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Universal aspects of barrier crossing under bias

Sudeep Adhikari and K. S. D. Beach *

Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677, USA

(Received 30 March 2022; accepted 6 September 2023; published 20 October 2023)

The thermal activation process by which a system passes from one local energy minimum to another is
a recurring motif in physics, chemistry, and biology. For instance, biopolymer chains are typically modeled
in terms of energy landscapes, with folded and unfolded conformations represented by two distinct wells
separated by a barrier. The rate of transfer between wells depends primarily on the height of the barrier,
but it also depends on the details of the shape of the landscape along the trajectory. We consider the case
of bias due to an external force, analogous to the pulling force applied in optical tweezer experiments on
biopolymers. Away from the Arrhenius-law limit and well out of equilibrium, somewhat idiosyncratic behavior
might be expected. Instead, we identify universal behavior of the biased activated-barrier-crossing process and
demonstrate that data collapse on a universal curve can be achieved for simulated data over a wide variety of
energy landscapes having barriers of different height and shape and for loading rates spanning many orders
of magnitude.

DOI: 10.1103/PhysRevResearch.5.043068

I. INTRODUCTION

Thermally activated barrier crossing [1–4] is a ubiquitous
and highly consequential process in physics, chemistry, and
biology. An understanding of the factors that influence the rate
of barrier crossing [5–8] is necessary for the interpretation of
experiments that attempt to infer barrier height and shape from
measurements of the escape rate. An important specialization
is the case in which the barrier is diminished by an applied
force, with the escape rate enhanced accordingly.

Experimental access to escape rate information in the bio-
chemistry context has been revolutionized by the development
of single-molecule force spectroscopy [9–18], in which a me-
chanical load is applied across a single molecule using an
atomic force microscope or optical tweezers. In the energy
landscape picture [19–24], molecular motion is viewed as a
Brownian diffusion process over a free energy surface [25],
parametrized by the conformational degrees of freedom. The
landscapes for biologically relevant sequences contain dis-
tinct, barrier-separated wells corresponding to various folded
and unfolded conformations. The rate of transition [26–28]
from one well to another depends primarily on the height of
the intervening barrier but also depends on its shape.

In pulling experiments, where molecular extension serves
as a natural reaction coordinate, the multidimensional energy
landscape covering the full comformational space is projected
onto an effective one-dimensional energy profile that encodes
some features of the full landscape and that reproduces the
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folding dynamics [29–33]. Numerous studies have been car-
ried out to explore the unfolding process under the application
of constant and time-varying pulling forces [34–44]. A key
experimental goal is to be able to reliably reconstruct the
effective one-dimensional free energy profile from measure-
ments of an ensemble of escape events [45–50].

There are additional complications that may arise because
of the multidimensional nature of the landscape [51–56], but
we consider the common case in which the landscape can
be meaningfully projected onto a one-dimensional effective
energy in a well-chosen reaction coordinate [56].

The purpose of this article is to describe universal as-
pects of the biased activated-barrier-crossing process that
we have uncovered in numerical simulations of various
one-dimensional potentials. Our work points the way to an
alternative data analysis technique that would allow for the
determination of otherwise unknown landscape details by
overlaying data from multiple experiments and adjusting free
parameters until the scattered data align along a common
curve.

The concept of universality comes to us from the study
of critical phenomena [57]. In that context it allows us to
understand how phase transitions can be characterized and
grouped into families according to common critical expo-
nents, wholly independent of the microscopic details of the
underlying models; it also explains the existence of scaling
relations that govern how thermodynamic quantities behave
in the vicinity of criticality. An important mark of universality
is that data from different models or different physical systems
can be plotted in reduced variables so that they collapse onto
a single universal curve [58–60].

Criticality has previously been invoked by Singh, Krishan,
and Robinson in the context of the unbiased-activated-
barrier crossing problem [61,62]. They considered the non-
Markovian crossing of a quadratic barrier, where the frictional
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term in the Langevin equation includes a memory kernel with
a long time scale. The authors proposed a scaling hypothesis,
making analogy with the criticality of the Ising model, and
were able to derive scaling relations for the reduced rate near
a critical value of the memory kernel time scale.

Our approach here is rather different. We focus on the
relative change in the escape rate as a function of an ap-
plied pulling force—both for uniform pulling (F constant)
and steady loading (F = KV t with KV constant). We propose
that F exists alongside two other important force scales and
that the two independent ratios that can be formed serve
as arguments to a scaling function. We have carried out
Langevin-type simulations of a particle in a one-dimensional
energy potential, coupled to a heat bath. Many thousands
of instantiations provide us with a large data set that offers
good coverage of the model space. What is so striking is the
almost unreasonable effectiveness of the scaling ansatz, which
appears to be valid over a huge variety of well shapes and
barrier heights and over loading rates spanning many orders
of magnitude.

II. SCALING ANSATZ

We argue that the barrier-crossing process is controlled
by the relative magnitudes of three intrinsic force scales: the
typical thermal force that provides the kick out of the well
(FT ≈ 1/βx‡), the larger applied force required to fully extin-
guish the barrier (FB ≈ κ‡x‡), and the pulling force used as an
external bias (F ). In our notation, β is the inverse temperature,
and x‡, κ‡ are the barrier distance (see Fig. 1) and effective
curvature [63]. In particular, we propose that the rescaled,
logarithmic relative escape rate (FT /FB) ln[k(F )/k0], when
plotted against the reduced pulling force F/FB, collapses onto
a universal curve. The function k(F ) is the escape rate asso-
ciated with the potential landscape under bias, and k0 is the
corresponding rate in the untilted landscape.

More precisely, the claim is that

Y (F ) = ln
k(F )

k0
=

(
FT

FB

)−1

Y (F/FB, FT /FB)

=
(

FT

FB

)−1[
Y (F/FB, 0) +

(
FT

FB

)ω

W (F/FB) + · · ·
]
.

(1)

Up to subleading corrections (characterized by an exponent
ω > 0), the escape behavior is controlled by a universal
function Y (x, y) that satisfies Y (x, 0) ∼ x + O(x2). The im-
plication of Eq. (1) is that a plot of (FT /FB)Y versus f = F/FB

should produce data collapse regardless of the microscopic
details of the simulation.

In the context of dynamical pulling, there is another useful
analysis. A population of particles trapped in the originat-
ing well is depleted according to −dn/dt = k(KV t )n(t ),
where the right-hand side of the equality is a product of the
instantaneous escape rate and the current population. The
population’s half-life is characterized by ln 2 = ∫ 1/2

1 dn/n =
−(1/KV )

∫ F̂
0 dF k(F ). Here, F̂ = KV t̂ is the typical applied

force that is in effect during barrier transit, and t̂ is the
median elapsed time for escape. It follows from Eq. (1) that

FIG. 1. (a) In the unbiased energy landscape [solid purple line,
labeled U (x)], a particle escaping (left to right) from the well must
traverse a barrier of height of �G‡ = U (xb) − U (xl ), over a distance
x‡ = xb − xl , where xl is the position of the bottom of the left well
and xb is the position of the barrier peak. With application of an
assistive pulling force (F > 0), the energy landscape tilts (solid green
line) to favor the destination well to the right of the barrier. The
pulling force causes the extrema to shift; the barrier height �G‡(F )
and barrier distance x‡(F ) both decrease. (b) Seven energy profiles
are depicted, rescaled so that the bottom of the well and top of the
barrier coincide. The color key shows the shape parameter (ν) values
for each curve.

F̂ (measured with respect to the thermal force FT ) must be
a monotonic, universal function of Ḟ = KV (measured with
respect to k0FT , a loading rate threshold defined by the thermal
processes in the potential well). Hence, there is an additional
data collapse analysis that can be used to independently test
the validity of the scaling hypothesis.

In our numerical experiments, the external bias is applied
in two ways: (i) as a time-invariant pulling force of constant
strength and (ii) as a linearly time-varying force with a con-
stant loading rate. In the case of constant pulling, the system
is prepared in the equilibrium state of the tilted energy profile
[viz. Ũ (x) = U (x) − Fx] and remains in thermal equilibrium
throughout the simulation. In the case of steady loading, the
system is prepared in the equilibrium state of the unbiased
profile (F = 0 for all t � 0), but as time elapses it is driven
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away from equilibrium (F = KV t for all t > 0) in proportion
to how much KV exceeds k0FT .

In both cases, the role of F is to gently tilt the landscape
(statically or dynamically), as depicted in the upper panel of
Fig 1. There, the purple curve depicts the potential profile in
its unbiased state; the green curve shows the profile after ap-
plication of the external bias. Generically, the force-dependent
values of the barrier distance x‡(F ) and barrier height �G‡(F )
are monotonic decreasing in F , and hence, the barrier crossing
process becomes energetically less costly (and crossing events
more frequent) as the external bias is ramped up. The free-
energy minimum is progressively destabilized and disappears
entirely at the threshold for barrier extinction.

III. THEORETICAL MOTIVATION

A. Locally quadratic approximation

We consider a one-dimensional, double-well energy land-
scape U (x) with minima on the left and right, at positions
xl and xr , separated by a barrier at xb. A barrier of height
�G‡ = U (xb) − U (xl ) impedes transitions from left to right.
By definition U ′(xl ) = U ′(xb) = U ′(xr ) = 0. In the locally
quadratic approximation, we assume

U (x) =
{

U (xl ) + 1
2κl (x − xl )2 for x � xl ,

U (xb) − 1
2κb(x − xb)2 for x � xb,

(2)

where κl = U ′′(xl ) and κb = −U ′′(xb) are measures of the
curvature at the bottom of the well and at the top of the barrier.

With the application of a bias force F , the extrema of the
tilted landscape Ũ (x) = U (x) − Fx are found as follows:

0 = Ũ ′(x) = U ′(x) − F =
{+κl (x − xl ) − F,

−κb(x − xb) − F.
(3)

At this level of approximation, the bias-induced shifts in the
extrema are linear in F . In response to the applied force
(F > 0), the well basin moves to the right and the barrier peak
moves to the left:

x̃l = xl + F

κl
, x̃b = xb − F

κb
. (4)

The inverse spring constants, 1/κl and 1/κb, represent the
compliance of the reactant and transition state; see Eq. (4) of
Ref. [55] and the accompanying discussion. The two points
eventually coalesce when x̃l = x̃b, i.e., when

x‡ = xb − xl =
(

1

κl
+ 1

κb

)
F ≡ F

κ‡
. (5)

The particular force value at which Eq. (5) holds is the barrier
extinction force κ‡x‡. We follow the usual practice of deco-
rating with a double-dagger superscript any quantity that is
defined with respect to the barrier and the originating well.
This includes the barrier distance x‡ = xb − xl and the effec-
tive curvature

κ‡ =
(

1

κb
+ 1

κl

)−1

= κlκb

κl + κb
. (6)

In order to find an expression for the barrier height that is
consistent with the approximation in Eq. (2), we must match

the two piecewise quadratic curves. We do so at the point of
common slope, where

U ′(x∗) = κl (x
∗ − xl ) = −κb(x∗ − xb). (7)

The reference position

x∗ = κl xl + κbxb

κl + κb
(8)

is a weighted average satisfying xl � x∗ � xb. The height of
the barrier in the untilted landscape (F = 0) is estimated to be

�G‡ = U (xb) − U (x∗) + U (x∗) − U (xl )

≈ 1
2κb(x∗ − xb)2 + 1

2κl (x
∗ − xl )

2 = 1
2κ‡x‡2

. (9)

Formally, the barrier extinction force is given by the derivative
of the barrier height with respect to the barrier position. At the
level of approximation of Eq. (9), we have

∂�G‡

∂x‡
= κ‡x‡. (10)

B. Higher-order corrections

There are various forms of “extended bell theory” [64–66]
that offer systematic refinements to the transition rate under
bias. These are generally structured order by order in the
applied force, as per Eq. (1) of Ref. [64]. Indeed, we can
improve on the derivation in Sec. III A by including further
contributions to the energy landscape expansion:

U (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U (xl ) + 1
2!κl (x − xl )2 − 1

3! Rl (x − xl )3

+ 1
4! Ql (x − xl )4 − · · · ,

U (xb) − 1
2!κb(x − xb)2 − 1

3! Rb(x − xb)3

− 1
4! Qb(x − xb)4 − · · · .

(11)

As in Eq. (2), the upper expression in Eq. (5) is for x � xl ;
the lower corresponds to x � xb. In addition to the two local
curvatures, κl and κb, we have also defined measures of the
skew [Rl = −U ′′′(xl ) = −U (3)(xl ) and Rb = −U (3)(xb)] and
the kurtosis [Ql = U (4)(xl ) and Qb = −U (4)(xb)].

The positions of the shifted extrema are once again deter-
mined by 0 = U ′(x) − F . This demands that the expression

sκα (x − xα ) − 1
2 Rα (x − xα )2

+ s

6
Qα (x − xα )3 + · · · − F

(12)

vanishes for both α = l , s = +1 and α = b, s = −1. Ensuring
that it does so leads to

x̃α = xα + sF

κα

+ sRαF 2

2κ3
α

+ s(3R2
α − Qακα )F 3

6κ5
α

+ · · · (13)

and hence, to an expression for x̃b − x̃l , the barrier distance in
the tilted energy landscape

x‡ − F

κ‡
− R‡

1,3F 2

2κ‡3 −
(

3
(
R‡

2,5

)2

κ‡5 − Q‡
1,4

κ‡4

)
F 3

6
+ · · · . (14)

As a convenience, we have adopted the notation

A‡
m,n = κ‡n

(
Am

l

κn
l

+ Am
b

κn
b

)
= Am

l κn
b + Am

b κn
l

(κl + κb)n
. (15)
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If we then repeat the analysis used previously, we can pro-
duce expressions for the barrier height and barrier extinction
force that are analogs of Eqs. (9) and (10):

�G‡ = 1

2!
κ‡x‡2 − 1

3!
R‡

1,3x‡3

+ 1

4!

(
3

κ‡

[
(R‡

1,3)2 − R‡
2,5

] + Q‡
1,4

)
x‡4 + · · · (16)

and

∂�G‡

∂x‡
= κ‡x‡ − 1

2
R‡

1,3x‡2

+
(

(R‡
1,3)2

2κ‡
− R‡

2,5

2κ‡
+ 1

6
Q‡

1,4

)
x‡3 + · · · . (17)

It is helpful to distinguish the barrier height expressions in
Eqs. (9) and (16) by the labels �G‡

quad and �G‡. Their ratio is
simply the shape parameter defined by Dudko, Hummer, and
Szabo [67]:

ν = �G‡

�G‡
quad

=
1
2κ‡x‡2 − 1

6 R‡
1,3x‡3 + · · ·

1
2κ‡x‡2

= 1 − R‡
1,3x‡

3κ‡
+

(
(R‡

1,3)2

4κ‡2 − R‡
2,5

4κ‡2

+ Q‡
1,4

12κ‡

)
x‡2 + · · · . (18)

That is to say, 1 − ν encodes deviations from the behavior
of the purely quadratic model (in which Rl = Rb = 0, etc.).
Insofar as Eq. (18) is a fast-converging power-series in x‡,
with each subsequent term much smaller than the previous,
it makes sense to view the subleading term on the right-hand-
side of Eq. (18) as a proxy for those deviations:

R‡
1,3x‡

3κ‡
= (Rlκ

3
b + Rbκ

3
l )(xb − xl )

3κlκb(κl + κb)2

= 1 − ν + small corrections.

(19)

Hence, via Eq. (17), the extinction force can be approximated
by its quadratic-model value [Eq. (10)] up to rescaling by a
shape-dependent factor:

∂�G‡

∂x‡
= κ‡x‡ − κ‡x‡

R‡
1,3x‡

2κ‡
+ · · ·

= κ‡x‡

[
1 − 3

2
(1 − ν)

]
+ · · · ≈ κ‡x‡

(
3ν − 1

2

)
.

(20)

Typical values for smooth energy profiles (2/3 � ν � 6/5)
suggest 0.5 � (3ν − 1)/2 � 1.3, so we expect the true extinc-
tion force value to be never more than a factor of two away
from κ‡x‡. Of course, when U (x) is known, it is straightfor-
ward to compute the exact extinction force numerically.

C. Universality of the biased escape rate

The calculations in this section are meant merely as a
motivation for the two-force-scale arguments we make in the
paper. We assume Langevin behavior with moderate to strong

friction and ignore the complications of non-Markovian dy-
namics. Following Kramers, the escape rate from the left well
of the untilted energy landscape is

k0 ∝ 1√
κlκb

exp
(−β�G‡

)
= 1√−U ′′(xl )U ′′(xb)

exp
(−β[U (xb) − U (xl )]

)
.

(21)

The corresponding expression for the tilted case can be pro-
duced by substituting U (xα ) → Ũ (x̃α ). If we expand around
the F = 0 case and collect terms order by order within the
argument of the exponential, we arrive at

k(F ) = k0 exp

[
F

(
βx‡ + R‡

1,2

2κ‡2

)

− F 2

(
β

2κ‡
− R‡

2,4

2κ‡4 + Q‡
1,3

4κ‡3

)

− F 3

(
βR‡

1,3

6κ‡3 − 2R‡
3,6

3κ‡6 + · · ·
)

+ O(F 4)

]
. (22)

In this equation, the terms proportional to β come from the
exponential in Eq. (21), whereas the temperature-independent
contributions originate under the radical of the prefactor in
Eq. (21). Since

�G‡(F ) = �G‡(0) − Fx‡ + 1

2κ‡
F 2 + R‡

1,3

6κ‡3 F 3 + · · · ,

(23)
Eq. (22) can also be expressed as

k(F ) = k0 exp
(
β
[
�G‡(0) − �G‡(F ) + O(1/β, F )

])
. (24)

Although the terms replaced here by O(1/β, F ) may be
small—in the limit of very large barrier height (β�G‡(0) �
1) or possibly even for particular shapes of the energy
landscape—they are generally not negligible. As we will see,
a renormalization of the force scales FT and FB from their
“bare” values is necessary to absorb the discrepancy.

An important insight is that the logarithmic relative rate
can be written in the form

Y (F ) = ln
k(F )

k0
= F

FT
− F 2

2FT FB
− CF 3

2FT F 2
B

+ · · · . (25)

In this expression we have introduced two new dimensionful
coefficients (with units of force), defined according to

1

FT
= βx‡ + R‡

1,2

2κ†2

= βx‡

{
1 + R‡

1,2

2βκ†2x‡︸ ︷︷ ︸
λT

}
≡ 1 + λT

F (0)
T

,

1

FT FB
= β

κ‡
− R‡

2,4

κ‡4 + Q‡
1,3

2κ‡3

= βx‡

κ‡x‡

{
1 − 1

β

(
R‡

2,4

κ‡3 − Q‡
1,3

2κ‡2︸ ︷︷ ︸
λT B

)}
≡ 1 − λT B

F (0)
T F (0)

B

,

(26)
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along with a dimensionless constant C. Matching the O(F 3)
terms in Eqs. (22) and (25) and invoking Eq. (19), we identify
C = 1 − ν + · · · , with the elision hiding additional terms that
are shape and temperature dependent but small; specifically,

C = R‡
1,3x‡

3κ‡

(1 + λT )

(1 − λT B)2

(
1 − 4R†

3,6

3βR‡
1,3κ

‡3 + · · ·
)

. (27)

The advantage of the rewriting in Eq. (25) is that we have
picked out two force scales, FT and FB, whose magnitude is
determined—up to modest renormalization by λT and λT B—
by F (0)

T = 1/βx‡ and F (0)
B = κ‡x‡. Equation (26) implies

FT = F (0)
T

(
1

1 + λT

)
, FB = F (0)

B

(
1 + λT

1 − λT B

)
. (28)

To give a more physical picture, we interpret FT as the typical
thermal force that provides the kick out of the well and FB as
the applied force required to fully extinguish the barrier: The
ratio of the two force scales is

FB

FT
= βκ‡x‡2 (1 + λT )2

(1 − λT B)
= 2β�G‡

ν
(1 + · · · ). (29)

A key observation is that if we view the escape rate as
a function of a reduced applied force f = F/FB, measured
in units of the barrier extinction force scale, then Eq. (25)
transforms to

Y (F )
F→FB f−−−−→FB f

FT
− (FB f )2

2FT FB
− C(FB f )3

2FT F 2
B

+ · · ·

= FB

FT

(
f − 1

2
f 2 − 1

2
C f 3 + · · ·

)
.

(30)

Note that the terms at order f and f 2 are wholly independent
of the details of the system. (C/2) f 3 is the leading nonuniver-
sal term, but even there [as per Eq. (27)] the shape dependence
is quite weak and the temperature dependence almost negli-
gible. This means that truly idiosyncratic contributions do not
show up until order f 4, and those we expect to be heavily sup-
pressed just by power reduction; in practice, f = F/FB < 1,
since escape almost always precedes complete elimination of
the barrier.

Moreover, since physical considerations demand that the
escape rate increase with F , it is legitimate to apply a series
acceleration transformation by which Eq. (30) is expanded
in terms of some function of f that is monotonic increasing
but slower growing than the monomial f itself; one might
consider f /(1 + f /2) (as in Ref. [63]) or ln(1 + f ), say. Then
f − (1/2) f 2 − (C/2) f 3 + · · · can be recast as

f

1 + f /2
−

(
C

2
+ 1

4

)(
f

1 + f /2

)3

+ · · · (31)

or

ln(1 + f ) −
(

C

2
+ 1

3

)[
ln(1 + f )

]3 + · · · . (32)

Since we expect −1/5 � C � 1/3 (and often |C| � 1),
Eqs. (32) and (31) are close to being universal even up to
order three. This leads us to posit that the logarithmic relative
escape rate has a form reminiscent of the finite-size scaling
ansatz of a critical state: viz., the form given by Eq. (1). Then,

since FT /FB ≈ 1/(βκ‡x‡2) ≈ ν/(2β�G‡) � 1, the quantity
(FT /FB)Y (F ) should collapse onto a universal curve when
plotted against f = F/FB:

FT

FB
Y (F ) = FT

FB
ln

k(F )

k0
≈ Y ( f , 0). (33)

Other combinations of (FT /FB)Y (F ) may bring about an even
cleaner coincidence. For example,

ln(1 + f ) = FT

FB
Y (F ) +

(
C

2
+ 1

3

)
[ln(1 + f )]3 + · · ·

= FT

FB
Y (F )

{
1 +

(
C

2
+ 1

3

)[
FT

FB
Y (F )

]2}
+ · · · .

(34)

As for the utility, imagine that there is a set of escape
rate measurements for which the underlying profile U (x) is
unknown. Then, even without a model or fitting form for k(F ),
we can still engineer graphical collapse of the data onto a
common curve by rescaling and careful adjustment of the free
parameters FT and FB.

D. Data collapse of the rupture force

A population n(t ) of systems prepared in a well and subject
to an escape rate k(F ) is subject to the rate equation ṅ = −kn.
If the pulling force increases linearly in time, with a constant
loading rate KV , then

dn

dt
= −k(F )n(t ) = −k(KV t )n(t ). (35)

The time t̂ for half the population to escape is given by

ln 2 =
∫ 1/2

1

dn

n
= −

∫ t̂

0
dt k(KV t ). (36)

In the Bell-Evans picture [34,35], which supposes that the
biased rate is simply k(F ) = k0 exp(βFx‡), Eq. (36) becomes

ln 2 = k0

βKV x‡

(
eβKV t̂x‡ − 1

) = F (0)
T k0

KV

(
eβF̂ x‡ − 1

)
. (37)

Then F̂ , the force at half-life, is

F̂ = F (0)
T ln

(
1 + KV ln 2

F (0)
T k0

)
. (38)

On the other hand, if the escape rate is represented using
the universal part of Eq. (32), via ln[k(F )/k0] = (FB/FT )( f −
f 2/2 + · · · ) = (FB/FT ) ln(1 + f ), then

k(F ) = k0 exp

[
FB

FT
ln(1 + f )

]
= k0

(
1 + F

FB

) FB
FT

= k0

(
1 + F

κ‡x‡

)βκ‡x‡2+···

= k0

[(
1 + F

κ‡x‡

)κ‡x‡]βx‡+···
.

(39)

The omitted terms [denoted by · · · in the exponent of the
last line of Eq. (39)] are ones that become negligible at low
temperature and large barrier height; in that same limit, we
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can formally take κ‡x‡ → ∞, which allows us to recover the
Bell-Evans expression, k(F ) → k0 exp(βFx‡).

We need not resort to such a limit, however, since the half-
life can be solved analytically:

ln 2 =
∫ t̂

0
dt k(F (t )) =

∫ t̂

0
dt k(KV t )

=
∫ t̂

0
dt k0

(
1 + KV t

FB

) FB
FT

= k0FB

(−1 + (1 + KV t̂/FB)1+FB/FT

(1 + FB/FT )KV

)
.

(40)

This corresponds to an average rupture force

F̂ = KV t̂ = FB

⎧⎨
⎩

[
1 +

(
1 + FB

FT

)
KV ln 2

k0FB

] FT
FT +FB − 1

⎫⎬
⎭

= (ln 2)KV

k0
− (ln 2)2(KV )2

2FT k2
0

+ (2FB + FT )(ln 2)3(KV )3

6FBF 2
T k3

0

+ · · · .

(41)

A useful resummation is

F̂ = FT ln

[
1 + KV ln 2

FT k0

]

+ 2FB − FT

6

(
ln

[
1 + KV ln 2

FT k0

])3

+ · · · , (42)

the first term of which is identical to the right-hand-side of
Eq. (38), up to the renormalization F (0)

T → FT .
In order to put Eq. (42) into a scale-invariant form, we

define the half-life pulling force with respect to the thermal
force scale, f̂T = F̂/FT , and a dimensionless loading rate,
rT = KV/(FT k0). This leads to

f̂T = ln(1 + rT ln 2)

+ (2FB/FT − 1)

6
[ln(1 + rT ln 2)]3

≈ ln(1 + rT ln 2) + (2FB/FT − 1)

6
f̂ 3
T .

(43)

In general, FB/FT ∼ 2β�G‡/ν is not small. But so long as
(FB/FT ) f̂ 2

T = FBF 2/F 3
T � 1, it is appropriate to write

f̂T

(
1 − (2FB/FT − 1)

6
f̂ 2
T

)
= ln(1 + rT ln 2). (44)

IV. NUMERICAL RESULTS

We carried out a thorough and comprehensive Langevin
simulation study. At the start of each run, the system was
prepared in a properly equilibrated state: an initial position
and velocity were drawn from the heat bath distribution of the
appropriate energy profile, with the constraint that the particle
be situated on the originating-well side of the barrier. Forward
evolution was carried out with adaptive time steps taken small
enough that the discretization error could be shown to be

negligible. The simulation made use of a high-quality, long-
period pseudorandom number generator that guaranteed the
statistical independence of the instantaneous thermal forces
[based on Gaussian-distributed noise ξ (t ) that is unbiased,
〈ξ (t )〉 = 0, and uncorrelated except at identical time slices,
〈ξ (t )ξ (t ′)〉 = δ(t − t ′)].

We considered seven different potentials having shape pa-
rameter [67] ν = 0.66, 0.75, 0.83, 0.9, 1, 1.1, 1.2; these
values step through the full range of possibilities for smooth
potentials based on polynomials. This family of energy
potentials—translated and rescaled to coincide at the bottom
of the originating well and at the top of the barrier so as to
emphasize the shape difference—is displayed in the lower
panel of Fig 1. We also considered eight barrier regimes,
with 1/β�G‡ = kBT/�G‡ taking values 0.25, 0.3, 0.35, 0.40,
0.45, 0.50, 0.55, 0.60, a list that includes temperatures high
enough (or, equivalently, barriers low enough) to be out-
side the range of validity for pure Arrhenius-law behavior.
Simulations were carried out in both the constant-force and
steady-loading modes, with relative applied forces (F/FB) and
relative loading rates (KV/k0FT ) each spanning nearly ten
orders of magnitude. For each run, the trajectory leading to
barrier traversal was captured and analyzed.

The numerical simulations were carried out using a modi-
fied version [68] of the standard Verlet algorithm [69]. In each
run, a critical time tc, taken to be either the first-passage time
of the particle over the barrier or the moment at which the bar-
rier vanished, was recorded. For each energy potential profile
and simulation mode, 3000 instantiations were generated.

In the constant-force mode, the rate k(F ) was computed
from the mean escape time: k(F ) = 1/tavg, where tavg =
(1/3000)

∑3000
i=1 t (i)

c . In the steady-loading mode, the linear
correspondence Fc = KV tc gave rise to 3000 critical force
values, on the basis of which further analyses were performed.
First, the Fc values were sorted to identify their median value,
which corresponds to the half-life force F̂ (the force at which
half of a population of independent particles would have
escaped the well). Second, the Fc values were bootstrapped
[70] to obtain the cumulative probability distribution P(Fc) =∫ Fc

0 dF p(F ) and probability density p(Fc) = P′(Fc). Finally,
the value of k(F ) = k(KV t ), the instantaneous rate of barrier
crossing at a particular bias strength, was obtained using the
relation k(Fc) = KV p(Fc)/(1 − P(Fc)) [67].

The next step was to test the universality proposition by
graphical means. We found strong evidence in its favor: the
data collapse predicted by Eq. (1) is revealed in Fig. 2. In order
to perform the conversion to reduced variables, each data point
was associated with an individualized value of FB and FT . The
former was obtained numerically, simply by solving for the
applied force required to extinguish the barrier; the latter was
estimated according to

1

FT
= βx‡ + R‡

1,2

2κ†2 = β(xb − xl ) + 1

2

(
Rb

κ2
b

+ Rl

κ2
l

)
. (45)

Here, we have made use of the notation introduced in
Sec. III B.

Figure 2(a) presents a linear-log plot of (FT /FB)Y (F ) =
(FT /FB) ln (k(F )/k0) versus f = F/FB. The data points for
the steady-loading analysis are colored according to the
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FIG. 2. The upper two panels show constant-force data only, (a) unscaled and raw and (b) rescaled to produce the predicted data collapse.
The lower panels, like panel (b), show plots of (FT /FB )Y (F ) = (FT /FB ) ln (k(F )/k0) versus f = F/FB. These include all the output generated
by our simulations (from both forcing protocols) and offer different views of the same underlying data set. Black circles correspond to
simulations executed in the constant-force mode. Colored solid circles denote data from steady-loading runs. The green line is a low-order
Padé approximant fit through the data points. (c) The horizontal axis uses a logarithmic scale. Color saturation increases with the relative
pulling rate, rT = KV/(k0FT ). Numbers on the palette legend refer to the order of magnitude, ln rT . (d) The horizontal axis is linear. Colors
now represent FT /FB ≈ 1/βκ‡x‡2 ≈ ν/2β�G‡, which characterizes the barrier regime.

simulation-specific loading rate, and one can observe the
smooth progression of data-point placement, weak loading
to strong, tracing out the universal curve from left to right.
The constant-force data (black circles) show considerably
less scatter, but the two data sets are remarkably consis-
tent. What makes this result so compelling is that the data
collapse holds over a huge diversity of energy profiles and
simulation conditions. We also remark that the steady-loading
and constant-force approaches require quite different styles of
simulation and analysis, but both yield the same underlying
curve; Padé approximants fit to one or the other data set
produce nearly identical functions.

Figure 2(b) shows the same data plotted on a linear scale.
This view highlights the behavior at large forces, a regime
in which the barrier is already substantially reduced at the
time of barrier traversal. Here, the false color emphasizes the
diversity in barrier height regimes, and we can see that data
collapse holds over a wide range of ratios FT /FB.

Figure 3 presents a wholly different data collapse scheme,
based only on simulations performed in the steady-loading
mode. There, the reduced half-life force f̂T = F̂/FT is plotted
versus the reduced loading rate rT = KV/(k0FT ). It is worth
emphasizing again that the complete data set comes from

FIG. 3. These data are from simulations performed with dy-
namic tilting of the potential at a constant loading rate. Shown
here is f̂T = F̂/FT , the force at half-life measured with respect to
the thermal force scale, plotted against the effective pulling rate,
rT = KV/(k0FT ). Each data point is a solid circle, colored as per the
legend according to its FT /FB value.
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simulations with seven different potential landscapes covering
the full range of plausible ν values, 1/(β�G‡) ranging from
0.2 to 0.6, and loading rates running from rT = 10−8 to 100.
Despite encompassing a large collection of different systems
in distinct physical regimes, these data show an astonishing
degree of collapse.

V. CONCLUSION

We have argued for universality in the biased activated-
barrier-crossing problem and presented strong numerical
evidence in favor of the existence of some underlying scaling
function for Y (F ) = ln[k(F )/k0]. Our simulated data show
collapse onto a single curve when recast into suitably reduced
coordinates. This is true for data generated in simulations op-
erating over a wide range of bath temperatures, applied forces,
and loading rates, and over a family of potential landscapes
with different underlying barrier shapes.

These observations suggest the utility of data collapse as a
practical tool for analysis. While the original motivation for
this work was the mechanical unfolding of biopolymers, the
universality we have identified is widely relevant. It applies
to situations across many branches of science, wherever the
energy landscape picture is germane and the experimental
setup involves barrier traversal assisted by active pulling. Our
recommendation is that measurements of well-escape statis-
tics be transformed to identify best values of the intrinsic force
scales (from which can be inferred some combination of x‡,
κ‡, �G‡, and ν). FT and FB are to be treated as free parameters
and tuned until data collapse is achieved and the universal
curve emerges.

To motivate our general approach, and to provide logical
and formal scaffolding for the scaling argument, we have
relied on analytic expressions for the biased escape rates. In
Sec. III, these were computed within the context of Kramer’s
theory—in particular, the most straightforward version, which
presumes moderate, Ohmic friction, does not include explicit
finite-barrier corrections [71], and does not attempt a more

sophisticated reconsideration of the Kramers-Grote-Hynes
transmission factor [72].

Our demonstration of scaling, however, does not depend
on Kramer’s theory specifically nor on the quality of the ana-
lytical approximation. We emphasize that the data collapse in
this work is achieved with escape rates determined empirically
from Langevin simulations (as described in Sec. IV). That
is to say, the scaling viewpoint we advocate is agnostic with
respect to the well-escape model. We simply point out that, in
principle, it should be possible to plot experimental measure-
ments of the escape rate in reduced coordinates such that the
data falls on a single curve; this relies on identifying system-
specific values of FT and FB, the two force scales whose values
must be varied to produce the data collapse. Details of the
underlying potential can then be inferred from FT and FB,
although that final step does introduce some dependence on
how escape from the well is modeled.

We close with one final comment. It has already been
established that the barrier vanishes generically according
to �G‡ ∼ (FB − F )3/2 for bias forces in close vicinity of
the barrier extinction force FB [73,74]. This is an important
result. It leads to predictable, standardized behavior in that
force regime and thus provides the basis for a kind of force
spectroscopy [51]. Nonetheless, we view this as asymptotic
behavior (as F → FB) and not an example of universality in
the traditional sense. The results reported in this paper are
applicable to all applied forces less than FB and do not depend
on any particular force limit. The data collapse, for instance,
appears to be valid for f = F/FB ranging at least from 10−7

to 0.4. The universality we advocate for here is an underlying
commonality across many orders of magnitude that is revealed
by rescaling.
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