
University of Mississippi University of Mississippi

eGrove eGrove

Haskins and Sells Publications Deloitte Collection

1963

Built-in and programmed machine controls Built-in and programmed machine controls

Vito Petruzzelli

Follow this and additional works at: https://egrove.olemiss.edu/dl_hs

 Part of the Accounting Commons, and the Taxation Commons

Recommended Citation Recommended Citation
Haskins & Sells Selected Papers, 1963, p. 443-452

This Article is brought to you for free and open access by the Deloitte Collection at eGrove. It has been accepted for
inclusion in Haskins and Sells Publications by an authorized administrator of eGrove. For more information, please
contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/dl_hs
https://egrove.olemiss.edu/deloitte
https://egrove.olemiss.edu/dl_hs?utm_source=egrove.olemiss.edu%2Fdl_hs%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/625?utm_source=egrove.olemiss.edu%2Fdl_hs%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/643?utm_source=egrove.olemiss.edu%2Fdl_hs%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

Built-in and Programmed Machine Controls
by VITO PETRUZZELLI

Consultant, Chicago Office

Presented before a special meeting of Haskins &
Sells Chicago Office audit staff — November 1963

ONE OF T H E THOUGHTS that occurred to me after I was asked to speak
on machine and programmed controls was, "How can I project

my interest and enthusiasm to my audience?" Having considered this
problem for a while, I thought the easiest way to tackle it would be
to allow the subject matter to generate its own interest as it has for
me. Al l of us, whether we care to admit it or not, are fascinated to
some degree by the spectacular. Unfortunately, some are carried away
by it. This morning we were exposed to the phenomenal capabilities
of electronic data processing. It is a fact that the pace at which this
technology is advancing is as remarkable as the technology itself.
Our education in its elements and its use is a challenging task. The
technology of electronic data processing creates an aura of the dram
atic and sensational. Our job during this presentation will be to
diminish any apprehensions you might have about the subject, solve
some of the mysteries concerning how these machines actually func
tion, and, hopefully, develop respect and interest for what these
machines and the men and women who use them can accomplish.

The order of our presentation will be:
• A general discussion of controls built into the hardware.
• A general discussion of controls generally provided with most

systems through automatic programming.
• A general discussion of controls specially provided in each pro

gram.

HARDWARE

The terms computer, machine, computer or machine systems are used
synonymously. For those who are directly concerned with electronic
data processing, this rather imprecise method of communicating does
not present much of a problem; but for the uninitiated, these terms
imply indistinguishably different concepts. To eliminate the possi
bility of confusion, we will speak about the various components of a
computer system.

Simply, the functions of a computer system are that it accepts,
manipulates, and records data. With each of the verbs in the

443

preceding sentence, we can associate a specific device. To "accept"
data, any system must have an input device; to "manipulate" data,
this system must have a processing unit; to "record" data, it must
have an output unit.

The most mysterious aspect of these devices, and unfortunately
the aspect that lends itself to our greatest concern, is how these
functions of taking in, processing, and putting out data are ac
complished.

Before explaining how these various devices function, we should
review the basic concepts of data recording and representation which
were explained earlier. The basic forms of data recording are: cards,
magnetic tape and disk, paper tape, charged ferrite cores, and the
printed document. The basic forms of data representation are: holes
in the cards and paper tape, charged deposits on the oxide surface of
the magnetic tape and disk, polarity of charge of the ferrite cores, and
a meaningful character on the printed document. The machine con
trols associated with each of the above-mentioned forms of data
recording are similar but not identical. It is important for us to know
what these controls are and how they differ.

T H E CARD READER AND CARD PUNCH UNITS

The most common input/output devices are the card reader and
punch unit.

Most card input/output units are built with two read stations;
that is, a card is read once and preliminary checks are made before
the hole count in each column is stored. These preliminary checks
consist of: a test to determine whether a valid character has been
sensed by the brushes that have fallen through the card holes onto a
charged surface, and a test to determine whether or not a card is
properly aligned in the transport mechanism. After the validity check,
the hole count is stored and the card passes under a second read
station where it is re-read. The validity and hole count checks are
performed again and compared to the results of the stored count. If
there is any difference, or if an invalid character has been sensed, the
device will stop and remedial action can be taken. Once the card has
passed both read stations, it is assigned parity based on the specific
machine system used. The character code is translated into bit con
figurations, which can be operated on in the processing unit. The
transfer of data to or from the input/output unit is verified by means
of parity. An example of parity checking will illustrate the machine

444

control exercised in data movement. Given are three facts in the
example:—One, the data to be moved are the characters A3; two, the
machine system is based on odd parity; and three, the bit represen
tation within the central processing unit is Binary Coded Decimal.
The card reader will recognize A3 represented in the conventional
Hollerith card code, transfer the characters into the Binary Coded
Decimal mode, and total the number of bits for each character. The
A is composed of the B, A, and 1 bits. The number of bits is 3, an
odd number, and therefore, no modification of the bit structure is
necessary. The 3, however, is composed of the 2 and 1 bits. The
number of bits is two; consequently, an additional bit must be added
to the character structure. The additional bit is called a check bit. In
moving the data from the input device to the processing unit, if a bit
were lost for any character, a machine-stop would occur indicating
an error in data transfer.

We have gone on at some length to describe parity checking
because it is a fundamental control, and one that is a part of almost
every phase of electronic data processing.

The card punch employs the same checking features. Of course,
the direction is reversed. Instead of the parity and hole count being
checked as it goes to the central processor, it is checked as it comes
from it. The characters are re-read and the holes counted immediately
after the card has passed the punch dies. This is accomplished by a
read station positioned after the punch station.

MAGNETIC TAPE UNITS

Magnetic tape units are second to card devices in popularity.
These units are commonly referred to as "tape drives" or "tape
stands." The outstanding advantages of magnetic tape over cards are
speed, reusability, unlimited record format, and file capacity.

The machine controls associated with magnetic tape vary with
each manufacturer. The most popular control shared by most is that
of vertical parity. A vertical parity check consists of testing for valid
ity the bit configuration of each character on tape. This check takes
place in reading and in writing onto magnetic tape. The read-after-
write feature is provided by a dual gap read/write head on each drive.

In conjunction with the vertical parity check, there is another
control called the horizontal parity check. The horizontal check works
like this: As a predetermined number of characters or records, com
monly referred to as a block of data, is being written, the processing

445

unit compiles a total of the bits recorded in each of the seven channels
on tape. Based on the parity of the system, even or odd, an additional
bit may be placed in that channel. The result is a parity character
written at the end of a block of data.

The horizontal and vertical parity checks have been combined
by Minneapolis Honeywell to provide automatic error correction. This
combination of checks is called "Orthotronic Control." Simply, it
means the "downfooting" of each character or "frame" and the cross-
footing of each row or channel of bits. Once a vertical parity error
occurs in a character a flag or signal is noted. After the block is read
the corresponding error in crossfooting should indicate the bit errors
in each channel.

One manufacturer has a tape drive that will read a wider than
conventional tape. The tape is electronically divided into upper and
lower halves. Each half has identical data recorded upon or read
from it. This feature is in addition to the parity and validity checks
found in other equipment.

Another control built into the hardware is dual-level sensing. This
test discloses that the signal strength of a record or group of char
acters written onto tape is too weak, or that the condition of the tape
precludes a successful write operation. The tape is back-spaced and
another attempt is made, executing all of the tests performed previ
ously. If the condition of the tape is not suitable after a specific
number of attempts, the drive will skip the tape until it has found a
suitable recording surface. The number of tape skips is recorded on
the exterior label of a tape. As soon as a predetermined number of
skips has been recorded, the tape reel is retired.

RANDOM ACCESS UNITS

There is a present trend toward processing data concurrently
with the completion of a transaction. This generally requires the
transmission of data from a terminal to a central processing unit.
This concurrent processing is called "real-time processing." The
most striking example of its popularity has been its acceptance as
the solution to the problem of airline reservations. Real-time pro
cessing is based on the concept of random access. One definition of
random access is the system of data processing that provides the
availability of any data in a system without searching for the data
serially. It is obvious that in order to provide direct access to any
data within a system, that system must have a device with massive
storage capabilities. Two terms prevalent in most discussions of Mass

446

Random Access Storage are MARS and RAMAC. Both terms convey
the same idea.

These devices employ the same parity and validity checking
features existing in the other units. The most distinctive character
istics about these units are the read/write checks and the capability
to address any segment of the disk file. Because of the design of the
read/write mechanism in most units, it is not possible to read auto
matically after writing.

This departure from what we have been accustomed to gives
rise to the question, "How is the usual read-after-write test provided?"
A solution to this problem is not difficult because the position of the
read/write mechanism is on the same track on which the data have
been recorded. Since there is no movement of the arm immediately
after the programmed instruction to write a record, there should follow
the command "write check," i.e., re-read the record written on the disk
and compare it to the record the program called for to be written.
With this device we have become exposed to controls that must be
provided by commands rather than by the hardware.

The ability to address any record in the disk file is something
requiring the closest supervision. Very often the specific identification
of a record such as account or part number is equated to the address
of the record within the file. Another method of controlling data
handling would be to provide two identification elements. In other
words, once the record is accessed, the program would test some in
dependent element within the record other than the address.

PRINTER UNITS

The printing devices incorporate parity and validity checking in
the data movement from the central processing unit to the buffer. An
additional check called an "echo check" is executed when the position
of the print head on a chain, wheel, or type bar is sensed at the moment
printing occurs and is compared to the character in storage.

CENTRAL PROCESSING UNITS

The last piece of hardware we shall investigate is the central
processing unit. The names associated with this device are "main
frame" and "CPU," the latter standing for Central Processing Unit,
and sometimes humorously, "the brain." A major function of the cen
tral processing unit is data movement, which includes the storage of
different record elements for formating of records and the storage of
different values in arithmetic operations. This function is controlled

447

by parity, discussed earlier. Double or complement arithmetic has
been built into the arithmetic circuitry of some central processing
units. Interlock circuits inhibit input/output operations while data
are being transferred from the unaddressable parts of storage called
"buffers."

In order to assure the user that all of these hardware controls are
in good working order, most manufacturers provide scheduled pre
ventive maintenance.

AUTOMATIC PROGRAMMING

The second general discussion focuses on the controls to be ob
tained through automatic programming. By automatic programming
we mean the set of computer commands generally provided by the
manufacturer to execute certain common operations. Such a set is
provided with most languages, enabling the user to communicate
with the computer system. A significant automatic programming
package from our point of view is the one that controls the input/out
put functions.

The most important file-handling check that can be performed
is the identification of that file. In other words, we should only oper
ate on the files called for in a specific job. We know, for example, that
we would not use the "master" payroll-personnel file for an accounts
receivable update. Likewise, we would not use last month's loan-pay
ment file for this month's updating of the master loan file. An analogy
has been made that writing improperly on a master file is comparable
to burning the general ledger. This is not just a truism—especially
when the general ledger, itself, is a reel of tape.

Recently there were three examples of this type of disaster that
occurred with clients' data. Each analysis of these unfortunate oc
currences revealed how carelessness, not malfunctioning, was the
cause. The automatic programming check existed but was suppressed
or ignored.

How can we be certain that a given reel of tape is the file we
want? An external label is one method; however, a reel of tape without
an external label is much like a can without a label. The cook may be
looking for pumpkin-pie filling but wind up with beef stew instead.

T H E HEADER LABEL

Most manufacturers have provided an indelible record at the
beginning of a file called a "header label." The main purpose of this
record is to identify positively the file as the one sought.

448

Not only is it the first record on tape, but is is physically sepa
rated from the data by a special symbol—a gap of non-recorded oxide
surface. This label has the following elements:

• The letters or symbols identifying this as a header label.
• The serial number of this reel of tape. This is the number as

signed to this reel as it is received from the vendor and
before it is used. For example, 00092 means this is the 92nd
tape we have purchased.

• The file serial number, which is the specific identification of the
type of file this is. For example, 53729 is the Accounts Re
ceivable Master file.

• The reel sequence number, which is the position of this reel in
a multi-reel file. For example, —019 means that this is the
19th reel in this file.

• The name of this file—for example, Payroll.
• The creation date. For example, 63327 is today's date, the 327th

day of 1963.
• The retention cycle. For example, —005 means this file must

be kept active for five days before it can be written upon.
After this definition of what constitutes a header label, one can

easily see that checking this label can provide a high degree of con
fidence in file handling. There are those who criticize the use of the
label-checking feature in automatic programming. Their criticism is
based on the fact that it is too time-consuming and thus too costly.
Taken in perspective, the relative cost of label checking is extremely
low. Consider the effect of the loss of the general ledger file.

It takes about a minute to type the label check, and substantially
less if it is printed or punched. This time includes the machine stop
and the verification by the operator. The more efficiently run computer
facilities are so handled; a client of ours who has a computer system
renting for about $400 an hour does so and considers this time well
spent. It is difficult, if not impossible, to disagree.

T H E TRAILER LABEL

Just as automatic programming provides us with identification
information, so too does it provide us with a check to determine that
the number of records we had written on a tape was actually the
number processed. This is accomplished by means of a trailer label.
Like the header label, its format is different from that of the data
records and is physically separate from the data also.

449

It consists of:
• The letters or symbols identifying this as the end of a reel in a

multi-reel file, or as the end of the file.
• A count of the number of blocks of information written.
• A count of the number of records written.

The counts of the number of blocks of data and the number
of records are conducted by the automatic programming
package independently during program execution, and com
pared to those written in the trailer label. If there is any
difference, a label check occurs. This situation requires an
analysis of this program or the program that prepared this
file.

• An area that can be used to accumulate independent totals to
ensure a valid record count. An example could be adding
the first four digits of account number and storing the sum
in this area. Such a sum is called a hash total. When this
file is used again this hash total can be accumulated inde
pendently and compared to the hash total in the trailer label.

• A blank area to be used by the programmer for whatever addi
tional file-handling controls he wishes to impose.

A comment about automatic programming seems appropriate.
While such packages cannot supply the degree of control we desire,
they nevertheless go a long way in supplying us with some very im
portant tools. We recognize with regret that many installations
choose either to ignore or to suppress these controls.

SPECIAL CONTROL BY INDIVIDUAL PROGRAMMING

The third general subject to be discussed is that of control pro
vided in each program. Programmed control such as this can be
categorized as linkage, arithmetic, or editing control.

linkage

The control between programs is generally referred to as linkage.
We have already been exposed to header and trailer labels as a means
to obtain this control. Additional methods use techniques that are
traditional to auditing and accounting in general. They are: balancing
dollar amounts and crossfooting; both of these can be easily pro
grammed. The use of test data is perhaps the most effective method
of testing linkage. That is, if a deck of test data were to pass suc
cessfully through a series of programs called upon to process it by

450

various methods, one could be reasonably certain that the controls
were in effect.

Computational Control

Arithmetic control can be accomplished by several methods.
Limit or tolerance testing is a popular technique. One client is pre
paring a system to audit airline tickets. The system is complex and
involves considerably more than just the audit of the sale and use of
tickets. It includes the determination of earned revenue, which is a
substantial job. The client is relying rather heavily on this technique.
Essentially it is this: The price paid for a ticket is compared against
the price calculated by the system. If there is a difference exceeding a
predetermined amount stored in the program, an exception record is
written. Limit control is used in aging accounts-receivable files and
analyzing expense accounts.

Sign checking is another method of arithmetic control. An exam
ple of sign checking is: If a given budget account balance becomes
negative at any time, write an exception record.

Double, or as one client puts it, double-reverse arithmetic, is a
third arithmetic control. This type of control is comparable to what
is commonly known as complement arithmetic. An example of this is:
Add the multipliers, multiplicands, and products in a series of multi
plications and, at the end of the job, divide the multiplier into the
product to yield the multiplicand.

These three methods of arithmetic control are representative of
a multitude of checks, any of which can be programmed.

Editing

Probably the least understood operations are those generally
categorized as editing operations. After listening to the preceding
remarks concerning the controls built into the hardware and those
included in automatic programming, one might reasonably ask, "I
appreciate what you have explained so far, but how can I be assured
of the quality of the data?"

We have already heard about test checks and later on we shall hear
more about controls that are documented and included in systems
design. There are, however, programming checks that are funda
mental and invariably found in a well-designed program.

Serial processing has a self-generating control. If a given file is
constructed in a given order, there is no reason why that order cannot
be tested. This test, called a "sequence test", controls, quite obviously,

451

out-of-sequence conditions, matching file against file, duplicate rec
ords, and missing records.

Very often we find that the execution of a given set of logical
commands depends on the codes found in a record. A table of valid
codes can be stored so that whenever a code enters a system, it will
not only determine a certain logic but will also be checked for validity.
For example, the letter " A " in a specific record location is matched
against a valid code table. If the code is valid, a given freight rate
must be used in the calculation of the transportation charges.

Code checking is extended to include combination or exclusion
checks. Using the example mentioned above, not only must there be
the letter " A " in a specific record position, but also the order must
originate in the State of Illinois. The only limit to this type of check
ing is a practical one—the size of the program written.

Finally, definition is an extremely important control. By defi
nition here we mean not only a definition of the job that must be done
and the definition of the steps to accomplish the job; we mean also
what some refer to as the pick-and-shovel work of defining every
element in a record. Every item in a record should be immediately
familiar to the programmer. Record definition is transcribed into a
language understandable to the computer system. Once the tran
scription is complete, the system will automatically reject any record
not presented in the format described.

SUMMARY

Briefly, what have we said about machine and programmed con-

• Controls exist in the hardware to monitor a given mechanized
function.

• In automatic programming, controls exist to assure correct file
handling and linkage between programs.

• Individual programs can include multitudes of controls, the
degrees and types of which are direct functions of the system
being implemented.

trols?

452

	Built-in and programmed machine controls
	Recommended Citation

	tmp.1544026041.pdf.XxMgF

