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ABSTRACT

A tree is a connected graph with no cycles. In 1968 Beineke and Pippet introduced the

class of generalized trees known as k-trees [3]. In this dissertation, we classify a subclass of

k-trees known as tree-like k-trees and show that tree-like k-trees are a common generalization

of paths, maximal outerplanar graphs, and chordal planar graphs with toughness exceeding

one.

A set I of vertices in a graph G is said to be independent if no pair of vertices of I are

incident in G. Let fs = fs(G) be the number of independent sets of cardinality s of G.

Then the polynomial I(G;x) =
∑α(G)

s≥0 fs(G)xs is called the independence polynomial of the

graph G. [21]. In this dissertation, all rational roots of the independence polynomials of

paths are found, and the exact paths whose independence polynomials have these roots are

characterized. Additionally, trees are characterized that have −1/q as a root of their inde-

pendence polynomials for 1 ≤ q ≤ 4. The well known vertex and edge reduction identities

for independence polynomials are generalized, and the independence polynomials of k-trees

are investigated. Additionally, sharp upper and lower bounds for fs of maximal outerplanar

graphs, i.e. tree-like 2-trees, are shown along with characterizations of the unique maximal

outerplanar graphs that obtain these bounds respectively. These results are extensions of

the works of Wingard, Song et al., and Alameddine [1].

The first Zagreb index M1(G) and the second Zagreb index M2(G) of the graph G are

given by: M1(G) =
∑

u∈V (G) d(u)2, and M2(G) =
∑

uv∈E(G) d(u)d(v). The study of the
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Zagreb indices M1 and M2 have been an active area of research since the report of Gutman

and Trinajstić in computational chemistry [23] in 1972. The minimum and maximum M1

and M2 values for k-trees are determined, and the unique k-trees that obtain these minimum

and maximum values respectively are characterized.

In 2011, Hou, Li, Song, and Wei characterized the Zagreb indices for maximal outerplanar

graphs and determined the unique maximal outerplanar graph that obtains minimum M1

and M2 values, respectively, as well as maximum M1 and M2 values respectively [29]. Select

works of Hou et al. are extended to all tree-like k-trees. That is, the maximum M1 value for

tree-like k-trees is determined, and the unique tree-like k-tree that obtains this maximum

values respectively is characterized. Additionally, a partial result for the maximum M2 value

for tree-like k-trees is determined, and a conjecture for a full result is presented.
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1. Introduction

A graph is chordal if it does not have an induced cycle of length greater than three. A

graph is said to be k-degenerate if all of its subgraphs have minimum degree at most k, a

concept introduced by Lick and White in 1970 [32], and a graph is maximally k-degenerate

if it is k-degenerate and not a spanning subgraph of any other k-degenerate graph. In 1968

Beineke and Pippet introduced the class of generalized trees known as k-trees [3], and these

graphs have attracted considerable research as well as many applications [4, 16, 33, 37, 38].

A purpose of this dissertation is to investigate the class of graphs that are both chordal and

maximally k-degenerate, and it is shown that a graph is chordal and maximally k-degenerate

if and only if it is a k-tree.

A major emphasis of this dissertation is to classify a subclass of k-trees based on a “new”

parameter known as the shell of a k-tree, which is a reformation of the (k + 1)-line graph

first introduced in 2006 by Markenzon et al. [33]. The shell gives a way to distinguish

k-trees with a particular underlying structure. In particular, two k-tree subclasses known

as path-like and tree-like k-trees hold interest. These concepts are introduced in Chapter 2

along with a survey of facts and propositions about k-trees including path-like and tree-like

k-trees.

Path-like and tree-like k-trees generalize several commonly studied graph classes including

paths, maximal outerplanar graphs, and chordal planar graphs with toughness exceeding one.

Thus many results about k-trees may be expanded for tree-like k-trees and the previously
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listed graph classes. Likewise, results on paths, maximal outerplanar graphs, and chordal

planar graphs with toughness exceeding one may generalize to all tree-like k-trees.

A set I of vertices in a graph G is said to be independent if no pair of vertices of I are

incident in G. Let fs = fs(G) be the number of independent sets of cardinality s of G. Then

the polynomial I(G;x) =
∑α(G)

s≥0 fs(G)xs is called the independence polynomial (Gutman and

Harary [21]), the independent set polynomial (Hoede and Li [26]), or Fibonacci polynomial

(Hopkins and Staton [27]) of G. In 1995, Wingard investigated the number of independent

sets in trees along with the independence polynomials of trees [44].

In Chapter 3, the works of Wingard are extended by investigating rational roots of the

independence polynomials of paths and trees. All rational roots of the independence poly-

nomials of paths are found, and the exact paths whose independence polynomials have these

roots are characterized. Additionally trees are characterized that have −1/q as a root of

their independence polynomials for 1 ≤ q ≤ 4.

Chapter 4 investigates the independence polynomials of k-trees. In 2010, Song, Staton,

and Wei generalized select results of Wingard presented in Chapter 3 to k-trees [41], and

following their lead a result of Wingard is extended to k-trees in Chapter 4. This result

is proven using generalizations of the well known vertex and edge reduction identities for

independence polynomials which are also introduced in Chapter 4. Additionally, sharp upper

and lower bounds for fs of maximal outerplanar graphs, i.e. tree-like 2-trees, are shown

along with characterizations of the unique maximal outerplanar graphs that obtain these

bounds respectively. These results are extensions of the works of Wingard, Song et al., and

Alameddine [1].
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In 1975, Randić introduced the branching index which later became known as the Randić

connectivity index [36]. The Randić connectivity index has been generalized as the general

Randić connectivity index and the general zeroth-order Randić connectivity index, where

the Zagreb indices appeared as a special case [8]. The first Zagreb index M1(G) and the

second Zagreb index M2(G) of the graph G are given by:

M1(G) =
∑

u∈V (G)

d(u)2, M2(G) =
∑

uv∈E(G)

d(u)d(v).

The Zagreb indices M1 and M2 have been an active area of research going back to 1972 in

the report of Gutman and Trinajstić in computational chemistry [23].

In particular, Das and Gutman in 2004 characterized the Zagreb indices for trees and

determined the unique tree that obtains minimum M1 and M2 values respectively, as well

as maximum M1 and M2 values respectively [12, 20]. In Chapter 5, the results of Das and

Gutman are generalized to k-trees. That is, the minimum and maximum M1 and M2 values

for k-trees are determined, and the unique k-trees that obtain these minimum and maximum

values respectively are characterized.

In 2011, Hou, Li, Song, and Wei characterized the Zagreb indices for maximal outerplanar

graphs and determined the unique maximal outerplanar graph that obtains minimum M1

and M2 values respectively, as well as maximum M1 and M2 values respectively [29]. In

Chapter 6, select works of Hou et al. are extended to all tree-like k-trees. That is, the

maximum M1 value for tree-like k-trees is determined, and the unique tree-like k-tree that

obtains this maximum value is characterized. Additionally, a partial result for the maximum

M2 value for tree-like k-trees is determined, and a conjecture for a full result is presented.

Wingard determined that for s ≥ 0, fs is minimized among trees by the path, and fs is

maximized by the star. Similarly, Das and Gutman determined that Mi is minimized among
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trees by the path, and Mi is maximized among trees by the star for i ∈ {1, 2}. In Chapter

7, it is shown that for a given tree, it is possible to create a sequence of trees such that fs

(respectively M1) of a given tree in this sequence is greater than or equal to fs (respectively

M1) of any previous tree in the sequence for s ≥ 0.

1.1. Definitions and Notation.

The following definitions will be used throughout this dissertation. For definitions not

presented here, we refer the reader to Diestel [14].

Definition 1.1. A graph G is an ordered pair G = (V,E), where V is a non-empty finite

set and E is a collection of unorderd pairs from V . Each element of V is called a vertex and

each element of E is called an edge.

Note that in the above definition, graphs are simple and undirected. That is, no edge

joins a vertex to itself, no two edges join the same pair of vertices, and edges are not given

a direction.

The subgraph G[S] induced by the vertex set S ⊂ V (G) is the subgraph with vertex set

S and edge set {uv|u ∈ S, v ∈ S, uv ∈ E(G)}. In particular, G − v denotes the induced

subgraph G[V (G)\{v}] and G−S denotes the induced subgraph G[V (G)\S] for S ⊆ V (G).

The graph G−e is the graph resulting from deleting the edge e from G, and G−F is the graph

resulting from deleting F ⊆ E(G). Let G and H be two graphs with no common vertex.

Then G∪H is the subgraph with V (G∪H) = V (G)∪V (H) and E(G∪H) = E(G)∪E(H).

Let u, v ∈ V (G) such that uv /∈ E(G). Then G ∪ {uv} is the graph with vertex set V (G)

and edge set E(G) ∪ {uv}. Let ||G|| denote |E(G)|.

Let v ∈ V (G). Then the neighborhood of v is the set N(v) = {u|uv ∈ E(G)}, and

NH(v) denotes the neighborhood of v in the subgraph H. The set N [v] = {v} ∪ N(v) is
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called the closed neighborhood of v. The degree of v is defined as d(v) = |N(v)|, similarly

for a subgraph H, dH(v) = |NH(v)|. For a graph G, δ(G) (respectively ∆(G)) denotes the

minimum (respectively maximum) degree of G. Let u, v ∈ V (G). Then d(u, v) is the length

of a shortest path connecting u to v in G. Let Kn, Pn, and Sn denote the complete graph,

the path, and the star respectively on n vertices, and let Kn1,n2 be the complete bipartite

graph on n1 + n2 vertices.

1.2. k-degenerate Graphs and k-trees.

Definition 1.2. A graph G is called k-degenerate if every subgraph H of G is such that

δ(H) ≤ k.

Note that if G is k-degenerate, then G is (k+1)-degenerate. Likewise, if G is k-degenerate

and H is any subgraph of G, then H is also k-degenerate. We say that G is maximally k-

degenerate if G is k-degenerate and G is not a spanning proper subgraph of any k-degenerate

graph.

A vertex in a graph is simplicial if the subgraph induced by its neighborhood is a clique.

We say that a vertex v is k-simplicial if G[N(v)] ∼= Kk. It is commonly known that a

chordal graph on at least two vertices contains a simplicial vertex v. Let G = G0, and let

Gi = Gi−1 − vi for i ≥ 1. If each vi is a simplicial vertex in Gi−1, then {v1, . . . , vn} is a

simplicial elimination ordering of the n-vertex graph G. With these defintions, I will define

the concept of a k-tree, an idea first introduced by Beineke and Pippet in 1968 [3] and the

subject of emphasis for this dissertation.

Definition 1.3. Let T kn denote a k-tree on n vertices.

(i) The smallest k-tree is the k-clique Kk.
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(ii) If T kn is a k-tree with n vertices and a new vertex v of degree k is added and joined

to the vertices of a k-clique in G, then the larger graph is a k-tree with n+ 1 vertices

T kn+1.

Figure 1. A 4-tree on 10 vertices

By the definition of k-trees, it is clear that k-trees are a direct generalization of trees. In

fact, trees are k-trees with k = 1. The simplicial vertices of a tree are said to be“leaves”,

and the unique neighbor of a leaf in a tree is said to be the “support vertex” of the leaf.

It was noted by Song in 2010 that k-trees are k-degenerate [40], and clearly k-trees are

chordal as well. However, through use of the Principle of Mathematical Induction, we may

make a stronger statement.

Theorem 1.4. Let G be a graph on n ≥ k vertices. Then G is a k-tree if and only if G is

chordal and maximally k-degenerate.

Proof. It is clear that if G is a k-tree, then G is chordal and maximally k-degenerate. Suppose

that G is chordal and maximally k-degenerate, and suppose that G is smallest such graph

that is not a k-tree. Then n ≥ k + 2. As G is a chordal graph on n ≥ 2, there is a

simplicial vertex v ∈ V (G). Since G is maximally k-degenerate, δ(G) = k. If |N(v)| ≥ k+ 1,

then G[N [v]] ∼= Kk+2, and so G has a subgraph with δ(G) ≥ k + 1; a contradiction. Thus

|N(v)| = k, and G− v is a chordal maximally k-degenerate graph. Hence G− v is a k-tree,

and G is formed by attaching a vertex of degree k to a k-clique of G− v. Thus G is a k-tree

contradicting the assumption that G is not a k-tree. Hence G is a k-tree. �
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d(vi) for the k-path on k + 4 ≤ n ≤ 2k vertices

i 1 ≤ i ≤ n− k − 1 n− k ≤ i ≤ k + 1 k + 2 ≤ i ≤ n

d(vi) k + i− 1 n− 1 k + n− i

d(vi) for the k-path on n ≥ 2k + 1 vertices

i 1 ≤ i ≤ k k + 1 ≤ i ≤ n− k n− k + 1 ≤ i ≤ n

d(vi) k + i− 1 2k k + n− i
Table 1. d(vi) for the k-path on n vertices

Let T kn be a k-tree. If n ≥ k+ 2, T kn has at least two simplicial vertices. If n = k+ 1, then

by definition every vertex is k-simplicial. For convention, we say that T kk+1 has one simplicial

vertex.

Definition 1.5. Let G1 be a k-tree, and let S1 be the set k-simplicial vertices of G1. For

i ≥ 2, let Gi = Gi−1 − S1(Gi−1). Then Si denotes the set of k-simplicial vertices of Gi.

Many results throughout this dissertation depend on several particular k-trees. These

graphs will now be defined.

Definition 1.6. The k-path, P k
n , has vertex set {v1, . . . , vn} where G[{v1, v2, . . . , vk}] ∼= Kk.

For k + 1 ≤ i ≤ n, let vertex vi be adjacent to vertices {vi−1, vi−2, . . . , vi−k}.

A helpful characteristic of the k-path P k
n is that we may order the vertices v1, v2, . . . , vn

such that P k
n − {v1, . . . , vi} is a k-path on n− i vertices for 1 ≤ i ≤ n− k − 1.

Additionally, the degree of vertex vi for the k-path may be characterized as follows: for

k + 4 ≤ n ≤ 2k and k ≥ 4, d(vi) = min(k + i − 1, n − 1, k + n − i) and for n ≥ 2k + 1,

d(vi) = min(k + i− 1, 2k, k + n− i). Table 1 shows when these values are reached.
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Definition 1.7. The k-star, Sk,n−k, has vertex set {v1, . . . , vn} where G[{v1, v2, . . . , vk}] ∼=

Kk and N(vi) = {v1, . . . , vk} for k + 1 ≤ i ≤ n.

Definition 1.8. The k-spiral, Skn, has vertex set {v1, . . . , vn} where G[{v1, v2, . . . , vk−1}] ∼=

Kk−1, N({v1, . . . , vk−1} ⊆ N(vi) for k ≤ i ≤ n, and {vi−1vi, vivi+1} ⊆ E(Skn) for k + 1 ≤ i ≤

n− 1.

Definition 1.9. A k-diamond Dk
n has vertex set V (Dk

n) = {v1, v2, . . . , vk+1} ∪{u1, . . . , ui}

for 1 ≤ i ≤ k+1 such that G[{v1, v2, . . . , vk+1}] ∼= Kk+1 and N(ui) = {v1, v2, . . . , vk+1}−{vi}

for all i.

P 3
7 S3,4 S3

7 D3
7

Figure 2. The 3-path, 3-star, 3-spiral, and 3-diamond on 7 vertices
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2. Tree-like k-trees

A major focal point of the research in this dissertation stems from the ideas that will now

be presented. A k-clique in a chordal graph is said to be “bound” if it is contained in more

than one (k + 1)-clique. A k-clique in a k-tree that is not bound is said to be “unbound”.

The bound and unbound k-cliques of a k-tree help determine the underlying structure of the

k-tree, and this structure is referred to as the shell of a k-tree.

Definition 2.1. Let T kn be a k-tree. Then shell of T kn , Sh(T kn ), is the graph defined as

follows:

(i) If X is a (k+ 1)-clique in T kn , then X is a vertex in Sh(T kn ). Hence V (Sh(T kn )) is the

set of (k + 1)-cliques in T kn .

(ii) If X and Y are (k + 1)-cliques in T kn such that |V (X) ∩ V (Y )| = k, then XY ∈

E(Sh(T kn )).

Figure 3. A 2-tree and its shell

We see from this definition that two (k + 1)-cliques X and Y are adjacent in Sh(T kn ) if

and only if the intersection of X and Y is a bound k-clique.

From the shell of the k-tree, special subclasses of k-trees emerge that may now be defined.
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Definition 2.2. The k-tree T kn is called path-like if Sh(T kn ) ∼= Pn−k, the path on n − k

vertices.

Definition 2.3. The k-tree T kn is called tree-like if Sh(T kn ) ∼= T where T is a tree.

In 2005, Markenzon, Justel, and Paciornik defined simple-clique k-trees. A k-tree is defined

to be a simple-clique k-tree if any bound k-clique is bound by exactly two (k + 1)-cliques.

From this definition, Markenzon et al. introduced the (k+ 1)-line graph for k-trees which is

analagous to the shell of the k-tree [33], and they showed that if a k-tree is a simple-clique

k-tree, then its (k + 1)-line graph is a tree. Hence, the simple-clique k-trees of Markenzon

et al. are synonymous with tree-like k-trees.

2.1. Facts and Propositions of k-trees and Tree-like k-trees.

In this chapter, several facts and propositions about k-trees, in particular path-like and

tree-like k-trees, will be noted. These ideas will be used throughout the dissertation and are

integral to the study of path-like and tree-like k-trees.

Fact 2.4. Let T kn be a k-tree on n vertices. Then

(i) S1(T kn ) 6= ∅ for n ≥ k + 1,

(i) S1(T kn ) is an independent set for n ≥ k + 2,

(ii) S2(T kn ) 6= ∅ for n ≥ k + 3,

(iii) every k-clique is contained in a (k + 1)-clique,

(iv) T kn is Kk+2-free.

Proposition 2.5. A k-tree on n vertices has
(
k
2

)
+ (n− k)k edges.
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Proof. Let v1, . . . , vn be a simplicial elimination ordering, and Gi = G[{vi, . . . , vn}] for 1 ≤

i ≤ n. Then Gn−k+1 is a k-clique with
(
k
2

)
edges. For 1 ≤ i ≤ n − k, dGi(vi) = k, and

||Gi|| = ||Gi+1||+ k. Hence ||T kn || = ||G1|| = ||Gn−k||+ (n− k)k =
(
k
2

)
+ (n− k)k. �

In 1992, Fröberg generalized Proposition 2.5 to determine the number of i-cliques in a

k-tree for 0 ≤ i ≤ k. Define the g-vector of a graph G as g = (g1, . . . , gk+1) where gi is the

number of i-cliques in G for 1 ≤ i ≤ k + 1. Fröberg deteremined the g-vector for k-trees.

Theorem 2.6. [16] For n ≥ 0, the g-vector of a k-tree on n vertices is as follows:

((
k

1

)
,

(
k

2

)
, . . . ,

(
k

k

)
, 0

)
+ (n− k)

((
k

0

)
,

(
k

1

)
, . . . ,

(
k

k − 1

)
,

(
k

k

))
.

Fröberg also determined that a k-tree may be characterized by the neighborhoods of its

vertices.

Theorem 2.7. [16] Let G be a connected graph on n vertices and
(
k
2

)
+(n−k)k edges. Then

G is a k-tree if and only if G[N(v)] is a (k − 1)-tree for each v ∈ V (G).

From Theorem 2.7, if T kn is a k-tree with a vertex v such that d(v) = n− 1, then T kn − v

is a (k − 1)-tree. Thus as an extentsion of Theorem 2.7, we state the following theorem.

Theorem 2.8. Let T kn be a k-tree on n vertices and R = {v|d(v) = n−1} such that |R| = r.

Then T kn −R is a (k − r)-tree.

Proof. Let R = {v1, . . . , vr}. Clearly r ≤ k as otherwise T kn has a Kk+2 subgraph and is not

k-degenerate. From Theorem 2.7, it is clear that T kn−v1 is a (k−1)-tree and dTkn−v1(vi) = n−2

for 2 ≤ i ≤ r. Hence T kn − v1 − v2 is a (k − 2)-tree. Clearly, T kn −R is a (k − r)-tree. �
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Proposition 2.9. Let T kn be a k-tree, and let X be a k-clique of T kn . Then X is bound if

and only if X is a cut set.

Proof. Suppose that X is a bound k-clique, but not a cut set. There are at least two vertices

v1 and v2 such that X ⊆ N(v1) ∩ N(v2). If v1v2 ∈ E(T kn ), then T kn has a (k + 2)-clique.

Let P be a shortest v1, v2-path in T kn −X and v3 be the vertex on P closest to v1 such that

N(v3) ∩X 6= ∅.

If v3 = v2, then v1Pv3xv1 is an induced cycle of length at least four where x ∈ V (X). If

v3 6= v2, then |v1Pv3| ≥ 3. Let x ∈ N(v3) ∩X. Then v1Pv3xv1 is an induced cycle of length

at least four. This contradicts the fact that T kn is chordal. Hence T kn is disconnected.

Let X be a cut set, then T kn −X has at least two components H1 and H2. We may assume

that there exists a vertex v ∈ V (H2) such that X ⊆ N(v).

Suppose X is not bound, then there is no vertex u ∈ V (H1) such that X ⊆ N(u). However

T kn is k-connected, so there are at least k-edges from H1 to X. Hence |H1| ≥ 2, and there

exists {u′1, u′2} ⊆ V (H1) such that 1 ≤ |N(u′1) ∩ N(u′2) ∩ V (X)| ≤ k − 2. That is, there

exists x1 ∈ N(u′1) ∩ V (X) and x2 ∈ N(u′2) ∩ V (X) such that x1 /∈ N(u′2), x2 /∈ N(u′1). Of

all pairs {u′1, u′2} of V (H1) meeting these conditions, choose {u1, u2} such that the smallest

u1, u2-path P is minimal. Then x1u1Pu2x2x1 is an induced cycle of at least four. This

contradicts the fact that T kn is chordal. Thus X is bound. �

In 1974, Rose gave several characterizations of k-trees.

Theorem 2.10. [37] A graph G is a k-tree if and only if

(i) G is connected,

(ii) G has a k-clique but no (k + 2)-clique, and

12



(iii) every minimal x, y separator of G is a k-clique.

Theorem 2.11. [37] Let G be a graph on n ≥ k vertices such that G has a k-clique but no

(k + 2)-clique and every minimal x, y separator of G is a clique. Then |E(G)| ≤ kn −
(
k
2

)
with equality holding if and only if G is a k-tree.

Theorem 2.12. [37] A graph G is a k-tree if and only if

(i) G is connected,

(ii) every minimal x, y separator of G is a k-clique, and

(iii) |E(G)| =
(
k
2

)
+ (n− k)k.

Theorem 2.13. [37] A graph G is a k-tree if and only if

(i) G has a k-clique but no (k + 2)-clique,

(ii) every minimal x, y separator of G is a k-clique, and

(iii) for all distinct nonadjacent pairs x, y ∈ V (G), there exists exactly k vertex-disjoint

x, y-paths.

2.2. Propositions about Path-like and Tree-like k-trees.

Proposition 2.14. Let T kn be a k-tree, then Sh(T kn ) is chordal.

Proof. Suppose Sh(T kn ) has an induced cycle of length at least four. Then there are at least

four (k + 1)-cliques X1, X2, X3, X4 such that |Xi ∩Xi+1| = k for 1 ≤ i ≤ 4 with arithmetic

on the indices is modulo 4. Then X1 ∩X2 = Y is a bound k-clique and T kn −Y is connected;

a contradiction. Hence Sh(T kn ) is chordal. �

Proposition 2.15. Let T kn be a k-tree, then Sh(T kn ) has n− k vertices.

13



Proof. By Theorem 2.6, T kn has n− k (k + 1)-cliques. Hence Sh(T kn ) has n− k vertices. �

Fact 2.16. A k-tree T kn on n ≥ k2 vertices is path-like if and only if |S1(T kn )| = 2.

Fact 2.17. A k-tree T kn with n ≥ k+2 is path-like if and only if, its vertices may be arranged

v1, v2, . . . , vn so that

(i) The vertices v1, v2, . . . , vk+1 induce a (k + 1)-clique.

(ii) For each i ≥ k + 2, the vertices v1, v2, . . . , vi form a path-like k-tree with simplicial

vertices v1 and vi.

Such an arrangement of the vertices of a path-like k-tree is called a presentation.

Fact 2.18. In a presentation of a path-like k-tree T kn , vivi+1 ∈ E(T kn ) for each i < n. It

follows that each path-like k-tree has a spanning path.

Fact 2.19. There is a unique tree-like k-tree on n vertices for k ≤ n ≤ k + 3.

Fact 2.20. A k-tree T kn is tree-like if and only if, every bound k-clique is the intersection of

exactly two (k + 1)-cliques.

Fact 2.20 states that the simple-clique k-trees defined by Markenzon et al. are in fact

tree-like k-trees.

Fact 2.21. Let T kn be a tree-like k-tree on n ≥ k + 2 vertices with v ∈ S1(T kn ) and N(v) =

{u1, . . . , uk}. Then | ∩ki=1 N(ui)| = 2.

Proposition 2.22. If T kn is a tree-like k-tree, then ∆(Sh(T kn )) ≤ k + 1.

Proof. Suppose that T kn is a k-tree such that ∆(Sh(T kn )) ≥ k+2. Then there is a (k+1)-clique

X and r (k + 1)-cliques X1, X2, . . . , Xr such that r = ∆(Sh(T kn )) ≥ k + 2 and |X ∩Xi| = k

14



for all i. Hence there are at least two (k + 1)-cliques Y1, Y2 ∈ {X1, . . . , Xr} such that

(Y1∩X) = (Y2∩X). Thus {XY1, Y1Y2, Y2X} ⊆ E(Sh(T kn )), and so Sh(T kn ) is not a tree. �

Proposition 2.23. If T kn is a tree-like k-tree, then Sh(T kn ) has n− k − 1 edges.

Proof. By Fact 2.15 and the fact that Sh(T kn ) is a tree, it is clear that Sh(T kn ) has n− k− 1

edges. �

Proposition 2.24. Let T kn be a tree-like k-tree, then T kn has nk − (k − 1)(k + 1) k-cliques,

where n− k − 1 are bound and (k − 1)n− (k − 2)(k + 1) are unbound.

Proof. Let v1, . . . , vn be a simplicial elimination ordering, and Gi = G[{vi, . . . , vn}] for 1 ≤

i ≤ n. Then Gn−k−1 is a (k+1)-clique with k+1 unbound k-cliques and no bound k-cliques.

Let ||G||k (respectively ||G||′k) be the number of unbound (respectively bound) k-cliques in

G for a graph G. For 1 ≤ i ≤ n− k− 1, ||Gi||k = ||Gi−1||k + k− 1 and ||Gi||′k = ||Gi−1||′k + 1.

Hence ||T kn ||k = ||Gn||k = ||Gn−k−1||k + (n− k − 1)(k − 1) = (k − 1)n− (k − 2)(k + 1), and

||T kn ||′k = ||Gn||′k = ||Gn−k−1||′k + (n− k − 1) = n− k − 1. As every k-clique is either bound

or unbound there are n− k − 1 + (k − 1)n− (k − 2)(k + 1) = nk − (k − 1)(k + 1) k-cliques

in T kn . �

Theorem 2.25. Let T kn be a tree-like k-tree on n ≡ (j+1) mod k vertices for 2 ≤ j ≤ k+1.

Then |S1(T kn )| ≤ k − 1

k
(n− k − 1) +

j

k
.

Proof. There is a one-to-one correspondence between simplicial vertices of T kn and the leaves

of the shell of T kn , and we will count the number of simplicial vertices by counting the leaves

of the shell of T kn . Consider T = Sh(T kn ), and let Si be the set of vertice of degree i for

15



1 ≤ i ≤ k + 1 and S = ∪ki=2(Si). Now |V (T )| = n− k, and so

n− k = |S1|+ |Sk+1|+ |S|.

Suppose |S| ≥ 2. Then there exists another tree T ′ such that |S1(T )| ≤ |S1(T ′)| and

|S(T ′)| ≤ 1. We may assume 0 ≤ |S(T )| ≤ 1.

If |S| = 0 note that T may be formed by starting with K1,k+1 and recursively attaching k

leaves to a leaf in the previous tree. Thus n−k ≡ k+2 ≡ 2 mod k. Then as
∑

v∈V (G) d(v) =

2|E(G)|,

|S1|+ (k + 1)|Sk+1| = 2(n− k − 1)

|S1|+ (k + 1)(n− k − |S1|) = 2(n− k − 1)

|S1| =
k − 1

k
(n− k) +

2

k

=
k − 1

k
(n− k)− k − 1

k
+
k + 1

k

=
k − 1

k
(n− k − 1) +

j

k

where j = k + 1.

Suppose |S| = 1, and let v ∈ S such that d(v) = j for some 2 ≤ j ≤ k. Then n − k ≡

k + 2 + j − 1 ≡ (j + 1) mod k. Then

|S1|+ (k + 1)|Sk+1|+ j|S| = 2(n− k − 1)

|S1|+ (k + 1)(n− k − |S1| − 1) + j = 2(n− k − 1)

|S1| =
k − 1

k
(n− k)− k − 1− j

k

=
k − 1

k
(n− k − 1) +

j

k
.
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As |S1(T )| = |S1(T kn )|, |S1(T kn )| ≤ k − 1

k
(n − k − 1) +

j

k
where n ≡ (j + 1) mod k for

2 ≤ j ≤ k + 1. �

2.3. Particular Classes of k-trees.

Fixing k to be 1, 2 or 3, it becomes clear that tree-like k-trees are particular classes of

graphs.

Fact 2.26. The only tree-like tree (a 1-tree) on n vertices is Pn, the path.

Markenzon et al. verified the following about tree-like k-trees.

Theorem 2.27. [33] Let G be a graph. Then G is maximal outerplanar if and only if, G is

a tree-like 2-tree.

Theorem 2.28. [33] Let G be a graph with n > 3. Then G is a planar 3-tree if and only if

G is a tree-like 3-tree.

Additionally, for 3-trees, Markenzon et al. found the following.

Theorem 2.29. [33] Let G be a graph with n ≥ 3. Then G is a planar 3-tree if and only if

G is a chordal and maximal planar graph.

Let ω(G) denote the number of components of a graph G. A graph G is t-tough if

t ≤ |S|
ω(G− S)

for every subset S of the vertex set V (G) with ω(G− S) > 1. The toughness

of G, denoted τ(G), is the maximum value for t for which G is t-tough.

With adding the condition of toughness exceeding 1 to a tree-like 3-tree, we may restate

Theorem 2.29 to all chordal planar graphs.
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Theorem 2.30. Let G be a graph with τ(G) > 1. Then G is chordal planar if and only if,

G is a tree-like 3-tree.

Proof. We need to only show that if G is a chordal planar graph with τ(G) > 1, then G is

a tree-like 3-tree. We will proceed by induction on the number of vertices n. If n = 3, then

G ∼= K3. If n = 4, then G ∼= K4. In both of these cases, G is a tree-like 3-tree.

Suppose that the theorem is true for smaller n, and consider G, a chordal planar graph

with τ(G) > 1 on n vertices. Since G is a chordal graph, there is a simplicial vertex v, and

since τ(G) > 1 d(v) = 3. Let N(v) = {u1, u2, u3}, and G[N(v)] = X which is a triangle. By

induction, G− v is a tree-like 3-tree.

Suppose X is a bound k-clique in G− v. Then there are two vertices x1 and x2 such that

X ⊆ N(xi) for i ∈ {1, 2}. ThenG contains aK3,3 subgraph with vertex set {u1, u2, u3, x1, x2, v}.

Hence G is not planar.

Then X is unbound in G− v, and G is a tree-like 3-tree. Thus the theorem holds by the

Principle of Mathematical Induction. �
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3. Independent Sets of Trees

An independent set in a graph G is a set of pairwise non-adjacent vertices, and the

independence number α(G) is the size of a maximum independent set of G. The idea of

counting independent sets in graphs was introduced by Prodinger and Tichy in 1982 [35],

where they defined, for a graph G, the Fibonacci number f(G) to be the total number of

independent sets of G. The Fibonacci number is a parameter of interest to chemists who call

it the Merrifield-Simmons index [18, 22, 42]. Let fs = fs(G) be the number of independent

sets of cardinality s of G. Then the polynomial

I(G;x) =

α(G)∑
s≥0

fs(G)xs

is called the independence polynomial (Gutman and Harary [21]), the independent set poly-

nomial (Hoede and Li [26]), or Fibonacci polynomial (Hopkins and Staton [27]) of G. There

are numerous results calculating the Fibonacci number and independence polynomial of

classes of graphs [9, 10, 15, 27, 28]. Not only have independence polynomials been related

to interesting theoretical problems in graph theory and combinatorics, they have been used

in studying statistical physics and combinatorial chemistry. As an example, see [19, 24].

In general, finding the independence polynomial of a graph is a very difficult problem.

Most of the literature consists of inequalities and asymptotic results. For more results not

given here, we refer to the reader to a thorough survey paper by Levit and Mandrescu [30].

The following propositions are commonly known and are very useful in calculating inde-

pendence polynomials of graphs.

19



Proposition 3.1. Let G = (V,E) with |V | = n and |E| = m. Then

(i) f0(G) = 1,

(ii) f1(G) = n,

(iii) f2(G) =
(
n
2

)
−m,

(iv) f(G) = f(G− v) + f(G−N [v]),

(v) fs(G) = fs(G− v) + fs−1(G−N [v]),

(vi) I(G;x) = I(G− v;x) + xI(G−N [v];x),

(vii) f(G) = f(G− e)− f(G−N(e)),

(viii) fs(G) = fs(G− e)− fs−2(G−N(e)),

(ix) I(G;x) = I(G− e;x)− x2I(G−N(e);x), and

(x) If G is the empty graph, then I(G;x) = 1.

Proposition 3.2. Let G,H, and J be graphs such that G = H ∪ J . Then I(G;x) =

I(H;x)I(J ;x).

Proposition 3.3. Let G and H be graphs such that H is a spanning subgraph of G. Then

fs(G) ≤ fs(H).

3.1. Results of Wingard.

In 1995, Wingard researched independence polynomials of trees with an emphasis on roots

of the independence polynomial. Among his results are the following:

Theorem 3.4. [44] Let T be a tree. Then |I(T ;−1)| ≤ 1.

Lemma 3.5. [44] If G is a graph with A independent sets of even cardinality and B inde-

pendent sets of odd cardinality, then A−B = I(G;−1).
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From Lemma 3.5, we see that for a graph G, if I(G;−1) = 0, then G has the same

number of independent sets of even cardinality as independent sets of odd cardinality. In

fact, Wingard characterized exactly when I(T ;−1) = 0 for trees. First, we state the following

definition.

Definition 3.6. If T is a tree, and P is a path in T , then for every vertex v of T , the unique

vertex of P of minimal distance from v is called the nearpoint of v, denoted n(v, P ).

Theorem 3.7. [44] Let G be a forest. Then I(G;−1) = 0 if and only if there is a path

P = {v1, . . . , vn} in some component T of G where:

(i) d(v1) = d(vn) = 1

(ii) n ≡ 1 mod 3

(iii) for every leaf v ∈ V (T ) − P , if n(v, P ) = vi for i ≡ 1 mod 3, then d(v, vi) ≡ 0

mod 3.

Wingard also classified which forests have independence polynomials that do not have −1

as a root. The result is determined by a sequence of “reductions”. A reduction is carried

out by choosing a vertex v which is the neighbor of an end vertex, and removing v and its

neighbors from G. The sequence terminates when every remaining component is a star.

Theorem 3.8. [44] Let G be a forest. If I(G;−1) 6= 0 and if k reductions by neighbors of end

vertices leaves c components of the type K1,ti , ti ≥ 1 for 1 ≤ i ≤ c, then I(G;−1) = (−1)k+c.

3.2. Roots of Independence Polynomials of Paths and Trees.

Continuing the work of Wingard, we will now investigate rational roots of independence

polynomials of trees. In 1984, Hopkins and Staton gave a characterization of the indepen-

dence polynomial of the path which is now presented.
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Theorem 3.9. [27] Let Pn be a path on n vertices and l = 1
2
(1 +
√

1 + 4x). Then I(Pn;x) =

(2l − 1)−1(ln+2 − (1− l)n+2).

From the characterization given by Hopkins and Staton, we may determine all possible

rational roots for the independence polynomial of the path. Additionally, we are able to de-

termine which paths have these rational roots for their respective independence polynomials.

Theorem 3.10. Let Pn be the path on n vertices and c a rational number such that I(Pn; c) =

0. Then c ∈ {−1,−1
2
,−1

3
}.

Proof. The coefficients of I(Pn;x) are all positive. Thus c < 0. According to the Rational

Root Theorem, c = −1
q

for some q ≥ 1, and so c ∈ [−1, 0). Let p =
√

1 + 4x. Then according

to Theorem 3.9, I(Pn;x) = (1
p
)(1

2
)n+2((1 + p)n+2 − (1− p)n+2).

Thus

I(Pn;x) =

(
1

p

)(
1

2

)n+2 (
(1 + p)n+2 − (1− p)n+2

)
=

(
1

p

)(
1

2

)n+2
(
n+2∑
k=0

(
n+ 2

k

)
1n−kpk −

n+2∑
k=0

(
n+ 2

k

)
1n−k(−1)kpk

)

=

(
1

p

)(
1

2

)n+2
(
n+2∑
k=0

(
n+ 2

k

)
(pk − (−1)kpk)

)
.

Suppose n is even.

I(Pn;x) =

(
1

p

)(
1

2

)n+2
(
n+2∑
k=0

(
n+ 2

k

)
(pk − (−1)kpk)

)

=

(
1

p

)(
1

2

)n+2(
(n+ 2)(2p) +

(
n+ 2

3

)
(2p3) + . . .+

(
n+ 2

n+ 1

)
(2pn+1)

)
=

(
1

2

)n+1(
(n+ 2) +

(
n+ 2

3

)
p2 + . . .+

(
n+ 2

n+ 1

)
pn
)

(1) =

(
1

2

)n+1(
(n+ 2) +

(
n+ 2

3

)
(1 + 4x) + . . .+

(
n+ 2

n+ 1

)
(1 + 4x)

n
2

)
.
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Suppose n is odd.

I(Pn;x) =

(
1

p

)(
1

2

)n+2
(
n+2∑
k=0

(
n+ 2

k

)
(pk − (−1)kpk)

)

=

(
1

p

)(
1

2

)n+2(
(n+ 2)(2p) +

(
n+ 2

3

)
(2p3) + . . .+

(
n+ 2

n

)
(2pn) + (2pn+2)

)
=

(
1

2

)n+1(
(n+ 2) +

(
n+ 2

3

)
p2 + . . .+

(
n+ 2

n

)
pn−1 + pn+1

)

(2) =

(
1

2

)n+1(
(n+ 2) +

(
n+ 2

3

)
(1 + 4x) + . . .+ (1 + 4x)

n+1
2

)
.

For expressions (1) and (2) to be equal to zero, there must be summands of (1) and

(2) that are negative. Clearly, this is only possible if 1 + 4x < 0. Hence x < −1
4
. Now

I(P2;x) = 1 + 2x and I(P4;x) = (1 + x)(1 + 3x). Hence I(P4;−1) = 0, I(P2;−1
2
) = 0,

and I(P4;−1
3
) = 0. Thus if c is a rational root of the independence polynomial of Pn, then

c ∈ {−1,−1
2
,−1

3
}. �

As the previous theorem states, we have found that the only possible rational roots for

independence polynomials of paths are −1, −1
2
, and −1

3
. Now, we will demonstrate which

paths have these roots for their respective independence polynomials.

Theorem 3.11. Let Pn be the path on n vertices. Then

I(Pn;−1) =



−1 if n ≡ {2, 3} mod 6

0 if n ≡ 1 mod 3

1 if n ≡ {5, 0} mod 6

.

Proof. Proceed by induction on n. Suppose 1 ≤ n ≤ 6. Then by Table 3.2, the theorem

holds.
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T I(T ;x) I(T ;−1) I(T ;−1
2
) I(T ;−1

3
)

P1 1 + x 0 1/2 2/3

P2 1 + 2x −1 0 1/3

P3 1 + 3x+ x2 −1 −1/4 1/9

P4 1 + 4x+ 3x2 0 −1/4 0

P5 1 + 5x+ 6x2 + x3 1 −1/8 −1/27

P6 1 + 6x+ 10x2 + 4x3 1 0 −1/27

P7 1 + 7x+ 15x2 + 10x3 + 4x4 0 1/16 −2/81

P8 1 + 8x+ 21x2 + 20x3 + 5x4 −1 1/16 −1/81

P9 1 + 9x+ 28x2 + 35x3 + 15x4 + x5 −1 1/32 −1/243

P10 1 + 10x+ 36x2 + 56x3 + 21x4 + 6x5 0 0 0

Table 2. Independence Polynomials of Pn for n ≤ 10

Suppose the theorem is true for paths on 1 ≤ n′ < n vertices, and consider Pn and let v

be a leaf such that N(v) = u. Then by Proposition 3.1,

I(Pn;x) = I(Pn − u;x) + xI(Pn −N [u];x)

Now Pn − u has two components P1 and Pn−2. Hence

I(Pn;x) = I(P1;x)I(Pn−2;x) + xI(Pn−3;x),

and thus I(Pn;−1) = 0 + (−1)I(Pn−3;−1) = −I(Pn−3;−1).

Suppose n ≡ 1 mod 3. Then n − 3 ≡ 1 mod 3, and so by induction I(Pn;−1) =

−I(Pn−3;−1) = 0.
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Suppose n ≡ 2(or 3) mod 6. Then n−3 ≡ 5(or 0) mod 6. Thus by induction I(Pn;−1) =

−I(Pn−3;−1) = −(1) = −1.

Suppose n ≡ 5(or 0) mod 6. Then n−3 ≡ 2(or 3) mod 6. Thus by induction I(Pn;−1) =

−I(Pn−3;−1) = −(−1) = 1.

Hence by the Principle of Mathematical Induction, the theorem holds for all n. �

Theorem 3.12. Let Pn be the path on n vertices. Then

I(Pn;−1

2
) =



(−1)(1
2
dn2 e) if n ≡ {3, 4, 5} mod 8

0 if n ≡ 2 mod 4

1
2
dn2 e if n ≡ {7, 0, 1} mod 8

.

Proof. Proceed by induction on n. Suppose 1 ≤ n ≤ 8. Then by Table 3.2, the theorem

holds.

Suppose the theorem is true for paths on 1 ≤ n′ < n vertices, and consider Pn and let v

be a leaf and u ∈ V (T ) such that d(v, u) = 2. Then by Proposition 3.1,

I(Pn;x) = I(Pn − u;x) + xI(Pn −N [u];x)

Now Pn − u has two components P2 and Pn−3, and Pn − N [u] has two components P1 and

Pn−4. Hence

I(Pn;x) = I(P2;x)I(Pn−3;x) + xI(P1;x)I(Pn−4;x),

and thus I(Pn;−1
2
) = 0 +−1

2
(1

2
)I(Pn−4;−1

2
) = −1

4
I(Pn−4;−1

2
).

Suppose n ≡ 2 mod 4. Then n − 4 ≡ 2 mod 4, and so by induction I(Pn;−1
2
) =

−1
4
I(Pn−4;−1

2
) = 0.
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Suppose n ≡ 3(or 4, 5) mod 8. Then n − 4 ≡ 7(or 0, 1) mod 8. Thus by induction

I(Pn;−1
2
) = −1

4
I(Pn−4;−1

2
) = −1

4
(1

2
)d

n−4
2 e = −1

2
dn−4

2 e+2
= −1

2
dn2 e.

Suppose n ≡ 7(or 0, 1) mod 8. Then n − 4 ≡ 3(or 4, 5) mod 6. Thus by induction

I(Pn;−1
2
) = −1

4
I(Pn−4;−1

2
) = (−1

4
)(−1)(1

2
)d

n−4
2 e = 1

2
dn−4

2 e+2
= −1

2
dn2 e.

Hence by the Principle of Mathematical Induction, the theorem holds for all n. �

Theorem 3.13. Let Pn be the path on n vertices. Then

I(Pn;−1

3
) =



(−1)(2
3
dn2 e) if n ≡ 7 mod 12

(−1)(1
3
dn2 e) if n ≡ {5, 6, 8, 9} mod 12

0 if n ≡ 4 mod 6

1
3
dn2 e if n ≡ {11, 0, 2, 3} mod 12

2
3
dn2 e if n ≡ 1 mod 12

.

Proof. Proceed by induction on n. Suppose 1 ≤ n ≤ 10. Then by Table 3.2, the theorem

holds. Now I(P11) = 1 + 11x + 45x2 + 84x3 + 70x4 + 21x5 + x6, and I(P12;x) = 1 + 12x +

55x2 + 120x3 + 126x4 + 56x5 + 7x6. Thus I(Pi;−1
3
) = 1/729 for 11 ≤ i ≤ 12, and so the

theorem holds.

Suppose the theorem is true for paths on 1 ≤ n′ < n vertices, and consider Pn and let v

be a leaf and u ∈ V (T ) such that d(v, u) = 4. Then by Proposition 3.1,

I(Pn;x) = I(Pn − u;x) + xI(Pn −N [u];x)

Now Pn − u has two components P4 and Pn−5, and Pn − N [u] has two components P3 and

Pn−6. Hence

I(Pn;x) = I(P4;x)I(Pn−5;x) + xI(P3;x)I(Pn−6;x),
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and thus I(Pn;−1
3
) = 0 +−1

3
(1

9
)I(Pn−6;−1

3
) = − 1

27
I(Pn−6;−1

3
).

Suppose n ≡ 1 mod 12. Then n − 6 ≡ 7 mod 12, and so by induction I(Pn;−1
3
) =

− 1
27
I(Pn−6;−1

3
) = (− 1

27
)(−1)2

3
dn−6

2 e = 2
3
dn−6

2 e+3
= 2

3
dn2 e.

Suppose n ≡ 7 mod 12. Then n − 6 ≡ 1 mod 12, and so by induction I(Pn;−1
3
) =

− 1
27
I(Pn−6;−1

3
) = (− 1

27
)2

3
dn−6

2 e = −(2
3
dn−6

2 e+3
) = −(2

3
dn2 e).

Suppose n ≡ 5(or 6, 8, 9) mod 12. Then n−6 ≡ 11(or 0, 2, 3) mod 12. Thus by induction

I(Pn;−1
3
) = − 1

27
I(Pn−6;−1

3
) = − 1

27
1
3
dn−6

2 e = −(1
3
dn−6

2 e+3
) = −(1

3
dn2 e).

Suppose n ≡ 11(or 0, 2, 3) mod 12. Then n−6 ≡ 5(or 6, 8, 9) mod 12. Thus by induction

I(Pn;−1
3
) = − 1

27
I(Pn−6;−1

3
) = (− 1

27
)(−1)1

3
dn−6

2 e = 1
3
dn−6

2 e+3
= 1

3
dn2 e.

Suppose n ≡ 4 mod 6. Then n − 6 ≡ 4 mod 6, and so by induction I(Pn;−1
3
) =

− 1
27
I(Pn−6;−1

3
) = 0.

Hence by the Principle of Mathematical Induction, the theorem holds for all n. �

Let A−1 be the family of trees defined as follows:

(i) P1 ∈ A−1.

(ii) Let T ′, T1, T2 be trees such that uv ∈ E(T ′), T1, T2 ∈ A−1, and vi ∈ V (Ti) for

i ∈ {1, 2}, and let T be a tree with V (T ) = V (T ′) ∪ V (T1) ∪ V (T2) and E(T ) =

E(T ′) ∪ E(T1) ∪ E(T2) ∪ {v1u} ∪ {vv2}. Then T ∈ A−1.

In Theorem 3.7, Wingard gave a necessary induced subgraph to guarantee that the inde-

pendence polynomial of a forest has −1 as a root. With the defintion of A−1, Theorem 3.7

may be restated as follows.

Theorem 3.14. Let F be a forrest. Then I(F ;−1) = 0 if and only if F has a component T

such that T ∈ A−1.
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Proof. Let F be a forrest with component T such that T ∈ A−1 with V (T ) and E(T )

defined as above. By Proposition 3.2, I(F ;x) = I(H;x)I(T ;x) where H ∼= F − V (T ). By

Proposition 3.1 I(T ;−1) = I(T−v;−1)−I(T−N [v];−1). Now T−v has T2 as a component,

and T −N [v] has T1 as a component. As T1, T2 ∈ A−1, I(T ;−1) = 0, and thus I(F ;−1) = 0.

Suppose that I(F ;−1) = 0. By induction, we will show that F has a component T such

that T ∈ A−1. If n ∈ {1, 2, 3, 4}, then it is routine to check that F has a component

T ∈ {P1, P4}, and thus T ∈ A−1. Suppose that if I(F ;−1) = 0 for a forest F on 1 ≤ n′ < n

vertices, then F has a component T such that T ∈ A−1, and let F be a tree on n vertices

such that I(F ;−1) = 0.

Let x be a vertex of degree 1 such that N(x) = y. Once again, by Proposition 3.1

I(F ;−1) = I(F − u;−1) − I(F − N [u];−1). Now F − u has P1 as a component, and thus

I(F − u;−1) = 0. Hence I(F −N [v];−1) = 0. By induction, F −N [v] has a component T

such that T ∈ A−1. If T is a component of F , then the theorem is verified. Suppose then that

T is not a component of F . Then there is a vertex z ∈ V (T ) such that zw ∈ E(F ) for some

w ∈ N(y). Hence there is a component of F , T ′′, such that V (T ′′) = V (T ′) ∪ V (T1)∪ V (T2)

and E(T ′′) = E(T ′) ∪ E(T1) ∪ E(T2) ∪ {xy} ∪ {wz} where T1
∼= P1, T2

∼= T , and T ′ ∼=

G[N [u] − v]. By definition, T ′′ ∈ A−1. By the Principle of Mathematical Induction, the

theorem is verified. �

In a similar manner, other rational roots for independence polynomials of trees may be

found.

Let Ac be the family of trees defined as follows:

(i) Let Tc be a smallest tree such that I(Tc; c) = 0. Then Tc ∈ Ac.
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(ii) Let T ′, T1, T2 be trees such that uv ∈ E(T ′), T1, T2 ∈ Ac, and vi ∈ V (Ti) for i ∈ {1, 2},

and let T be a tree with V (T ) = V (T ′)∪V (T1)∪V (T2) and E(T ) = E(T ′)∪E(T1)∪

E(T2) ∪ {v1u} ∪ {vv2}. Then T ∈ Ac.

Theorem 3.15. Let T ∈ Ac. Then I(T ; c) = 0.

Proof. Proceed by induction on |V (T )|. The smallest tree in Ac is Tc. In this case, the

theorem holds. Let T ∈ Ac, and suppose that for trees in Ac on fewer than |V (T )| the

theorem holds. As T ∈ Ac, there exists trees T ′, T1, and T2 such that V (T ) = V (T ′) ∪

V (T1) ∪ V (T2), and E(T ) = E(T ′) ∪ E(T1) ∪ E(T2) ∪ {v1u} ∪ {vv2} where uv ∈ E(T ′),

T1, T2 ∈ Ac, and vi ∈ V (Ti) for i ∈ {1, 2}. By Proposition 3.1

I(T ;x) = I(T − v;x) + xI(T −N [v];x).

Now T − v has T2 as a component, and T −N [v] has T1 as a component. By induction, as

T1, T2 ∈ Ac, I(T−v; c) = I(T−N [v]; c) = 0. Thus I(T ; c) = I(T−v; c)+cI(T−N [v]; c) = 0.

Thus by the Principle of Mathematical Induction, if T ∈ Ac, then I(T ; c) = 0. �

By Theorem 3.15, to classify a family of trees whose independence polynomials have c

as a root one simply has to find a minimal example of a tree that has c as a root of its

independence polynomial. In this sense, Ac is characterized by Tc. Thus by Theorem 3.12

and Theorem 3.13, A− 1
2

and A− 1
3

quickly follow.

Theorem 3.16. Let Tc be a smallest tree such that I(Tc; c) = 0. Then

(i) T− 1
2

∼= P2,

(ii) T− 1
3

∼= P4.
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As stated, the only rational roots for the independence polynomials of the path are−1, −1
2
,

and −1
3
. The smallest examples of a tree in the families of trees A−1, A− 1

2
, and A− 1

3
are all

paths. It may seem that−1, −1
2
, and−1

3
are the only possible rational roots for independence

polynomials of trees. However, that is not the case as we will now demonstrate. Let T7,7 be

the tree in Figure 4.

Theorem 3.17. Let Tc be a smallest tree such that I(Tc; c) = 0. Then T− 1
4

∼= T7,7.

Proof. The independence polynomial of T7,7 is I(T7,7;x) = (1 + 2x)2(1 + x)2 + x(1 + x)2 =

(1 + x)2(1 + 5x+ 4x2) = (1 + x)3(1 + 4x). Hence I(T7,7;−1
4
) = 0. It is easy to verify that for

a tree T 6∼= T7,7 on 1 ≤ n ≤ 7 vertices that I(T ;−1
4
) 6= 0. �

Figure 4. T7,7

The question of what possible rational roots exist for the independence polynomials of

paths is closed. However, Theorem 3.17 raises the question as to what are the possible

rational roots of independence polynomials of trees. If T− 1
q

exists for q ≥ 5 exists, it would

be interesting to determine such trees.

Additionally, I(T ;−1) = 0 if and only if T ∈ A−1. It would be interesting to determine

whether or not “if and only if” statements can be made for A− 1
2
, A− 1

3
, and A− 1

4
as well.
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4. Independent Sets of k-trees and tree-like k-trees

As discussed in Chapter 3, Wingard determined numerous results in regards to indepen-

dence polynomials of trees. It is then a natural train of thought to generalize the results of

Wingard to independence polynomials of k-trees.

4.1. The Results of Song et al.

In 2010, Song, Staton, and Wei characterized independence polynomials for certain classes

of k-trees and k-tree related graphs. Among their results, they found the following.

Theorem 4.1. [41] For the k-path P k
n , the following are true:

(i) α(P k
n ) = bn+ 1

k + 1
c;

(ii) If 1 ≤ s ≤ α(P k
n ), then fs(P

k
n ) = fs(P

k
n−1) + fs−1(P k

n−k−1);

(iii) If 0 ≤ s ≤ α(P k
n ), then fs(P

k
n ) =

(
n−k(s−1)

s

)
;

(iv) I(P k
n ;x) =

∑α(Pkn )
s=0

(
n−k(s−1)

s

)
xs.

Theorem 4.2. [41] For the k-star Sk,n−k, the following are true:

(i) α(Sk,n−k) = n− k;

(ii) fs(Sk,n−k) =
(
n−k
s

)
, s ≥ 2;

(iii) I(Sk,n−k;x) = kx+ (1 + x)n−k.

Theorem 4.3. [40] For the k-spiral Skn, the following are true:

(i) α(Skn) = bn−k+2
2
c;

(ii) fs(S
k
n) =

(
n+2−k−s

s

)
, s ≥ 2;
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(iii) I(Skn;x) = 1 + nx+
∑bn−k+2

2
c

s=2

(
n+2−k−s

s

)
xs.

Theorem 4.4. [41] Let G be a k-degenerate graph on n vertices. For 2 ≤ s ≤ α(G), the

following are true:

(i)
(
n−k(s−1)

s

)
≤ fs(G);

(ii) fs(G) ≤
(
n−k
s

)
if G is maximum k-degenerate.

Theorem 4.5. [41] If I(G;x) = I(Sk,n−k;x) for a graph G of order n ≥ k + 1, then G ∼=

Sk,n−k.

Theorem 4.6. [41] If T kn is a k-tree with I(T kn ;x) = I(P k
n ;x) and α(T kn ) ≥ 3, then T kn

∼= P k
n .

As an extension of the previous results of Song et al., it is not difficult to obtain a similar

result for the k-diamond.

Theorem 4.7. Let Dk
n be the k-diamond on n vertices. Then

(i) α(Dk
n) = n− k − 1;

(ii) f2(Dk
n) =

(
n−k−1

2

)
+ (2k + 2− n);

(iii) fs(D
k
n) =

(
n−k−1

s

)
for s ≥ 3;

(iv) I(Dk
n;x) = 1 + nx+ (

(
n−k−1

2

)
+ (2k + 2− n))x2 +

∑n−k−1
s=3

(
n−k−1

s

)
xs.

Along with the results of Wingard listed in Chapter 3, Wingard determined, in what we re-

fer to as Wingard’s bound, sharp bounds of the function values of independence polynomials

of trees obtained at x = −1, which is now presented.

Theorem 4.8 (Wingard’s Bound). [44] Let T be a tree. Then |I(T ;−1)| ≤ 1.
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We seek to generalize Wingard’s Bound to k-degenerate graphs and thus k-trees. We will

give Lemma 4.10 which generalizes Proposition 3.1(vi) to vertex sets. This formula may be

useful for the study of independence polynomials. As an application, we use Lemma 4.10

to give Theorem 4.11 which generalizes Wingard’s Bound to the k-path. In Section 4.3,

we give Lemma 4.13 which generalizes Proposition 3.1(ix) to edge sets. Through use of

Lemma 4.13 we give Theorem 4.14 which generalizes Wingard’s Bound to all k-degenerate

graphs. Though the result of Theorem 4.14 covers the result of Theorem 4.11, both ap-

proaches are useful.

4.2. Wingard’s Bound for the k-path and k-star.

As mentioned, Song et al. demonstrated that, for a k-degenerate graph G, the lower bound

for fs(G) is obtained uniquely for the class of k-trees by the k-path, and the upper bound

for fs(G) is obtained uniquely for maximal k-degenerate graphs by the k-star [41]. In this

sense, the k-path and k-star are extremal cases for the number of independent sets among

k-trees.

We will now generalize Wingard’s Bound to the k-path and k-star. First, we introduce

some lemmas.

Lemma 4.9. Let Kn be the clique on n vertices. Then |I(Kn;− 1
k
)| < 1 for n ≤ k.

Proof. I(Kn;x) = 1 + nx. Hence I(Kn;− 1
k
) = 1− n

k
< 1. �

Lemma 4.10. Let G be a graph on n vertices, and let j be an integer, 1 ≤ j ≤ n. Let

Sj = {u1, . . . , uj} ⊆ V (G), and define Si = {u1, . . . , ui} and Gi = G − Si for 1 ≤ i ≤ j.
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Then

I(G;x) =I(Gj;x) + xI(Gj−1 −N [uj];x) + xI(Gj−2 −N [uj−1];x)

+ . . .+ xI(G1 −N [u2];x) + xI(G−N [u1];x).

Proof. We will proceed by induction on |Sj|. If j = 1, then by Proposition 3.1(vi) I(G;x) =

I(G−v1;x)+xI(G−N [v1];x). Suppose the statement is true for vertex sets with cardinality

less than j. Then by induction,

I(G;x) = I(Gj−1;x) + xI(Gj−2 −N [vj−1];x) + . . .+ xI(G−N [v1];x).

By Proposition 3.1(vi) I(Gj−1;x) = I(Gj−1−uj;x) +xI(Gj−1−NGj−1
[uj];x), and note that

NGj−1
[uj] ⊆ N [uj]. Hence Gj−1 −NGj−1

[uj] ∼= Gj−1 −NG[uj]. Thus,

I(G;x) =I(Gj−1;x) + xI(Gj−2 −N [vj−1];x)

+ xI(Gj−3 −N [vj−2];x) + . . .+ xI(G−N [v1];x)

=I(Gj−1 − uj;x) + xI(Gj−1 −N [uj];x) + xI(Gj−2 −N [uj−1];x)

+ . . .+ xI(G1 −N [v2];x) + xI(G−N [v1];x)

=I(Gj;x) + xI(Gj−1 −N [vj];x) + xI(Gj−2 −N [vj−1];x)

+ . . .+ xI(G1 −N [v2];x) + xI(G−N [v1];x).

Hence, the lemma is true for vertex sets of cardinality j for 1 ≤ j ≤ n. �

As an application of Lemma 4.10, we will now generalize Wingard’s Bound to the k-path.

Theorem 4.11. Let P k
n be the k-path on n ≥ k vertices and k ≥ 2. Then

|I(P k
n ;−1

k
)| < 1.
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Proof. We will proceed by induction on n. If n = k, P k
n is a k-clique, and the theorem is true

by Lemma 4.9. If n = k+ 1, then P k
n
∼= Kk+1. Thus I(P k

n ;− 1
k
) = 1− (k+ 1)/k = 1− 1− 1

k
.

Suppose the theorem is true for k-paths with less than n ≥ k + 2 vertices, and consider

P k
n on n vertices with v1, v2, . . . , vn ordered according to a presentation. Let ui = vk+i for

1 ≤ i ≤ r where r = min(k, n− k), and define Ui = {u1, . . . , ui}, Gi = P k
n −Ui for 1 ≤ i ≤ r,

and G0 = P k
n . Then by Proposition 3.1(x) and Lemma 4.10,

I(P k
n ;x) =I(Gr;x) + xI(Gr−1 −N [ur];x) + xI(Gr−2 −N [ur−1];x)

+ . . .+ xI(G1 −N [u2];x) + xI(P k
n −N [u1];x),

(3)

and this summation has r + 1 summands on the right hand side.

According to the definition of a k-path G[Ur] ∼= Kr, and hence Ur ⊆ N [ui] for 1 ≤ i ≤ r.

NowG[{v1, . . . , vk}] ∼= Kk is a component ofGr, and so I(Gr;− 1
k
) = 0. Also, by the structure

of the k-path, each graph Gi−N [ui+1] for 0 ≤ i ≤ r− 1 has at most two components Ji and

Hi such that V (Ji) ⊆ {v1, . . . , vk} and V (Hi) ⊆ V (P k
n ) − ({v1, . . . , vk} ∪ Ur). Hence each

component Ji and Hi are congruent to either cliques of smaller size than k, the empty graph,

or a k-path on fewer than n vertices. Hence by Lemma 4.9, Proposition 3.1, and induction,

|I(Gi −N [ui+1];− 1
k
)| ≤ 1 for 0 ≤ i ≤ r− 1 with equality holding if and only if Gi −N [ui+1]

is the empty graph. However, if Gi − N [ui+1] is the empty graph for all i, 0 ≤ i ≤ r − 1,

then {v1, . . . , vk} ⊆ N [ui+1] for 0 ≤ i ≤ r − 1. Then r = 1, as u1 /∈ N [u2]. However, r ≥ 2,

so there is a j such that Gj −N [uj+1] is not the empty graph. Thus

|I(P k
n ;−1

k
)| ≤|I(Gr;−

1

k
)|+ |1

k
||I(Gr−1 −N [ur];−

1

k
)|

+ . . . |1
k
||I(G1 −N [u2];−1

k
)|+ |1

k
||I(G−N [u1];−1

k
)|

<0 + r(
1

k
) ≤ 1.
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Therefore, by the Principle of Mathematical Induction, |I(P k
n ;− 1

k
)| < 1. �

Using Song’s characterization of the independence polynomial of the k-star given in The-

orem 4.2, we can easily verify the following theorem.

Theorem 4.12. Let Sk,n−k be the k-star on n vertices and k ≥ 2. Then

|I(Sk,n−k;−
1

k
)| < 1.

4.3. Wingard’s Bound for k-degenerate Graphs.

In this section, we seek to generalize Theorem 4.11 and Theorem 4.12 by investigating

Wingard’s Bound to k-degenerate graphs. Though Lemma 4.10 is not sufficient to do so,

we will introduce Lemma 4.13, a generalization of Proposition 3.1(ix) that will be useful to

generalize Wingard’s Bound to k-degenerate graphs.

Lemma 4.13. Let G be a graph with v ∈ V (G) where {u1, . . . , ur} ⊆ N(v) for some 1 ≤

r ≤ d(v). Let ei = vui, Ei = {e1, . . . , ei}, and G′i = G− Ei for 1 ≤ i ≤ r. Then

I(G;x) =I(G′r;x)− x2I(G′r−1 −NG′r−1
(er);x)− x2I(G′r−2 −NG′r−2

(er−1);x)

− . . .− x2I(G′1 −NG′1
(e2);x)− x2I(G−NG(e1);x).

Proof. We will proceed by induction on r. If r = 1, by Proposition 3.1 we have the identity

I(G;x) = I(G − e1;x) − x2I(G − N(e1);x). Suppose the statement is true for 1 ≤ r′ < r.

By induction,

I(G;x) =I(G′r−1;x)− x2I(G′r−2 −NG′r−2
(er−1);x)

− x2I(G′r−3 −NG′r−3
(er−2);x)− . . .− x2I(G′1 −NG′1

(e2);x)

− x2I(G−NG(e1);x).
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Now by Proposition 3.1, I(G′r−1;x) = I(G′r−1 − er;x)− x2I(G′r−1 −NG′r−1
(er);x). Thus

I(G;x) =I(G′r−1 − er;x)− x2I(G′r−1 −NG′r−1
(er);x)

− . . .− x2I(G′1 −NG′1
(e2);x)− x2I(G−NG(e1);x)

=I(G′r;x)− x2I(G′r−1 −NG′r−1
(er);x)− x2I(G′r−2 −NG′r−2

(er−1);x)

− . . .− x2I(G′1 −NG′1
(e2);x)− x2I(G−NG(e1);x).

Hence, the lemma is true by the Principle of Mathematical Induction. �

We will now, with the help of Lemma 4.13, generalize Wingard’s Bound to k-degenerate

graphs and thus k-trees.

Theorem 4.14. Let G be a k-degenerate graph on n ≥ 1 vertices with k ≥ 2. Then

|I(G;− 1
k
)| < 1.

Proof. We will proceed by induction on n. If n = 1, then I(G;x) = 1 + x. We see, then,

that I(G;− 1
k
) = k−1

k
.

Suppose the theorem is true for k-degenerate graphs of order less than n, and consider G,

a k-degenerate graph on n vertices. As G is k-degenerate, δ ≤ k. Choose v ∈ V (G) such

that d(v) = δ and v is incident to edges e1, e2, . . . , eδ. Let Ei = {e1, . . . , ei} and G′i = G−Ei

for 1 ≤ i ≤ δ.

Then by Lemma 4.13,

I(G;x) =I(G′δ;x)− x2I(G′δ−1 −NG′δ−1
(eδ);x)− x2I(G′δ−2 −NG′δ−2

(eδ−1;x)

− . . .− x2I(G′1 −NG′1
(e2);x)− x2I(G−N(e1);x),

(4)

and the right hand side has δ + 1 ≤ k + 1 summands.
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Now G′δ has a component of order one, and the other components of G′δ are k-degenerate

graphs. So |I(G′δ;− 1
k
)| < (1− 1

k
)(1) = k−1

k
. Also each of the components of G′i −NG′i

(ei+1)

for 1 ≤ i ≤ δ − 1 and G − N(e1) is either the empty graph or a k-degenerate graph on at

least one vertex and on fewer than n vertices.

Hence, by applying the induction hypothesis and (4),

|I(G;−1

k
)| ≤|I(G′δ;−

1

k
)|+ |(−1

k
)2||I(G′δ−1 −NG′δ−1

(eδ);−
1

k
)|

+ |(−1

k
)2||I(G′δ−2 −NG′δ−2

(eδ−1);−1

k
)|+ . . .

+ |(−1

k
)2||I(G′1 −NG′−1(e2);−1

k
)|+ |(−1

k
)2||I(G−NG(e1);−1

k
)|

<
k − 1

k
+ | 1

k2
||1|+ . . .+ | 1

k2
||1|

=
k − 1

k
+ δ

1

k2
≤ k − 1

k
+ k

1

k2
= 1.

Therefore, by the Principle of Mathematical Induction, |I(G;− 1
k
)| < 1 forG a k-degenerate

graph. �

Corollary 4.15. Let T kn be a k-tree on n vertices and k ≥ 2. Then |I(T kn ;− 1
k
)| < 1.

Proof. All k-trees are k-degenerate. �

We note that Wingard’s bound is achieved when k = 1. In particular, there are examples

of trees such that |I(T ;−1)| = 1; for example S1,n−1. However, for k-degenerate graphs with

k ≥ 2, Wingard’s Bound is strict.

4.4. The Fibonacci Number of Maximal Outerplanar Graphs.

As has been mentioned, Song et al. determined that fs(Sk,n−k) is a strict upper bound

among k-trees for s ≥ 3 that is uniquely obtained by Sk,n−k. For n ≥ k + 3, Sk,n−k is not
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tree-like. Thus for tree-like k-trees, we seek a stricter upper bound of fs for s ≥ 0 than the

one provided by Song et al..

In 1998, Alameddine determined sharp bounds of the Fibonacci number of maximal out-

erplar graphs and characterized the unique maximal outerplar graphs that obtained these

bounds. He found the following:

Theorem 4.16. [1] Let G be a maximal outerplanar graph on n ≥ 3 vertices. Then f(G) ≥

f(P 2
n), and equality is reached if and only if G ∼= P 2

n .

Theorem 4.17. [1] Let G be a maximal outerplanar graph on n ≥ 3 vertices. Then f(G) ≤

f(S2
n), and equality is reached if and only if G ∼= S2

n.

We note for n = 6, f(S2
6) = f(D2

6) = 14, and thus Theorem 4.17 is not complete.

We will demonstrate a revision of the results of Alameddine including this special case

through investigating lower and upper bounds of the coefficients of I(G;x), fs(G) for s ≥ 0.

Additionally, we will classify the unique graphs that obtain these bounds.

As the k-path is a tree-like k-tree, it is clear by Theorem 4.4 and Theorem 4.6 that the

lower bound of fs for maximal outerplar graphs for s ≥ 3 immediately follows by the results

of Song et al.. with k = 2. We only need to consider the upper bound.

P 2
7 G1 G2 S2

7

Figure 5. Maximal outerplanar graphs on n = 7 vertices
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Theorem 4.18. Let G be a maximal outerplanar graph on n ≥ 6 vertices. Then for all

s ≥ 3,

fs(G) ≤
(
n− s
s

)
,

and equality holds if and only if G ∈ {S2
6 , D

2
6} for n = 6 and G ∼= S2

n for n ≥ 7.

Proof. Suppose n = 6. Then G ∈ {P 2
6 , S

2
6 , D

2
6}. Let n = 7. Then G ∈ {P 2

7 , G1, G2, S
2
7} as

pictured in Figure 5. Routine calculations show that for n ∈ {6, 7}, α(G) ≤ 3, f3(P 2
6 ) = 0,

f3(D2
6) = f3(S2

6) = 1 =
(

6−3
3

)
, f3(P 2

7 ) = 1, f3(G1) = 2, f3(G2) = 3, and f3(S2
7) = 4 =

(
7−3

3

)
.

Thus the theorem holds for n ∈ {6, 7}.

Suppose that for maximal outerplanar graphs on 7 ≤ n′ < n vertices the theorem holds,

and let G be a maximal outerplanar graph on n ≥ 8 vertices. Let v ∈ V (G) such that

d(v) = 2 and N(v) = {u1, u2}. By Proposition 3.1(iv)

(5) fs(G) = fs(G− v) + fs−1(G−N [v]),

and as G− v is a maximal outerplanar graph by induction, fs(G− v) ≤ fs(S
2
n−1) =

(
n−1−s

s

)
.

Now G has a hamiltonian cycle C that passes through all of the unbound edges of G. Thus

u1vu2 is a segment of C, and so G − N [v] has a spanning path on n − 3 vertices, namely

C −N [v]. By Proposition 3.1, fs−1(G−N [v]) ≤ fs−1(Pn−3) =
(
n−3+1−(s−1)

s−1

)
=
(
n−1−s
s−1

)
.

Thus by induction and (5),

fs(G) =fs(G− v) + fs−1(G−N [v])

≤fs(S2
n−1) + fs−1(Pn−3)

=

(
n− 1− s

s

)
+

(
n− 1− s
s− 1

)
=

(
n− s
s

)
,
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and for s ≥ 3 equality holds if and only if G−v ∼= S2
n−1 and G−N [v] ∼= Pn−3, i.e. G ∼= S2

n. �

As a corollary, we obtain the following modified result of Alameddine.

Corollary 4.19. Let G be a maximal outerplanar graph on n ≥ 6 vertices such that I(G;x) =

I(S2
n;x). Then, if n = 6, G ∈ {D2

6, S
2
6}, and if n ≥ 7, G ∼= S2

n.

Corollary 4.20. Let G be a maximal outerplanar graph on n ≥ 6 vertices. Then f(G) ≤

f(S2
n). Equality is reached if and only if G ∈ {D2

6, S
2
6} when n = 6 and if and only if G ∼= S2

n

when n ≥ 7.

Figure 6. A tree-like 3-tree on 11 vertices G

4.5. Independent Sets of Cardinality s in Chordal Planar Graphs with Toughness

Exceeding 1.

It should be noted that for the general k ≥ 3, there is a tree-like k-tree T kn such that

fs(T
k
n ) >

(
n−k(s−1)

s

)
for some s ≥ 0. As an example, f6(G) = 1 for the tree-like 3-tree in

Figure 6 whereas f6(S3
11) = 0.

As mentioned in Chapter 2, a graph is a tree-like 3-trees with toughness exceeding 1 if

and only if it is a chordal planar graph with toughness exceeding 1. Let L be the set of

chordal planar graphs with toughness exceeding 1. Though there are tree-like k-trees with
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k ≥ 3 with fs greater than
(
n−k(s−1)

s

)
for some s ≥ 0, for the class L we state the following

theorem.

Theorem 4.21. Let G ∈ L on n ≥ 7 vertices. Then for all s ≥ 3,

fs(G) ≤
(
n− 1− s

s

)
,

and equality holds if and only if G ∈ {S3
7 , D

3
7} for n = 7 and G ∼= S3

n for n ≥ 8.

In order to prove Theorem 4.21, we must first show that for G ∈ L with v ∈ S1(T ),

G−N [v] has a spanning path which will now be presented.

Lemma 4.22. Let T kn be a k-tree on n ≥ k vertices such that e = xy ∈ E(T kn ). Then there

exists a simplicial elimination ordering v1, . . . , vn of T kn such that x = vn and y = vn−1.

Proof. The vertices x and y are in a k-clique D in G. Let V (D) = {x1, . . . , xk}, and

let x = xk and y = xk−1. For n ≥ 5, there exists a simplicial vertex v /∈ V (D). Let

v1 ∈ S1(T kn ) − V (D), and vi ∈ S1(T kn − {v1, . . . , vi−1}) − V (D) for 1 ≤ i ≤ n − k. Then

V (T kn − {v1, . . . , vn−k}) = V (D). Then without loss of generality xi = vn−k−i for 1 ≤ i ≤ k.

Hence x = vn and y = vn−1. �

Theorem 4.23. Let G ∈ L on n ≥ 4 vertices, and let e ∈ E(G). Then G has a hamiltonian

cycle passing through e.

Proof. Let e = xy, and let v1, v2, . . . , vn be a simplicial elimination ordering such that x = vn

and y = vn−1. Let G0
∼= T kn , Gi

∼= G − {v1, . . . , vi} for 1 ≤ i ≤ n − 3. Note then that

e ∈ E(Gi) for 0 ≤ i ≤ n − 3. Then vi ∈ S1(Gi−1), and so Di = G[NGi−1
(vi)] ∼= K3 for

1 ≤ i ≤ n−3. We say that the 3-clique D is active in Gi if D is unbound in Gi but bound in
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G. As G is tree-like, it is clear that if D is bound, there are exactly two vertices u1 and u2

such that V (D) ⊆ N(ui) for 1 ≤ i ≤ 2. Then clearly Di is active in Gi−1 for 1 ≤ i ≤ n− 3.

A good cycle pair of Gi is an ordered pair (C, f) where C is a hamiltonian cycle of Gi,

and f is an injection that maps every active 3-clique D of Gi onto an edge f(D) such that

f(D) ∈ E(C ∩D)− e. We claim that for every i ∈ {0, . . . , n− 4}, there is a good cycle pair

(Ci, fi) of Gi. We will proceed by induction on n− i.

Suppose i = 4. Then Gn−4
∼= K4 with vertex set {vn, vn−1, vn−2, vn−3}. Then Gn−4 has

four 3-cliques D′0, D
′
1, D

′
2, and D′3 such that V (D′j) = {vn−4, vn−3, vn−2, vn−1} − {vn−j} for

0 ≤ j ≤ 3. At most three of these cliques are active as otherwise G has toughness at most

1. Let Cn−4 = vnvn−1vn−2vn−3vn, and define fn−4 as in Table 4.5. Then fn−4 is an injection

between all active 3-cliques of Gn−4 and edges of Cn−4. Thus Gn−4 has a good cycle pair

(Cn−4, fn−4).

Suppose that Gn−i has a good cycle pair (Cn−i, fn−i) for 4 ≤ i < r ≤ n, and consider

Gn−r. Suppose Dn−r is bound in Gn−r. Then there are two vertices {u1, u2} ∈ V (Gn−r) such

that V (Dn−r) ⊆ NGn−r(ui) for 1 ≤ i ≤ 2. Then V (Dn−r) ⊆ (NGn−r−1(u1)∩ NGn−r−1(u2) ∩

Suppose D′j is not active fn−4(D′j+1) fn−4(D′j+2) fn−4(D′j+3)

D′0 xn−2xn−3 xn−3xn xn−1xn−2

D′1 xn−3xn xn−1xn−2 xn−2xn−3

D′2 xn−1xn−2 xn−2xn−3 xn−3xn

D′3 xn−1xn−2 xn−2xn−3 xn−3xn

Table 3. fn−4
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NGn−r−1(vn−r)), and so G is not tree-like. Thus Dn−r is unbound in Gn−r and bound in

Gn−r−1. Hence Dn−r is active in Gn−r.

By the inductive hypothesis there is a hamiltonian cycle pair Cn−r passing through e and

a injection fn−r of Gn−r mapping all active 3-cliques of Gn−r to an edge of Cn−r − e. Let

V (Dn−r) = {a, b, c} and fn−r(Dn−r) = ab. Then, by induction ab 6= e, and as Dn−r is bound

in Gn−r−1 Dn−r is not active in Gn−r−1. There are exactly three new 3-cliques in Gn−r−1: Ca,

Cb, and Cc such that V (Ca) = {vn−r, b, c, }, V (Cb) = {vn−r, c, a}, and V (Cc) = {vn−r, a, b}. If

all three of these 3-cliques are active in Gn−r−1, then G−{vn−r, a, b, c} has four components.

Thus, in this case G is at most 1-tough. Thus at most two of Ca, Cb, and Cc are active in

Gn−r−1. We may assume that Cc is not active in Gn−r−1.

Let Cn−r−1 be the hamiltonian cycle of Gn−r−1 obtained from Cn−r by replacing the edge

ab by the path avn−rb, and define fn−r−1 as follows. Let D be an active 3-clique of Gn−r−1. If

D is a subgraph of Gn−r, then D is an active 3-clique of Gn−r. Let fn−r−1(D) = fn−r(D). For

z ∈ {a, b} and z′ ∈ {a, b} − z, let fn−r−1(Cz) = vn−rz
′ if Cz is an active 3-clique of Gn−r−1.

Thus Gn−r−1 has a hamiltonian cycle Cn−r−1 that passes through e and an injection fn−r−1

that maps every active 3-clique to an edge fn−r−1(D) such that fn−r−1(D) ∈ E(Cn−r−1)− e.

That is, Gn−r−1 has a good cycle pair.

Thus by the Principle of Mathematical Induction, G has a hamiltonian cycle that passes

through e. �

With use of Theorem 4.23, we are now able to prove Theorem 4.21.

Proof. If n = 7, then G ∈ {P 3
7 , S

3
7 , D

3
7}. If n = 8, then G ∈ {P 3

8 , G1, G2, G3, G4, S
3
8} where

G1, G2, G3, and G4 are the graphs in Figure 7. It is routine to deduce that if n = 8, then

α(G) ≤ 3 and f3(P 3
8 ) = 0, f3(G1) = 2, f3(G2) = 3, f3(G3) = 2, f3(G4) = 1, and f3(S3

8) = 4.
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P 3
8 G1 G2

G3 G4 S3
8

Figure 7. Tree-like 3-trees on 8 vertices with τ > 1

Proceed by induction on n. Suppose that the theorem holds for chordal planar graphs

with toughness exceeding 1 on 8 ≤ n′ < n vertices, and consider G ∈ L on n vertices.

As G is a tree-like 3-tree, there exists v ∈ S1(G). Then by Proposition 3.1, fs(G) =

fs(G− v) + fs−1(G−N [v]) for s ≥ 1.

Now G− v ∈ L on n− 1 vertices, and so by induction fs(G− v) ≤
(
n−1+2−3−s

s

)
=
(
n−2−s

s

)
for s ≥ 0 with equality holding if and only if G− v ∼= S3

n−1. As G[N(v)] is a bound k-clique,

G−N(v) has two components; one being v. Hence G−N [v] is connected. By Proposition 3.3,

fs(G−N [v]) for s ≥ 0 is maximized when E(G−N [v]) is minimal i.e. G−N [v] is a tree.

Suppose that G − N [v] is a tree with at least 3 leaves. Then there is a vertex u ∈

V (G − N [v]) such that dG−N [v](u) ≥ 3. However, in this case, G − (N(v) ∪ {u}) has at

least four components. Thus τ(G) ≤ 1, a contradiction. Hence if G − N [v] is a tree, then

G−N [v] ∼= Pn−4. Thus fs(G−N [v]) ≤ fs(Pn−4) =
(
n−4+1−s

s

)
=
(
n−3−s

s

)
for s ≥ 0.

Thus

fs(G) =fs(G− v) + fs−1(G−N [v])

≤
(
n− 2− s

s

)
+

(
n− 3− (s− 1)

s− 1

)
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=

(
n− 2− s

s

)
+

(
n− 2− s
s− 1

)
=

(
n− 1− s

s

)
,

for s ≥ 0 with equality holding if and only if G − v ∼= S3
n−1 and G − N [v] ∼= Pn−4. Hence

equality holds if and only if G ∼= S3
n. �

Figure 8. A tree-like 4-tree on 10 vertices with toughness exceeding 1

Now Theorem 4.21 can not be directly generalized to tree-like k-trees for k ≥ 4. For

example, the 4-tree in Figure 8 is tree-like with toughness exceeding 1 on 10 vertices, and f4

of this 4-tree is 2 while f4(S4
10) = 1.

4.6. Independent Sets of Cardinality s of Path-like k-trees.

Though is is not clear how to generalize Theorem 4.4 to tree-like k-trees for the general

k, we may demonstrate a stricter upper bound of fs for s ≥ 3 for path-like k-trees. We will

now demonstrate this strict upper bound in a similar manner to Theorem 4.21.

Lemma 4.24. Let T kn be a path-like k-tree on n vertices and v ∈ S1(T kn ). Then T kn − N [v]

has a spanning path.

Proof. Let {v1, v2, . . . , vn} be a simplicial elmination ordering such that v = vn and {vn−1, . . . ,

vn−k−1} = N(v). As G[N [v]] ∼= Kk+1, such an ordering exists. Let G0
∼= T kn and Gi

∼=
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T kn − {v1, . . . , vi} for 1 ≤ i ≤ n. Clearly vi+1 is simplicial in Gi for 1 ≤ i ≤ n − k − 2. If

vi+1 /∈ N(vi), then S1(Gi) = {v, vi+1, vi}. Hence vi+1vi ∈ E(T kn ) for 1 ≤ i ≤ n − k − 2. It

immediately follows that T kn −N [v] has a spanning path. �

Theorem 4.25. Let T kn be a path-like k-tree on n vertices. Then for s ≥ 3,(
n− k(s− 1)

s

)
≤ fs(T

k
n ) ≤

(
n+ 2− k − s

s

)
,

with the left inequality holding if and only if T kn
∼= P k

n , and the right inequality holding if and

only T kn
∼= Skn.

Proof. The lower bound was shown to be true by Song et. al [41]. Thus, we only need to

show the upper bound. Proceed by induction on n. If k ≤ n ≤ k+ 3, then T kn is unique, and

the theorem is true. Suppose that for path-like k-trees on k ≤ n′ < n vertices, the theorem

holds, and consider T kn , a path-like k-tree on n vertices.

Let v1, v2, . . . , vn be a presentation of T kn . Then vn ∈ S1(T kn ). By Proposition 3.1, for s ≥ 1

fs(T
k
n ) = fs(T

k
n − vn) + fs−1(T kn −N [vn]).

Now T kn−vn is a path-like k-tree on n−1 vertices. Hence, by induction fs(T
k
n−vn) ≤

(
n+1−k−s

s

)
for s ≥ 0 with equality holding if and only if T kn

∼= Skn.

Now by Lemma 4.24, T kn − N [vn] has a spanning path. As G[N [vn]] is a bound (k + 1)-

clique and vn ∈ S1(T kn ), it is clear that T kn − N [vn] is connected. Thus by Proposition 3.3

fs(T
k
n−N [vn]) ≤

(
n−k+1−s

s

)
for s ≥ 0 with equality holding if and only if T kn−N [vn] ∼= Pn−k−1.

Thus,

fs(T
k
n ) =fs(T

k
n − vn) + fs−1(T kn −N [vn])

≤
(
n+ 1− k − s

s

)
+

(
n− k + 1− (s− 1)

s− 1

)
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=

(
n− k + 2− s

s

)
,

with equality holding if and only if T kn − vn ∼= Skn−1 and T kn −N [vn] ∼= Pn−k−1. Thus equality

holds if and only if T kn
∼= Skn, and by the Principle of Mathematical Induction the theorem

holds. �
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5. The Zagreb Indices of k-trees

In 1975, Randić introduced the branching index which later became known as the Randić

connectivity index [36]. The Randić connectivity index is mostly used as a molecular dis-

criptor in computational chemistry describing nonempirical quantitative structure-property

relationships and quantitative structure-activity relationships [17]. However, mathematicians

have also expressed interest in the Randić connectivity index [6].

The Randić connectivity index has been generalized as the general Randić connectivity

index and the general zeroth-order Randić connectivity index, where the Zagreb indices

appeared as a special case [8]. The first Zagreb index M1(G) and the second Zagreb index

M2(G) of the graph G are given by:

M1(G) =
∑

u∈V (G)

d(u)2, M2(G) =
∑

uv∈E(G)

d(u)d(v).

The Zagreb indices M1 and M2 have been an active area of research going back to 1972 in

the report of Gutman and Trinajstić in computational chemistry [23].

In regards to the Zagreb indices, there are two classical problems which have attracted

the attention of researchers for some time:

(i) How M1(G) (respectively M2(G)) depends on the structure of G.

(ii) Given a set of graphs G, find upper and lower bounds for M1(G) and M2(G) of graphs

in G and characterize the graphs in which the maximal (respectively minimal) M1

and M2 values are attained.
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There have been numerous studies in the literature of the properties of Zagreb indices of

given graph classes [11, 13, 29, 31]. In particular, Das and Gutman in 2004 characterized

the Zagreb indices for trees and determined the unique tree that obtains minimum M1 and

M2 values respectively, as well as maximum M1 and M2 values respectively.

Theorem 5.1. [12, 20] Let T be any tree of order n. Then

(i) 4n− 6 ≤M1(T ) ≤ n2− n, the left equality holds if and only if T ∼= Pn, and the right

equality holds if and only if T ∼= Sn.

(ii) 4n− 8 ≤ M2(T ) ≤ n2 − 2n+ 1, the left equality holds if and only if T ∼= Pn and the

right equality holds if and only if T ∼= Sn.

P7 S7

Figure 9. The path and star on 7 vertices

In 2011, Hou et al. characterized the Zagreb indices for maximal outerplanar graphs and

determined the unique maximal outerplanar graph that obtains minimum M1 and M2 values

respectively, as well as maximum M1 and M2 values respectively. Hou et al. found the

following:

Theorem 5.2. [29] Let G be a maximal outerplaner graph on n ≥ 4 vertices. Then

(i) M1(G) ≥ 16n− 38, with equality holding if and only if G ∼= P 2
n .

(ii) M2(G) ≥ 32n− 100, with equality holding if and only if G ∼= P 2
n .
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Theorem 5.3. [29] Let G be a maximal outerplanar graph on n ≥ 4 vertices. Then

(i) When n = 6, M1(G) ≤ 60 with equality if and only if G ∼= S2
6 or D2

6.

(ii) When n 6= 6, M1(G) ≤ n2 + 7n− 18 with equality if and only if G ∼= S2
n.

Theorem 5.4. [29] Let G be a maximal outerplanar graph on n ≥ 4 vertices.

(i) When n = 6, M2(G) ≤ 96 with equality if and only if G ∼= D2
6.

(ii) When n 6= 6, M2(G) ≤ 3n2 + n− 19 with equality if and only if G ∼= S2
n.

As k-trees are a generalization of trees and maximal outerplanar graphs, it is a natural

connection to generalize the results of Das and Gutman, as well as the results of Hou et al.,

to the broader class of k-trees.

5.1. Some Lemmas.

In this section, we give some lemmas that are critical in subsequent sections. For the

remainder of this chapter, let T kn be a k-tree on n vertices, and let v ∈ S1(T kn ) such that

N(v) = U = {u1, . . . , uk}. Then T kn − v is a k-tree. Let V (T kn ) = {v} ∪ U ∪ X ∪ Y where

X = N(U) − N [v] and Y = V (T kn ) − X − N [v]. Let |X| = l and X = {x1, . . . , xl}. Then

l ≥ min(n − k − 1, k). Arrange the vertices of X such that xi ∈ U for 1 ≤ i ≤ j and

|N(xi) ∩ U | ≥ |N(xi+1) ∩ U | for j + 1 ≤ i ≤ l − 1.

If n ≥ k + 2, then |S1(T kn )| ≥ 2. Thus if n ≥ k + 2, there exists v′ ∈ S1(T kn )− v. Choose

v′ such that |N(v′) ∩ U | = t is as small as possible, and let N(v′) = U ′ = {u′1, . . . , u′k}.

Arrange the vertices of U ′ such that u′i ∈ U for 1 ≤ i ≤ t and |N(u′i) ∩ U | ≥ |N(u′i+1) ∩ U |

for t + 1 ≤ i ≤ k. Let f : U ′ → N where f(u′i) =


0 if u′i ∈ U

|N(u′i) ∩ U | if u′i /∈ U

. Let d∗(vj)
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(respectively d∗(vj)) be the degree obtained by vertex vj of a presentation of P k
n (respectively

P k
n−1).

Then we may state the following lemmas.

Lemma 5.5. Let T kn be a k-tree on n ≥ k + 3 vertices, and let v ∈ S1 where N(v) =

{u1, . . . , uk}. Then:

(i)
∑k

i=1 d(ui) ≥ 2kn− 1
2
(k(k + 5))− 1

2
((n− 1)(n− 2)) for k + 3 ≤ n ≤ 2k;

(ii)
∑k

i=1 d(ui) ≥ k2 + 1
2
(k(k + 1)) for n ≥ 2k + 1.

Equality is reached if and only if G[∪ki=1N [ui]] ∼= P k
r , r = min(n, 2k + 1).

Proof. We will proceed by induction on n. There are two k-trees on k+ 3 vertices: P k
k+3 and

Sk,3. If T kn
∼= P k

k+3, then
∑k

i=1 d(ui) = k2 + 2k − 1. If T kn
∼= Sk,3, then

∑k
i=1 d(ui) = k2 + 2k,

and so the lemma holds. Suppose the lemma is true for T kn′ with k+3 < n′ < n, and consider

T kn . Clearly for the simplicial vertex v′ 6= v,

(6)
k∑
i=1

d(ui) =
k∑
i=1

dTkn−v′(ui) + |U ′ ∩ U |.

Suppose k + 4 ≤ n ≤ 2k which implies k ≥ 4. Then l = n − k − 1 and |Y | = 0. Hence

v′ ∈ X, and without loss of generality let v′ = xl. Thus |N(xl)∩U | 6= ∅. As k+ 4 ≤ n ≤ 2k,

3 ≤ l ≤ k− 1 and so k− (l− 1) ≤ |N(xl)∩U | ≤ k. Thus 2k− n+ 2 ≤ |N(xl)∩U | ≤ k. By

induction and (6),

k∑
i=1

d(ui) =
k∑
i=1

dTkn−xl(ui) + |N(xl) ∩ U |

≥2k(n− 1)− 1

2
(k(k + 5))− 1

2
(n− 2)(n− 3) + 2k − n+ 2

=2kn− 1

2
(k(k + 5))− 1

2
(n− 1)(n− 2)
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with equality holding if and only if T kn − xl ∼= G[∪ki=1NTkn−xl [ui]]
∼= P k

n−1 and |N(xl) ∩ U | =

2k−n+2 = k− (l−1). In this case X−xl ⊆ N(xl), xl−1 ∈ S2(T kn ), and so N(xl) ⊆ N [xl−1].

Thus (N(xl) ∩ U) ⊆ (N(xl−1) ∩ U). Hence T kn
∼= G[∪ki=1N [ui]] ∼= P k

n .

Suppose n = 2k + 1 > k + 3, then l = k and |Y | = 0. Thus without loss of generality let

v′ = xk. Hence 1 ≤ |N(xk) ∩ U | ≤ k. Then by induction and (6)

k∑
i=1

d(ui) =
k∑
i=1

dTkn−xk(ui) + |N(xk) ∩ U |

≥2k(n− 1)− 1

2
(k(k + 5))− 1

2
(n− 2)(n− 3) + 1

=4k2 − 1

2
(k(k + 5))− 1

2
(4k2 − 6k + 2) + 1

=k2 +
1

2
(k2 + k)

with equality holding if and only if T kn −xk ∼= G[∪ki=1NTkn−xk [ui]]
∼= P k

2k and |N(xk)∩U | = 1,

i.e. T k2k+1
∼= G[∪ki=1N [ui]] ∼= P k

2k+1.

Suppose n ≥ 2k + 2 > k + 3. Then l ≥ k and |Y | ≥ 0. If |Y | = 0, then |N(v′) ∩ U | ≥ 1.

If |Y | ≥ 1, then |N(v′) ∩ U | = 0, and so by induction and (6)

k∑
i=1

d(ui) =
k∑
i=1

dTkn−v′(ui) + |N(v′) ∩ U |

≥k2 +
1

2
(k2 + k)

with equality holding if and only if G[∪ki=1NTkn−v′ [ui]]
∼= P k

2k+1 and |N(v′) ∩ U | = 0. Hence

G[∪ki=1N [ui]] ∼= P k
2k+1.

Hence by the Principle of Mathematical Induction, the lemma holds. �

Lemma 5.6. Let G be a k-degenerate graph on n ≥ k + 1 vertices, and let v ∈ V (G) such

that d(v) = δ(G) and N(v) = {u1, . . . , uδ(G)}. Then
∑δ(G)

i=1 d(ui) ≤ k(n − 1), and equality

holds if and only if G ∼= Sk,n−k.
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Proof. Clearly δ(G) ≤ k and d(ui) ≤ n − 1 for 1 ≤ i ≤ δ(G). Thus
∑δ(G)

i=1 d(ui) ≤ k(n − 1)

with equality reached if and only if δ(G) = k and d(ui) = n− 1 for 1 ≤ i ≤ k. Furthermore,

equality is reached if and only if V (G) − N [v] is independent as otherwise G has a Kk+2

subgraph and thus not k-degenerate. That is, for x ∈ V (G)−N [v], x is a k-simplicial vertex.

Thus equality is reached if and only if G ∼= Sk,n−k. �

Let N0(ui) = N(ui)−N [v], and let

Ψ(T kn ; v) =
∑

x∈N0(u1)

d(x) +
∑

x∈N0(u2)

d(x) + . . .+
∑

x∈N0(uk)

d(x).

Then for n ≥ k + 2 and v′ ∈ S1(T kn )− v,

Ψ(T kn ; v) =Ψ(T kn − v′; v) + d(v′)t+
k∑
i=1

f(u′i)

=Ψ(T kn − v′; v) + d(v′)t+
k∑

i=t+1

|N(u′i) ∩ U |.

(7)

With this in mind, we may state the following lemmas:

Lemma 5.7. Let T kn be a k-tree on n ≥ k + 5 vertices and v ∈ S1(T kn ). Then Ψ(T kn ; v) ≥∑l
i=1 (k + 1− i)d(xi) where d(xi) = d∗(vi+k+1) with respect to a presentation of P k

n . Fur-

thermore equality holds if and only if G[N(N0(u1))∪ N(N0(u2)) ∪ . . . ∪N(N0(uk))] ∼= P k
r

where r = min(n, 3k + 1).

Proof. We will proceed by induction on n. Note that

l∑
i=1

(k + 1− i)d∗(vi+k+1) =
l+k+1∑
i=k+2

(2k + 2− i)d∗(vi).

Now d(v′)t+
∑k

i=t+1 |N(u′i) ∩ U | is a summand with k summands with at least t summands

of value k and at most k − t summands of value at most k − 1. It is clear then that

d(v′)t+
∑k

i=t+1 |N(u′i) ∩ U | is minimized when t is minimized.

54



Suppose n = k + 5. Then t ≥ max(0, k − 3), and by (7) Ψ(T kk+5; v) = Ψ(T kk+5 − v′; v) +

kt +
∑k

i=1 f(u′i). Suppose k ∈ {1, 2}. Then l ≥ k and t ≥ 0, and Ψ(T kk+5; v) is minimized

when t = 0, and so clearly
∑k

i=1 f(u′i) ≥ k − 1. Hence by Table 1,

Ψ(T kk+5; v) =Ψ(T kk+5 − v′; v) + kt+
k∑
i=1

f(u′i)

≥3k2 − 1 + 0 + k − 1

=
2k+1∑
i=k+2

(2k + 2− i)d∗(vi).

Suppose n = k + 5 and k ≥ 3. Then t ≥ k − 3. If t = k − 3, then T kk+5
∼= P k

k+5. That

is, Ψ(T kn ; v) is minimized when T kk+5
∼= P k

k+5. Hence Ψ(T kk+5; v) ≥ Ψ(P k
k+5; v) =

∑l+k+1
i=k+2(2k+

2− i)d∗(vi) with equality holding if and only if T kk+5
∼= P k

k+5.

Suppose that the lemma is true for T km where k + 5 ≤ m < n and consider T kn . Let

|X−v′| = l′. Now kt+
∑k

i=1 |N(u′i)∩U | is minimized when |N(v′)∩Y | is as large as possible

and t is as small as possible.

Suppose k + 6 ≤ n ≤ 2k + 1. Then l = n− k − 1, |Y | = 0, and l′ = l − 1. As n ≤ 2k + 1,

d∗(vi+k+1) = d∗(vi+k+1) − 1 for 1 ≤ i ≤ l′. Now t ≥ k − (n − 1 − (k + 1)) = 2k + 2 − n. If

t = 2k + 2 − n, then |N(u′i) ∩ U | is minimized when u′j ∈ N(u′i) for t + 1 ≤ j < i. Hence

|N(u′i) ∩ U | ≥ k + t+ 1− i for t+ 1 ≤ i ≤ k. Thus

k∑
i=t+1

|N(u′i) ∩ U | ≥
k∑

i=t+1

(k + t− 1− i) =
k∑

i=2k+3−n

(3k + 3− n− i)

=
n−1∑
i=k+2

(2k + 2− i)

with equality holding if and only if T kn
∼= P k

n . Hence by induction and (7),

Ψ(T kn ; v) =Ψ(T kn − v′; v) + d(v′)t+
k∑

i=t+1

|N(u′i) ∩ U |
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≥Ψ(P k
n−1; v) + d(v′)t+

k∑
i=t+1

|N(u′i) ∩ U |

=
l−1∑
i=1

(k + 1− i)d∗(vi+k+1) + d(v′)t+
k∑

i=t+1

|N(u′i) ∩ U |

=
n−1∑
i=k+2

(2k + 2− i)(d∗(vi)− 1) + d∗(vn)(2k + 2− n)

+
n−1∑
i=k+2

(2k + 2− i)

=
n∑

i=k+2

(2k + 2− i)d∗(vi)

with equality holding if and only if T kn
∼= P k

n .

Suppose k+ 6 ≤ 2k+ 2 ≤ n ≤ 3k+ 1. Then k ≤ l′ ≤ l ≤ l′+ 1. As Y ∩ ({v}∪U ∪X) = ∅,

|N(v′)∩Y | ≤ n− 1− (2k+ 1) = n− (2k+ 2) and t ≥ 0 with equality if and only if T kn
∼= P k

n .

Hence Ψ(T kn ; v) is minimized when |N(v′)∩Y | = n− (2k+ 2) and t = 0. That is, u′i ∈ Y for

k−(n−(2k+2)) = 3k+3−n ≤ i ≤ k and |N(u′i)∩U | ≥ 3k+3−n− i for 1 ≤ i ≤ 3k+2−n.

In this case, d∗(vi) = d∗(vi) for k + 2 ≤ i ≤ n− k, and

k∑
i=t+1

|N(u′i) ∩ U | =
3k+2−n∑
i=1

(3k + 3− n− i) =
2k+2∑

i=n−k+1

(2k + 2− i).

Hence by induction and (7),

Ψ(T kn ; v) =Ψ(T kn − v′; v) + d(v′)t+
k∑

i=t+1

|N(u′i) ∩ U |

≥Ψ(P k
n−1; v) + d(v′)t+

k∑
i=t+1

|N(u′i) ∩ U |

=
l′∑
i=1

(k + 1− i)d∗(vi+k+1) + d(v′)t+
k∑

i=t+1

|N(u′i) ∩ U |

≥
n−k∑
i=k+2

(2k + 2− i)d∗(vi) +
2k+2∑

i=n−k+1

(2k + 2− i)(d∗(vi)− 1)
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+ d∗(vn)(2k + 2− n) +
2k+2∑

i=n−k−1

(2k + 2− i)

=
n∑

i=k+2

(2k + 2− i)d∗(vi)

with equality holding if and only if T kn
∼= P k

n .

Suppose k + 6 ≤ 3k + 2 ≤ n. Let G′ = T kn − v′. Then by induction and (7),

Ψ(T kn ; v) =Ψ(G′; v) + kt+
k∑

i=t+1

|N(u′i) ∩ U |

≥
2k+1∑
i=k+2

(2k + 2− i)d∗(vi) + kt+
k∑

i=t+1

|N(u′i) ∩ U |

with equality holding if and only if G[N(No(u1)) ∪N(No(u2)) ∪ . . .

∪N(No(uk))] ∼= G[NG′(No(u1))∪NG′(No(u2))∪ . . .∪NG′(No(uk))] ∼= P k
3k+1. Note that t ≥ 0

and |N(v′) ∩ Y | ≤ k with both equalities holding if and only if G[N(No(u1))∪ N(No(u2)) ∪

. . . ∪N(No(uk))] ∼= P k
3k+1, and note that if |N(v′) ∩ Y | = k then∑k

i=1 |N(u′i) ∩ U | = 0. Hence

Ψ(T kn ; v) ≥
2k+1∑
i=k+2

(2k + 2− i)d∗(vi)

with equality holding if and only if G[N(No(u1)) ∪N(No(u2)) ∪ . . . ∪N(No(uk))] ∼= P k
3k+1.

Hence, by the Principle of Mathematical Induction, Ψ(T kn ; v) ≥
∑l

i=1(k+ 1− i)d∗(vi+k+1),

and equality is reached if and only if G[N(N0(u1)) ∪ N(N0(u2)) ∪ . . . ∪ N(N0(uk))] ∼= P k
r

where r = min(n, 3k + 1). �

Lemma 5.8. Let T kn be a k-tree on n ≥ k + 4 vertices and v ∈ S1(T kn ) with N(v) = U =

{u1, . . . , uk}. Then:

(i) Ψ(T kn ; v) ≥ 1
6
(n− k − 1)(2nk + 5n− n2 + 5k2 − 5k − 6) for k + 4 ≤ n ≤ 2k
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(ii) Ψ(T kn ; v) ≥ 1
6
(n3 − 9n2 − 6n2 + 27nk2 + 36nk + 6n − 21k3 − 24k2 − 33k − 6) for

2k + 1 ≤ n ≤ 3k

(iii) Ψ(T kn ; v) ≥ k3 + k2 for n ≥ max(5, 3k + 1).

And for n ≥ k + 5, equality is reached if and only if G[N(N0(u1)) ∪ N(N0(u2))∪ . . . ∪

N(N0(uk))] ∼= P k
r where r = min(n, 3k + 1).

Proof. First consider the two k-trees on k + 3 vertices: P k
k+3 and Sk,3. It is routine to

determine that Ψ(P k
k+3; v) = Ψ(Sk,3; v) = 2k2.

Suppose n = k + 4, and suppose k ∈ {1, 2}. Then T kk+4 − v′ ∈ {P k
k+3, Sk,3}, l ≥ k, t ≥ 0,

and
∑k

i=1 f(u′i) ≤ k2 − 1. Hence by (7)

Ψ(T kk+4; v) =Ψ(T kk+4 − v′; v) + kt+
k∑
i=1

f(u′i)

≥2k2 + k2 − 1 = 2k2 + k2 − k + 1.

Note that when k = 1 and n = k + 4, 3k2 − 1 = k3 + k2, and when k = 2 and n = k + 4,

3k2− 1 = 1
6
(n3− 9n2− 6n2 + 27nk2 + 36nk+ 6n− 21k3− 24k2− 33k− 6), and so the lemma

holds.

Suppose that n = k + 4 and k ≥ 3. Then l = 3 and |Y | = 0. Hence there exists

v′ ∈ S1(T kn ) ∩ X, and k − 2 ≤ t ≤ k. If t = k − 2 (respectively t = k), then T kk+4
∼= P k

k+4

(T kk+4
∼= Sk,4) and Ψ(T kk+4; v) = 3k2 − 1 (Ψ(T kk+4; v) = 3k2). Suppose that t = k − 1. Then

T kk+4 ∈ {G1, G2, G3} where G1, G2, and G3 are defined as follows. Let G1 and G2 be k-trees

such that Gi − v ∼= P k
k+3 for 1 ≤ i ≤ 2, and let x ∈ S1(Gi − v′) for 1 ≤ i ≤ 2 such that

x ∈ S1(G1) and x /∈ S1(G2). Let G3 be a k-tree such that G3 − v′ ∼= Sk,3, but G3 6∼= Sk,4.

Then Ψ(G1; v) = 3k2 + k − 1, Ψ(G2; v) = 3k2 − 1, and Ψ(G3; v) = 3k2 + k − 1. By these

calculations, we see that Ψ(T kk+4; v) ≥ 3k2 − 1. Note if k = 3, then n = 7 = 2k + 1 and
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3k2 − 1 = k(n− 2k− 1)(4k + 2− n) + 1
6
(n− 3k− 1)(n2 − 5n− 9k2 + 3k + 6). If k ≥ 4, then

3k2 − 1 = 1
6
(n− k − 1)(2nk + 5n− n2 + 5k2 − 5k − 6).

Suppose that n ≥ k + 5. Then by Lemma 5.7, Ψ(T kn ; v) ≥
∑l+k+1

i=k+2(2k + 2 − i)d∗(vi).

According to Table 1,

(i) Ψ(T kn ; v) ≥ 1
6
(n− k − 1)(2nk + 5n− n2 + 5k2 − 5k − 6) for k + 4 ≤ n ≤ 2k

(ii) Ψ(T kn ; v) ≥ 1
6
(n3 − 9n2 − 6n2 + 27nk2 + 36nk + 6n − 21k3 − 24k2 − 33k − 6) for

2k + 1 ≤ n ≤ 3k

(iii) Ψ(T kn ; v) ≥ k3 + k2 for n ≥ 3k + 1.

Furthermore, by Lemma 5.7, for n ≥ k + 5 equality is reached if and only if G[N(N0(u1)) ∪

N(N0(u2)) ∪ . . . ∪N(N0(uk))] ∼= P k
r where r = min(n, 3k + 1). �

Let J k be the set of k-trees T kn with a vertex v ∈ S1(T kn ) and vertex set P = {p|p ∈

V (T kn ), |N(p)∩N(v)| = k} such that V (T kn )−N [v]−P is an independent set. Then we may

state the following lemma.

Lemma 5.9. Let T kn be a k-tree on n ≥ k + 1 vertices. Then Ψ(T kn ; v) ≤

(n− k − 1)k2 with equality holding if and only if T kn ∈ J k.

Proof. Let P = {p1, . . . , pr} = {p ∈ V (T kn )||N(p) ∩ U | = k} and Q = {q1, . . . , qs} =

V (T kn ) − P − N [v]. Order the vertices of Q such that |N(qi) ∩ P | ≥ |N(qi+1) ∩ P | for

1 ≤ i ≤ t− 1. Then |P |+ |Q| = r + s = n− k − 1.

Proceed by induction on |Q| = s. If s = 0, then Ψ(T kn ; v) = rk2 = (n− k− 1)k2 as for any

p ∈ P , p ∈ N(ui) for 1 ≤ i ≤ k. Suppose that for k-trees with |Q| = s′ such that 0 < s′ < s,

Ψ(T kn ; v) ≤ (n − k − 1)k2 with equality holding if and only if T kn ∈ J k; consider T kn with

|Q| = s.
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As |Q| 6= 0, there exists v′ ∈ S1(T kn ) ∩ Q. Let N(v′) = U ′ = {u′1, . . . , u′k}. Arrange

the vertices of U ′ such that u′i ∈ U for 1 ≤ i ≤ t and |N(u′i) ∩ U | ≥ |N(u′i+1) ∩ U | for

t+ 1 ≤ i ≤ k. Then T kn − v′ is a k-tree with |V (T kn − v′)− P −N [v]| = s− 1. By induction,

Ψ(T kn − v′; v) ≤ (n− k − 2)k2 with equality holding if and only if T kn − v′ ∈ J k.

Now |N(u′i) ∩ U | ≤ k − 1 for t + 2 ≤ i ≤ k. Hence k|U ′ ∩ U | +
∑k

i=t+1 |N(u′i) ∩ U | is

maximized when |U ′ ∩ U | is maximized. By (7),

Ψ(T kn ; v) = Ψ(T kn − v′; v) + k|U ′ ∩ U |+
k∑

i=t+1

|N(u′i) ∩ U |.

Suppose T kn /∈ J k, then |U ′ ∩ U | ≤ k − 1. If |U ′ ∩ U | = k − 1, then |N(u′k) ∩ U | ≤ k − 1

otherwise T kn ∈ J k, and so if |U ′∩U |, then k|U ′∩U |+
∑k

i=t+1 |N(u′i)∩U | ≤ k(k−1)+k−1 =

k2 − 1. Hence

Ψ(T kn ; v) = Ψ(T kn − v′; v) + k|U ′ ∩ U |+
k∑

i=t+1

|N(u′i) ∩ U |

≤ (n− k − 2)k2 + k(k − 1) + k − 1 = (n− k − 1)k2 − 1.

Suppose then that T kn ∈ J k, then T kn − v′ ∈ J k, |U ′ ∩U | = k, and
∑k

i=t+1 |N(u′i) ∩U | = 0

as t = k. Hence

Ψ(T kn ; v) =Ψ(T kn − v′; v) + k|U ′ ∩ U |

≤(n− k − 2)k2 + k2 = (n− k − 1)k2.

Hence by induction, the lemma holds. �

5.2. The Zagreb Indices of the k-path and the k-star.

The following lemmas may be deduced through fairly routine calculations by induction on

n.
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Lemma 5.10. Let P k
n be the k-path on n ≥ k + 3 vertices. Then

M1(P k
n ) =2nk(n− 2)− 1

3
(n(n− 1)(n− 2))− 1

3
(k(k + 1)(2k − 5))

for k + 3 ≤ n ≤ 2k and k ≥ 3,

M1(P k
n ) =4nk2 − 1

3
(k(10k − 1)(k + 1)) for n ≥ max(4, 2k + 1).

Lemma 5.11. Let Sk,n−k be the k-star on n ≥ k + 1 vertices. Then M1(Sk,n−k) = n2k +

(k2 − 2k)n− k3 + 1.

For the second Zagreb indices, we have the following:

Lemma 5.12. Let P k
n be the k-path on n ≥ k + 3 vertices. Then

M2(P k
n ) =

1

2
(k4 + 9k3 + 12k2 − 8k + 2), for n = k + 3,

M2(P k
n ) =

1

24
((10− 4k)n3 − n4 + (54k2 − 18k − 23)n2−

(44k3 + 66k2 − 54k − 14)n+ 7k4 + 38k3 + 5k2 − 26k)

for k + 4 ≤ n ≤ 2k,

M2(P k
n ) =

1

24
(n4 − (12k + 6)n3 + (54k2 + 54k + 11)n2−

(12k3 + 162k2 + 66k + 6)n− (25k4 − 70k3 − 109k2 − 14k))

for 2k + 1 ≤ n ≤ 3k − 1,

M2(P k
n ) =

1

12
(48nk3 − 53k4 − 46k3 + 5k2 − 2k) for n ≥ max(5, 3k).

Proof. We will proceed by induction on n. By simple calculations, M2(P k
k+3) = 1

2
(k4 + 9k3 +

12k2 − 8k + 2), and the lemma holds true. Suppose that for k-paths of an order smaller

than n ≥ k + 4 the lemma holds, and consider P k
n . Let T kn be a k-tree on n vertices, and
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let v ∈ S1(T kn ) with N(v) = {u1, . . . , uk}. Let G′ ∼= T kn − v, which is a k-tree. Note that

dG′(ui) = d(ui)− 1 for 1 ≤ i ≤ k and
∑

uiuj ,i 6=j[(dG′(ui) + 1)(dG′(uj) + 1)− dG′(ui)dG′(uj)] =∑
uiuj ,i 6=j(dG′(ui)+dG′(uj)+1) =

∑
uiuj ,i 6=j(d(ui)+d(uj)−1) =

∑
uiuj ,i 6=j(d(ui)+d(uj))−

(
k
2

)
.

Thus

M2(T kn ) =M2(G′) + d(v)

(
k∑
i=1

d(ui)

)
+

(
k∑
i=1

(d(ui)− dG′(ui))

) ∑
x∈No(ui)

d(x))


+

∑
uiuj ,i 6=j

[(dG′(ui) + 1)(dG′(uj) + 1)− dG′(ui)dG′(uj)]

=M2(G′) + k
k∑
i=1

d(ui) + Ψ(T kn ; v) +
∑

uiuj ,i 6=j

(d(ui) + d(uj))−
(
k

2

)

=M2(G′) + k
k∑
i=1

d(ui) + Ψ(T kn ; v) + (k − 1)
k∑
i=1

d(ui)−
(
k

2

)

=M2(G′) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)
,(8)

and so for P k
n ,

(9) M2(P k
n ) = M2(P k

n−1) + (2k − 1)
k∑
i=1

d(ui) + Ψ(P k
n ; v)−

(
k

2

)
.

As a special case, consider when k = 1 and n = 5. In this case, clearly M2(P k
n ) = 12 =

1
12

(48nk3 − 53k4 − 46k3 + 5k2 − 2k).

Let f1 = 4n3 + 12n2k − 36n2 − 108nk2 + 24nk + 80n + 44k3 + 120k2 − 68k − 48 and

f2 = −4n3 + 36n2k + 24n2 − 108nk2 − 144nk − 44n− 12k3 − 216k2 − 132k − 24.

Suppose that k + 4 ≤ n ≤ 2k which implies k ≥ 4. Then, by (9), Lemma 5.5, and

Lemma 5.8,

M2(P k
n ) =M2(P k

n−1) + (2k − 1)
k∑
i=1

d(ui) + Ψ(P k
n ; v)−

(
k

2

)
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=M2(P k
n−1) + (2k − 1)(2kn− 1

2
(k(k + 5) + (n− 1)(n− 2))

+
1

6
(n− k − 1)(2nk + 5n− n2 + 5k2 − 5k − 6) +

1

2
(k(k − 1))

=M2(P k
n−1)− 1

24
f1

=
1

24
(−(n− 1)4 − (4k − 10)(n− 1)3 + (54k2 − 18k − 23)(n− 1)2

− (44k3 + 66k2 − 54k − 14)(n− 1) + 7k4 + 38k3 + 5k2 − 26k)

− 1

24
f1

=
1

24
(−(n4 − 4n3 + 6n2 − 4n+ 1)− (4k − 10)(n3 − 3n2 + 3n− 1)

+ (54k2 − 18k − 23)(n2 − 2n+ 1)− (44k3 + 66k2 − 54k

− 14)(n− 1) + 7k4 + 38k3 + 5k2 − 26k)− 1

24
f1

=
1

24
(−n4 − (4k − 10)n3 + (54k2 − 18k − 23)n2 − (44k3 + 66k2

− 54k − 14)n+ 7k4 + 38k3 + 5k2 − 26k) +
1

24
f1 −

1

24
f1

=
1

24
((10− 4k)n3 − n4 + (54k2 − 18k − 23)n2−

(44k3 + 66k2 − 54k − 14)n+ 7k4 + 38k3 + 5k2 − 26k).

Suppose that n = 2k + 1 ≥ k + 4 which implies k ≥ 3. Then, by (9), Lemma 5.5, and

Lemma 5.8,

M2(P k
2k+1) =M2(P k

2k) + (2k − 1)
k∑
i=1

d(ui) + Ψ(P k
2k+1; v)−

(
k

2

)

=M2(P k
2k) + (2k − 1)(k2 +

1

2
(k(k + 1))

− 1

6
(5k + 6k2 + k3 − (3k + 3k2)(2k + 1))− 1

2
(k(k − 1))

63



=
1

24
(−(2k)4 − (4k − 10)(2k)3 + (54k2 − 18k − 23)(2k)2 − (44k3 + 66k2

− 54k − 14)2k + 7k4 + 38k3 + 5k2 − 26k) +
1

24
(72k3 − 24k2)

− 1

24
(20k + 24k2 + 4k3) +

1

24
(24k3 + 36k2 + 12k)

=
1

8
(29k4 + 2k3 + 3k2 − 2k)

=
1

24
(n4 − (12k + 6)n3 + (54k2 + 54k + 11)n2−

(12k3 + 162k2 + 66k + 6)n− (25k4 − 70k3 − 109k2 − 14k)).

Suppose that 2k + 2 ≤ n ≤ 3k − 1 which implies k ≥ 3. Then, by (9), Lemma 5.5, and

Lemma 5.8,

M2(P k
n ) =M2(P k

n−1) + (2k − 1)
k∑
i=1

d(ui) + Ψ(P k
n ; v)−

(
k

2

)

=M2(P k
n−1) + (2k − 1)(k2 +

1

2
k(k + 1)) +

1

6
(n3 − 9n2

− 6n2 + 27nk2 + 36nk + 6n− 21k3 − 24k2 − 33k − 6)

− 1

2
(k(k − 1))

=M2(P k
n−1)− 1

24
f2

=
1

24
((n− 1)4 − (12k + 6)(n− 1)3 + (54k2 + 54k + 11)(n− 1)2

− (12k3 + 162k2 + 66k + 6)(n− 1)− 25k4 + 70k3 + 109k2 + 14k)

− 1

24
f2

=
1

24
((n4 − 4n3 + 6n2 − 4n+ 1)− (12k + 6)(n3 − 3n2 + 3n− 1)

+ (54k2 + 54k + 11)(n2 − 2n+ 1)− (12k3 + 162k2 + 66k

+ 6)(n− 1)− 25k4 + 70k3 + 109k2 + 14k)− 1

24
f2
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=
1

24
(n4 − (12k + 6)n3 + (54k2 + 54k + 11)n2 − (12k3

+ 162k2 + 66k + 6)n− 25k4 + 70k3 + 109k2 + 14k) +
1

24
f2 −

1

24
f2

=
1

24
(n4 − (12k + 6)n3 + (54k2 + 54k + 11)n2−

(12k3 + 162k2 + 66k + 6)n− (25k4 − 70k3 − 109k2 − 14k)).

Suppose that n = 3k ≥ k + 4 which implies k ≥ 2. Then, by (9), Lemma 5.5, and

Lemma 5.8,

M2(P k
3k+1) =M2(P k

3k) + (2k − 1)
k∑
i=1

d(ui) + Ψ(P k
3k+1; v)−

(
k

2

)

=M2(P k
3k−1) + (2k − 1)(k2 +

1

2
k(k + 1)) +−k(1− k)(2 + k)

+ (
1

6
(−6− 3k + 9k2 + 15k − 9k2)− 1

2
(k(k − 1))

=M2(P k
3k−1) + 4k3 − 1

=
1

24
((3k − 1)4 − (12k + 6)(3k − 1)3 + (54k2 + 54k + 11)(3k − 1)2

− (12k3 + 162k2 + 66k + 6)(3k − 1)− (25k4 − 70k3 − 109k2

− 14k)) + 4k3 − 1

=
1

12
(91k4 − 46k3 + 5k2 − 2k)

=
1

12
(48nk3 − 53k4 − 46k3 + 5k2 − 2k).

Suppose n ≥ max(6, 3k + 1). Then, by (9), Lemma 5.5, and Lemma 5.8,

M2(P k
n ) =M2(P k

n−1) + (2k − 1)
k∑
i=1

d(ui) + Ψ(P k
n ; v)−

(
k

2

)

=M2(P k
n−1) + (2k − 1)(k2 +

1

2
k(k + 1)) + k3 + k2 − 1

2
(k(k − 1))
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=M2(P k
n−1) + 4k3

=
1

12
(48(n− 1)k3 − 53k4 − 46k3 + 5k2 − 2k) + 4k3

=
1

12
(48nk3 − 53k4 − 46k3 + 5k2 − 2k).

Thus by the principle of mathmatical induction, the lemma is verified. �

The following lemma follows from direct calculation and can be easily verified through

induction.

Lemma 5.13. Let Sk,n−k be the k-star on n ≥ k + 1 vertices. Then

M2(Sk,n−k) =
1

2
((3k2 − k)n2 − (2k3 + 4k2 − 2k)n+ k(2k − 1)(k + 1)).

5.3. Sharp Upper and Lower Bounds for M1 of k-trees.

In this section, we determine the upper and lower bounds of M1 of k-trees, and the

corresponding extremal graphs are characterized.

Theorem 5.14. Let T kn be a k-tree on n ≥ k vertices. Then M1(P k
n ) ≤M1(T kn ), and equality

is reached if and only if T kn
∼= P k

n .

Proof. For k ≤ n ≤ k + 1, T kn
∼= Kn, and M1(Kn) = n(n − 1)2. Note that in this case,

Kn
∼= P k

n . If n = k+2, then T kn
∼= P k

k+2, which is a k-clique bound by two simplicial vertices.

Hence M1(P k
k+2) = M1(T kk+2). Suppose n = k + 3. Then T kk+3 ∈ {P k

k+3, Sk,3}. By routine

calculations, M1(P k
k+3) = k3 + 7k2 + 4k− 2 and M1(Sk,3) = k3 + 7k2 + 4k, and so the lemma

holds.

We now use induction on n ≥ k + 4. If T kn
∼= P k

n , we are done. Suppose, then, that

T kn 6∼= P k
n , and let v ∈ S1(T kn ) be such that N(v) = {u1, . . . , uk} and d(u1) + . . .+ d(uk) is as
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small as possible. Consider G′ = T kn − v. By the choice of v, if T kn 6∼= P k
n then G′ 6∼= P k

n−1.

Now,

M1(T kn ) =M1(G′) + (d(v))2 +
(
(d(u1)2 − (dG′(u1))2

)
+ . . .

+
(
(d(uk)

2 − (dG′(uk))
2
)

=M1(G′) + k2 +
(
(d(u1)2 − (d(u1)− 1)2

)
+ . . .

+
(
(d(uk)

2 − (d(uk)− 1)2
)
.

Thus,

(10) M1(T kn ) = M1(G′) + k2 + 2
k∑
i=1

d(ui)− k.

Suppose k + 4 ≤ n ≤ 2k which implies k ≥ 4. Then from (10), Lemma 5.5, and

Lemma 5.10,

M1(T kn ) =M1(G′) + k2 + 2
k∑
i=1

d(ui)− k

>M1(P k
n−1) + k2 + 4kn− k(k + 5)− (n− 1)(n− 2)− k

=2k(n− 1)(n− 3)− 1

3
((n− 1)(n− 2)(n− 3) + 3(n− 1)(n− 2))

− 1

3
(k(k + 1)(2k − 5)) + k2 + 4kn− k(k + 5)− k

=2nk(n− 2)− 1

3
(n(n− 1)(n− 2))− 1

3
(k(k + 1)(2k − 5)) = M1(P k

n ).

Suppose n = 2k + 1 > k + 3, which implies k ≥ 3. Then from (10), Lemma 5.5, and

Lemma 5.10,

M1(T kn ) =M1(G′) + k2 + 2
k∑
i=1

d(ui)− k

>M1(P k
n−1) + k2 + 2k2 + k(k + 1)− k
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=2k(n− 1)(n− 3)− 1

3
(n− 1)(n− 2)(n− 3)− 1

3
k(k + 1)(2k − 5)

+ 4k2

=2k(2k)(2k − 2)− 1

3
(2k(2k − 1)(2k − 2))− 1

3
(2k3 − 3k2 − 5k) + 4k2

=8k3 + 4k2 − 1

3
(10k3 + 9k2 + k)

=4nk2 − 1

3
k(10k − 1)(k + 1) = M1(P k

n ).

Suppose n ≥ 2k + 2. Then from (10), Lemma 5.5, and Lemma 5.10,

M1(T kn ) =M1(G′) + k2 + 2
k∑
i=1

d(ui)− k

>M1(P k
n−1) + k2 + 2k2 + k(k + 1)− k

=4(n− 1)k2 − 1

3
(k(10k − 1)(k + 1)) + 4k2

=4nk2 − 1

3
k(10k − 1)(k + 1) = M1(P k

n ).

Thus, the theorem is true for all n ≥ k by the Principle of Mathematical Induction. �

Theorem 5.15. Let G be k-degenerate on n ≥ k vertices. Then M1(G) ≤ M1(Sk,n−k) with

equality holding if and only if G ∼= Sk,n−k.

Proof. We will proceed by induction on n. If n ∈ {k, k + 1}, then M1(G) ≤ M1(Kn) with

equality holding if and only if G ∼= Kn. Note Kn
∼= Sk,n−k in this case. Suppose that

the theorem holds for k-degenerate graphs of order smaller than n and consider G, a k-

degenerate graph on n vertices. Let v ∈ V (G) such that d(v) = δ with N(v) = {u1, . . . , uδ}

and G′ = G − v. Then G′ is k-degenerate. Hence by induction, (10), Lemma 5.6, and
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Lemma 5.11,

M1(G) =M1(G′) + k2 + 2
δ∑
i=1

d(ui)− k

≤M1(Sk,n−1−k) + k2 + 2
δ∑
i=1

d(ui)− k

≤(n− 1)2k + (k2 − 2k)(n− 1)− k3 + 1 + k2 + 2k(n− 1)− k

=n2k + (k2 − 2k)n− k3 + 1 = M1(Sk,n−k).

Here equality holds if and only if δ(G) = k,
∑δ(G)

i=1 d(ui) = k(n− 1) and G′ ∼= Sk,n−1−k i.e.

G ∼= Sk,n−k. �

Since all k-trees are k-degenerate, the following corollary is immediate.

Corollary 5.16. Let T kn be a k-tree on n vertices. Then M1(T kn ) ≤M1(Sk,n−k) with equality

holding if and only if T kn
∼= Sk,n−k.

5.4. Sharp Upper and Lower Bounds for M2 for k-trees.

In this section, we determine upper and lower bounds of M2 for k-trees. Also, the corre-

sponding extremal graphs will be characterized.

Theorem 5.17. Let T kn be a k-tree on n ≥ k + 3 vertices. Then M2(P k
n ) ≤ M2(T kn ), and

equality is reached if and only if T kn
∼= P k

n .

Proof. We will proceed by induction on n. There are just two k-trees on k + 3 vertices,

which are P k
k+3 and Sk,n−k. By simple calculations, M2(P k

k+3) = 1
2
(k4 + 9k3 + 12k2 − 8k+ 2)

and M2(Sk,n−k) = 1
2
(k4 + 9k3 + 12k2 − 4k). Thus, the theorem holds true. Suppose that for

k-trees of an order smaller than n the theorem holds, and consider T kn . We may assume that
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T kn 6∼= P k
n . Choose v ∈ S1(T kn ) with N(v) = {u1, . . . , uk} such that

∑k
i=1 d(ui) is minimal.

Then G′ ∼= T kn − v, a k-tree, is not isomorphic to P k
n−1 by choice of v. Hence by (8),

M2(T kn ) = M2(G′) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)
.

Suppose as a special case that n = 5 and k = 1. Then, by (9), Lemma 5.5, Lemma 5.8,

and Lemma 5.12

M2(T 1
5 ) =M2(G′) + d(u1) + Ψ(T 1

5 ; v)

>M2(P 1
4 ) + 2 + 2 = 12 = M2(P 1

5 ),

as can be verified in the proof of Lemma 5.12.

Suppose then that k + 4 ≤ n ≤ 2k which implies k ≥ 4. Then, by (9), Lemma 5.5,

Lemma 5.8, and Lemma 5.12,

M2(T kn ) =M2(G′) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)

>M2(P k
n−1) + (2k − 1)(2kn− 1

2
(k(k + 5) + (n− 1)(n− 2))

+
1

6
(n− k − 1)(2nk + 5n− n2 + 5k2 − 5k − 6) +

1

2
(k(k − 1))

=M2(P k
n ),

as can be verified in the proof of Lemma 5.12.

Suppose that n = 2k + 1 ≥ k + 4 which implies k ≥ 3. Then, by (9), Lemma 5.5,

Lemma 5.8, and Lemma 5.12,

M2(T kn ) =M2(G′) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)

>M2(P k
2k) + (2k − 1)(k2 +

1

2
k(k + 1))
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− 1

6
(5k + 6k2 + k3 − (3k + 3k2)(2k + 1))− 1

2
(k(k − 1))

=
1

8
(29k4 + 2k3 + 3k2 − 2k) = M2(P k

2k+1),

as can be verified in the proof of Lemma 5.12.

Suppose that 2k + 2 ≤ n ≤ 3k − 1 which implies k ≥ 3. Then, by (9), Lemma 5.5,

Lemma 5.8, and Lemma 5.12,

M2(T kn ) =M2(G′) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)

>M2(P k
n−1) + (2k − 1)(k2 +

1

2
k(k + 1)) +

1

6
(n3 − 9n2

− 6n2 + 27nk2 + 36nk + 6n− 21k3 − 24k2 − 33k − 6)

− 1

2
(k(k − 1))

=M2(P k
n ),

as can be verified in the proof of Lemma 5.12.

Suppose that n = 3k ≥ k+ 4 which implies k ≥ 2. Then, by (9), Lemma 5.5, Lemma 5.8,

and Lemma 5.12,

M2(T kn ) =M2(G′) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)

>M2(P k
3k−1) + (2k − 1)(k2 +

1

2
(k(k + 1)) +−k(1− k)(2 + k)

+ (
1

6
(−6− 3k + 9k2 + 15k − 9k2)− 1

2
(k(k − 1))

=M2(P k
3k),

as can be verified in the proof of Lemma 5.12.
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Suppose n ≥ max(6, 3k + 1). Then, by (9), Lemma 5.5, Lemma 5.8, and Lemma 5.12,

M2(T kn ) =M2(G′) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)

>M2(P k
n−1) + (2k − 1)(k2 +

1

2
k(k + 1)) + k3 + k2 − 1

2
(k(k − 1))

=M2(P k
n ),

as can be verified in the proof of Lemma 5.12.

Thus by the Principle of Mathematical Induction, M2(P k
n ) ≤M2(T kn ) with equality holding

if and only if T kn
∼= P k

n . �

Theorem 5.18. Let T kn be a k-tree on n ≥ k vertices. Then M2(T kn ) ≤ M2(Sk,n−k) with

equality holding if and only if T kn
∼= Sk,n−k.

Proof. We will proceed by induction on n. If n ∈ {k, k + 1}, then M2(T kn ) ≤ M2(Kn) with

equality holding if and only if G ∼= Kn. Note Kn
∼= Sk,n−k in this case. Suppose that

the theorem holds for k-trees of smaller order and consider T kn , a k-tree on n vertices. Let

v ∈ S1(T kn ) with N(v) = {u1, . . . , uk} and G′ = T kn − v, which is a k-tree. By (8),

M2(T kn ) = M2(G′) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)
.

Thus by induction, Lemma 5.6, Lemma 5.9, and Lemma 5.13, we have

M2(T kn ) =M2(G′) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)

≤M2(Sk,n−1−k) + (2k − 1)(nk − k) + (n− k − 1)k2 − 1

2
(k − 1)k
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=
1

2
((3k2 − k)(n− 1)2 − (2k3 + 4k2 − 2k)(n− 1) + k(2k − 1)(k + 1))

+ (2k − 1)(nk − k) + (n− k − 1)k2 − 1

2
(k − 1)k

=M2(Sk,n−k) + 2nk2 − 2k2 − nk + k +
1

2
(−6nk2 + 3k2 + 2nk − k)

+
1

2
(2k3 + 4k2 − 2k) + nk2 − k3 − k2 +

1

2
(k − k2)

=M2(Sk,n−k).

Here equality is obtained if and only if G′ ∼= Sk,n−1−k and T kn ∈ J k. Hence equality holds

when T kn
∼= Sk,n−k. Thus the theorem holds by the Principle of Mathematical Induction. �

The upper bound for M1 values given in Theorem 5.15 applies to k-degenerate graphs, a

generalization of k-trees. However the proof techniques presented here are not sufficient to

demonstrate similar results for a lower bound of M1 values of maximally k-degenerate graphs

and an upper bound of M2 values of k-degenerate graphs. It may be interesting to show

that for a maximally k-degenerate graph G and a k-degenerate graph G′, Mi(P
k
n ) ≤ Mi(G)

for 1 ≤ i ≤ 2 and M2(G′) ≤M2(Sk,n−k).
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6. The Zagreb Indices of Tree-Like k-trees

In 2010 Hou et al. characterized the Zagreb indices for maximal outerplanar graphs and

determined the unique maximal outerplanar graph that obtains minimum M1, M2 values

respectively, as well as maximum M1, M2 values respectively. As mentioned in Chapter 5,

they determined the following:

Theorem 6.1. [29] Let G be a maximal outerplaner graph on n ≥ 4 vertices. Then

(i) M1(G) ≥ 16n− 38, with equality holding if and only if G ∼= P 2
n .

(ii) M2(G) ≥ 32n− 100, with equality holding if and only if G ∼= P 2
n .

Theorem 6.2. [29] Let G be a maximal outerplanar graph on n ≥ 4 vertices. Then

(i) When n = 6, M1(G) ≤ 60 with equality if and only if G ∼= S2
6 or D2

6.

(ii) When n 6= 6, M1(G) ≤ n2 + 7n− 18 with equality if and only if G ∼= S2
n.

Theorem 6.3. [29] Let G be a maximal outerplanar graph on n ≥ 4 vertices.

(i) When n = 6, M2(G) ≤ 96 with equality if and only if G ∼= D2
6.

(ii) When n 6= 6, M2(G) ≤ 3n2 + n− 19 with equality if and only if G ∼= S2
n.

It has been shown that a graph G is a maximal outerplanar graph if and only if G is a

tree-like 2-tree. By making this connection, it is a natural question to generalize the works

of Hou et al. to tree-like k-trees. In Chapter 5, we deduced sharp upper and lower bounds of

M1 and M2 for k-trees and showed that the k-path (respectively the k-star) uniquely obtains

the sharp lower bound (respectively the sharp upper bound) of M1 and M2.
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P 2
6 D2

6 S2
6

Figure 10. The 2-path, 2-diamond, and 2-star on 6 vertices

As the k-path is tree-like, it is clear that the sharp lower bounds of M1 and M2 for tree-like

k-trees are obtained uniquely by the k-path. Hence, to generalize the results of Hou et al.,

we need to only consider upper bounds of M1 of M2 for tree-like k-trees.

6.1. Some Lemmas.

In this section, we give some lemmas that will be relied upon in subsequent sections.

Define Gkn to be the class of tree-like k-trees as follows: Let T kn ∈ Gkn. Then there exists a

vertex v ∈ S1(T kn ) such that for any vertex x ∈ V (T kn )− v, |N(x) ∩N(v)| ≥ k − 1.

Lemma 6.4. Let T kn be a tree-like k-tree on n ≥ k + 2 vertices and v ∈ S1(T kn ) with

N(v) = {u1, . . . , uk}. Then
∑k

i=1 d(ui) ≤ (k−1)(n−1) + (k+ 1), with equality holding when

T kn ∈ Gkn.

Proof. As v ∈ S1(T kn ), G[N(v)] ∼= Kk. By Fact 2.21 | ∩ki=1 N(ui)| = 2, so we may assume

that {v, x} = ∩ki=1N(ui) where x 6= v. There are n − (k + 2) vertices in V ′ = V (T kn ) −

{v, x, u1, u2, . . . , uk}. It is clear to see that
∑k

i=1 d(ui) attains maximality if and only if for

every y ∈ V ′, |N(y) ∩ {v1, . . . , vk}| = k − 1.

Now
∑k

i=1 d(ui) =
∑

u∈V (Tkn ) |N(v) ∩N(u)|. Thus
∑k

i=1 d(ui) = |N(v)|+ |N(v) ∩N(x)|+∑k
i=1 |N(v) ∩ N(ui)| +

∑
y∈V ′ |N(v) ∩ N(y)| ≤ 2k + k(k − 1) + (n − k − 2)(k − 1) = (k −
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1)(n− 1) + (k + 1), and equality holds if and only if |N(v) ∩N(y)| = k − 1 for each y ∈ V ′.

In other words, equality holds if and only if T kn ∈ Gkn. �

The following lemmas demonstrate the Zagreb indices for the specific tree-like k-trees, the

k-star and k-diamond and may be deduced through routine calculations.

Lemma 6.5. Let Skn the k-spiral on n vertices. Then

M1(Skn) = (k − 1)n2 + (k2 + 3)n− (k3 + k2 + 2k + 2).

Lemma 6.6. For k + 1 ≤ n ≤ 2k + 2, M1(Dk
n) = M1(Skn).

Proof. The k-diamond Dk
n is only defined for k+1 ≤ n ≤ 2k+2. Let V (Dk

n) = {v1, . . . , vk+1}

∪{u1, . . . , uj} for some j ∈ {1, . . . , k+1} where n = k+1+ j, and G[{v1, . . . , vk+1}] ∼= Kk+1.

For any u ∈ S1(Dk
n), there exists a unique vertex v ∈ V ({v1, . . . , vk}) such that v /∈ N(u).

Without loss of generality, vi /∈ N(ui) for 1 ≤ i ≤ j. Thus, d(vi) = n− 2 for 1 ≤ i ≤ j. That

is, there are j = n− (k + 1) simplicial vertices, n− (k + 1) vertices of {v1, . . . , vk} of degree

n− 2, and k + 1− (n− (k + 1)) = 2k + 2− n vertices of {v1, . . . , vk} of degree n− 1. Hence

M1(Dk
n) =(n− (k + 1))k2 + (n− (k + 1))(n− 2)2 + (2k + 2− n)(n− 1)2

=kn2 − n2 + nk2 + 3n− k3 − k2 − 2k − 2

=(k − 1)n2 + (k2 + 3)n− (k2 + 2)(k + 1) = M1(Skn).

�

Lemma 6.7. Let Skn be the k-spiral on n vertices. Then

M2(Skn) = (k2 − 1)n2 − (k3 − k2 − k − 3)n− (3k2 + 2k + 3) +

(
k − 1

2

)
(n− 1)2.
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Lemma 6.8. Let Dk
n be the k-diamond on n vertices. Then

M2(Dk
n) =

1

2
((3k2 − 3k + 1)n2 − (2k3 − 6k + 3)n− 4k2 − 2k + 2).

For the remainder of the chapter, let T kn be a tree-like k-tree such that v ∈ S1(T kn ) and

N(v) = U = {u1, . . . , uk}. Let N0(ui) = N(ui)−N [v], and let

Ψ(T kn ; v) =
∑

x∈N0(u1)

d(x) +
∑

x∈N0(u2)

d(x) + . . .+
∑

x∈N0(uk)

d(x).

Let v′ ∈ S1(T kn ) − v and N(v′) = {u′1, . . . , u′k}. Arrange the vertices of N(v′) such that

u′i ∈ N(v) for 1 ≤ i ≤ t and |N(v) ∩ N(u′i−1| ≥ |N(v) ∩ N(u′i)| for t + 1 ≤ i ≤ k. Then for

n ≥ k + 2 and v′ ∈ S1(T kn )− v,

(11) Ψ(T kn ; v) = Ψ(T kn − v′; v) + d(v′)t+
k∑

i=t+1

|N(u′i) ∩ U |.

As mentioned in Chapter 5, d(v′)t +
∑k

i=t+1 |N(u′i) ∩ U | is a summand with k summands

with at least t summands of value k and at most k− t summands of value at most k− 1. It

is clear then that d(v′)t+
∑k

i=t+1 |N(u′i) ∩ U | is maximized when t is maximized.

Lemma 6.9. Let T kn be a tree-like k-tree on k + 1 ≤ n ≤ 2k + 2 vertices. Then Ψ(T kn ; v) ≤

k2(n− k − 1) with equality holding if and only if T kn
∼= Dk

n.

Proof. Proceed by induction on the number of vertices. Suppose n = k+1, then T kn
∼= Kk+1.

Then for v ∈ S1(T kn ), Ψ(T kn ; v) = 0, and thus the theorem holds. Suppose that the theorem

is true for tree-like k-trees on k + 1 ≤ n′ < n vertices, and consider T kn , a tree-like k-tree on

n vertices.

Let v′ ∈ S1(T kn )− v. Then by (11),

Ψ(T kn ; v) = Ψ(T kn − v′; v) + d(v′)t+
k∑

i=t+1

|N(u′i) ∩ U |.
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As T kn is tree-like t ≤ k − 1. If t = k − 1, then
∑k

i=t+1 |N(u′i) ∩ U | = |N(u′k) ∩ U | ≤ k. Also

by induction, Ψ(T kn − v′; v) ≤ Ψ(Dk
n−1; v) = k2(n− k − 2). Hence

Ψ(T kn ; v) =Ψ(T kn − v′; v) + d(v′)t+
k∑

i=t+1

|N(u′i) ∩ U |

≤Ψ(Dk
n−1; v) + k(k − 1) + k

=k2(n− k − 2) + k2

=k2(n− k − 1),

with equality holding if and only if T kn − v′ ∼= Dk
n−1, t = k − 1, and |N(u′k) ∩ N(v)| = k.

Hence equality holds if and only if T kn
∼= Dk

n. By the Principle of Mathematical Induction,

the theorem holds. �

6.2. Sharp Upper Bounds of M1 of Tree-like k-trees.

In this section, we determine the upper bounds of M1 of tree-like k-trees, and the corre-

sponding extremal graphs are characterized.

Theorem 6.10. Let T kn be a tree-like k-tree on n ≥ k + 1 vertices. Then M1(T kn ) ≤ (k −

1)n2 + (k2 + 3)n − (k2 + 2)(k + 1). Equality is reached if and only if T kn ∈ {Dk
n, S

k
n}. In

particular, if n ≥ 2k + 3, then equality is reached if and only if T kn
∼= Skn.

Proof. Proceed by induction on n. If n = k+1, then T kn
∼= Kk+1, and M1(Kk+1) = (k+1)k2 =

2k2+k3−k2 = 2k2+(k−1)k2 = 2k2+(k−1)(n−1)2+(n−(k+1))(k+1)2. Suppose n = k+2.

Then T kn is a k-clique bound by two simplicial vertices. HenceM1(T kn ) = 2k2+k(k+1)2, and it

may be verified that (k−1)n2+(k2+3)n−(k3+k2+2k+2) = k3+2k2+2k2+k = 2k2+k(k+1)2.

Suppose the theorem is true for tree-like k-trees on k + 1 ≤ n′ < n vertices, and consider

T kn vertices. Let v ∈ S1(T kn ) where N(v) = {u1, . . . , uk}. Let G′ = T kn − v. By Lemma 6.5
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and the inductive hypothesis,

M1(G′) ≤M1(Skn−1)

=(k − 1)(n− 1)2 + (k2 + 2)(k + 1)

=(k − 1)n2 + (5− 2k + k2)n− (k3 + 2k2 + k + 6).

Now dG′(ui) = d(ui) − 1 for 1 ≤ i ≤ k and dG′(x) = d(x) for all x ∈ V − {u1, . . . , uk}.

Then by Lemma 6.4,

M1(T kn ) =M1(G′) + (d(v))2 +
(
(d(u1))2 − (dG′(u1))2

)
+ . . .+

(
(d(uk))

2 − (dG′(uk))
2
)

=M1(G′) +
(
(d(u1))2 − (d(u1)− 1)2

)
+ . . .+

(
(d(uk))

2 − (d(uk)− 1)2
)

=M1(G′) + k2 + 2[d(u1) + . . .+ d(uk)]− k

≤M1(Skn−1) + k2 − k + 2 ((k − 1)(n− 1) + (k + 1))

=(k − 1)n2 + (5− 2k + k2)n− (k3 + 2k2 + k + 6) + k2 − k + 2kn− 2n+ 4

=(k − 1)n2 + (k2 + 3)n− (k3 + k2 + 2k + 2).

Here, equality is reached only when G′ ∼= Skn−1 or G′ ∼= Dk
n−1, and T kn ∈ Gkn. If G′ ∼= Skn−1

and T kn ∈ Gkn, then clearly T kn
∼= Skn.

Suppose G′ ∼= Dk
n−1. If G′ ∼= Dk

2k+2 and T kn ∈ Gkn, then T kn is not tree-like. Hence n ≤ 2k+2,

and clearly T kn
∼= Dk

n. �

6.3. Sharp Upper Bounds of M2 for Tree-like k-trees.

In this section, we determine upper bounds of M2 for tree-like k-trees on less than 2k +

2 vertices and characterize the corresponding extremal graphs. Additionally, we state a

conjecture for sharp upper bounds of M2 for tree-like k-trees on at least 2k + 3 vertices.
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Theorem 6.11. Let T kn be a tree-like k-tree on k+1 ≤ n ≤ 2k+2 vertices. Then M2(T kn ) ≤

M2(Dk
n) with equality holding if and only if T kn

∼= Dk
n.

Proof. Proceed by induction on n. If n = k + 1, k + 2. Suppose that for tree-like k-trees on

k+ 1 ≤ n′ < n ≤ 2k+ 2 vertices, and let T kn be a tree-like k-tree on n ≤ 2k+ 2 vertices. Let

v ∈ S1(T kn ) and N(v) = {u1, . . . , uk}. From Chapter 5, we know that

(12) M2(T kn ) = M2(T kn − v) + (2k − 1)
k∑
i=1

d(ui) + Ψ(T kn ; v)−
(
k

2

)
.

Thus by Lemma 6.8, Lemma 6.4, and Lemma 6.9

M2(T kn ) ≤M2(Dk
n−1) + (2k − 1)((k − 1)(n− 1) + k + 1) + k2(n− k − 1)−

(
k

2

)
= M2(Dk

n−1) +
1

2
(6nk2 − 6nk + 2n− 2k3 − 3k2 + 9k − 4)

=
1

2
(3k2 − 3k + 1)(n2 − 2n+ 1)− (2k3 − 6k + 3)(n− 1)− 4k2 − 2k + 2)

+
1

2
(6nk2 − 6nk + 2n− 2k3 − 3k2 + 9k − 4)

=
1

2
(3k2 − 3k + 1)n2 − (2k3 − 6k + 3)n− 4k2 − 2k + 2)

+
1

2
((3k2 − 3k + 1)(−2n+ 1) + (2k3 − 6k + 3))+

+
1

2
(6nk2 − 6nk + 2n− 2k3 − 3k2 + 9k − 4)

= M2(Dk
n)− 1

2
(6nk2 − 6nk + 2n− 2k3 − 3k2 + 9k − 4)

+
1

2
(6nk2 − 6nk + 2n− 2k3 − 3k2 + 9k − 4)

= M2(Dk
n).

Hence, by the Principle of Mathematical Induction, the theorem holds. �

The k-diamond is only defined for k ≤ n ≤ 2k + 2 vertices. We strongly believe that for

n ≥ 2k + 3, the k-spiral uniquely obtains the strong upper bound for M2 among tree-like
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k-trees. However, the techniques presented here are not sufficient to prove that such is the

case. Instead we state the following conjecture.

Conjecture 6.12. Let T kn be a tree-like k-tree on n vertices such that T kn 6∼= Dk
n. Then

M2(T kn ) ≤M2(Skn) with equality holding if and only if T kn
∼= Skn.

We believe that the ideas presented in Chapter 7, once generalized to k-trees, will provide

a framework to prove Conjecture 6.12.
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7. Tree Genealogies

Continuing his investigation of the independence polynomials of trees in 1995, Wingard

determined sharp lower and upper bounds of fs for trees for s ≥ 0 on n vertices and charac-

terized the unique trees that obtain these bounds.

Theorem 7.1. [44] Let Tn be a tree with n vertices. Then for any s ≥ 2,
(
n−s+1

s

)
≤ fs(Tn) ≤(

n−1
s

)
.

Theorem 7.2. [44] Let Tn be a tree with n ≥ 2s vertices for s ≥ 3. If fs(Tn) =
(
n−s+1

s

)
,

then Tn ∼= Pn.

Theorem 7.3. [44] Let Tn be a tree with n vertices. If fs(Tn) =
(
n−1
s

)
for 3 ≤ s ≤ n − 1,

then Tn ∼= Sn.

P7 S7

Figure 11. The path and star on 7 vertices

As stated in Chapter 5, Das and Gutman characterized the Zagreb indices for trees and

determined the unique tree that obtains minimum M1 and M2 values respectively, as well as

maximum M1 and M2 values respectively in 2004.
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Theorem 7.4. [12, 20] Let T be any tree of order n. Then

(i) 4n− 6 ≤M1(T ) ≤ n2− n, the left equality holds if and only if T ∼= Pn, and the right

equality holds if and only if T ∼= Sn.

(ii) 4n− 8 ≤ M2(T ) ≤ n2 − 2n+ 1, the left equality holds if and only if T ∼= Pn and the

right equality holds if and only if T ∼= Sn.

From Wingard and Das and Gutman we deduce that Pn and Sn can be thought of as the

extremal trees in regards to fs, M1, and M2.

Let T be a tree. Define a starring triple r to be r = {v, u, x} where v ∈ S1(T ), u ∈ N(v),

and x ∈ V (T ) − {v, u}. Let R1(T ) be the set of starring triples of T . For r ∈ R1(T ), T (r)

is the tree with V (T (r)) = V (T ) and E(T (r)) = (E(T ) ∪ {vx})− {vu}. Let g1 : R1 → Z be

such that for r = {v, u, x} ∈ R1(T ), g1(r) = dT (x)− dT (u). If g1(r) ≥ 0, then T (r) is said to

be a 1-descendant of T . If g1(r) ≤ −2, then T (r) is said to be a 1-ancestor of T .

T T (r)

v

u x

v

u x

Figure 12. A tree T and T (r)

Theorem 7.5. Let T and T ′ be trees. Then T is an 1-ancestor of T ′ if and only if T ′ is a

1-descendant of T .

Proof. Let r = {v, u, x} be a starring triple of T , and suppose g1(r) ≥ 0. Then T (r) is a

1-descendant of T , and r′ = {v, x, u} is a starring triple of T (r). Note that T (r)(r′) ∼= T .

Now dT (r)(u) = dT (u) − 1 and dT (r)(x) = dT (x) + 1. Thus g1(r′) = dT (r)(u) − dT (r)(x) =
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dT (u)− dT (x)− 2 ≤ −2. Thus T is a 1-ancestor of T (r). The argument is reversible to show

that if T (r) is a 1-ancestor of T , then T is a 1-descendant of T (r). �

It is easy to see that any tree T 6∼= Sn has a 1-descendant. Hence there is a sequence of

trees {Ti}βi=0 such that T0
∼= T , Tβ ∼= Sn, and Ti+1 is a 1-descendant of Ti for i ≤ 0 ≤ β − 1.

Then we say that Ti is a 1i-descendant of T for 1 ≤ i ≤ β.

Now there are trees that have no 1-ancestor as in Figure 13. Hence there is a sequence of

trees {Ti}β2i=0 such that T0
∼= T , Tβ2

∼= T ′ where T ′ is a tree that has no 1-ancestor, and Ti+1

is a 1-ancestor of Ti for 0 ≤ i ≤ β2.

Figure 13. A tree with no 1-ancestor

For the tree T , we may generalize the starring triple as follows: Let r = {v, u, x} be such

that

(i) v ∈ S1(T )

(ii) the vu-path P is of length p,

(iii) for any y ∈ V (P )− {v, u}, d(y) = 2,

(iv) x ∈ V (T )− V (P ).

Let Rp(T ) be the set of such triples. For r ∈ Rp(T ), T (r) is the tree with V (T (r)) = V (T )

and E(T (r)) = (E(T ) ∪ {y′x}) − {y′u} where y′ ∈ N(u) ∩ V (P ). Define gp : Rp → Z such

that gp(r) = dT (x) − dT (u). If gp(r) ≥ 0, then T (r) is said to be a p-descendant of T . If

gp(r) ≤ −2, then T (r) is said to be a p-ancestor of T .
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Theorem 7.6. Let T and T ′ be trees. Then T is a p-ancestor of T ′ if and only if T ′ is a

p-descendant of T .

Proof. Let r = {v, u, x} ∈ Rp(T ), and suppose gp(r) ≥ 0. Then T (r) is a p-descendant of

T , and r′ = {v, x, u} ∈ Rp(T (r)). Note that T (r)(r′) ∼= T . Now dT (r)(u) = dT (u) − 1 and

dT (r)(x) = dT (x) + 1. Thus gp(r
′) = dT (r)(u)− dT (r)(x) = dT (u)− dT (x)− 2 ≤ −2. Thus T

is a p-ancestor of T (r). The argument is reversable to show that if T (r) is a p-ancestor of

T , then T is a p-descendant of T (r). �

Let T and T ′ be trees, and suppose that T ′ is the p1-descendant of a p2-descendant of T .

Then we say that T ′ is a p1, p2-descendant of T , and T is a p2, p1-ancestor of T ′. Suppose

that p1 = p2. Then T ′ is a p2
1-descendant of T , and T is a p2

1-ancestor of T ′.

Theorem 7.7. Let T 6∼= Pn be a tree on n vertices. Then Pn is a pi11 , p
i2
2 , . . . , p

ij
j -ancestor of

T for some j ≥ 1.

Proof. All we must show is that for any tree with more than two leaves, there exists a p-

ancestor of T for some p ≥ 1 such that this p-ancestor has fewer leaves than T . Let v ∈ S1(T ).

As T 6∼= Pn, there is a vertex u such that d(u) ≥ 3, and let S = {u|d(u) ≥ 3}. Choose u ∈ S

such that d(v, u) < d(v, u′) for all u′ ∈ S − u, and let P be the vu-path in T . Additionally,

let y′ ∈ N(u) ∩ V (P ) and x ∈ S1(T ) − v. Clearly x /∈ V (P ). Thus r = {v, u, x} ∈ Rp(T )

where p is the length of P , and gp(r) = d(x)− d(u) ≤ 1− 3 = −2. Thus T (r) is a p-ancestor

of T .

If |S1(T (r))| ≥ 3, then T (r) 6∼= Pn, and so T (r) has a p1-ancestor T ′(r) with fewer leaves

than T (r). Hence T ′(r) is a pp1-ancestor of T . A reiteration of this process yields a tree

with two leaves, i.e. Pn, that is a pi11 , p
i2
2 , . . . , p

ij
j -ancestor of T for some j ≥ 1. �

85



By Theorem 7.7, we see that for a given tree T , there is a sequences of trees {Ti}β3i=0 such

that T0
∼= T , Tβ3

∼= Pn, and Ti+1 is a pi+1-ancestor of Ti for 0 ≤ i ≤ β3. We may now

construct a sequence of trees that we define as a genealogy.

Definition 7.8. Let T be a tree on n vertices. Then the sequence of trees on n vertices

{Ti}βi=0 satisfying

(i) T0
∼= Pn,

(ii) Tβ2
∼= T , for some β2, 0 ≤ β2 ≤ β,

(iii) Ti+1 is a pi+1-descendant of Ti for 0 ≤ i ≤ β − 1,

(iv) Tβ ∼= Sn,

is said to be a genealogy of T .

The definition of a genealogy of a tree says that for a given tree, T , there is a sequence

of trees starting with Pn and ending with Sn such that T is a member of this sequence.

Additionally, given a tree Ti in this sequence, Ti+1 is a pi+1-descendant for 0 ≤ i ≤ β− 1. In

the subsequent sections, we will show that a genealogy of a tree creates a partial ordering of

trees with respect to fs and M1.

7.1. Independent Sets of a Tree and Its Descendants.

By investigating the relationship between a tree and other trees in a genealogy of that

tree, we may generalize Theorem 7.1.

First define the family F of trees as follows; let T ∈ F . Then V (T ) = {u1, . . . , un1}

∪{v1, . . . , vn2} where vi ∈ S1(T ) for 1 ≤ i ≤ n2, G[{u1, . . . , un1}] ∼= Pn1 , N(vi) ⊆ {u1, . . . , un1}

for 1 ≤ i ≤ n2. Thus we may state the following lemma.
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Lemma 7.9. Let T be a tree in F such that r = {u1, v1, vn1} ∈ R1(T ) and g1(r) ≥ 0. Then

fs(T ) ≤ fs(T (r)) for s ≥ 0.

Proof. For the vertex set S, let fs,S(T ) denote the number of independent sets of cardinality

s in T containing S, and let fs,S̄(T ) denote the number of independent sets of cardinality s

in T not containing S. Then fs(T ) = fs,S(T ) + fs,S̄(T ).

Let v1 = v, u1 = u, and un1 = x. Then r = {v, u, x}, and let I be an independent set of

T . If {v, x} 6⊆ I, then I is an independent set of T (r). Thus fs,{v,x}(T ) ≤ fs,{v,x}(T (r)) for

s ≥ 0.

Let I be an independent set of T such that {v, x} ⊆ I. Then I is not independent in

T (r). Note that as T (r) is a 1-descendant of T , d(x) ≥ d(u), and thus |N(x)| ≥ |N(u)|.

Also it is clear that for any subset S ′ of N(x), S ′ 6⊆ I. Let S = (N(u) − v) ∩ I. Then

as |S| ≤ |N(u)| − 1 there exists at least one set S ′ ⊆ N(x) such that |S ′| = |S| and

x′ ∈ S1(T ) for all x′ ∈ S ′. Hence there exists at least one independent set I ′ of T (r)

such that I ′ = (I − ({x} ∪ S)) ∪ ({u} ∪ S ′) for some S ′ ⊆ N(x) such that |S| = |S ′| and

x′ ∈ S1(T ) for all x′ ∈ S ′. Note that |I ′| = |I|, and I ′ is not an independent set of T . Thus

fs,{v,x}(T ) ≤ fs,{v,x}(T (r)) for s ≥ 0.

Then fs(T ) = fs,{v,x}(T ) + fs,{v,x}(T ) ≤ fs,{v,x}(T (r)) + fs,{v,x}(T (r)) = fs(T (r)) for s ≥

0. �

Now Theorem 7.1 and Theorem 7.3 of Wingard may now be extended.

Theorem 7.10. Let T be a tree, and r ∈ R1(T ). If T (r) is a 1-descendant of T , then

fs(T ) ≤ fs(T (r)) for s ≥ 0.
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Proof. Proceed by induction on the number of vertices n. There is nothing to show for

1 ≤ n ≤ 3. Suppose that n = 4, then T ∈ {P4, S4}. Now P4 is an ancestor of S4, and

fs(P4) ≤ fs(S4) for s ≥ 0. Suppose that for trees T and T ′ on 4 ≤ n′ < n vertices, such that

T ′ is a descendant of T , fs(T ) ≤ fs(T
′), and consider T a tree on n vertices.

Let r = {v, u, x} ∈ R such that g1(r) ≥ 0. Then T (r) is a descendant of T , and let P

be the ux-path in T . Suppose that there for every v′ ∈ S1(T ) − v with support vertex u′,

u′ ∈ V (P ). Then T ∈ F , and by Lemma 7.9 fs(T ) ≤ fs(T (r)). Thus we may assume that

there exists v′ ∈ S1(T ) − v with support vertex u′ such that u′ /∈ V (P ). By the vertex

reduction identity,

fs(T ) = fs(T − v′) + fs−1(T −N [v′])

fs(T (r)) = fs(T (r)− v′) + fs−1(T (r)−N [v′]).

As v′ /∈ {v, u, x}, T (r) − v′ is a descendant of T − v′. Thus, by induction fs(T − v′) ≤

fs(T (r) − v′). Now T − N [v′] and T (r) − N [v′] are forrests on l connected components.

Also there are l − 1 connected components of T − N [v′], Hi for 1 ≤ i ≤ l − 1 and l − 1

connected components of T (r)−N [v′], H(r)i for i ≤ i ≤ l−1 such that ∪l−1
i Hi

∼= ∪l−1
i H(r)i.

Then Πl−1
i fs(Hi) = Πl−1

i fs(H(r)i). Let H ∼= T − ∪l−1
i Hi and H(r) ∼= T (r) − ∪l−1

i H(r)i.

Then fs(T − N [v′]) = (Πl−1
i fs(Hi))fs(H), and fs(T (r) − N [v′]) = (Πl−1

i fs(H(r)i))fs(H(r))

for s ≥ 0.

Note that {v, u, x} ⊆ V (H), {v, u, x} ⊆ V (H(r)), and H − v ∼= H(r) − v. That is,

H(r) is a 1-descendant of H. Then, by induction fs(H) ≤ fs(H(r)) for s ≥ 0. Hence

fs(T ) = fs(T − v′) + fs−1(T − N [v′]) = fs(T − v′) + (Πl−1
i fs−1(Hi))fs−1(H) ≤ fs(T (r) −

v′) + (Πl−1
i fs−1(H(r)i))fs−1(H(r)) = fs(T (r)− v′) + fs−1(T (r)−N [v′]) = fs(T (r)). Thus by

induction, the theorem holds. �
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Theorem 7.11. Let T be a tree and T ′ be a 1j-descendant of T for some j ≥ 1. Then

fs(T ) ≤ fs(T
′) for s ≥ 0.

Figure 14. T5

Theorem 7.12. Let T and T ′ be trees on n vertices, and let T ′ be a p-descendant of T for

some p ≥ 1. Then fs(T ) ≤ fs(T
′) for s ≥ 0.

Proof. We will show that for any p-ancestor T ′ of a given tree T , fs(T
′) ≤ fs(T ) for s ≥ 0

by induction on n. There is only one tree on 1 ≤ n ≤ 3 vertices. Consider n = 4, then

T ′ ∼= P4 and T ∼= S4, and the theorem holds. Suppose n = 5. Then either T ′ ∼= P5 and

T ∈ {T5, S5}, or T ′ ∼= T5 and T ∼= S5 where T5 is the tree pictured in Figure 14. In either

case, the theorem clearly holds.

Suppose that if T ′ is a tree on 1 ≤ n′ < n vertices and is a p-ancestor of another tree

T for some p ≥ 1, then fs(T
′) ≤ fs(T ) for s ≥ 0. Let T be a tree on n vertices, and let

T ′ be a p-ancestor of T . Then there exists r = {v, u, x} ∈ Rp(T ) such that gp(r) ≤ −2

and T (r) ∼= T ′. Let P be the v, u-path in T of length p, and let y ∈ N(u) ∩ V (P ). By

Proposition 3.1,

fs(T ) =fs(T − v) + fs−1(T −NT [v])

fs(T
′) =fs(T

′ − v) + fs−1(T ′ −NT ′ [v]).

(13)

Suppose that p = 1, then by Theorem 7.10 fs(T ) ≥ fs(T
′) for s ≥ 0. Suppose that p = 2,

then T − v is a 1-descendant of T ′ − v, and T − NT [v] ∼= T ′ − NT ′ [v]. Hence, by (13), for
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s ≥ 0,

fs(T ) = fs(T − v) + fs−1(T −NT [v]) ≥ fs(T
′ − v) + fs−1(T ′ −NT ′ [v] = fs(T

′).

If p ≥ 3, then T ′−v is a (p−1)-ancestor of T−v, and so by induction fs(T−v) ≥ fs(T
′−v)

for s ≥ 0. Also, fs(T − NT [v]) ≥ fs(T
′ − NT ′ [v]) for s ≥ 0 by induction as T ′ − NT ′ [v] is a

(p− 2)-ancestor of T −NT [v]. Hence, by (13),

fs(T ) = fs(T − v) + fs−1(T −NT [v]) ≥ fs(T
′ − v) + fs−1(T ′ −NT ′ [v]) = fs(T

′),

for s ≥ 0, and so the theorem holds by the Principle of Mathematical Induction. �

If T is a p1-descendant of T ′, and T ′ is a p2-descendant of T ′′, then fs(T
′′) ≤ fs(T

′) ≤ fs(T )

for s ≥ 0. By the transitive property, the following theorem immediately follows.

Theorem 7.13. Let T and T ′ be trees on n vertices such that T ′ is a pi11 , p
i2
2 , . . . , p

ij
j -

descendant of T . Then fs(T ) ≤ fs(T
′) for s ≥ 0.

By Theorem 7.10 and Theorem 7.12, we may state the following theorem.

Theorem 7.14. Let T be a tree on n vertices and {Ti}βi=0 be a genealogy of T . Then

fs(Ti) ≤ fs(Ti+1) for 0 ≤ i ≤ β − 1 and s ≥ 0.

Thereom 7.14 is an extension of Theorem 7.1 as for any tree T we may find a sequence of

trees {Ti}βi=0 such that fs(Ti) ≤ fs(Ti+1) for 0 ≤ i ≤ β − 1 and s ≥ 0. Thus, a genealogy of

T along with fs for s ≥ 0 yields a partial ordering of a set of trees on n vertices.
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7.2. Comparing p-descendants of a Tree.

By Theorem 7.10 and Theorem 7.12, we are able to generate a partial ordering of trees

such that fs of a tree in this ordering is at least as large as fs of the previous tree in the

ordering for s ≥ 0. It is not difficult to show that a genealogy of a tree is not unique. Now

we will consider the set of p1-ancestors and p1-descendants of a given tree and investigate fs

values of trees in this set for s ≥ 0.

Theorem 7.15. Let T be a tree with starring triples ri = {vi, ui, x} ∈ Rp(T ) for i ∈ {1, 2}

such that d(u2) < d(u1). Then fs(T (r1)) ≤ fs(T (r2)) for s ≥ 0.

Proof. Consider T (r1). Then r = {v2, u2, u1} ∈ Rp(T (r1)), and gp(r) = dT (r1)(u1) −

dT (r1)(u2) ≥ 0. By Theorem 7.10 and Theorem 7.12, fs(T (r1)) ≤ fs((T (r1))(r)) for s ≥ 0.

We claim that (T (r1)(r)) ∼= T (r2). Let Pi = vi . . . yiui be the viui-path in T for i ∈ {1, 2}.

Note that T (r2)− {y1u1} ∼= (T (r1))(r)− {y2u1}, and P1 − u1
∼= P2 − u2. Hence V (T (r2)) ∼=

V ((T (r1))(r)) and E(T (r2)) ∼= E((T (r1))(r)). Thus the claim is true, and so T (r1) is an

p-ancestor of T (r2). Hence, fs(T (r1)) ≤ fs(T (r2)) for s ≥ 0. �

T T (r1) T (r2)

v1

u1

v2

u2 x
u1

u2

v2 v1

x
u1 u2

v1 v2

x

Figure 15. T , T (r1), T (r2)

Theorem 7.16. Let T be a tree with starring triples ri = {v, u, xi} ∈ Rp(T ) for i ∈ {1, 2}

such that d(x1) < d(x2). Then fs(T (r1)) ≤ fs(T (r2)).
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Proof. Consider r = {v, x1, x2} ∈ Rp(T (r1)). Then as dT (r1)(x2)−dT (r1)(x1) ≥ 0, T (r1)(r) is a

p-descendant of T (r1). Hence by Theorem 7.10 and Theorem 7.12, fs(T (r1)) ≤ fs(T (r1)(r))

for s ≥ 0. Let P = v . . . yu be the uv-path in T . Note that V (T (r2)) = V (T (r1)) and

E(T (r2)) = (E(T (r1)) − {yx1}) ∪ {yx2}. Hence T (r2) is a p-descendant of T (r1), namely

T (r1)(r). �

T T (r1) T (r2)

v

u x2 x1 u x2 x1

v

u x2

v

x1

Figure 16. T ′, T ′(r1), T ′(r2)

It has been shown that for a tree T with starring triple r ∈ Rp(T ) such that gp(r) ≥ 0,

fs(T ) ≤ fs(T (r)) for s ≥ 0. Additionally, if gp(r) ≤ −2, fs(T ) ≥ fs(T (r)) for s ≥ 0.

However, if gp(r) = −1, the relationship between fs(T ) and fs(T (r)) for s ≥ 0 is inconclusive.

It would be interesting to investigate what parameters determine that fs(T ) ≤ fs(T (r)) for

gp(r) = −1 and s ≥ 0.

7.3. The First Zagreb Index of a Tree and Its Descendants.

In the same way that Theorem 7.10 and Theorem 7.12 extend the works of Wingard

and Theorem 7.1. A genealogy of a tree also extends the works of Das and Gutman and

Theorem 7.4.

Theorem 7.17. Let T be a tree and r ∈ Rp(T ). Then M1(T (r)) = M1(T ) + 2gp(r) + 2.
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Proof. Suppose that p = 1, and let r = {v, u, x} ∈ R1(T ). Then

M1(T ) =M1(T − v) + dT (v)2 + (dT (u)2 − dT−v(u)2)

=M1(T − v) + 1 + dT (u)2 − (dT (u)− 1)2

=M1(T − v) + 2dT (u).

Similarly,

M1(T (r)) =M1(T (r)− v) + dT (r)(v)2 + (dT (r)(x)2 − dT (r)−v(x)2)

=M1(T (r)− v) + 1 + dT (r)(x)2 − (dT (r)(x)− 1)2

=M1(T (r)− v) + 2dT (r)(x).

Note that T − v ∼= T (r)− v, and dT (x) = dT (r)(x)− 1. Then

M1(T (r)) =M1(T ) + 2dT (x) + 2− 2dT (u)

=M1(T ) + 2g1(r) + 2.

Suppose that p ≥ 2, and let r = {v, u, x} ∈ Rp(T ), and let P be the v, u-path of T of

lenght p. Let y ∈ N(u) ∩ V (P ) and y′ ∈ N(y) ∩ V (P )− y. If p = 2, then

M1(T ) =M1(T − y) + dT (y)2 + (dT (u)2 − dT−y(u)2) + (dT (y′)2 − dT−y(y′)2)

=M1(T − y) + 4 + dT (u)2 − (dT (u)− 1)2 + 1

=M1(T − y) + 2dT (u) + 4.

Similarly,

M1(T (r)) =M1(T (r)− v) + dT (r)(v)2 + (dT (r)(x)2 − dT (r)−v(x)2) + (dT (r)(y
′)2 − dT (r)−y(y

′)2)

=M1(T (r)− v) + 4 + dT (r)(x)2 − (dT (r)(x)− 1)2 + 1

=M1(T (r)− v) + 2dT (r)(x) + 4.
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Note that T − v ∼= T (r)− v, and dT (x) = dT (r)(x)− 1. Then

M1(T (r)) =M1(T ) + 2dT (x) + 2− 2dT (u)

=M1(T ) + 2g2(r) + 2.

Suppose that l ≥ 3, then

M1(T ) =M1(T − y) + dT (y)2 + (dT (u)2 − dT−y(u)2) + (dT (y′)2 − dT−y(y′)2)

=M1(T − y) + 4 + dT (u)2 − (dT (u)− 1)2 + 3

=M1(T − y) + 2dT (u) + 6.

Similarly,

M1(T ) =M1(T (r)− v) + dT (r)(v)2 + (dT (r)(x)2 − dT (r)−v(x)2) + (dT (r)(y
′)2 − dT (r)−y(y

′)2)

=M1(T (r)− v) + 4 + dT (r)(x)2 − (dT (r)(x)− 1)2 + 3

=M1(T (r)− v) + 2dT (r)(x) + 6.

Note that T − v ∼= T (r)− v, and dT (x) = dT (r)(x)− 1. Then

M1(T (r)) =M1(T ) + 2dT (x) + 2− 2dT (u)

=M1(T ) + 2gp(r) + 2.

�

Corollary 7.18. Let T be a tree and r ∈ Rp(T ). Then

(i) M1(T ) < M1(T (r)) if gp(r) ≥ 0,

(ii) M1(T ) = M1(T (r)) if gp(r) = −1,

(iii) M1(T ) > M1(T (r)) if gp(r) ≤ −2.
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Thus for a given tree T , a genealogy of T gives a sequence of trees such that the M1 value

of a tree in the sequence is larger than the M1 value of any previous tree in this sequence.

Hence, a genealogy of T along with M1 provides a partial ordering of a set of trees on n

vertices.

It should be noted that for p ≥ 1, gp is not sufficient to build a sequence of trees such that

the M2 value of a tree in this sequence is larger that the M2 value of any previous tree in

this sequence. However, we believe that a similar function may be defined to generate such a

sequence. It would be interesting to determine such a function and consequently determine

a partial ordering of a set of trees with respect to M2.
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8. Potential Research in the Future

In Chapter 2, it was shown that maximal outerplanar graphs are tree-like 2-trees, and

chordal planar graphs with toughness exceeding 1 are tree-like 3-trees with toughness ex-

ceeding 1. It would be interesting to classify graphs that are tree-like k-trees for k ≥ 4.

The shell of a k-tree was introduced in Chapter 2, and it allowed us to define classes of

k-trees such as path-like and tree-like k-trees. We say a clique is ”maximal“ if it is not

contained in a larger clique. Thus for a k-tree, a (k + 1)-clique is maximal. The shell may

be generalized for any graph G as follows.

G Sh(G)

Figure 17. A graph G and its shell

Definition 8.1. Let G be graph. Then the shell of the graph G, Sh(G), is a graph such

that

(i) if X is a maximal clique, then X ∈ V (Sh(G)),

(ii) if X and Y are maximal cliques of size r1 and r2 respectfully, and |V (X) ∩ V (Y )| =

min(r1, r2)− 1, then XY ∈ E(Sh(G)).

With this modified definition of the shell, it would be interesting to investigate the shells

of graphs other than k-trees.
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In Chapter 3, we defined families of trees Ac such that the independence polynomial of any

tree in such a family has c as a rational root. The family A−1 was determined to be unique,

and families A−1/2, A−1/3, and A−1/4 were characterized. However it would be interesting

to verify that T ∈ Ai if and only if I(T ; i) = 0 for i ∈ {−1
2
,−1

3
,−1

4
}.

It was shown that if I(Pn; c) = 0, then c ∈ {−1,−1
2
,−1

3
}. It would be interesting to

determine the set of rational numbers C such that, for the tree T , I(T ; c) = 0 if and only if

c ∈ C.

Wingard determined that, for the graph G, if I(G;−1) = 0, then G has the same number

of independent sets of even cardinality as independent sets of odd cardinality. However,

we were unsuccessful to find in the literature any significance to other rational roots of the

independence polynomial of a graph. It would be an interesting question to ask what a given

root of a graph’s independence polynomial implies about the graph itself.

It is a natural parallel to generalize results about trees to k-trees. With this in mind,

it would be interesting to investigate rational roots of independence polynomials of k-trees.

Can the results about rational roots of the independence polynomials of paths be extended

to the k-path or to path-like k-trees? Can families of k-trees be defined similarly to the

families of trees defined in Chapter 3? There are many intriguing questions of this nature

about the class of k-trees.

In Chapter 4, Wingard’s bound, |I(T ;−1)| ≤ 1, was generalized to k-degenerate graphs,

and thus k-trees. We determined that for the k-degenerate graph G, |I(G;− 1
k
)| ≤ 1. How-

ever, we may state the following conjecture.

Conjecture 8.2. Let G be a maximally k-degenerate graph and k ≥ 2. Then |I(G;− 1
k
)| > 0.
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In Chapter 4, the works of Alameddine were extended by showing a strict upper bound

of fs of tree-like 2-trees for s ≥ 0 that is uniquely obtained by the 2-spiral. Additionally, it

was shown that for tree-like 3-trees with toughness exceeding 1, the strict upper bound of

fs is uniquely obtained by the 3-spiral for s ≥ 0. It was also conjectured that for path-like

k-trees, the strict upper bound of fs is uniquely obtained by the k-spiral. In addition to

verifying this conjecture, three other questions naturally follow:

(i) What is the strict upper bound of fs for tree-like k-trees for s ≥ 0?

(ii) What is the strict upper bound of fs for tree-like k-trees with toughness exceeding

1, k ≥ 3, and s ≥ 0?

(iii) What tree-like k-trees obtain these upper bounds?

Lower and upper bounds of the Zagreb indices for k-trees were demonstrated in Chapter 5

along with the unique k-trees that obtain these bounds for both M1 and M2. Furthermore,

a strict upper bound of M1-values for k-degenerate graphs was determined along with the

k-degenerate graph that obtains this bound. The lower bound of the Zagreb indices for

k-degenerate graphs is trivially zero as the empty graph is k-degenerate for k ≥ 0. However,

it would be interesting to deduce a strict lower bound of the Zagreb indices for maximally

k-degenerate graphs. It is reasonable to think that this lower bound is obtained by the

k-path, though maybe not uniquely. Likewise, it would be interesting to determine a strict

upper bound of M2-values for k-degenerate graphs and characterize the k-degenerate graphs

that obtain this upper bound. It is again reasonable to believe that this bound is obtained

by the k-star.

In Chapter 6, an upper bound of the first Zagreb index for tree-like k-trees was demon-

strated along with the unique tree-like k-trees that obtain this bound. A strict upper bound
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of the second Zagreb index for tree-like k-trees was partially solved. Conjecture 6.12 was

presented, and it would be interesting to verify this unverified statement that the k-spiral

uniquely obtains a strict upper bound for M2 values among tree-like k-trees.

Genealogies of trees were introduced in Chapter 7, and it was shown that a genealogy

of a tree helps provide a sequence of trees {Ti}βi=0 such that fs and M1 are increasing as i

increases. It would be interesting to find a similar construction for M2 of trees.

There is some difficulty in generalizing starring triples of trees to k-trees. If, however, the

starring triples of a tree can be generalized to starring triples of k-trees, then a genealogy of

a k-tree may be defined. If a genealogy of a k-tree can be successfully defined, then questions

stated about finding a strict upper bound of fs of tree-like k-trees may be found. Given a

tree-like k-tree, can we find a sequence of tree-like k-trees such that fs is increasing according

to this sequence? This seems to be a reasonable question, and the graph in this sequence

with the greatest index might obtain an upper bound of fs for tree-like k-trees. Similarly, a

genealogy of a k-tree may provide the correct structure to verify Conjecture 6.12.

It would also be interesting to determine what other topological indices, such as the

toughness, behave in a way similar to fs and M1 in a genealogy of a tree.

A graph is said to be “hamiltonian” if it contains a cycle that passes through all of its

vertices. Hamiltonicity has been a major area of research, and a common approach to

questions of hamiltonicity is to examine a graph through its toughness. In 1973, Chvátal

conjectured that there exists a number t such that all t-tough graphs are hamiltonian. From

the definition of toughness, it is clear that a cycle of length at least four is exactly 1-tough.

It is thus clearly necessary for a hamiltonian graph to be 1-tough. For many years, it was

thought that all 2-tough graphs are hamiltonian. However, this has been found to be untrue.

99



Theorem 8.3. [2] For every ε > 0, there exists a (9
4
− ε)-tough graph containing no hamil-

tonian path.

Chen, Jacobson, Kézdy, and Lehel proved Chvátal’s conjecture for chordal graphs, and

Böhme, Harant, and Tkác̃ solved the conjecture for chordal planar graphs with toughness

exceeding 1.

Theorem 8.4. [7] Every 18-tough chordal graph is hamiltonian.

Theorem 8.5. [5] Every chordal planar graph with toughness exceeding 1 is hamiltonian.

In 2003, Broersma, Xiong, and Yoshimoto addressed hamiltonicity of k-trees.

Theorem 8.6. [4] If T kn 6= K2 is a (k+1
3

)-tough k-tree (k ≥ 2), then T kn is hamiltonian.

Shook and Wei studied the hamiltonicity of k-trees through a parameter called the branch

number, β(T kn ). Let the edge e be contractible in T kn if the graph resulting in contracting e

is a k-tree. The branch number may be calculated by β(T kn ) = |S1(T kn )| + |A(T kn )| + k − n

where A is the set of contractible edges in T kn . Their result is a direct generalization of the

result of Broersma.

Theorem 8.7. [38] For k > 1, if T kn is a k-tree with β(T kn ) ≤ k, then T kn is hamiltonian.

Theorem 8.8. [38] If T kn 6= K2 is a (k+1
3

)-tough k-tree (k ≥ 2), then β(T kn ) ≤ 2.

For the class of tree-like k-trees, Broersma’s bound on the toughness may be tightened.

By making the connection that chordal planar graphs with toughness exceeding 1 are tree-

like 3-trees with toughness exceeding 1, we state the following conjecture which is a direct

generalization of Theorem 8.5.
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Conjecture 8.9. Let T kn be a tree-like k-tree with toughness exceeding 1 and k ≥ 3. Then

T kn is hamiltonian.

Even for the case of k = 4, Conjecture 8.9 is a difficult question.

The connection between trees and k-trees is very interesting, and there are plenty of

questions surrounding trees, k-trees, and tree-like k-trees. There is plenty of opportunity to

propose and ask questions in regards to these graphs.
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[36] M. Randić, On characterization of molecular branching. J Am Chem 97 (1975) 6609-6615

[37] D. J. Rose. On simple characterizations of k-trees. Discrete Mathematics 7 (1974) 317-322.

[38] J. Shook, B. Wei, Some properties of k-tree. Discrete Mathematics 310 (2010) 2415-2425.

[39] M. Startek, A. Wlcoh, I. Wloch, Fibonacci numbers of graphs, Discrete Applied Mathematics. 157 (2009)

864-868.

[40] L. Song, On Independence polynomials of k-trees and well-covered graphs. dissertation. University of

Mississippi (2009).

[41] L. Song, W. Staton, B. Wei, Independence polynomials of k-tree related graphs. Discrete Math. 158

(2010) 943-950

[42] X. L. Li, H. X. Zhoa and I. Gutman, On the Merrifield-Simmons index of tree, MATCH Commun.

Math. Comput. Chem. 54 (2005) 389.

[43] K. Xu, The Zagreb indices of graphs with a given clique number. Applied Mathematics Letters. Vol 24

(2011) 1026-1030.

[44] K. Wingard. On independence polynomials. dissertation. University of Mississippi (1995).

105



LIST OF APPENDICES

106



Appendix A: Trees on 1 ≤ n ≤ 10 vertices
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P1 P2 P3 P4 S4 P5 T5 S5

P6 T6,1 T6,2 T6,3 T6,4

S6 P7 T7,1 T7,2 T7,3

T7,4 T7,5 T7,6 T7,7 T7,8

T7,9 S7 P8 T8,1

T8,2 T8,3 T8,4 T8,5

T8,6 T8,7 T8,8 T8,9

T8,10 T8,11 T8,12 T8,13 T8,14

T8,15 T8,16 T8,17 T8,18 T8,19 T8,20

T8,21 S8 P9 T9,1

T9,2 T9,3 T9,4

T9,5 T9,6 T9,7

T9,8 T9,9 T9,10

T9,11 T9,12 T9,13

T9,14 T9,15 T9,16 T9,17

T9,18 T9,19 T9,20 T9,21

T9,22 T9,23 T9,24 T9,25
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T9,26 T9,27 T9,28 T9,29

T9,30 T9,31 T9,32 T9,33 T9,34

T9,35 T9,36 T9,37 T9,38 T9,39

T9,40 T9,41 T9,42 T9,43 S9

P10 T10,1 T10,2 T10,3 T10,4

T10,5 T10,6 T10,7 T10,8 T10,9 T10,10

T10,11 T10,12 T10,13 T10,14 T10,15 T10,16

T10,17 T10,18 T10,19

T10,20 T10,21 T10,22

T10,23 T10,24 T10,25

T10,26 T10,27 T10,28

T10,29 T10,30 T10,31

T10,32 T10,33 T10,34

T10,35 T10,36 T10,37

T10,38 T10,39 T10,40

T10,41 T10,42 T10,43

T10,44 T10,45 T10,46

T10,47 T10,48 T10,49 T10,50
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T10,51 T10,52 T10,53 T10,54

T10,55 T10,56 T10,57 T10,58

T10,59 T10,60 T10,61 T10,62

T10,63 T10,64 T10,65 T10,66

T10,67 T10,68 T10,69 T10,70

T10,71 T10,72 T10,73 T10,74

T10,75 T10,76 T10,77 T10,78 T10,79

T10,80 T10,81 T10,82 T10,83 T10,84

T10,85 T10,86 T10,87 T10,88 T10,89

T10,90 T10,91 T10,92 T10,93 T10,94

T10,95 T10,96 T10,97 T10,98 S10
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Appendix B: Independence Polynomials of Trees on 1 ≤ n ≤ 10

vertices
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1 ≤ n ≤ 6

1 I(P1;x) = 1 + x

2 I(P2;x) = 1 + 2x

3 I(P3;x) = 1 + 3x+ x2

4 I(P4;x) = 1 + 4x+ 3x2

5 I(S4;x) = 1 + 4x+ 3x2 + x3

6 I(P5;x) = 1 + 5x+ 6x2 + x3

7 I(T5;x) = 1 + 5x+ 6x2 + 2x3

8 I(S5;x) = 1 + 5x+ 6x2 + 4x3 + x4

9 I(P6;x) = 1 + 6x+ 10x2 + 4x3

10 I(T6,1;x) = 1 + 6x+ 10x2 + 5x3 + x4

11 I(T6,2;x) = 1 + 6x+ 10x2 + 5x3

12 I(T6,3;x) = 1 + 6x+ 10x2 + 6x3 + x4

13 I(T6,4;x) = 1 + 6x+ 10x2 + 7x3 + 2x4

14 I(S6;x) = 1 + 6x+ 10x2 + 10x3 + 5x4 + x5

n = 7

1 I(P7;x) = 1 + 7x+ 15x2 + 10x3 + x4

2 I(T7,1;x) = 1 + 7x+ 15x2 + 11x3 + 3x4

3 I(T7,2;x) = 1 + 7x+ 15x2 + 11x3 + 2x4

4 I(T7,3;x) = 1 + 7x+ 15x2 + 11x3 + x4

5 I(T7,4;x) = 1 + 7x+ 15x2 + 12x3 + 3x4

6 I(T7,5;x) = 1 + 7x+ 15x2 + 12x3 + 5x4 + x5

7 I(T7,6;x) = 1 + 7x+ 15x2 + 13x3 + 6x4 + x5
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8 I(T7,7;x) = 1 + 7x+ 15x2 + 13x3 + 4x4

9 I(T7,8;x) = 1 + 7x+ 15x2 + 14x3 + 6x4 + x5

10 I(T7,9;x) = 1 + 7x+ 15x2 + 16x3 + 9x4 + 2x5

11 I(S7;x) = 1 + 7x+ 15x2 + 20x3 + 15x4 + 6x5 + x6

n = 8

1 I(P8;x) = 1 + 8x+ 21x2 + 20x3 + 5x4

2 I(T8,1;x) = 1 + 8x+ 21x2 + 21x3 + 8x4 + x5

3 I(T8,2;x) = 1 + 8x+ 21x2 + 21x3 + 7x4

4 I(T8,3;x) = 1 + 8x+ 21x2 + 21x3 + 7x4 + x5

5 I(T8,4;x) = 1 + 8x+ 21x2 + 22x3 + 9x4 + x5

6 I(T8,5;x) = 1 + 8x+ 21x2 + 22x3 + 10x4 + 2x5

7 I(T8,6;x) = 1 + 8x+ 21x2 + 22x3 + 11x4 + 2x5

8 I(T8,7;x) = 1 + 8x+ 21x2 + 22x3 + 8x4

9 I(T8,8;x) = 1 + 8x+ 21x2 + 23x3 + 13x4 + 3x5

10 I(T8,9;x) = 1 + 8x+ 21x2 + 23x3 + 11x4 + 2x5

11 I(T8,10;x) = 1 + 8x+ 21x2 + 21x3 + 6x4

12 I(T8,11;x) = 1 + 8x+ 21x2 + 23x3 + 9x4

13 I(T8,12;x) = 1 + 8x+ 21x2 + 22x3 + 8x4 + x5

14 I(T8,13;x) = 1 + 8x+ 21x2 + 24x3 + 13x4 + 3x5

15 I(T8,14;x) = 1 + 8x+ 21x2 + 24x3 + 16x4 + 6x5 + x6

16 I(T8,15;x) = 1 + 8x+ 21x2 + 23x3 + 11x4 + 2x5

17 I(T8,16;x) = 1 + 8x+ 21x2 + 24x3 + 12x4 + 2x5

18 I(T8,17;x) = 1 + 8x+ 21x2 + 26x3 + 19x4 + 7x5 + x6
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19 I(T8,18;x) = 1 + 8x+ 21x2 + 26x3 + 16x4 + 4x5

20 I(T8,19;x) = 1 + 8x+ 21x2 + 26x3 + 17x4 + 6x5 + x6

21 I(T8,20;x) = 1 + 8x+ 21x2 + 27x3 + 19x4 + 7x5 + x6

22 I(T8,21;x) = 1 + 8x+ 21x2 + 30x3 + 25x4 + 11x5 + 2x6

23 I(S8;x) = 1 + 8x+ 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7

n = 9

1 I(P9;x) = 1 + 9x+ 28x2 + 35x3 + 15x4 + x5

2 I(T9,1;x) = 1 + 9x+ 28x2 + 36x3 + 19x4 + 4x5

3 I(T9,2;x) = 1 + 9x+ 28x2 + 36x3 + 18x4 + 2x5

4 I(T9,3;x) = 1 + 9x+ 28x2 + 36x3 + 18x4 + 3x5

5 I(T9,4;x) = 1 + 9x+ 28x2 + 37x3 + 21x4 + 4x5

6 I(T9,5;x) = 1 + 9x+ 28x2 + 37x3 + 22x4 + 7x5 + x6

7 I(T9,6;x) = 1 + 9x+ 28x2 + 37x3 + 22x4 + 5x5

8 I(T9,7;x) = 1 + 9x+ 28x2 + 37x3 + 23x4 + 7x5 + x6

9 I(T9,8;x) = 1 + 9x+ 28x2 + 37x3 + 21x4 + 4x5

10 I(T9,9;x) = 1 + 9x+ 28x2 + 37x3 + 20x4 + 3x5

11 I(T9,10;x) = 1 + 9x+ 28x2 + 38x3 + 26x4 + 9x5 + x6

12 I(T9,11;x) = 1 + 9x+ 28x2 + 38x3 + 24x4 + 6x5

13 I(T9,12;x) = 1 + 9x+ 28x2 + 36x3 + 17x4 + 2x5

14 I(T9,13;x) = 1 + 9x+ 28x2 + 36x3 + 17x4 + x5

15 I(T9,14;x) = 1 + 9x+ 28x2 + 38x3 + 24x4 + 8x5 + x6

16 I(T9,15;x) = 1 + 9x+ 28x2 + 38x3 + 23x4 + 5x5

17 I(T9,16;x) = 1 + 9x+ 28x2 + 38x3 + 25x4 + 8x5 + x6
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18 I(T9,17;x) = 1 + 9x+ 28x2 + 39x3 + 27x4 + 9x5 + x6

19 I(T9,18;x) = 1 + 9x+ 28x2 + 39x3 + 29x4 + 12x5 + 2x6

20 I(T9,19;x) = 1 + 9x+ 28x2 + 39x3 + 30x4 + 12x5 + 2x6

21 I(T9,20;x) = 1 + 9x+ 28x2 + 39x3 + 26x4 + 8x5 + x6

22 I(T9,21;x) = 1 + 9x+ 28x2 + 39x3 + 25x4 + 6x5

23 I(T9,22;x) = 1 + 9x+ 28x2 + 39x3 + 28x4 + 11x5 + 2x6

24 I(T9,23;x) = 1 + 9x+ 28x2 + 37x3 + 20x4 + 4x5

25 I(T9,24;x) = 1 + 9x+ 28x2 + 38x3 + 22x4 + 4x5

26 I(T9,25;x) = 1 + 9x+ 28x2 + 37x3 + 19x4 + 2x5

27 I(T9,26;x) = 1 + 9x+ 28x2 + 41x3 + 35x4 + 16x5 + 3x6

28 I(T9,27;x) = 1 + 9x+ 28x2 + 41x3 + 32x4 + 13x5 + 2x6

29 I(T9,28;x) = 1 + 9x+ 28x2 + 40x3 + 30x4 + 12x5 + 2x6

30 I(T9,29;x) = 1 + 9x+ 28x2 + 40x3 + 28x4 + 9x5 + x6

31 I(T9,30;x) = 1 + 9x+ 28x2 + 38x3 + 23x4 + 7x5 + x6

32 I(T9,31;x) = 1 + 9x+ 28x2 + 39x3 + 26x4 + 9x5 + x6

33 I(T9,32;x) = 1 + 9x+ 28x2 + 39x3 + 24x4 + 5x5

34 I(T9,33;x) = 1 + 9x+ 28x2 + 41x3 + 29x4 + 8x5

35 I(T9,34;x) = 1 + 9x+ 28x2 + 42x3 + 35x4 + 16x5 + 3x6

36 I(T9,35;x) = 1 + 9x+ 28x2 + 42x3 + 33x4 + 13x5 + 2x6

37 I(T9,36;x) = 1 + 9x+ 28x2 + 42x3 + 39x4 + 22x5 + 7x6 + x7

38 I(T9,37;x) = 1 + 9x+ 28x2 + 41x3 + 37x4 + 21x5 + 7x6 + x7

39 I(T9,38;x) = 1 + 9x+ 28x2 + 41x3 + 31x4 + 12x5 + 2x6

40 I(T9,39;x) = 1 + 9x+ 28x2 + 45x3 + 45x4 + 26x5 + 8x6 + x7
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41 I(T9,40;x) = 1 + 9x+ 28x2 + 45x3 + 41x4 + 20x5 + 4x6

42 I(T9,41;x) = 1 + 9x+ 28x2 + 44x3 + 40x4 + 22x5 + 7x6 + x7

43 I(T9,42;x) = 1 + 9x+ 28x2 + 46x3 + 45x4 + 26x5 + 8x6 + x7

44 I(T9,43;x) = 1 + 9x+ 28x2 + 50x3 + 55x4 + 36x5 + 13x6 + 2x7

45 I(S9;x) = 1 + 9x+ 28x2 + 56x3 + 70x4 + 56x5 + 28x6 + 8x7 + x8

n = 10

1 I(P10;x) = 1 + 10x+ 36x2 + 56x3 + 35x4 + 6x5

2 I(T10,1;x) = 1 + 10x+ 36x2 + 57x3 + 40x4 + 12x5 + x6

3 I(T10,2;x) = 1 + 10x+ 36x2 + 57x3 + 39x4 + 9x5

4 I(T10,3;x) = 1 + 10x+ 36x2 + 57x3 + 39x4 + 10x5 + x6

5 I(T10,4;x) = 1 + 10x+ 36x2 + 57x3 + 39x4 + 10x5

6 I(T10,5;x) = 1 + 10x+ 36x2 + 58x3 + 43x4 + 13x5 + x6

7 I(T10,6;x) = 1 + 10x+ 36x2 + 58x3 + 44x4 + 17x5 + 3x6

8 I(T10,7;x) = 1 + 10x+ 36x2 + 58x3 + 44x4 + 16x5 + 2x6

9 I(T10,8;x) = 1 + 10x+ 36x2 + 58x3 + 44x4 + 15x5 + 2x6

10 I(T10,9;x) = 1 + 10x+ 36x2 + 58x3 + 45x4 + 18x5 + 3x6

11 I(T10,10;x) = 1 + 10x+ 36x2 + 58x3 + 42x4 + 11x5

12 I(T10,11;x) = 1 + 10x+ 36x2 + 58x3 + 43x4 + 14x5 + 2x6

13 I(T10,12;x) = 1 + 10x+ 36x2 + 58x3 + 43x4 + 12x5

14 I(T10,13;x) = 1 + 10x+ 36x2 + 58x3 + 42x4 + 12x5 + x6

15 I(T10,14;x) = 1 + 10x+ 36x2 + 59x3 + 49x4 + 22x5 + 4x6

16 I(T10,15;x) = 1 + 10x+ 36x2 + 59x3 + 47x4 + 17x5 + 2x6

17 I(T10,16;x) = 1 + 10x+ 36x2 + 59x3 + 47x4 + 19x5 + 3x6
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18 I(T10,17;x) = 1 + 10x+ 36x2 + 57x3 + 38x4 + 7x5

19 I(T10,18;x) = 1 + 10x+ 36x2 + 57x3 + 38x4 + 8x5

20 I(T10,19;x) = 1 + 10x+ 36x2 + 59x3 + 46x4 + 16x5 + 2x6

21 I(T10,20;x) = 1 + 10x+ 36x2 + 59x3 + 47x4 + 17x5 + 2x6

22 I(T10,21;x) = 1 + 10x+ 36x2 + 59x3 + 58x4 + 19x5 + 3x6

23 I(T10,22;x) = 1 + 10x+ 36x2 + 59x3 + 47x4 + 18x5 + 3x6

24 I(T10,23;x) = 1 + 10x+ 36x2 + 59x3 + 49x4 + 24x5 + 7x6 + x7

25 I(T10,24;x) = 1 + 10x+ 36x2 + 59x3 + 45x4 + 13x5

26 I(T10,25;x) = 1 + 10x+ 36x2 + 60x3 + 51x4 + 22x5 + 4x6

27 I(T10,26;x) = 1 + 10x+ 36x2 + 60x3 + 53x4 + 28x5 + 8x6 + x7

28 I(T10,27;x) = 1 + 10x+ 36x2 + 60x3 + 53x4 + 25x5 + 5x6

29 I(T10,28;x) = 1 + 10x+ 36x2 + 60x3 + 54x4 + 28x5 + 8x6 + x7

30 I(T10,29;x) = 1 + 10x+ 36x2 + 60x3 + 50x4 + 20x5 + 3x6

31 I(T10,30;x) = 1 + 10x+ 36x2 + 60x3 + 49x4 + 18x5 + 2x6

32 I(T10,31;x) = 1 + 10x+ 36x2 + 60x3 + 51x4 + 22x5 + 4x6

33 I(T10,32;x) = 1 + 10x+ 36x2 + 60x3 + 52x4 + 23x5 + 4x6

34 I(T10,33;x) = 1 + 10x+ 36x2 + 60x3 + 52x4 + 27x5 + 8x6 + x7

35 I(T10,34;x) = 1 + 10x+ 36x2 + 60x3 + 49x4 + 19x5 + 3x6

36 I(T10,35;x) = 1 + 10x+ 36x2 + 58x3 + 42x4 + 12x5 + x6

37 I(T10,36;x) = 1 + 10x+ 36x2 + 59x3 + 45x4 + 13x5

38 I(T10,37;x) = 1 + 10x+ 36x2 + 58x3 + 41x4 + 10x5 + x6

39 I(T10,38;x) = 1 + 10x+ 36x2 + 58x3 + 42x4 + 11x5

40 I(T10,39;x) = 1 + 10x+ 36x2 + 58x3 + 43x4 + 13x5 + x6
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41 I(T10,40;x) = 1 + 10x+ 36x2 + 58x3 + 43x4 + 15x5 + 2x6

42 I(T10,41;x) = 1 + 10x+ 36x2 + 58x3 + 41x4 + 10x5

43 I(T10,42;x) = 1 + 10x+ 36x2 + 59x3 + 45x4 + 15x5 + 2x6

44 I(T10,43;x) = 1 + 10x+ 36x2 + 57x3 + 38x4 + 9x5 + x6

45 I(T10,44;x) = 1 + 10x+ 36x2 + 62x3 + 61x4 + 35x5 + 10x6 + x7

46 I(T10,45;x) = 1 + 10x+ 36x2 + 62x3 + 58x4 + 29x5 + 6x6

47 I(T10,46;x) = 1 + 10x+ 36x2 + 62x3 + 58x4 + 32x5 + 9x6 + x7

48 I(T10,47;x) = 1 + 10x+ 36x2 + 60x3 + 50x4 + 20x5 + 3x6

49 I(T10,48;x) = 1 + 10x+ 36x2 + 61x3 + 54x4 + 25x5 + 5x6

50 I(T10,49;x) = 1 + 10x+ 36x2 + +61x3 + 56x4 + 29x5 + 8x6 + x7

51 I(T10,50;x) = 1 + 10x+ 36x2 + 61x3 + 57x4 + 31x5 + 9x6 + x7

52 I(T10,51;x) = 1 + 10x+ 36x2 + 61x3 + 52x4 + 21x5 + 3x6

53 I(T10,52;x) = 1 + 10x+ 36x2 + 61x3 + 55x4 + 28x5 + 8x6 + x7

54 I(T10,53;x) = 1 + 10x+ 36x2 + 61x3 + 53x4 + 23x5 + 4x6

55 I(T10,54;x) = 1 + 10x+ 36x2 + 62x3 + 57x4 + 29x5 + 8x6 + x7

56 I(T10,55;x) = 1 + 10x+ 36x2 + 62x3 + 61x4 + 37x5 + 13x6 + 2x7

57 I(T10,56;x) = 1 + 10x+ 36x2 + 62x3 + 63x4 + 38x5 + 13x6 + 2x7

58 I(T10,57;x) = 1 + 10x+ 36x2 + 62x3 + 55x4 + 24x5 + 4x6

59 I(T10,58;x) = 1 + 10x+ 36x2 + 60x3 + 48x4 + 17x5 + 2x6

60 I(T10,59;x) = 1 + 10x+ 36x2 + 59x3 + 45x4 + 15x5 + 2x6

61 I(T10,60;x) = 1 + 10x+ 36x2 + 59x3 + 47x4 + 19x5 + 3x6

62 I(T10,61;x) = 1 + 10x+ 36x2 + 62x3 + 55x4 + 24x5 + 4x6

63 I(T10,62;x) = 1 + 10x+ 36x2 + 60x3 + 47x4 + 14x5
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64 I(T10,63;x) = 1 + 10x+ 36x2 + 60x3 + 50x4 + 21x5 + 4x6

65 I(T10,64;x) = 1 + 10x+ 36x2 + 59x3 + 45x4 + 14x5 + x6

66 I(T10,65;x) = 1 + 10x+ 36x2 + 60x3 + 50x4 + 22x5 + 4x6

67 I(T10,66;x) = 1 + 10x+ 36x2 + 60x3 + 48x4 + 17x5 + 2x6

68 I(T10,67;x) = 1 + 10x+ 36x2 + 60x3 + 52x4 + 25x5 + 5x6

69 I(T10,68;x) = 1 + 10x+ 36x2 + 58x3 + 40x4 + 8x5

70 I(T10,69;x) = 1 + 10x+ 36x2 + 633 + 62x4 + 35x5 + 10x6 + x7

71 I(T10,70;x) = 1 + 10x+ 36x2 + 63x3 + 65x4 + 41x5 + 14x6 + 2x7

72 I(T10,71;x) = 1 + 10x+ 36x2 + 63x3 + 66x4 + 41x5 + 14x6 + 2x7

73 I(T10,72;x) = 1 + 10x+ 36x2 + 63x3 + 60x4 + 32x5 + 9x6 + x7

74 I(T10,73;x) = 1 + 10x+ 36x2 + 63x3 + 59x4 + 29x5 + 6x6

75 I(T10,74;x) = 1 + 10x+ 36x2 + 63x3 + 63x4 + 38x5 + 13x6 + 2x7

76 I(T10,75;x) = 1 + 10x+ 36x2 + 66x3 + 75x4 + 51x5 + 19x6 + 3x7

77 I(T10,76;x) = 1 + 10x+ 36x2 + 66x3 + 71x4 + 45x5 + 15x6 + 2x7

78 I(T10,77;x) = 1 + 10x+ 36x2 + 64x3 + 66x4 + 41x5 + 14x6 + 2x7

79 I(T10,78;x) = 1 + 10x+ 36x2 + 64x3 + 62x4 + 33x5 + 9x6 + x7

80 I(T10,79;x) = 1 + 10x+ 36x2 + 65x3 + 66x4 + 39x5 + 13x6 + 2x7

81 I(T10,80;x) = 1 + 10x+ 36x2 + 65x3 + 75x4 + 57x5 + 28x6 + 8x7 + x8

82 I(T10,81;x) = 1 + 10x+ 36x2 + 65x3 + 67x4 + 41x5 + 14x6 + 2x7

83 I(T10,82;x) = 1 + 10x+ 36x2 + 67x3 + 72x4 + 45x5 + 15x6 + 2x7

84 I(T10,83;x) = 1 + 10x+ 36x2 + 67x3 + 80x4 + 61x5 + 29x6 + 8x7 + x8

85 I(T10,84;x) = 1 + 10x+ 36x2 + 67x3 + 75x4 + 51x5 + 19x6 + 3x7

86 I(T10,85;x) = 1 + 10x+ 36x2 + 63x3 + 60x4 + 32x5 + 9x6 + x7
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87 I(T10,86;x) = 1 + 10x+ 36x2 + 63x3 + 63x4 + 38x5 + 13x6 + 2x7

88 I(T10,87;x) = 1 + 10x+ 36x2 + 61x3 + 51x4 + 20x5 + 3x6

89 I(T10,88;x) = 1 + 10x+ 36x2 + 62x3 + 55x4 + 25x5 + 5x6

90 I(T10,89;x) = 1 + 10x+ 36x2 + 61x3 + 54x4 + 28x5 + 8x6 + x7

91 I(T10,90;x) = 1 + 10x+ 36x2 + 63x3 + 57x4 + 25x5 + 4x6

92 I(T10,91;x) = 1 + 10x+ 36x2 + 63x3 + 61x4 + 35x5 + 10x6 + x7

93 I(T10,92;x) = 1 + 10x+ 36x2 + 66x3 + 67x4 + 36x5 + 8x6

94 I(T10,93;x) = 1 + 10x+ 36x2 + 71x3 + 90x4 + 71x5 + 34x6 + 9x7 + x8

95 I(T10,94;x) = 1 + 10x+ 36x2 + 71x3 + 85x4 + 61x5 + 24x6 + 4x7

96 I(T10,95;x) = 1 + 10x+ 36x2 + 73x3 + 91x4 + 71x5 + 34x6 + 9x7 + x8

97 I(T10,96;x) = 1 + 10x+ 36x2 + 72x3 + 90x4 + 71x5 + 34x6 + 9x7 + x8

98 I(T10,97;x) = 1 + 10x+ 36x2 + 77x3 + 105x4 + 91x5 + 49x6 + 15x7 + 2x8

99 I(T10,98;x) = 1 + 10x+ 36x2 + 68x3 + 78x4 + 58x5 + 28x6 + 8x7 + x8

100 I(S10;x) = 1 + 10x+ 36x2 + 84x3 + 126x4 + 126x5 + 84x6 + 36x7 + 9x8 + x9
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Appendix C: The Zagreb Indices of Trees on 1 ≤ n ≤ 10 vertices
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T M1 M2 T M1 M2 T M1 M2

P1 0 0 T7,7 28 28 T8,17 38 36

P2 2 1 T7,8 30 30 T8,18 38 39

P3 6 4 T7,9 34 32 T8,19 38 40

P4 10 8 S7 42 36 T8,20 40 41

S4 12 9 P8 26 24 T8,21 46 44

P5 14 12 T8,1 28 26 S8 56 49

T5 16 14 T8,2 28 27 P9 30 28

S5 20 16 T8,3 28 27 T9,1 32 30

P6 18 16 T8,4 30 30 T9,2 32 31

T6,1 20 18 T8,5 30 29 T9,3 32 31

T6,2 20 19 T8,6 30 28 T9,4 34 34

T6,3 22 21 T8,7 30 31 T9,5 34 33

T6,4 24 22 T8,8 32 30 T9,6 34 33

S6 30 25 T8,9 32 32 T9,7 34 32

P7 22 20 T8,10 28 28 T9,8 34 34

T7,1 24 22 T8,11 32 34 T9,9 34 35

T7,2 24 23 T8,12 30 31 T9,10 36 34

T7,3 24 24 T8,13 34 35 T9,11 36 36

T7,4 26 26 T8,14 34 32 T9,12 32 32

T7,5 26 24 T8,15 32 33 T9,13 32 32

T7,6 28 26 T8,16 34 36 T9,14 36 36
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T M1 M2 T M1 M2 T M1 M2

T9,15 36 38 T9,36 44 42 T10,12 38 38

T9,16 36 36 T9,37 42 40 T10,13 38 39

T9,17 38 39 T9,38 42 46 T10,14 40 38

T9,18 38 37 T9,39 50 48 T10,15 40 40

T9,19 38 36 T9,40 50 52 T10,16 40 40

T9,20 38 40 T9,41 48 52 T10,17 36 36

T9,21 38 41 T9,42 52 54 T10,18 36 36

T9,22 38 38 T9,43 60 58 T10,19 40 42

T9,23 34 35 S9 72 64 T10,20 40 41

T9,24 36 38 P10 34 32 T10,21 40 40

T9,25 34 36 T10,1 36 34 T10,22 40 41

T9,26 42 40 T10,2 36 35 T10,23 40 39

T9,27 42 43 T10,3 36 35 T10,24 40 43

T9,28 40 42 T10,4 36 35 T10,25 42 43

T9,29 40 44 T10,5 38 38 T10,26 42 41

T9,30 36 38 T10,6 38 37 T10,27 42 41

T9,31 38 40 T10,7 38 37 T10,28 42 40

T9,32 38 42 T10,8 38 37 T10,29 42 44

T9,33 42 46 T10,9 38 36 T10,30 42 45

T9,34 44 46 T10,10 38 39 T10,31 42 43

T9,35 44 48 T10,11 38 38 T10,32 42 42
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T M1 M2 T M1 M2 T M1 M2

T10,33 42 42 T10,54 46 50 T10,75 54 52

T10,34 42 45 T10,55 46 46 T10,76 54 56

T10,35 38 39 T10,56 46 44 T10,77 50 53

T10,36 40 42 T10,57 46 52 T10,78 50 57

T10,37 38 40 T10,58 42 46 T10,79 52 59

T10,38 38 39 T10,59 40 43 T10,80 52 50

T10,39 38 38 T10,60 40 41 T10,81 52 58

T10,40 38 38 T10,61 46 50 T10,82 56 62

T10,41 38 40 T10,62 42 47 T10,83 56 54

T10,42 40 42 T10,63 42 44 T10,84 56 59

T10,43 36 36 T10,64 40 43 T10,85 48 54

T10,44 46 44 T10,65 42 44 T10,86 48 51

T10,45 46 47 T10,66 42 46 T10,87 44 50

T10,46 46 47 T10,67 42 42 T10,88 46 52

T10,47 42 45 T10,68 38 41 T10,89 44 47

T10,48 44 47 T10,69 48 50 T10,90 48 55

T10,49 44 45 T10,70 48 47 T10,91 48 51

T10,50 44 44 T10,71 48 46 T10,92 54 60

T10,51 44 49 T10,72 48 52 T10,93 64 62

T10,52 44 46 T10,73 48 53 T10,94 64 67

T10,53 44 48 T10,74 48 49 T10,95 60 66
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T M1 M2 T M1 M2 T M1 M2

T10,96 66 69

T10,97 76 74

T10,98 58 65

S10 90 81
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