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Biomembrane-Based Memcapacitive Reservoir Computing
System for Energy-Efficient Temporal Data Processing

Md Razuan Hossain, Ahmed Salah Mohamed, Nicholas X. Armendarez,
Joseph S. Najem,* and Md Sakib Hasan*

1. Introduction

Temporal data processing and time series
prediction have recently gained increasing
interest due to their ubiquitous utility in
various fields such as speech recogni-
tion,[1,2] language modeling, text genera-
tion,[3,4] trend forecasting,[5] traffic
forecasting,[6] and financial forecasting.[7,8]

Temporal series prediction requires recur-
rent neural network (RNN) paradigms
capable of history-dependent, multilayered
input mapping to an output layer.[9] This
means that the output is influenced by both
the current and the prior inputs as well as
the network states. Therefore, to achieve
history-based computing, nodes in the
hidden layers of conventional RNNs are
recurrently or cyclically connected to them-
selves.[9] These cyclical connections
increase the RNNs’ computational cost
and complexity of training as cyclic depen-
dencies can exhibit bifurcations, and
thereby nonconvergence in training.[10,11]

To circumvent the training bottleneck,
the concept of reservoir computing (RC)

was independently introduced by Jaeger et al.[12] and Maass
et al.[13] in their RNN models, namely, the echo state network
and the liquid state machines, respectively.

RC is a brain-inspired emerging machine learning architec-
ture.[14] As described in Figure 1C, an RC incorporates an input
layer that feeds the input signal to an RNN of fixed random
weights called the reservoir.[12] The reservoir, in most cases, non-
linearly maps the input signal to a high-dimensional state space
that dynamically evolves with the time-varying input.[12]

The reservoir states, corresponding to all training inputs, then
get projected to the output layer via the “memory-less” (i.e.,
time-independent) readout layer.[12] Unlike conventional
RNNs which necessitate weight training between every two sub-
sequent layers,[9] the training of RC systems is constrained to the
readout layer,[12] which can be done, only once, using linear or
logistic regression.[15,16] Limiting the number of training layers
to only one static readout layer offers a drastic reduction in the
overall computational cost of the network when compared to
conventional RNNs.[12] This nonlinear mapping from low-
dimensional to high-dimensional space increases input separa-
bility, thereby facilitating the classification of different output
classes.[17]
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Reservoir computing is a highly efficient machine learning framework for
processing temporal data by extracting input features and mapping them into
higher dimensional spaces. Physical reservoirs have been realized using spin-
tronic oscillators, atomic switch networks, volatile memristors, etc. However,
these devices are intrinsically energy-dissipative due to their resistive nature,
increasing their power consumption. Therefore, memcapacitive devices can
provide a more energy-efficient approach. Herein, volatile biomembrane-based
memcapacitors are leveraged as reservoirs to solve classification tasks and
process time series in simulation and experimentally. This system achieves a
99.6% accuracy for spoken-digit classification and a normalized mean square
error of 7.81� 10�4 in a second-order nonlinear regression task. Furthermore, to
showcase the device’s real-time temporal data processing capability, a 100%
accuracy for an epilepsy detection problem is achieved. Most importantly, it is
demonstrated that each memcapacitor consumes an average of 41.5 fJ of energy
per spike, regardless of the selected input voltage pulse width, while maintaining
an average power of 415 fW for a pulse width of 100 ms, orders of magnitude
lower than those achieved by state-of-the-art devices. Lastly, it is believed that the
biocompatible, soft nature of our memcapacitor renders it highly suitable for
computing applications in biological environments.
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In practice, RC systems were initially implemented and
studied in silico with marked temporal signal prediction
accuracies.[18–20] However, soon after Appeltant et al.[21] theo-
rized the equivalence of any dynamically-rich time-delay system
to a dynamical reservoir, a spurt in more efficient hardware
realizations of the reservoir occurred.[22,23] These hardware
implementations included spintronic oscillators,[24,25] atomic
switch networks,[26,27] silicon photonic modules,[28,29] ferroelec-
tric transistors,[30,31] and most notably memristors.[32–38]

Memristors, short for “memory resistors”, are two-terminal,
state-dependent resistive elements that colocate volatile memory
and, in many cases, complex nonlinear dynamics,[39] hence
the prevalence of memristor-based RC systems in the
literature. Memristor-based RC systems achieved remarkable
performance in various applications including, yet not limited to,

hand-written[32,34] and spoken digit recognition,[33,37] chaotic
time series prediction,[33,37,40] and real-time neural firing pattern
classification.[35]

In theory, any dynamical system with sufficient short-term
memory and nonlinearity can act as a reservoir.[21] Therefore, res-
ervoirs can be generalized to encompass a whole class of nonlin-
ear electronics called memelements. The term “memelements”
was coined by Chua[41] to refer to any passive circuit element with
a response dependent on input history, such as memristors,
memcapacitors, meminductors, as well as other higher-order
memelements.[42,43] Memcapacitors, in particular, have garnered
attention in computing applications[44,45] that require very low
power consumption due to their energy-storing nature as
opposed to the energy-dissipative nature of memristors,
in addition to the pulse-width-independent energy per spike

Figure 1. A memcapacitive reservoir computing scheme. A) A schematic describing a biomembrane-based memcapacitor in the resting state and in
response to voltage. In response to voltage, this device exhibits hysteretic changes in membrane area (i.e., electrowetting) and thickness (i.e., electro-
compression) which give rise to dynamical memcapacitance.[54] B) In response to a train of pulses, the memcapacitor outputs an increased relative
capacitance from pulse to pulse (i.e., paired-pulse facilitation) due to its volatile memory. The inset enclosed in green-dashed displays an inverted
microscope-obtained bottom view of the memcapacitor exhibiting an almost two-fold increase in interfacial area compared to the interfacial area at
rest (the inset enclosed in dashed red). The scale bars in red in both insets are equivalent to 200 μm. C) A representation of a conventional reservoir
computing system entailing an input layer, the reservoir, a readout layer, and an output layer. D) An equivalent system can be built by replacing the
reservoir layer with memcapacitors as reservoirs. The random spatial nodes in a conventional reservoir in (C) are replaced by serial temporal virtual
nodes.
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consumption. Although various research groups have proposed
theoretical models for memcapacitive devices,[46–49] only a few
physical implementations have been demonstrated.[50–53] In
terms of in silico neuromorphic computing applications, mem-
capacitor models[48,54,55] have been employed in the simulation
of memcapacitive networks, where the memcapacitors serve only
as variable weights between the network’s nodes.[56–59] Such
architectures utilize nodal activation functions for the nonlinear
transformation, as the memcapacitor itself does not perform the
nonlinear mapping. To the best of our knowledge, there have
been no reports of memcapacitor-based RC system architectures
where the memcapacitor nonlinearly maps an input to a higher
dimensional feature space with fading memory, thereby fully
replacing the network-based reservoir layer. For such a memca-
pacitor-based RC system, it is imperative that the memcapacitor
exhibits both nonlinearity with respect to input excitation
and volatility (i.e., the fading memory property).[13,32] The utility
of physical memcapacitors in neuromorphic computing
applications has been limited to artificial neural networks due to
the constraint of nonvolatile memcapacitors.[45] Additionally, to
the best of our knowledge, there have been no reports on
the physical implementation of a memcapacitor-based RC
system.[51,52]

Here, we experimentally realize a memcapacitor-based RC
system that leverages two-terminal, volatile, scalable, memcapa-
citors, first introduced by Najem et al.,[54] as reservoirs that fully
replace conventional network-based RC architectures due to their
intrinsic nonlinearity and state volatility. The memcapacitor con-
sists of a synthetic lipid bilayer formed between two lipid-encased
aqueous droplets submerged in an oil phase.[54] At the interface
of both droplets, an elliptical, planar lipid bilayer (�100 μm in
radius) spontaneously forms with a highly insulating
(> 100MΩ cm2) core consisting of a mixture of hydrophobic
lipid tails and residual entrapped oil (Figure 1A). Upon trans-
membrane voltage application, the ionically charged lipid bilayer
manifests geometrical changes due to electrowetting (EW) and
electrocompression (EC) (Figure 1A), leading to an increase in
bilayer area and a decrease in the hydrophobic, respectively
(see Section S1 and Figure S1–S4, Supporting Information for
more details). The bilayer exhibits dynamical voltage-controlled
capacitance with paired-pulse-facilitation (Figure 1B) via geomet-
ric reconfigurability of its interfacial area and hydrophobic thick-
ness,[54] enabling the high-dimensional temporal transformation
with minimal power and energy consumption. First, we demon-
strate the device’s computational quality by conducting spoken-
digits recognition as well as predicting a second-order dynamical
time series and compare the achieved accuracies one-to-one
with another memristor-based RC report.[32,33] Then, taking
advantage of the device’s biological synapse-like timescale
(�102ms[60]), we detect epilepsy from an electroencephalogra-
phy (EEG) signal to demonstrate the device’s real-time temporal
processing. Furthermore, for completion, we solve an IRIS data-
set classification problem to confirm that the device’s short-term
dynamics can solve a static classification problem (Section S5,
Supporting Information). Finally, we present the device’s power
and energy per spike consumption and compare them with the
consumption of other state-of-the-art memristors that were
deployed as reservoirs.[32,34,35,37,61,62]

2. Results

2.1. Memcapacitor-Based Reservoir Computing Architecture

The structure of RC is based on a three-layered architecture com-
prising an input layer, a reservoir, and an output layer,[16] as
shown in Figure 1C. The input layer is responsible for encoding
and distributing the input data to the reservoir, a large, fixed, and
sparsely connected network of nonlinear dynamic nodes.[12]

These nodes, often referred to as neurons or perceptrons, are
interconnected through random and fixed weights, enabling
the reservoir to serve as a rich temporal memory.[12,13] The
output layer consolidates the high-dimensional reservoir states
into a meaningful output, with only the connections between
the reservoir and output layer being adjusted during
training.[19,63] This unique structure allows RC to efficiently han-
dle many temporal tasks, outperforming traditional RNNs in
terms of computational complexity and training time and solidi-
fying its position as a powerful and versatile approach to process-
ing time series data.[19,64]

Taking advantage of the memcapacitor’s second-order nonlin-
ear dynamics in which EW and EC operate at two distinct time-
scales,[54] short-term memory (Figure 1B and S2–S4, Supporting
Information) and innate stochasticity (Figure S5, Supporting
Information), we replaced the conventional RNN-based RC with
a memcapacitor-based RC, as shown in Figure 1C,D. Unlike
memristor-based reservoirs, where the resistance or conductance
of the memristor is commonly representative of the reservoir
state,[32,33,37,65] in memcapacitor-based reservoirs, the reservoir
state is reflected by capacitance, or, as more often used in this
work, capacitance normalized to its resting capacitance state
(C=C0). It is worth noting that there are nontrivial dissimilitudes
between a conventional RC and a memcapacitor-based RC in
terms of their computing architecture. A conventional RC typi-
cally incorporates hundreds, often thousands, of interconnected
cyclic nodes.[22] Contrarily, a memcapacitor-based reservoir
exploits the memcapacitor’s inherent time-delay aspect (i.e.,
memory) to account for the nodes’ recursion.[21] Furthermore,
the nonlinearity of a single memcapacitor can compensate for
the nonlinearity offered by a number of interconnected nodes,
depending on the device’s degree of nonlinearity and quality
of fading memory (i.e., volatility). Accordingly, as hypothesized
by Appeltant et al.,[21] a single dynamical system with sufficient
nonlinearity and time delay, such as our memcapacitor, can act
as a full reservoir, which promotes practical implementations of
physical RCs. It should be noted that it has been mathematically
proven that a reservoir state cannot concurrently render high
degrees of nonlinearity and memory capacity because nonlinear-
ity degrades memory.[66,67]

For a memcapacitor-based RC with a few memcapacitors
connected in parallel, as depicted in Figure 1D, an effective
mapping of the input signal to a high-dimensional state space
can be accomplished by means of virtual nodes.[21] When first
introduced,[21] virtual nodes were adapted by sampling many
points along the reservoir’s time-delayed response to every input
time step. In other words, every input value sent to the reservoir
is sampled-and-held via a voltage encoder (Figure 4A), yielding
time-varying reservoir states that span the holding time. Each
sampled point along the time-delayed response sequence can
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be deemed an independent node and state-space dimension,
hence the name “virtual node” (Figure 1D).[21] However, for
high-frequency sampling, consecutive nodes are close enough
to be considered linearly dependent, which is redundant for
high-dimensional mapping; thus, it is more functional to choose
an adequately spaced sample from the obtained array to desig-
nate as the reservoir’s virtual nodes. Interestingly, for input
sequences with negligible variations, as seen in cochleogram
channels fully populated with 0-bits (channels 3–20 in
Figure 2), to avoid redundantly large feature spaces, it is more
advisable to assign a virtual node once every few inputs rather
thanmore than once per input. To be comprehensive, in practical
implementations, one can choose to elect as many or as few vir-
tual nodes as demanded by the task of interest from the full array
of measured reservoir states. Furthermore, for some applica-
tions, applying a form of postprocessing on elected virtual nodes
before transmitting them to the readout layer can also improve
the overall system’s performance.

In this study, we discuss the employment of the
memcapacitor-based reservoir for solving three distinct
problems, where the input encoding and the feature space

definition for each problem were executed differently. We start
with a benchmark spoken-digit classification problem, where the
input signal is binary (either a 0 or a 1) and temporally history-
dependent (Figure 2). For this problem, a virtual node was
elected for every five equally spaced inputs. Then, we discuss
how we used the memcapacitor-based reservoir for predicting
a second-order regression problem, where the input signal is ran-
dom, continuous (nonbinary), and history-dependent. Unlike the
spoken-digit problem, the input signal was encoded in 10 differ-
ent timescales to effectively increase the dimensionality of the
reservoir. We then present an epilepsy detection problem using
an EEG input signal as a real-time temporal signal processing
problem. Leveraging the device’s biological fading memory
(100ms),[60] we incorporate a feature modification postprocess
that integrates 60 short-timescale (5.8ms) features into one
long-timescale (348ms) cumulative feature (i.e., virtual node)
to be passed to the readout layer. As a supplementary problem
(Section S5, Supporting Information), we solve a static classifi-
cation problem, namely the IRIS dataset problem, where the
input is history-independent to demonstrate the device’s exem-
plary performance across tasks with dissimilar inputs.

Figure 2. The encoding process flow of the spoken digit classification problem. The binary 2D cochleogram (top-left corner) represents neural spike trains
in different human cochlear channels. Each input was converted into voltage pulses (bottom-left corner), where the 10 and 200mV pulses correspond to a
0 (resting neuron) bit and a 1 (firing neuron) bit, respectively. The input voltage train was fed to the memcapacitor-based reservoir, where the normalized
capacitance response is recorded (bottom-right corner). The dynamic normalized capacitance was then mapped to a 2D matrix (top-right corner) and, for
every channel or row, one virtual node was selected for every five-time steps as depicted by the green circles on the capacitance plot (bottom-right corner).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300346 2300346 (4 of 12) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300346, W

iley O
nline L

ibrary on [08/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


2.2. Spoken Digit Classification

Here, we demonstrate the performance of our memcapacitor-
based RC system for a benchmark speech recognition task. The
dataset we used, NIST TI46, comprises binary cochleograms of
isolated spoken digit waveforms, 0-9 in spoken English (Figure
S6, Supporting Information). The dataset was provided to us as
a courtesy by the authors of Moon et al.[33] It consists of 500 binary
2D cochleograms, with 450 used for training and the remaining 50
for testing. Each cochleogram, an example of spoken digit 6 is
shown in Figure 2, digitally represents the response of 50 human
cochlear channels to sound waves captured over 40 timesteps. For
each channel in the vertical axis, a 40-bit binary sequence renders a
neuron firing event along 40 timesteps, where the light blue area
denotes a firing event or 1-bit while the dark blue area signifies no
firing or 0-bit for the corresponding time step. Subsequently, 1-bit
and 0-bit time steps were encoded, respectively, as 200 and 10mV
square pulses (500ms pulse width), as shown in the voltage versus
time plot at the bottom-left corner of Figure 2.

Our analysis of the 500 datasets revealed 25 000 channels in
total, with 795 being distinct. To streamline the experimental
setup, we routed the 795 unique bitstreams (Figure S7,
Supporting Information) that comprise all 25 000 channels
to a single memcapacitor. The corresponding capacitance
responses were then estimated from the recorded current and
normalized to the resting state at every time step using the
method described in the Experimental Section. The upper right
inset in Figure 2 depicts a 2D heat map of the normalized capac-
itance response (Figure S8, Supporting Information) resulting
from inputting the example spoken digit 6 cochleogram in the

upper left inset of Figure 2. As seen in Figure 2, the shown coch-
leogram indicated a predominance of 0 bits, suggesting that the
reservoir state was mostly inactive, which was also true for all 500
cochleograms comprising the training and testing dataset.
Accordingly, selecting a virtual node after each time step led
to an unreasonably large feature space (31 800 dimensions for
795 channels and 40 timesteps), as explained in Section 2.1.
Such a large feature space could result in states’ linear depen-
dence, and therefore information redundancy. To overcome this
problem, we divided the input sequence into n equal intervals
(every five-time steps in length, where capacitance data were
recorded at the end of each interval, yielding a total of eight virtual
nodes per channel). These elected virtual nodes are represented by
the green circles in the bottom-right inset of Figure 2. The reser-
voir is comprised of a total of 50n virtual nodes, given that there are
50 frequency channels, each containing n virtual nodes. These
modes are used in a one-vs-all readout layer (50n� 10) to classify
among ten digits. The fitcecoc function in MATLAB was utilized
with a logistic regression learner for training the readout network.
It is important to note that while only one memcapacitor is
required to process all channels, we could have used multiple
memcapacitors in parallel to speed up the encoding process with
the same accuracy and energy consumption.

In summary, as an average of ten runs, our memcapacitive RC
system attained a 99.6% success rate in experiments and 100% in
simulations for all inputs. Further, we have also evaluated the
performance of our system at 75%, 50%, and 25% of the input
completion, meaning that our RC system predicts the spoken
digit before the utterance is fully delivered. The results are sum-
marized in confusion matrices plotted in Figure 3. In addition,

Figure 3. Prediction results for the spoken digit classification problem using a memcapacitor-based RC system. A) Confusion Matrix for spoken digits
using all timesteps in every channel (100% of the utterance). The overall testing dataset accuracy is 99.6%. B) Confusion Matrix for spoken digits using 30
out of 40 timesteps per channel (75% of the utterance). The overall testing dataset accuracy is 99.0%. C) Confusion Matrix for spoken digits using all time
steps 20 out of 40 timesteps per channel (50% of the utterance). The overall testing dataset accuracy is 95.6%. D) Confusion Matrix for spoken digits
using only 10 out of 40 timesteps per channel (25% of the utterance). The overall testing dataset accuracy is 59.4%.
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Table 1 presents a comparison of recent work[32] for experimental
accuracy and the reservoir energy (Figure S9, Supporting
Information).

2.3. Solving a Second-Order Nonlinear Dynamic Task

Nonlinear dynamical systems are mathematical models that
describe the complex behavior of natural and engineered systems
that are characterized by time-dependent interactions among
their constituent elements.[68] The study of these nonlinear sys-
tems has proven invaluable in elucidating a broad spectrum of
phenomena in various disciplines, such as fluid dynamics,[69]

population biology,[70] climatic systems,[71] etc. The governing
equations for second-order nonlinear dynamical systems encom-
pass time derivatives of the second order. Some prominent exam-
ples of second-order nonlinear dynamics within these domains
include electrical system converters[72] as well as damping prop-
erties in mechanical systems,[73] among others.[74–76] In this sec-
tion, we use a memcapacitive reservoir to predict a second-order
dynamic nonlinear transfer function.[32] The transfer function is
described as follows:

yðtÞ ¼ 0.4yðt� 1Þ þ 0.4yðt� 1Þyðt� 2Þ þ 0.6u3ðtÞ þ 0.1 (1)

The output signal, yðtÞ, depends on the present input, uðtÞ, as
well as the previous two inputs, yðt� 1Þ and yðt� 2Þ (i.e., a time
lag of two-time steps), as shown in Equation (1). In this study, we
trained the memcapacitor-based RC system to map a random
input onto a higher-dimensional space, thereby enabling the gen-
eration of an accurate second-order dynamic nonlinear transfer
function output from the input after training without prior
knowledge of the underlying mathematical relationship between
input and output.

Figure 4A presents the schematic of the RC system developed
for solving a second-order nonlinear dynamic task. We initially
channel the input signal into the voltage encoder, which converts
the input into voltage pulses. The voltage pulses are then directed
to the memcapacitive reservoir, generating different reservoir
states. These states are subsequently employed by the readout
function to derive the anticipated output.

We chose a random input signal sequence within the range of
0–0.5 and transformed it into a voltage amplitude between 50 and
200mV. We employ a random sequence of 300-time frames as
inputs for training the memcapacitor-based RC system. The res-
ervoir is composed of 50 memcapacitive virtual nodes within the
employment of five physical memcapacitive devices. For each
memcapacitor, the input voltages are provided via pulse streams

of 50% duty cycle with 10 different time frame widths (equally
spaced between 200 and 600ms) applied to each of the five mem-
capacitors in the reservoir throughout the experiment. It is worth
noting that there exists a slight variation across the five memca-
pacitors due to inherent slight differences in bilayer area and
hydrophobic thickness (denoted A0 and W0, respectively, in
Figure 1A). We found that including five devices with slightly
varying properties enhances reservoir performance, as inherent
device-to-device variations contribute to more separable reservoir
outputs. Comparable performance improvement was observed
for inputs with 10 distinct time frames or pulse widths (PW).
We found that having 50 reservoir states (comprising five devi-
ces, each receiving 10 input encodings) was optimal since further
increasing the number of reservoir states increased the compu-
tational overhead without significantly improving the prediction
accuracy. In this instance, the readout layer is a 50� 1 feedfor-
ward layer and serves to convert the reservoir state into a single
output. A simple linear regression model with gradient descent
is utilized to train the weights in the readout layer. The process
flow of solving the second-order dynamic task is demonstrated in
Figure 4A.

Panels B and C in Figure 4 present the graphical representa-
tion of the original and predicted signals for 100-time frames of
training and testing data in the experiment, respectively. Notably,
the readout function is not retrained during the testing phase.
The normalized mean square error (NMSE) values (refer to
Section S3.1, Supporting Information) attained for training
and testing data amount to 5.28� 10�4 and 6.32� 10�4 in sim-
ulation (Figure S10, Supporting Information), and 5.75� 10�4

and 7.81� 10�4 in experiment, respectively. Table 2 summarizes
a comparison with recent work.[32] Furthermore, it is important
to note that solving this problem using a reservoir based on a
conventional linear network yielded a larger NMSE than that
of the memcapacitor-based reservoir (Figure S11 and Section
S3.2, Supporting Information). This highlights the indispens-
ability of the intrinsic nonlinear dynamics of the memcapacitor
device for higher dimensional transformation.

2.4. Real-Time Epilepsy Detection from EEG Signal

EEG signals, which are time series data, serve as a valuable tool
for examining abnormal brain activity occurring during seizure
episodes, as these signals are captured from diverse areas within
the brain.[77] Representing temporal patterns of brain activation,
EEG signals contain essential information about brain function-
ality.[78] Thus, by extracting pertinent features, researchers can
gain a more profound understanding of the brain’s underlying
activities.[79] The primary objective of this study is to demonstrate
the effectiveness of our memcapacitor-based RC system capable
to solve classification problems in real-time.

In this study, we have used a dataset from the University of
Bonn, Germany.[80] This dataset is composed of five distinct
classes of EEG signals, specifically F, N, S, Z, and O. Each class
contains 100 EEG signals with a duration of 23.6 s, sampled at a
frequency of 173.67 Hz (5.8 ms) and exhibiting voltage
amplitudes below and above of �1000 μV. Class S EEG signals
are captured during seizure activity, while class Z EEG signals
are obtained from healthy individuals.[81] The primary focus of

Table 1. Recognition rate and energy comparison of the spoken digit
classification in an experimental framework. (Note: the comparison of
energy has solely been conducted on the reservoir of the test dataset).

Time steps This work Moon et al.[33]

Accuracy [%] Energy [J] Accuracy [%] Energy [J]

10 59.4 4.22� 10�9 57.8 2.68� 10�6

25 97.0 1.05� 10�7 98.2 1.41� 10�5

40 99.6 1.19� 10�7 99.2 2.55� 10�5
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this research is the real-time classification of class Z (healthy) and
S (epileptic) EEG signals.

Figure 5 presents the process flow for EEG dataset classifica-
tion. To assess the classification performance of our system
using minimal information from raw data, we took the absolute
value of the signal and clipped it to the highest value of 300 μV.
The signal is then converted into a voltage pulse train ranging
between 100 and 200mV, with a pulse width of �6ms. This

pulse train is then introduced to a memcapacitive reservoir,
which causes alterations in the reservoir’s dynamics. To optimize
feature size, a feature modification layer is added after the reser-
voir, where integration occurs.

For instance, each EEG data point consists of a voltage signal
extending over 4097-time steps. We divided the entire capaci-
tance value into 68 virtual nodes. As illustrated in Figure 5,
we integrated the capacitance between virtual nodes rather than
capturing it at the virtual node itself, recording the value at the
ð60nÞth step (with n ¼ 1, 2, 3, : : : , 68). In this manner, the capac-
itance value for 60-time steps generates a single feature, leading
to a total of 68 features for each data point, thereby enabling real-
time classification. While the virtual node technique reduces fea-
ture sizes, it retains less past information. Conversely, the virtual
node method with the integration technique preserves past
information from previous steps, ultimately enhancing perfor-
mance. In the output layer, logistic regression is performed.

Figure 4. Solving a second-order nonlinear dynamic task using a memcapacitor-based RC system. A) The process flow of solving second-order dynamic
tasks. The random input signal gets encoded (i.e., sampled and held) with ten different pulse widths (PW) ranging from 200 to 600ms. The encoded
voltage was then fed to five memcapacitors and the corresponding capacitance was measured at the end of every voltage pulse for all ten different
encodings. We assigned a virtual node to every capacitance measured, resulting in 50 virtual nodes per time step (five memcapacitors by ten-time
encodings). Subsequently, a 50-by-300 state matrix is passed to the readout layer for output prediction using linear regression. B) Experimentally obtained
output prediction compared to the ground truth output using the training dataset. The estimated NMSE is 5.75� 10�4. C) Experimentally obtained
output prediction compared to the ground truth output using the testing dataset. The estimated NMSE is 7.81� 10�4.

Table 2. Comparison table of solving second-order nonlinear dynamic
system. (Note: here, reservoir energy has been compared only for the
test dataset).

Work Train [NMSE] Test [NMSE] Reservoir states Reservoir energy [J]

This work 5.75� 10�4 7.81� 10�4 50 2.72� 10�8

Du et al.[32] 3.61� 10�3 3.13� 10�3 90 3.34� 10�4
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By employing the memcapacitor-based RC system, we achieved
100% accuracy for both training and testing EEG data.

2.5. Energy Consumption of Memcapacitor-Based RC

To evaluate the energy efficiency of our memcapacitor, we com-
puted the mean power as well as energy consumed per spike via
simulation and compared it to six state-of-the-art memristors that
were previously employed for RC (Du et al.,[32] Midya et al.,[34]

Zhu et al.,[35] Zhong et al.,[37] Najem et al.,[61] Maraj et al.[62]).
We transmitted a uniform distribution random signal for each
device model ranging from 0 to 1, spanning 1000 data points
with appropriate voltage encoding parameters. That is, for every
memristor device model, the random input signal was encoded
into a voltage pulse train with a pulse width and voltage range
that match the values reported in their corresponding articles.
Then, the resulting unique 1000-pulse trains were fed to their
corresponding devices, and the current responses were simu-
lated via the reported device models. The point-by-point products
of the simulated currents and input voltages were then averaged
to yield power consumption, numerically integrated, and then
averaged per pulse width basis to yield the mean energy con-
sumption per spike. In contrast, the energy per spike calculation
of the memcapacitor was done using the product of simulated
capacitance and the square of the voltage difference for

increasing voltage amplitudes only. Meaning that we only con-
sider the energy involved in charging the memcapacitor and dis-
regard the discharging energy. As a result, the memcapacitor’s
energy per spike and mean power are almost five and three
orders of magnitude, respectively, lower than that of the most
energy-efficient memristor[35] included in this study. In addition,
the energy per spike of the memcapacitor is independent of the
chosen input voltage pulse width, in contrast to memristors and,
more generically, energy-dissipative devices in which energy con-
sumption scales with the voltage pulse width. This is due to the
fundamental dependence of capacitive current on the dynamic
voltage transience as opposed to the dependence of ohmic cur-
rent on the static voltage magnitude and on-time. As a result,
memcapacitors only consume dynamic energy during pulse
transition and do not consume any static energy during the
pulse duration making the energy consumption completely
independent of the pulse width. In the context of real-time mem-
ristor-based RC, the task of interest dictates the input voltage
pulse width, and therefore the energy required to solve the prob-
lem. For instance, to classify distinct neural activity patterns in
real-time, Zhu et al.[35] had to select a pulse width of 2 ms for
their input voltage to mimic the spike time of a biological action
potential even though their memristor is able to operate at
shorter timescales (500 μs). This problem-related imposition of
pulse width resulted in an increase in their energy consumption
per spike from 50 fJ to almost 10 pJ. Unlike memristor-based

Figure 5. Epilepsy detection task from an input EEG signal using a memcapacitor-based RC system. A) The process flow of EEG dataset classification
using a memcapacitor-based RC system. Note that the additional feature modification step precedes the readout. B) The feature modification
postmapping step numerically integrates the memcapacitor states every 60-time step and combines these 60 features into one combined feature.
C) A Confusion Matrix summarizing the prediction results for the EEG signal classification using the memcapacitor-based RC system. The results convey
a 100% testing accuracy.
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reservoirs, the energy consumption of real-time memcapacitor-
based RC is solely dependent on the device’s capacitance and
encoded input voltage magnitude, which are both dictated by
the device’s properties. For our memcapacitor, the energy con-
sumption is a function of capacitance, which is proportional
to the bilayer area and, consequently, the droplets’ sizes
(Figure 1A and S1, Supporting Information). For this analysis,
we chose 50 nL-sized droplets, which ultimately yield a mean
capacitance of �20 pF, 41.5 fJ of energy per spike, and a mean
power consumption of 415 fW for a 100ms pulse width.
A log-scale bar graph is indicated in Figure 6 as a visual summary
of the results.

3. Discussion

In this study, we present a physical memcapacitive RC system
that takes advantage of the inherent short-term memory capabil-
ities of biomembrane-based memcapacitive devices to fully
replace network-based RC systems. Our approach utilizes the
concept of virtual nodes for prediction tasks in the context of spo-
ken digit classification problems. Notably, our reservoir system
demonstrates the ability to classify data even when faced with
incomplete inputs. When tackling regression such as second-
order nonlinear dynamic problems, our system can accurately
predict the actual output, even in the absence of knowledge about
the transfer function. To emphasize the importance of the fading
memory property of the device for this specific issue, we com-
pared our memcapacitive RC system with a conventional linear
network. We observed a significant difference in prediction
NMSE (see Section S3.2, Supporting Information), indicating
the superiority of our approach. Furthermore, the versatility of
our system is demonstrated through its ability to process not only
temporal data but also static, real-time data classification. In this
regard, we have successfully addressed the epilepsy detection
problem. Additionally, we solved IRIS dataset classification prob-
lem (Section S5 and Figure S12, Supporting Information) in

simulation to demonstrate the device’s capability in solving prob-
lems with a static input. Finally, we demonstrated, in simulation,
that the energy per spike consumption of the memcapacitor is
not only orders of magnitude less than state-of-the-art memris-
tors but also is independent of the pulse width of the input
voltage, which is of particular interest in real-time physical RC.

The memcapacitor-based RC system presented in this work is
expected to pave the way for ongoing advancements targeting the
optimization of network performance across a diverse array of
applications, such as action recognition, prediction, and classifi-
cation. This method holds particular promise for applications
that prioritize network size and energy efficiency over rapid proc-
essing speeds. In our current implementation, the reservoir is
constructed in hardware, while input and output layers reside
within a simulation platform. As part of our future research
endeavors, we aim to build the entire system in hardware,
thereby addressing real-time application challenges more
effectively. Additionally, we plan to incorporate algorithmic
advancements, such as improving the input encoding and
new memcapacitive reservoir architecture, into our work.
These improvements in simulation and experimental contexts
will establish the groundwork for the application of memcapaci-
tive RC systems in machine learning tasks tailored to neuromor-
phic computing applications.

We note that while solid-state memristors have achieved nota-
ble integration into VLSI circuits and are pervasive in industrial
and commercial applications, in many different classes of
applications, it is more appropriate to implement computation
directly with devices that compute with biological mechanisms.
We underscore that the goal of such biomolecular-device-based
computing is not to compete with electronic circuits in terms
of computational speed or size. The main advantage of
biomolecular-device-based computing systems is their environ-
ment of application along with energy efficiency.

A primary motivation behind our work is directly linked to the
objective of physical RC, where the main aim is to harness the
intrinsic computational capabilities of specific materials while

Figure 6. A comparison of power and energy per spike consumption is plotted on a log scale, showcasing the significant difference in power and energy
between the memcapacitor used in this study and state-of-the-art memristors employed as reservoirs. The memcapacitor exhibits orders of magnitude
lower power and energy per spike consumption compared to the memristor.[32,34,35,37,61,62]

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300346 2300346 (9 of 12) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300346, W

iley O
nline L

ibrary on [08/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


possessing physical properties desirable for applications that are
not directly connected to their computational purpose.[22]

Previous research indicates the potential of this approach,
particularly in edge computing[22,35] for biomedical and brain-
computing interfaces, where the inherent attributes of
complementary metal–oxide–semiconductor (CMOS)-based
devices may be less advantageous in the biological milieu.
However, iontronic, biocompatible tools, such as our memcapa-
citor, are more likely to be suited. Though memcapacitors may
not match the scalability of traditional CMOS-based systems,
strides have been[82–91] and are still being made to advance their
scalability. Such neuromorphic devices and architectures exhibit
a profound potential to offer rich dynamics and computing para-
digms that reduce the need for extensive nanoscale devices, as
evident from our and past studies.[32,35,37,62]

Despite scalability limitations compared to solid-state devices,
by exploring and harnessing the unique properties of volatile
memcapacitive devices, we seek to revolutionize the field of
RC and contribute to the development of more efficient and ver-
satile neuromorphic systems. As the demand for intelligent and
energy-efficient computing solutions grows, the findings of this
study hold significant potential for transforming a wide range of
industries and applications. Ultimately, the memcapacitive RC
system presented here is a crucial step forward in the pursuit
of next-generation, energy-efficient neuromorphic computing
systems.

4. Experimental Section

Lipid Solutions Preparation and Membrane Assembly: An aqueous stock
solution containing 500mM potassium chloride (KCl, Sigma), 10mM
3-morpholino propane-1-sulfonic acid (MOPS, Sigma) with a measured
pH of 5.8, and 2mgmL�1 1,2-Diphytanoyl-sn-glycero-3-phosphocholine
(DPhPC, Avanti) liposomes in deionized water (18.2MΩ cm) were
prepared and stored. To prepare this aqueous stock solution, 160 μL of
25mgmL�1 DPhPC lipids dissolved in chloroform solution are acquired
and evaporated under clean dry air, leaving 4mg of residual lipid cake at
the bottom of a 4mL vial. The vial is then left under vacuum for a mini-
mum of 2 hours and then hydrated with 2 mL of 500mM KCl, 10mM
MOPS buffer solution, resulting in an aqueous solution containing
2mgmL�1 multilamellar DPhPC liposomes. To convert the multilamellar
liposomes to unilamellar liposomes, the lipid solution is first subjected to
six freeze/thaw cycles, and then extruded by forcing it, in 11 immediately
successive passes, through a 100 nm-pore polycarbonate membranes
(Whatman) using an Avanti Mini Extruder. Finally, the extruded solution
is sonicated for 5 min and vortex mixed for 60 s.[92–94] This solution can be
stored for weeks at 4 °C or directly used for experimentation. A micropi-
pette was used to pipette two 200 nL droplets from the prepared lipid
stock solution onto two 125 μm-diameter, ball-end silver/silver chloride
(Ag/AgCl 99.99%, Goodfellow) wires submerged in a decane (≥99%,
Sigma-Aldrich) oil-filled, transparent acrylic reservoir. Prior to droplet
deposition, the wires were coated with 1% agarose gel to avoid droplets
detaching from the wires due to the decreasing surface tension associated
with the lipid monolayer formation.

Initially, the droplets were suspended on the wires free of contact with
each other, the acrylic substrate, and the oil/air interface for 5–7 min,
allowing for a packed lipid monolayer to form at the droplets’ water/oil
interface. The monolayer formation was monitored visually via a 4� objec-
tive lens on an Olympus IX73 inverted microscope. Once the monolayers
were formed, which were detected by observing the droplets leave the lens’
focal plane as they vertically sagged from the wires, the droplets were
brought in contact with each other by moving the wires using 3-axis micro-
manipulators to spontaneously form a bilayer at the contact interface.

Electrical Measurements Setup: Prior to implementing any problem-
specific transmembrane voltage signal, we ensured a successful
interfacial bilayer formation by supplying a triangular 10 Hz, 10 mV volt-
age signal to the electrodes via a Tektronix AFG31022 function generator.
As a result of the membrane’s high insulation (>100MΩ cm) and capac-
itive interfacial area, a small 10 Hz square (�20 pA) current response is
expected as an output from a nonleaking bilayer. To obtain dynamic and
steady-state changes in capacitance as a function of voltage (Figure S2,
S3, and S5, Supporting Information), a voltage waveform consisting
of a 50 mHz, 150 mV amplitude sinusoidal waveform superimposed
on a 20 Hz, 10 mV triangular waveform was supplied to the membrane.
The slow-frequency component of the waveform drove the geometric
reconfiguration of the membrane (i.e., EW and EC) while the fast-
frequency component was used to obtain the capacitance magnitude
at every semiperiod. For the capacitance step response in Figure S4,
Supporting Information, the low-frequency component was a 10 s,
150 mV square wave. A custom MATLAB script (available upon request)
was used to compute the capacitance at every semiperiod by fitting
the analytical solution of a parallel RC circuit current response to the
measured current. Simultaneously, the bilayer area changes (Figure S1,
Supporting Information) were monitored at 30 fps using a camera
attached to the inverted microscope. The corresponding videos,
obtained via Olympus CellSens software, were then postprocessed
using a custom MATLAB script (available upon request) to extract the
bilayer’s interfacial minor axis radius, which was used to compute the
interfacial area changes (Figure S2, Supporting Information) and
subsequently, the bilayer hydrophobic thickness changes (Figure S2,
Supporting Information). A custom MATLAB script (available upon
request) was used to control an NI 9264 voltage output module
to send an arbitrary transmembrane voltage signal. The capacitance
magnitude at every pulse was computed from the obtained
current responses using a custom MATLAB script (available upon
request).

All the current measurements were recorded and digitized at 50 000
samples s�1 (to avoid capacitive-spike aliasing) using a patch-clamp
amplifier Axopatch 200B and Digidata 1440 A data acquisition system
(Molecular Devices), respectively. All current recordings are con-
ducted on an active vibration isolation table and under appropriate
shielding, using a lab-made Faraday cage, to reduce the noise to less
than 2 pA.

All model simulations and energy consumption calculations were
implemented using a custom MATLAB script (available upon request).
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