	MINTER OIL
226	DEERFIELD	WILCOX OIL
227	SOUTH DEERFIELD	WILCOX OIL
228	DESOTO	LOWER SMACKOVER OIL
229	DEXTER	DANTZLER GAS
230	DEXTER	PALUXY GAS
231	DEXTER	RODESSA GAS
232	DEXTER	LOWER TUSCALOOSA GAS
233 234	DEXTER DEXTER	LOWER TUSCALOOSA OIL UPPER TUSCALOOSA GAS WASHITA=FREDERICKSBURG GAS
235 236 237	DEXTER DIAMOND DIAMOND	12100 COTTON VALLEY OIL 12000 COTTON VALLEY OIL
238	DIAMOND	12350 COTTON VALLEY OIL
239	DIAMOND	12250 COTTON VALLEY OIL
240	DIAMOND	12500 COTTON VALLEY OIL
241	DIAMOND	GLEN ROSE OIL
242	DIAMOND	HOSSTON OIL
243	DINAN	LOWER TUSCALOOSA OIL
244	DIXIE	WILCOX OIL
245	DIXIE SPRINGS	LOWER TUSCALOOSA OIL
246	DIXONS BAYOU	ARMSTRONG OIL
247	DOLLAR LAKE	HOSSTON H OIL
248	DRY BAYOU	WILCOX OIL
249	DRY CREEK	ARMSTRONG ⁸ B" OIL
243	DRY CREEK	BAKER OIL

ID FIELD	
251	DRY CREEK
252	DRY CREEK
253	DRY CREEK
254	DRY CREEK
255	DRY CREEK
256	DUNBAR CREEK
257	EAST FORK
25S'	NORTH EAST FORK
259	WEST EAST FORK
260	EDGEWOOD
261	ELLIS LAKE
262	NORTH ELLIS LAKE
263	NORTH ELLIS OIL
264	ELYSIAN FIELDS PLANTATION
265	ESPERANCE POINT
266	EAST EUTECUTTA
267	EAST EUCUTTA
268	EAST EUCUTTA
269	EAST EUCUTTA
270	EAST EUCUTTA
271	EAST EUCUTTA
272	WEST EUCUTTA
273	FAIRCHILDS CREEK
274	WEST FAIRCHILDS CREEK
275	EAST FAIRVIEW
276	FAYETTE
277	FAYETTE
278	NORTH FAYETTE
279	SOUTH FAYETTE
280	FENWICK
281	FLAT LAKE
282	FLAT ROCK
283	NORTH FLAT ROCK
284	FLORA
285	FLUFFER LAKE
286 290	FONDSLA FORD CREEK FORREST HOME
291 292 293	NORTH FORREST HOME NORTH FORT ADAMS
294	FOURMILE CREEK
295	FRANCES CREEK
296	FRANCES CREEK
297	FRANCES CREEK
298	FRANCES CREEK
299	FREEWOODS
300	NORTH FREEWOODS
301	NORTH FREEWOODS
302	NORTH FREEWOODS
303	NORTH FREEWOODS

0

0

C

C1

U

BENBROOK OIL MCKITTRICK OIL MCSHANE OIL MINTER OIL WALKER OIL FIRST WILCOX OIL LOWER TUSCALOOSA OIL LOWER TUSCALOOSA OIL LOWER TUSCALOOSA ARMSTRONG OIL WILCOX OIL ARMSTRONG OIL PARKER OIL STEWART °B* OIL WILCOX OIL EUTAW OIL 10300 HOSSTON OIL 10900 LOWER CRETACEOUS OIL PALUXY OIL LOWER TUSCALOOSA OIL UPPER TUSCALOOSA OIL EUTAW OIL WILCOX OIL FOSTER OIL WILCOX OIL LOWER TUSCALOOSA OIL WILCOX OIL WILCOX OIL LOWER TUSCALOOSA OIL STEWART "B" OIL ARTMAN OIL WILCOX OIL WILCOX OIL SELMA GAS ROCK OIL NORPHLET OIL SMACKOVER GAS ARMSTRONG OIL WILCOX GIL STEWART 'B" OIL WILCOX OIL MISSISSIPPIAN-CARTER HA! GAS PALUX Y OIL P-2 PALUXY OIL LT-6 LOWER TUSCALOOSA OIL WF-48 WASHUTA FREDERICKSBURG OIL WILCOX OIL NORTH ARMSTRONG OIL SOUTH ARMSTRONG OIL SOUTHWEST ARMSTRONG OIL ASHLEY OIL

ID FIELD

 \cap

0

 C^{*}

 C^{+}

 (\Box)

0

 (\cdot)

U.

U

U.

304	NORTH FREEWOODS	FREEWOODS OIL
305	NORTH FREEWOODS	STEWART "B ^B OIL
306	NORTHEAST FREEWOODS	WILCOX OIL
307	GALILEE	WILCOX OIL
308	NORTH GARDEN	JENKINS OIL
309	GARDENS	WILCOX OIL
310	NORTH GARDENS	BENBROOK
311	NORTH GARDENS	STEWART ^B B ^B OIL
312	GARLAND CREEK	SMACKOVER OIL
313	GIBSON	CARTER-ABERNATHY COMMINGLED OIL
314	GILES BEND	ARMSTRONG OIL
315	GILES BEND	PARKER A OIL
316	GILES BEND	RATCLIFF OIL
318	GILLIAM CHUTE	LOWER TUSCALOPOOSA OIL
319	GILLIARD LAKE	WILCOX DIL
320	GILLSBURG	LOWER TUSCALOOSA OIL
321	6ILLSBURG	UPPER TUSCALOOSA OIL
322	GITANO	MOORINGSPORT OIL
323	GITANO	
323 324		PALUXY OIL WASHITA-FREDERICKSBURG OIL
	GITANO	
325	GLANCY	HOSSTON GAS
326	GLASSCOCK	WILCOX OIL
327	SOUTH GLASSCOCK	SECOND WILCOX OIL
328	GLAZIER	UPPER TUSCALOOSA OIL
329	GLEN AUBIN	SPARTA OIL
330	GLEN AUBIN	WILCOX OIL
331	GLUCKSTADT	NORPHLET GAS
332	GOODWATER	SMACKOVER OIL
333	GRAFTON	WILCOX OIL
334	GREENS BAYOU	WILCOX OIL
335	GREENS CREEK	FIRST HOSSTON GAS
336	GREENS CREEK	FIFTH HOSSTON GAS
337	GREENS CREEK	HOSSTON-HARPER-GAS
338	GREENWOOD SPRINGS	MISSISSIPPIAN-UPPER-CARTER 0IL
339	GW INVILLE	EUTAW B GAS
340	GWINVILLE FIELD	EUTAW C GAS POOL
341	GWINVILLE	PALUXY GAS POOL
342	GWINVILLE	iløøø PALUXY GAS
343	GWINVILLE	11350 PALUXY GAS
344	GWINVILLE	11350 PALUXY GAS
345	GWINVILLE	RODESSA 6AS
346	GWINVILLE	SELMA CHALK GAS
347	GWINVILLE	SLIGO GAS
348	GWINVILLE	10700 WASHITA-FREDERICKSBURG GAS
349	GWINVILLE	10800 WASHITA-FREDERICKSBURG GAS
350	GWINVILLE	UNDEFINED WASHITA-FREDERICKSBURG GAS-
351	HALE	UPPER SMACKOVER OIL
352	HALE	UPER SMACKOVER OIL
<u>353</u>	HAMILTON	MISSISSIPPIAN GAS
353 "СД	SOUTH HAMILTON	MISSISSIPPIAN-LEHIS OIL

C

C

 \cap

C

0

0

U.

U

U

POOL

ō	55	HARMONY	SMACKOVER OIL	
	56	SOUTH HARMONY	SMACKOVER OIL	
	57	HAZLIT CREEK	WILCOX OIL	
	58	HEIDELBURG-CENTRAL SEGMENT	EUTAW MASONITE OIL	
	59	HEIDELBURG-CENTRAL SEGMENT	EUTAW OIL	
	50	EAST HEIDELSURG	CHRISTMAS OIL	
36		EAST HEIDELSURG	EUTAW OIL	
	52	EAST HEIDELSURG	HOSSTON OIL	
	52 53	EAST HEIDELSURG	UPPER TUSCALOOSA 01	
36		WEST HEIDELSURG	COTTON VALLEY	
36		WEST HEIDELSURG	CHRISTMAS OIL	
36		WEST HEIDELSURG	WHERE OIL	
36		WEST HEIDELSURG	EUTAW OIL	
36		WEST HEIDELBERG	MIDDLE HOSSTON OIL	
36		WEST HEIDELBERG	LOWER CRETACEOUS OIL	
37		WEST HEIDELSURG	PALUXY OIL	
37		WEST HEIDELBURG	SELMA CHALK GAS	
37		WEST HEIDELBURG	MASSIVE TUSCALOOSA OIL	
37		HILO	WILCOX OIL	
37		HOL ID AY CREEK	HOSSTON-BOOTH GAS	
37		HOLIDAT CREEK		
			HOSSTON-HARPER GAS	
37			HOSSTON-DIFFRIENT-OIL	
37		WEST HEIDELSURG	UPPER TUSCALOOSA OIL	
37		HORSESHOE LAKE	SMACKOVER GAS	
37		HUB	DANTZLER 5 OIL	
38		HUB	10150 DANTZLER OIL	
38		HUB	EUTAW GAS	
382		HUB	MOORINGSPORT GAS	
38		HUB	11700 PALUXY GAS	
384		HUB	11850 PALUXY GAS	
38		HUB	12200 PALUXY GAS	
386		HUB	LOWER TUSCALOOSA GAS	
38		HUB	11000 WASHITA FREDERICKSBURG	GAS
388		HUB	11200 WASHITA FREDERICKSBURG	GAS
339		HUS	11250 WASHITA FREDERICKSBURG	"A" GAS
390		HUS	11250 WASHITA FREDERICKSBURG	GAS
39		HUB	11300 WASHITA FREDEREICKSBURG	GAS
392		HUB FIELD EAST SEGMENT	LOWER TUSCALOOSA GAS	
393		HURRICANE CREEK	LOWER TUSCALOOSA GAS	
394		HURRICANE LAKE	LOWER TUSCALOOSA "A" OIL	
398		HURRICANE LAKE	LOWER TUSCALOOSA "B" OIL	
396		EAST HURRICANE LAKE	LOWER TUSCALOOSA OIL	
397		IDLEWILDE	WILCOX OIL	
398		IMPROVE	BOOTH-HARPER COMMINGLED GAS	
399		IRELAND	SPARTA OIL	
400		NORTH IRELAND	SPARTA OIL	
40!		IVANHOE	CAMPBELL GIL	
402		IVANHOE	WILSON OIL	
403		JACKSON	SELMA GAS ROCK GAS	
404	1	JAYNESVILLE	RODESSA GAS	

C

 \cap

0

C

 (\cdot)

C

0

U

U

U

ID	FIELD	POOL
405	SOUTH JEANETTE	BAKER OIL
40Ö	SOUTH JEANETTE	BENBROOK (
407	SOUTH JEANETTE	4600 WILCO>
408	JOHNSON STATION FIELD	LOWER TUSC
409	JUNCTION CITY FIELD	EUTAW OIL
410	JUNCTION CITY FIELD	SELNA CHAL
41!	KEARNEY FIELD	RODESSA OI
412	KELLY HILL FIELD	ARMSTRONG
413	KELLY HILL	CROSBY OIL
414	KELLY HILL	JOHNSON OI
415	EAST KELLY HILL	WILCOX OIL
416	KINGS	SPARTA GAS
417	KINOS BRANCH	CKHTRICK O
418	KINGSTON	BAKER OIL
419	KINGSTON KINGSTON	HARMON OIL
420 421	NORTH KINGSTON	PARKER OIL WILCOX OIL
421	SOUTH KINGSTON FIELD	WILCOX OIL
422	KIRBY FIELD	WILCOX OIL
423	KNOXO	LOWER PALU
425	KNOXO	UPPER PALU
426	KNOXO	WASHITA-FRI
427	KNOXVILLE	WILCOX OIL
428	NORTH KNOXVILLE	WILCOX OIL
429	EAST KNOXVILLE TOWER	MCSHANE OI
430	КОКОМО	PALUXY GAS
431	KOLA	SLIGO GAS-
432	LAGRANGE	SPARTA OIL
433	LAGRANGE	ARMSTRONG
434	LAGRANGE FIELD	BAKER OIL
435	LAGRANGE	4300 WILCOX
436	LAGRANGE	4600 WILCOX
437	LAGRANGE FIELD	SECOND WIL
438	LAGRANGE	NORTH WILSO
439	LAGRANGE	SOUTH WILSO
440	SOUTH L'AGRANGE	WILCOX OIL
441	SOUTH LAGRANGE	WHITTINGTO
442		SMACKOVER
443 444	NORTH LAKE LUCILLE	WILCOX ARM ALEXANDER (
444 445	LAKE MARY LAKE MARY	BAKER OIL
445 446	LAKE NARY	BAKER "B" OIL
440	LAKE NARY	•C" OIL POO
448	NORTH LAKE MARY	TEW LAKE OI
440	LOWER UTOPIA FIELD	LOWER SMAC
450	LAKE UTOPIA FIELD	UPPER SMAC
45!	LANGSDALE	EUTAW OIL
452	WEST LANGSDALE FIELD	SELMA CHAL
453	LAUREL	RODESSA OIL
454	LAZY CREEK FIELD	LOWER TUSC

OIL DX OIL SCALOOSA LK OIL DIL IG OIL L DIL S OIL IL UXY GAS UXY GAS REDERICKSBURG GAS DIL S IG OIL X OIL X OIL LCOX SON OIL SON OIL ON OIL R OIL MSTRONG OIL R OIL DIL OL DIL ACKOVER OIL CKOVER OIL lk oil)IL LOWER TUSCALOOSA OIL

ID FIELD

C

C

(

0

0

U

U

FOOL

455	WEST LAZY CREEK
456	LEARNED
457	LEVEES CREEK
458	WEST LINCOLN
459	LINWOOD
460	LINWOOD
461	LINWOOD
462	WEST LINWOOD
463	LITTLE CREEK
464	LOCUST HILL
465	WEST LOCUST HILL
466	LONG LAKE
467	LORING
468	LUM BAYOU
46?	MABEN
470	MABEE
471	MAGEE
472	MAGEE
473	MAGEE
474	MAGEE
475	MAGEE
476	MAGNOLIA
477	MAGNOLIA
478	MAGNOLIA
479	MAJORCA
480	MALLALIEU -EAST
481	EAST MALLALIEU
482	MALLALIEU-WEST
483	MAMMOTH BAYOU
484	MANTU
485	MANTU
486	MANTUA
487	MANTUA
488	MANTUA
489	MANTUA
490	MANTUA
491	MAPLE BRANCH
492	MAPLE BRANCH
493	MART INVILLE
494	MARTINVILLE
495	MART INVILLE
496	MARTINVILLE
497	MARTINVILLE
498	MARTINVILLE
499	MARTINVILLE
500	MARTINVILLE
501	MARTINVILLE
502	MARTINVILLE
503	SOUTHWEST MARTINVILLE
504	MAXIE

LOWER TUSCALOOSA OIL
SLIGO GAS
WILCOX OIL
LOWER TUSCALOOSA OIL
MCKITTRICK OIL
STEWART B
WILSON DIL
SPARTA OIL
LOWER TUSCALOOSA OIL
WILCOX OIL
WILCOX OIL
WILSON OIL
SMACKOVER LIME GAS
STEWART B OIL
KNOX-ORDOVICIAN GAS
MOORINGSPORT GIL
UPPER MOORINGSPORT
PALUXY OIL
RODESSA GAS
SLIGO
13075 SLIGO OIL
FIRST WILCOX GAS
ARMSTRONG OIL
BENBROOK GIL
STEWART B OIL
LOWER TUSCALOOSA
10500' LOWER TUSCALOOSA
LOWER TUSCALOOSA OIL
STEWART B OIL
BARKSDALE OIL
JENKINS GIL
MCKITTRICK OIL
OGDEN OIL
5340 WILCOX GIL
PARKER OIL
PEARLINE OIL
MISSISSIPPIAN CARTER B GAS
LEWIS OIL
14945 COTTON VALLEY OIL
HOSSTON OIL POOL
14140 HOSSTON OIL 14270 HOSSTON OIL
14270 HOSSTON OIL 14600 HOSSTON OIL
MOORINGSPORT OIL
RODESSA OIL
SLIGO OIL
9720 WASHITA-FREDERICKSBURG OIL
9930 WASHITA FREDERICKSBURG OIL
SLIGO OIL
EUTAW GAS

ID FIELD

C

C

0

Ċ.

O.

6

U

		÷
505	MAXIE	LOWER TUSCALOOSA GAS
506	МАПЕ	UPPER TUSCALOOSA GAS
507	MCCOMB	LOWER TUSCALOOSA OIL
508	WEST MCCOMB	LOWER TUSCALOOSA OIL
509	EAST MCELVEEN	LOWER TUSCALOOSA OIL
510	MCKINLEY CREEK	MISSISSIPPIAN CARTER GAS
511	MCKINLEY CREEK FIELD	MISSISSIPPIAN LEWIS GAS
512	MCKINLEY CREEK	PENNSYLVANIAN-STRAY SAND-GAS
513	MCNEAL	LOWER COTTON VALLEY OIL
514	MCRANEY	HOSSTON BOOTH GAS
515	MCRANEY	HOSSTON HARPER GAS
516	MELTON	TUSCALOOSA OIL
517	MERCER	ARMSTRONG OIL
518	MERIT	PALUH OIL
519	MERIT	11900 PALUXY OIL
520	MERIT	RODESSA COX GAS
521	MERIT	SLIGO OIL
522		LOWER TUSCALOOSA OIL
523	MILLS BRANCH	FIRST WILCOX OIL
523 524	SOUTH MILLS BRANCH	FIRST WILCOX OIL
524 525		
	MISSIONARY	COTTON VALLEY OIL
526	MISTLETOE	LOWER TUSCALOOSA GAS
527	MIZE	
528	MIZE	WASHITA-FREDERICKSBURG OIL
529	MONTICELLO	HOSSTON GAS
530	MORELAND	WILCOX OIL
531	MORGAN	MCKITTRICK OIL
532	MORGAN FORK	MCKITTRICK OIL
533	MORGAN FORK	MCSHANE OIL
534	MORGANTOWN	WILCOX OIL
5 35	NORTON	HAYNESVILLE OIL
536	MOSS HILL	LUCE OIL
537	MOSS HILL	4300 OIL
538	NORTHWEST MOSS HILL	SPARTA OIL
539	NORTHWEST MOSS HILL	4600 WILCOX OIL
540	ROSSVILLE	COTTON VALLEY OIL
541	MOUNT HOPE	SPARTA
542	MOUNT HOPE	TEW LAKE OIL
543	WEST MOUNT OLIVE	HOSSTON GAS
544	WEST MOUNT OLIVE	SILIGO GAS
545	NORTH MUD CREEK	WILCOX OIL
546	MYSTIC BAYOU	STEWART B OIL
547	NANCY	SMACKOVER OIL
548	EAST NANCY	NORPHLET OIL
549	EAST NANCY	SMACKOVER OIL
550	NORTH NANCY	BUCKNER OIL
551	WEST NANCY	SMACKOVER OIL
552	NORTH NATCHEZ	WILCOX
553	NATCHEZ FERRY	ARMSTRONG OIL
<u></u> 1 54	NATCHEZ FERRY	BENBROOK OIL

ID	FIELD
555 556 557 758 559 560 561 562 563 564 565 566 567 568 567 578 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 599 591 592 593 594 595 596 597 598 599 600 601 602 603 604	NATCHEZ FERRY NATCHEZ PORT NEWSOM OAK GROVE OAKLAND OAK GROVE OAKLAND OAKVALE OGDEN BAYOU OGDEN BRANCH OLDENBURG OLDENBURG OLDENBURG OLDENBURG OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON OVERTON NORHT OVRTON NORHT OVRTON NORHT OVRTON NORTH OVERTON OVETT OVETT PACHUTA CREEK PALATINE HILLS PANTHER CREEK PAINTERS PALATINE HILLS PANTHER CREEK SOUTH PAULDING WEST PAULDING PERRYTOWN PICKENS PINE RIDGE PINEY PINEY CREEK PINEY PINEY CREEK PINEY PINEY WOODS SOUTH PISGAH PISTOL RIDGE PISTOL RIDGE

0

Ċ

C

C

6

C

PARKER OIL ARTMAN OIL POOL HOSSTON IVY GAS-RODESSA GAS WILCOX OIL HOSSTON HARPER GAS SPARTA OIL SPARTA OIL LOWER TUSCALOOSA GAS WILCOX OIL ARMSTRONG BARKSDALE OIL MCKETTRICK OIL OGDEN PARKER OIL PEARLINE OIL MCKITTRICK MILLER OIL ARMSTRONG OIL SECOND WILCOX OIL SPARTA OIL SPARTA OIL EUTAW OIL LOWER TUSCALOOSA OIL SMACKOVER EAST OIL WEST SMACKOVER OIL WILCOX OIL SPARTA OIL WILCOX OIL UPPER SMACKOVER OIL SMACKOVER OIL BAKER OIL EUTAW OIL ELMA CHALK OIL WILCOX OIL FOSTER OIL FREEWOODS OIL SMACKOVER GAS SMACKOVER GAS HOSSTON OIL RODESSA OIL NORPHLET (CO2> GAS SMACKOVER (CO2)GAS EUTAW-UPPER TUSCALOOSA SELMA CHAULK LOWER TUSCALOOSA LOWER TUSCALOOSA MASSIVE SAND GAS STEVENS OIL SAND A SAND WASHITA-FREDRICKSBURG GAS 10000⁵ WASHITA-FREDRICKSBURG GAS

ID FIELD

C

0

C

0

CL.

0

1

$\neg \land$	\sim	1
2	1()	

605	WEST PISTOL RIDSE	HOSSTON OIL
606	WEST PISTOL RIDSE	RODESSA OIL
607	PLEASANT HILL	WILCOX OIL
608	POOL CREEK	COTTON VALLEY OIL
609	POOL CREEK	HOSSTON OIL
610	POOL CREEK	MOORINGSPORT OIL
611	POOL CREEK	PALUXY OIL
612	POOL CREEK	PINE ISLAND OIL
613	POOL CREEK	RODESSA OIL
614	POL CREEK	SMACKOVER OIL
615	POOL CREEK	WASHITA-FREDRICKS
616	POPLAR SROVE	BENBROOK OIL
617	POPLAR GROVE	BENBROOK-RATCLIFI
618	POPLAR SROVE	MCKITTRICK OIL
619	POPLAR GROVE	MINTER OIL
620	WEST FOSSUM CORNER	ARMSTRONG OIL
621	WEST POSSUM CORNER	LUCE OIL
622	PRAIRIE BRANCH	NORPHLET OIL
623	PRAIRIE BRANCH	SMACKOVER OIL
624	PRETTY CREEK	
625		WILCOX OIL
626	SOUTH PROVIDENCE	JENKINS OIL
627	SOUTH PROVIDENCE	MCSHANE OIL
628	SOUTH PROVIDENCE	FIRST WILCOX OIL
629	PUCKETT	9350' PALUXY GAS
630	PUCKETT FIELD	RODESSA OIL
631	PUCKETT	7650' UPPER TUSCAL
632	PUCKETT	7950' LOWER TUSCAL
633	PUCKETT	8050 LOWER TUSCAL
634	LEVEES CREEK	WILCOX OIL
635	PUCKETT	8220' WASHITA-FREDF
636	PUCKETT	8500' WASHITA-FREDF
637	PUCKETT	9050' WASHITA-FRED
638	QUITMAN	10150' COTTON VALLE
639	QUITMAN	11000' COTTON VALLE
640	QUITMAN	11150' COTTON VALLE
641	QUITMAN	11175' COTTON VALLE
642	QUITMAN	EUTAW OIL
643	QUITMAN	RODESSA-12 OIL
644	LORING	SMACKOVER LIME OIL
645	QI UTMAN BAYOU	ARMSTRONG OIL
646	QUITMAN BAYOU	MCKITTRICK OIL
647	QUITMAN BAYOU	4600' WILCOX OIL
648	WEST QUITMAN BAYOU	4600' WILCOX OIL
649	RALEIGH	12100' HOSSTON OIL
650	RALEIGH	12200' HOSSTON OIL
651	RALEIGH	12600' HOSSTON OIL
652	RALEIGH	12450' OIL
653	RALEIGH	13050' OIL
654	RALEIGH	13200' OIL

)X OIL ON VALLEY OIL TON OIL INGSPORT OIL KY OIL SLAND OIL SSA OIL KOVER OIL ITA-FREDRICKSBURG OIL ROOK OIL ROOK-RATCLIFF OIL TRICK OIL R OIL FRONG OIL OIL HLET OIL **KOVER OIL** X OIL X OIL **IS OIL** ANE OIL WILCOX OIL ALUXY GAS SSA OIL IPPER TUSCALOOSA OIL OWER TUSCALOOSA OIL OWER TUSCALOOSA OIL X OIL ASHITA-FREDRICKSBURG OIL ASHITA-FREDRICKSBURG OIL VASHITA-FREDRICKSBURG OIL COTTON VALLEY OIL COTTON VALLEY OIL COTTON VALLEY OIL COTTON VALLEY OIL / OIL SA-12 OIL OVER LIME OIL RONG OIL RICK OIL /ILCOX OIL ILCOX OIL HOSSTON OIL HOSSTON OIL

ID FIELD

0

 \subset

Q.

 \bigcirc

0

676ROXIE677ROXIE678SOUTH SAMMY CREEK679SOUTH SAMMY CREEK680SANDERSVILLE681SANDERSVILLE683SHARON684SHIELDSBORO685SHIELDSBORO686SHIELDSBORO687SHIELDSBORO688SHUBUTA689NORTH SHUBUTA690SIBLEY691SIBLEY693SIBLEY694SILOAM695SILOAM696SILVER CREEK697SMITHDALE698WEST SMITHDALE699SOSO700soso701soso702soso	677 678 679 680 681 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702	ROXIE SOUTH SAMMY CREEK SOUTH SAMMY CREEK SANDERSVILLE SANDERSVILLE NORTH SAND HILL SHARON SHIELDSBORO	
703 soso 704 soso			

	**
13400' OIL	
COTTON VALLEY OIL	
EUTAW OIL	
6200' OIL	
7100' OIL	
7800' OIL	
9250' OIL	
9300' OIL	
9400' OIL	
12000' OIL	
11400' RODESSA OIL	
SMACKOVER OIL	
	~ ~"
WASHITA-FREDRICKSBUR	GOIL
WILCOX OIL	
WILCOX OIL	
LOWER TUSCALOOSA GAS	•
)
WILCOX OIL	
FIRST WILCOX GAS	
WILCOX OIL	
WILCOX OIL	
ARMSTRONG OIL	
BENBROOK OIL	
MCKITTRICK OIL	
ROBINSON OIL	
ROBINSON OIL	
LOWER EUTAW OIL	
EUTAW OIL	
TUSCALOOSA OIL	
EUTAW GAS	
BREAUX OIL	
JENKINS OIL	
NOLAND OIL	
WALKER OIL	
SMACKOVER OIL	
SMACKOVER OIL	
ARMSTRONG OIL	
BALL OIL	
BLAKE OIL	
PARKER OIL	
MISSISSIPPIAN GAS	
PENNSYLVANIAN GAS	
PARKER OIL	
LOWER TUSCALOOSA OIL	
LOWER TUSCALOOSA OIL	
14986' COTTON VALLEY	
STANLEY GAS	
12018 HOSSTON OIL	
12018' HOSSTON OIL	
12134' HOSSTON OIL	
12234' HOSSTON OIL	

C

C

C

C L

6

U

U

U.

ID FIELD		POOL
705	SOSO	12303' HOSSTON OIL
706	SOSO	12799' HOSSTON OIL
707	SOSO	12877' HOSSTON OIL
708	SOSO	10914' MOORINGSPORT OIL
70?	SOSO	9411' PAULXY GAS
710	SOSO	9417' PAULXY GAS
711	SOSO	9151' PAULXY OIL
712	SOSO	9274' PAULXY OIL
713	SOSO	9274' PAULXY OIL
714	SOSO	9417' PAULXY OIL
715	SOSO	11081' RODESSA OIL
716	SOSO	11090' RODESSA OIL
717	SOSO	11151' RODESSA
718	SOSO	11180' RODESSA OIL
71?	SOSO	11385' RODESSA OIL
720	SOSO	11513' RODESSA OIL
721	SOSO	11707' BAILEY OIL
722	SOUTHHOOD	WILCOX OIL
723	SPLUNGE	MI SS I SSI PPI AN-CARTER GAS
724	SPLUNGE	MISSISSIPPI AN-LEWIS GAS
725	SPRING POND	STEWART B OIL
726	STAFFORD SPRINGS	SMACKOVER OIL
727	STAMPLEY FIELD	WILCOX OIL POOL
728	STAMPS FIELD	MILLER OIL POOL
72?	STAMPS FIELD	MINTER OIL POOL
730	STAMPS FIELD	PARKER OIL POOL
731	NORTH STAMPS FIELD	MINTER OIL POOL
732	NORTH STAMPS FIELD	6500 STRAY WILCOX OIL POOL
733	SOUTH STAMPS FIELD	•JENKINS OIL POOL
734	STANTON FIELD	SPARTA GAS POOL
735	STANTON	SPARTA GAS
736	SOUTH STATE LINE FIELD	NORPHLET GAS POOL
737	SOUTH STATE LINE OIL	SMACKOVER GAS POOL
738	STEELS CREEK FIELD	FIRST WILCOX OIL POOL
73?	STRINGER FIELD	MIDDLE COTTON VALLEY OIL POOL
740	STRINGER FIELD	MIDDLE HOSSTON OIL POOL
741	STRONG FIELD	MI SSI SSIPPI AN-SANDERS GAS POOL MOORINGSPORT OIL POOL
742	SUMMERLAND FIELD	LOWER PALUXY OIL POOL
743	SUMMERLAND FIELD	LOWER PALOXY OIL POOL
744	SUMMERLAND FIELD	UPPER PALUXY OIL POOL
745	SUMMERLAND FIELD SUMMERLAND FIELD	LOWER TUSCALOOSA OIL POOL
746		LOWER WASHITA-FREDERICKSBURG
747 748	SUMMERLAND FIELD SUMMERLAND FIELD	MIDDLE WASHITA-FREDERICKSBURG
748 74?	SUMMERLAND FIELD	LWR-LKR WASHITA-FREDERICKSBURG
74? 750	SUMMERLAND FIELD	UPPER WASHITA-FREDRICKSBURS
750 751	SUMMERLAND FIELD	UPPER-UPPER WASHITA-FREDERICKSBURG
751 752	SOMMERLAND FIELD	COTTON VALLEY OIL POOL
752 753	SOUTH SUMMERLAND FIELD	HAYNESVILLE-BUCKNER OIL POOL
753 754	SUNNYSIDE FIELD	4600 WILCOX OIL POOL
1 04		

ID FIELD

0

C

0

TALLAHALA CREEK FIELD 755 756 TALLAHALA CREEK FIELD 757 TALLAHALA CREEK FIELD 758 TALLAHALA CREEK FIELD 759 EAST TALLAHALA CREEK FIELD EAST TALLAHALA CREEK FIELD 760 761 EAST TALLAHALA CREEK FIELD WEST TAR CREEK FIELD 762 763 WEST TAR CREEK FIELD TATUMS CAMP FIELD 764 765 TCHULA LAKE FIELD THOMASVILLE FIELD 766 THOMPSON'S CREEK FIELD 767 THOMPSON'S CREEK FIELD 768 769 SOUTH THOMPSON'S CREEK FIELD 770 SOUTH THOMPSON'S CREEK FIELD 771 SOUTH THOMPSON'S CREEKPOOL CREEK FIELD 772 SOUTH THOMPSON'S 773 TI6ER FIELD 774 TINSLEY FIELD-EAST SEGMENT 775 TINSLEY FIELD-NORTHSEGMENT 776 TINSLEY FIELD-NORTHSEGMENT TINSLEY 777 FIELD-NORTHSEGMENT 778 TINSLEY FIELD-NORTHSEGMENT FIELD-NORTHSEGMENT 779 TINSLEY 780 TINSLEY FIELD-WEST SEG WATERFLOOD 781 TINSLEY FIELD-WEST SEG WATERFLOOD TINSLEY FIELD-WEST SEGMENT 782 783 TINSLEY FIELD-WEST SEG WATERFLOOD TOM BRANCH FIELD 784 785 TOM BRANCH FIELD 786 TOM BRANCH FIELD 787 TOM BRANCH FIELD 788 TOM BRANCH FIELD 789 SOUTH TOM BRANCH FIELD 790 TONY CREEK FIELD 791 TREBLOC FIELD 792 TREBLOC FIELD 793 TURKEY CREEK FIELD 794 **TYLERTOWN FIELD** 795 TYLERTOWN FIELD 796 **TYLERTOWN FIELD** 797 UNION CHURCH FIELD 798 VERBA FIELD 799 VERBA FIELD VERBA FIELD 800 801 VOSSBURG FIELD 802 WALDRUP FIELD 803 WALNUT CREEK FIELD 804 WALNUT CREEK FIELD

POOL

COTTON VALLEY HH OIL POOL SLIGO OIL POOL SMACKOVER II OIL POOL MIDDLE SMACKOVER OIL POOL-EAST FLANK RES COTTON VALLEY OIL POOL SMACKOVER BAa OIL POOL SMACKOVER C OIL POOL FREEWOODS OIL POOL PARKER OIL POOL HOSSTON GAS POOL SMACKOVER GAS POOL SMACKOVER GAS POOL TUSCALOOSA OIL POOL WASHITA-FREDERICKSBURB OIL POOL PALUXY OIL POOL LOWER TUSCALOOSA MASSIVE OIL POOL WASHITA-FREDRICKSBURG OIL POOL 9000 WASHITA-FREDRICKSBURG OIL POOL HOSSTON GAS POOL SELMA-EUTAW-TUSCALOOSA OIL POOL MCGRAW SAND WATER FLOOD UNIT PERRY SAND WATERFLOOD UNIT STEVENS SAND WATER INJECTION PROJECT SELMA-EUTAW-TUSCALOOSA OIL POOL WOODRUFF SAND WATERFLOOD UNIT PERRY SAND PERRY-WOODRUFF COMMINGLED POOL SELMA-EUTAW-TUSCALOOSA OIL POOL WOODRUFF SAND BAKER OIL POOL FIRST WILCOX OIL POOL MCKITTRICK OIL POOL PARKER OIL POOL WILSON OIL POOL FIRST WILCOX OIL POOL MCSHANE OIL POOL MISSISSIPPIAN-ABERNATHY OIL POOL MISSISSIPPIAN GAS POOL WILCOX OIL POOL 12700 PALUXY GAS POOL 12810 PALUXY GAS POOL 12530 PALUXY GAS POOL RODESSA GAS POOL MOORINGSPORT OIL POOL PALUXY OIL POOL SLIGO OIL POOL LOWER SMACKOVER OIL POOL COTTON VALLEY OIL POOL FOSTER OIL POOL MINTER OIL POOL

FIFI D

ID

0

 \odot

C

÷£.,

0

ID	FIELD
805	WASHOUT BAYOU FIELD
806	WASHES FIELD
807	WATTS CREEK FIELD
308	WAUSAU FIELD
809	WAUSAU FIELD
810	WAVELAND FIELD
811	WAVELAND FIELD
812	EAST WAYNESBORO FIELD
813	WAYSIDE FIELD
314	NEARLY BRANCH FIELD
815	WELLS CREEK FIELD
816	WESLEY CHAPEL FIELD
817	WESLEY CHAPEL FIELD
818	WESLEY CHAPEL FIELD
819	WESLEY CHAPEL FIELD
820	WESLEY CHAPEL FIELD
821	WHITESAND FIELD
822	WHITESAND FIELD
823	SOUTH WILLIAMSBURG FIELD
824	SOUTH WILLIAMSBURG FIELD
825	WILLIS BRANCH FIELD
826	WILLOW GLEN FIELD
827	WILLOW GLEN FIELD
828	WOLF CREEK FIELD
829	SOUTHEAST WOODLANDS FIELD
830	EAST YELLOW CREEK FIELD
831	EAST YELLOW CREEK FIELD UNIT
832	NORTH YELLOW CREEK FIELD
833	WEST YELLOW CREEK FIELD
834	WEST YELLOW CREEK FIELD
835	WEST YELLOW CREEK FIELD
836	WEST YELLOW CREEK FIELD
837	WEST YELLOW CREEK FIELD
838	WEST YELLOW CREEK FIELD
839	YORK FIELD
840	YORK FIELD
841	ZEIGLER CREEK
842	BENTONIA
843	BAXTERVILLE
644	BAX TERVILLE
845	BAXTERVILLE
846	BAXTERVILLE
847	BAXTERVILLE
843	BAXTERVILLE
	TERVILLE SOUTHEAST FAULT
850 851	BAXTERVILLE SOUTHEAST FAULT BAXTERVILLE SOUTHEAST FAULT
852 854	BAXTERVILLE SOUTHEAST FAULT EAST LA6RANGE
855 855	EAST LAGRANGE EAST LAGRANG FIELD
000	

CAMPBELL OIL POOL ARMSTRONG OIL POOL SMACKOVER OIL POOL UPPER PALUXY OIL POOL TUSCALOOSA OIL POOL DANTZLER OIL POOL MOORINGSPORT GAS POOL UPPER WASHITA-FREDERICKSBURG OIL POOL WILCOX OIL POOL JENKINS OIL POOL WILCOX OIL POOL . ARMSTRONG OIL POOL BALL OIL POOL FIRST WILCOX OIL POOL PARKER OIL POOL WALKER OIL POOL HOSSTON GAS POOL UPPER SLIGO GAS POOL HOSSTON GAS POOL HOSSTON-SLIGO GAS POOL 4600 WILCOX OIL POOL ARMSTRONG OIL POOL WILSON OIL POOL SMACKOVER OIL POOL CAMPBELL OIL POOL EUTAW OIL POOL EUTAW OIL POOL EUTAW OIL POOL LOWER COTTON VALLEY OIL POOL UPPER COTTON VALLEY UIL FOOL EUTAW OIL POOL LOWER-LOWER CRETACEOUS OIL POOL MIDDLE-LOWER CRETACEOUS OIL POOL UPPER-LOWER CRETACEOUS OIL FOOL ARMSTRONG OIL POOL WILCOX E-2 OIL POOL WILCOX OIL PAULXY OIL EUTAW-UPPER TUSCALOOSA GAS HOSSTON GAS SELMA CHALK GAS-LOWER TUSCALOOSA OIL LOWER TUSCALOOSA MASSIVE OIL WILCOX GAS LOWER TUSCALOOSA OIL LOWER TUSCALOOSA MASSIVE OIL 8650 LOWER TUSCALOOSA OIL 3700 LOWER TUSCALOOSA OIL NORTH 4600 FT WILCOX STEWART "B" OIL

C

0

POOL

PALUXY GAS WASHITA FREDERICKSBURG GAS UPPER HOSSTON GAS HOSSTON OIL SLIGO OIL HOSSTON GAS MISSISSIPPIAN EVANS GAS MISSISSIPPIAN SANDERS GAS BAKER OIL MISSISSIPPIAN WALKER GAS HOSSTON SINCLAIR GAS MCKITTRICK OIL PINE ISLAND OIL SECOND WILCOX OIL SECOND WILCOX OIL LOWER WASHITA FREDERICKSBURG GAS-SMACKOVER OIL ARMSTRONG OIL JENKINS OIL STEWART B OIL RODESSA GAS-NORPHLET GAS LOWER RODESSA GAS **MISSISSIPPIAN CARTER GAS** NORPHLET OIL MCKITTRICK OIL RODESSA OIL MCKITTRICK OIL HOSSTON GAS-FIRST WILCOX OIL MINTER OIL SECOND WILCOX 10872 PALUXY OIL JENKINS OIL MISS-LEWIS-SANDERS A' OIL MISS-WALKER OIL 9150 WASHITA-FREDERICKSBURG OIL SLIGO 9700 PALUXY GAS-9950 PALUXY GAS 10150 PALUXY GAS 9270 WASHITA FREDERICKSBURG GAS 8800 WASHITA-FREDERICKSBURG OIL 6300 OIL STEWART B OIL **BENBROOK OIL** MORRISON GAS ARMSTRONG OIL WILSON OIL STEWART B OIL

C

0

C

ARTMAN OIL STEWART B OIL BAKER OIL LOWER TUSCALOOSA BARKSDALE OIL WILSON OIL MINTER OIL WALKER OIL WASHITA-FREDERICKSBURG GAS SLIGO GAS WILCOX-WILSON MILLER OIL LOWER TUSCALOOSA GAS LOWER TUSCALOOSA OIL 7150 TUSCALOOSA OIL MI SS I SS I PPI AN-ABERNATHY GAS MISSISSIPPIAN EVANS GAS FRIO OIL 66 WILCOX ROBINSON OIL MISSISSIPPIAN-CARTER GAS STEWART B - WILCOX OIL FIRST HOSSTON GAS 5600 WILCOX OIL MINTER OIL WALKER OIL SECOND WILCOX OIL BARKSDALE OIL FREEWOODS OIL MORRINGSPORT SECOND WILCOX GAS UPPER WASHITA FREDERICKSBURG GAS PARKER OIL WILCOX-PEARLINE OIL ARTMAN OIL PEARLINE OIL UPPER TUSCALOOSA OIL ARMSTRONG OIL MISSISSIPPIAN-EVANS OIL LOWER TUSCALOOSA OIL NORPHLET (CO2) GAS NORTHWEST FAULT BLOCK SLIGO GAS SLIGO LOWER HOSSTON GAS UPPER HOSSTON GAS SELMA CHALK GAS HOSSTON-HATTON GAS NORPHLET GAS (CO2) HOSSTON OIL WASHITA-FREDERICKSBURG GAS

ID FIFI D

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

0

0

NEST IDLEWILD

IVANHOE

EAST KNOXO

NORTH LAGRANGE

LAGRANGE

MAGEE

MAGEE

MANDAMUS

MAPLE BRANCH

MECHANICS GURG

MECHANICSBURG

MIDDLE FORK

MOSELLE

ORANGE

OAK GROVE

WEST OAKVALE

WEST OAKVALE

PISTOL RIDGE

PISTOL RIDGE

POOL CREEK

RODNEY

RODNEY

SILOAM

TREBLOC

VERBA

WELLS

VERNON

WAVELAND

WELLS CREEK

WEST POINT

WINSTON

WEST CLARA

COBB BRANCH

EAST WAYNESBORO

EAST YELLOW CREEK

WEST YELLOW CREEK

NORTH CARTHAGE POINT

SOUTH PRENTISS

WEST SANDY HOOK

WEST SANDY HOOK

SECOND CREEK

STAMPS FIELD

MARTINVILLE

NCRANEY

HUTCHINS LANDING EAST MORGANTOWN EAST MORGANTOWN EAST MORGANTOWN **FAST MORGANTOWN** SOUTH MORGANTOWN

SECOND WILCOX OIL WILCOX OIL WILCOX-PARKER A OIL LOWER PALUXY GAS STEWART B OIL BAKER OIL LAVON-HOSSTON OIL E-4 PALUXY OIL MANDAMUS T OIL POOL MISSISSIPPIAN MILLERELLA OIL 12374 SLIGO OIL HOSSTON DIFFRIENT GAS COTTON VALLEY GAS COTTON VALLEY FERGUSON OIL FIRST WILCOX OIL **FIFTH HOSSTON GAS** FIRST HOSSTON GAS HOSSTON BOOTH GAS HOSSTON HARPER GAS HOSSTON GAS HOSSTON OIL RODESSA WALKER GAS JAMES OIL SLIGO-BARNES COTTON VALLEY OIL PALUXY-GAMMILL GAS 10350 WASHITA-FREDERICKSBURG GIL LOWER TUSCALOOSA OIL HOSSTON GAS 9466 LOWER TUSCALOOSA GAS 9544 LOWER TUSCALOOSA GAS HOSSTON GAS RODESSA GAS ARMSTRONG OIL 3400 PENNSYLVANIAN GAS WILCOX-CAMPBELL OIL MISSISSIPPIAN-ABERNATHY GIL UPPER RODESSA OIL ARMSTRONG OIL PALUXY GAS-MOORINGSPORT OIL MISSISSIPPIAN LEWIS GAS ASHLEY OIL MISSISSIPPIAN LEWIS GAS ARMSTRONG OIL SMACKOVER OIL LOWER TUSCALOOSA OIL WILCOX OIL SMACKOVER OIL LOWER TUSCALOOSA OIL

POOL

ID	FIELD
ID 1006 1007 1003 1009 1010 1011 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1040 1041 1045 1046 1047 1048 1049 1040 1041 1045 1046 1047 1048 1036 1037 1038 1039 1040 1041 1045 1046 1047 1048 1049 1040 1041 1045 1046 1047 1048 1049 1040 1041 1045 1046 1047 1048 1040 1041 1045 1040 1051 1055 1046 1047 1048 1049 1040 1041 1045 1046 1047 1056 1057 1056 1057 1056 1057 1046 1047 1050 10	FIELD COLES CRIEK COLLINS COLUMBIA EAST COMMENCEMENT EAST COMMENCEMENT EAST COMMENCEMENT CRAWFORD CREEK GRANGE GRANGE FIELD GRANGE FIELD GRANGE GRANGE WADES BAYOU BACON BACON BACON BACON BACON BACEN BALD HILL BAXTERVILLE BLUE HOLE BUUE HOLE BUUE HOLE BUUE HOLE BUUE HOLE BUUE HOLE BUUE HOLE BUYKIN CHURCH BUFFALO CALEDONIA CALEDONIA CALEDONIA CALEDONIA CATAHOULA CREEK COOPER CREEK FIELD COOPER HILL COWPENNA CREEK COWPENNA CREEK COWPENNA CREEK COWPENNA CREEK COWPENNA CREEK DAVIS NORTH DOLOROSO ENTERPRISE FIELD GREENWOOD SPRINGS GREENWOOD SPRINGS GREENWOOD SPRINGS GREENWOOD SPRINGS GREENWOOD SPRINGS HIGGINS JOHNS KINGS BRANCH MAGEE MATUBBY CREEK MCKINLEY CREEK SOUTH MORGANTOWN SOUTH MORGANTOWN SOUTH MORGANTOWN SOUTH MORGANTOWN MOSS HILL WEST MOUNT HOPE NETTLETON OWEN CREEK PISTOL RIDGE
1057	STAMPS

0

0

(L

0

POOL

ARTMAN OIL HOSSTON OIL HOSSTON DIFFRI ENT GAS ARMSTRONG OIL STEWART B OIL SLIGO OIL HOSSTON GAS LOWER PALUXY GAS RODESSA GAS SILGO GAS ARTMAN OIL MISSISSIPPIAN-LEWIS GAS MISSISSIPPIAN-LOWER SANDERS RODESSA OIL WALKER OIL PALUXY GAS ARTMAN GIL PEARLINE OIL RGDESSA OIL BAKER OIL MISSISSIPPIAN SANDERS OIL PENNESYLVAN I AN-NASON GAS COTTON VALLEY GAS MISSISSIPPIAN CARTER ^BB[!] GAS MCKITTRICK OIL EVANS GAS MISSISSIPPIAN-CARTER GAS MISSISSIPPIAN LEWIS GAS P-40 PALUXY OIL ARMSTRONG OIL P-2 PALUXY OIL MILLERELLA GAS MISSISSIPPIAN ABERNATHY GAS-MI SS I SS I PPI AN CARTER A GAS MISSISSIPPIAN CARTER B GAS FIRST HOSSTON GAS SMACKOVER GAS MCKITTRICK ARMSTRONG OIL SILIGO GAS REA SAND GAS MISSISSIPPIAN SANDERS GAS FIRST HOSSTON GAS HOSSTON HARPER GAS THIRD WILCOX OIL WILSON OIL MISSISSIPPIAN LEWIS GAS BARKSDALE OIL MIDWAY GAS-PARKER OIL FRIO OIL

ID	FIELD
1053	SUMRALL
1059	TOWN CREEK
løfcø	TRAINING SCHOOL
1061	VINTAGE
1062	VINTAGE
1063	VINTAGE
1064	VINTAGE
1065	WALKER LAKE
1066	WALNUT CREEK
1067	NORTH WAUSAU
1063	WHITES

6

0

Ų.

POOL

48

SMACKOVER OIL WALKER B OIL LOWER WASHITA FREDERICKSBURG GAS HOSSTON BOOTH GAS HOSSTON HARPER GAS SLIGO GAS SECOND SLIGO-BOOTH GAS MISSISSIPPIAN LEWIS GAS GRANFI ELD OIL RODESSA 3 OIL MISSISSIPPIAN SANDERS OIL Open-File Report 83-6S

A Study of Secondary and Tertiary Oil Recovery Potential in Mississippi Clifford E. George

1983

The Mississippi Mineral Resources Institute University, Mississippi 38677