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ABSTRACT

Excellent conventional core control and electric log (SP) 
signatures were used to compare stratigraphic facies 
relationships and depositional environments of the 
productive reservoir sandstones of McComb and Little Creek 
fields. Part of the "updip" Lower Tuscaloosa Formation 
(Upper Cretaceous) productive trend, these fields are 
structurally modified stratigraphic traps formed by the 
combination of gentle structural nosing and updip pinch out 
of the reservoir sandstones. Current studies confirm that 
this part of the trend is characterized by two major 
depositional facies; a lower fluvial sequence topped by 
nearshore marine deposits. Cumulative oil production 
exceeds 100 million barrels in the immediate study area.

Recognition of the depositional environments of 
productive sandstones in the McComb and Little Creek field 
areas is based on (1) sand body geometry as revealed by 
detailed isopach maps and cross sections; (2), vertical 
variations in sedimentary structure and texture based on 
detailed examination of 19 conventional cores; (3), the 
nature of boundaries with underlying and overlying 
sediments; (4), bedding architecture; and (5), regional 
stratigraphic setting.

Detailed core and electric log studies reveal that the 
main producing sandstone in the McComb field area ("McComb 
Sand") was deposited as a transgressive barrier island 
complex along a coastline influenced by wave action and 
tides. Transgressive sands are relatively thin and 
lenticular in strike and dip sections (Moslow, 1884). This 
type of geometry is classically refered to as "sheet like". 
The sands pinch out up-dip and thicken in a downdip 
(seaward) direction. McComb field cross sections show the 
same general architecture. Isopachs of the McComb 
sandstone exhibit a thickening of the sandstone to the 
west. This pattern of sandstone thickening is consistent 
with regional structural maps in the McComb field area 
which indicate that seaward directions during deposition of 
the Lower Tuscaloosa Formation lay to the west and 
southwest.

Sedimentary structures recognized in the McComb sandstone 
strongly resemble those described by Moslow (1984) and 
Galloway and Cheng (1985) as characteristic of a 
transgressive barrier complex. These structures include 
large-scale low-angle planar laminations and cross-bedded, 
burrowed sequences typical of foreshore and shoreface 
environments as well as thinly laminated, flasered, and 
burrowed sequences representative of lagoonal and tidal 
flat sequences. Coarsening-upwards sequences were 
identified in 10 of 14 McComb cores and probably represent 
shoreface and barrier facies. The remaining cores comprise 
generally thinner fining-upwards and mixed sequences 
typical of washover fan, tidal channel, and tidal inlet 
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sequences. Tidal inlets tend to migrate laterally along a 
shoreline, reworking barrier island sediments, which are 
re-deposited as sequences of fining upward inlet-fill. 
Tidal channel and/or inlet sequences in the McComb 
sandstone were identified in as many as 3 cores.

Sandstones of transgressive barriers migrate landward and 
commonly overly lagoonal, marsh, and/or tidal flat deposits 
comprised mostly of silts and muds. Intense bioturbation, 
especially that produced by burrowing, is often a feature 
of fine-grained and sandy tidal flat and lagoonal 
sediments. The core study revealed that strongly 
bioturbated and flasered silty and sandy mudstones 
(interpreted as tidal flat and lagoonal facies) occur 
throughout the McComb field immediately below the base of 
the productive sandstone

The producing sandstone in Little Creek field (Denkman 
sand) differs from those in McComb field with respect to 
depositional environment and stratigraphic position. The 
Denkman sand occupies a lower stratigraphic position in the 
"Stringer Sand" section than the McComb sand. The McComb 
sand is approximately 50-60 feet below the base of the 
Middle Marine Shale Formation, a unit clearly of marine 
origin on the basis of glauconite occurence and fossil 
evidence. The Denkman sand is 70-80 feet below the Middle 
Marine Tuscaloosa Formation, closer stratigraphically to 
the Dantzler Formation (Lower Cretaceous) which is 
continental in origin.

Eisenstatt (1960) and Busch (1974) report that 
sandstones of the Little Creek field are the product of 
meander belt deposition. Their conclusion is based on the 
Denkman sandstone isopach map produced by Eisenstatt (1960) 
which illustrates the concentric and ovoid pattern of 
irregular shape and thickness often observed in maps of 
meander belt deposits. The core analysis of this study is 
in accord with their conclusion regarding the depositional 
environment of the reservoir sandstones. However, the 
meandering stream responsible for the deposition of the 
Little Creek point bars was considerably smaller than that 
proposed by Busch (1974). Multi-story point bar cycles are 
clearly evident in the Sun Oil Co., #1 Busby A (Sec. 
23-4N-8E) and Sun Oil Co., Atkinson B-1 (See. 2-4N-8E). 
The Little Creek reservoir sandstones are up to 66 feet 
thick and composed of at least two full or partial point 
bar cycles, the thickest of a single point bar being on the 
order of 30 feet. The thickness and continuity of full 
point bars identified in the core indicate that the 
sandstones were deposited by a stream approximately the 
size of the modern lower Brazos River (Texas).

The results of this study, supported by petrographic 
grain size analysis data, show that two major depositional 
facies characterize producing Lower Tuscaloosa Formation 
sanstone reservoirs in this area; a lower fluvial sequence 
(Little Creek) topped by nearshore marine deposits 
(McComb). Detailed core data, isolith maps, and 



cross-sections of the McComb field area reveal that the 
McComb sandstone was deposited as a transgressed barrier 
island system at a time when sand supply was diminishing. 
Thus, the barrier complex marks the shore-zone of the Upper 
Cretaceous marine transgression in the McComb field area.

Petrographic studies reveal that the sandstones of both 
fields were deposited as very fine to medium-grained quartz 
arenites and quartz litharenites. A good secondary porosity 
developed by disolution of rock fragments and carbonate 
cements which replaced the margins of quartz grains. 
Results of the petrographic and X-Ray diffraction analysis 
of the clay mineral content of the sandstones indicate that 
most of the clays are authigenic and comprise a suite which 
includes kaolinite, chlorite, and illite. Illite appears 
to be considerably more abundant in the McComb reservoir 
sandstones than at Little Creek.

The combined petrographic and X-Ray diffraction results 
suggest a diagenetic history which begins with mechanical 
compaction of the sediments and the precipitation of quartz 
overgrowths. Replacement of quartz overgrowths by carbonate 
cement was accompanied by carbonate precipatation between 
framework grains during the first stages of mesodiagenesis. 
During a more mature diagenetic stage, perhaps 
corresponding to hydrocarbon migration and emplacement, 
decarboxylation of contained organic matter in the adjacent 
fine-grained units led to wide-spread decarbonization of 
the reservoir rocks and the creation of hybrid, oversized, 
moldic and intergranular pores with good pore-throat 
interconnection. Complete and partial alteration of rock 
fragments and feldspars was accompanied by neoformation of 
kaolinite, chlorite (as grain rims), and illite.

There is some evidence of further dissolution and 
reprecipitation of quartz and carbonate, as well as the 
formation of vermicular kaolinite, after the main phase of 
secondary porosity generation and hydrocarbon emplacement. 
Late stage diagenetic events also include the precipitation 
of euhedral quartz crystals in some pore spaces and over 
chlorite rims.
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PART I: FACIES RELATIONSHIPS AND SANDSTONE DEPOSITIONAL

ENVIRONMENTS

INTRODUCTION

The Edwards carbonate shelf margin (Lower 

Cretaceous) separates updip and deep Lower Tuscaloosa 

Formation oil production. The updip trend spans the central 

portions of the states of Louisiana and Mississippi with 

discovered oil reserves in the billions of barrels 

(Chasteen, 1983). This study deals with a portion of the 

updip trend in southwestern Mississippi (Fig. 1).

Since the discovery of Brookhaven field in the early 

1940’s, more than fifty fields in the Interior Salt Basin of 

Mississippi have produced from the sandstones of the Lower 

Tuscaloosa Formation (Annual Report, MS. Oil and Gas Board, 

1983). The Lower Tuscaloosa productive trend in Mississippi 

and Louisiana has received considerable attention since 

Shell Oil Company’s discovery of Olive field in 1981 and 

Liberty field in 1983 (Wheatley, 1983). Texaco’s recent 

Netonia and Thompson discoveries (in Wilkinson and Amite 

counties, respectively) have sparked even greater interest 

in the updip Tuscaloosa "play'1. A "play", as commonly used 

by today’s oil and gas explorers, comprises several 

hydrocarbon prospects that are geologically similar in terms 

of trap, timing, reservoir rock, hydrocarbon source(s), and 

seal(s).

1



JEFFERSON

LINCOLN

Cranfleld

LAWRENCE
FRANKLIN

WALTHALL

Little
Creek 

1(1958)

Brookhaven 
( 1947)

COPIAH

PIKE

McComb 
(1959)

Figure 1. Location Maps of Lower Tuscaloosa Formation 
Production Trends.

ARKANSAS

MISSISSIPPI

SABINE

UPLIFT
MISSISSIPPI

LOUISIANAUPDIP TRENO

MONROE 
¡UPLIFT,

:SALT DOME BASIN

GULF OF 
MEXICO

WIGGINS

X5

ADAMS

WILKINSON

- Ashwood 
• (1981)

Smithdale 
(I960)

East Fork

AMITE

Liberty Ä 
(1983) ·

Gilsber

Olive 
(1981)

Mallalieu
0(1950)

2 .



3

This study defines the detailed physical 

stratigraphy and the depositional environment(s) of the 

Lower Tuscaloosa ”stringer sand” member in the McComb field 

area, Pike County, Mississippi (Fig. 2). McComb field was 

chosen for this investigation (1), because it is 

representative of Lower Tuscaloosa producing fields in this 

region, (2), because of the availability of conventional 

well cores and electric logs, and (3), because production 

drilling was conducted on forty acre drilling units which 

provide good control of structural and stratigraphic 

variations. Many subsequent Lower Tuscaloosa oil fields 

were completed on eighty acre well spacing which lessens 

structural and stratigraphic control.

Location

The study area, in southwest Mississippi, is 

located in Pike County, directly west of the town of McComb 

(Fig. 1). The field covers portions of Tier 3 and Tier 4 

North, Range 7 East. McComb field is located in the center 

of the Mississippi and Louisiana updip Lower Tuscaloosa 

productive trend. During peak production in the early 

sixties the field contained 191 oil wells within 12,720 

unitized acres, a substantial portion of which is shown on 

Figure 3.

Little Creek field is located approximately six

miles to the northeast of McComb field. The field
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covers portions of Tier 4 and Tier 5 North, Range 8 East, 

Pike and Lincoln counties (Fig. 4).

Exploration and Production History

McComb field was discovered by Sun Oil Company and 

J. Willis Hughes. The prospect was identified by seismic 

data and subsurface well control which indicated anticlinal 

nosing in the area. The discovery well, J. Willis Hughes 

and Sun Oil Company, #1 Pope Unit (Sec. 10-3N-7E), was 

completed on August 8, 1959. The well was drilled to a 

total depth of 11,219 feet and penetrated about 40 feet of 

the Dantzler Formation (Washita Group). Perforations were 

made from 10,882-10,886 feet in the ”stringer sand” member 

of the Lower Tuscaloosa Formation. The initial flow of the 

well was 244 barrels of oil per day through a 9/64-inch 

choke. The oil was 42.5 degree API gravity with a 1360:1 

Gas-Oil Ratio (GOR). The producing sandstone is light gray 

to gray and is medium grained to very fine grained.

Sun Oil unitized the field and 191 development 

wells were completed in the Lower Tuscaloosa Formation 

”stringer sand” member. The cumulative production for 

McComb field through December 31, 1983, was 29,705,615 

barrels of oil and 27,350,000 MCF of gas. At its peak of 

production, McComb field was producing almost 15,000 

barrels of oil per day. The average oil production of the 

191 wells in the McComb field area through December 1983
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was 155,526 barrels of oil per well. Basic reservoir data 

are given in Table 1.

McComb field underwent a water flood secondary 

recovery program in the 1960’s and 1970’s, but as of 

December of 1983, only two wells were still in production. 

Industry studies currently in progress will test the 

feasibility of enhanced oil recovery by CO2 injection for 

McComb and Little Creek fields. The Mississippi State Oil 

and Gas Board has divided the the McComb field area into 

(1) McComb field, (2) West McComb field, and (3) Southeast 

McComb field. Because of the distribution of available 

conventional core control, this study deals primarily with 

McComb and West McComb fields. However, a comparison of 

cores from the McComb field with those from Little Creek 

field aided in determining the depositional environment(s) 

of the McComb field area.

Stratigraphic Nomenclature

Tuscaloosa beds were first described from outcrops 

in central Alabama by Hilgard (1860). Smith and Johnson 

(1887) were the first to apply the name "Tuscaloosa 

Formation” to the beds in central Alabama cropping out 

between Paleozoic sediments and the Eutaw Formation (Upper 

Cretaceous). Stephenson (1911) initially assigned these

beds to the Lower Cretaceous Series, but after further
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TABLE 1. McCOMB FIELD RESERVOIR DATA

Average Porosity (%) 23

Permeability (Md.) (Average 91) 4.82-540

Connate Water (Average %) 60

Oil Water Contact (Feet MSL) -10,493

Bottom Hole Temperature (°F) 251

Original Reservoir Pressure (PSI) 4904

Gravity of Oil (Degrees API) 41

Production Mechanism Gas Expansion

Production Area (Unitized Acres) 12,720

Average Net Oil Sand Thickness (Feet) 14

(From Davis, 1963, and Fletcher, 1967)
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study, he correctly assigned the Tuscaloosa Formation to 

the Upper Cretaceous.

Stephenson (1914) found glauconite in the 

Tuscaloosa strata and reported that the formation was, at 

least in part, of marine origin. Earlier investigators 

believed the Tuscaloosa Formation to be entirely of 

continental origin.

Blanpied and Hazzard (1939) were the first to 

correlate the Tuscaloosa Formation of Mississippi with the 

Eagle Ford of Texas on the basis of fossil data. The 

Mississippi Geological Society (1941) assigned the 

Tuscaloosa to the base of the Gulfian Series and indicated 

it was equivalent to the Eagle Ford and Woodbine formations 

of Texas and Louisiana. The "COSUNA" project (Correlation 

of Stratigraphic units of North America) recently 

recommended that the North American chronostratigraphic 

units for the Mesozoic be abandoned and that global units 

be substituted in their stead (Salvador, 1985). The 

adoption of this recommendation means that the above 

formations are now assigned to the Upper Cretaceous 

Cenomanian stage.

McGlothlin (1944) proposed a subdivision of the 

Tuscaloosa Formation into an upper and a lower unit, the 

lower unit being subdivided into an upper "sand and shale 

section”, a middle "marine section", and a lower "massive 

sand section"
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. The Mississippi Geological Society (1957) assigned

Group status to the subsurface Tuscaloosa sediments of 

Mississippi and Alabama using the following formational 

subdivisions: (1) ”The Upper Tuscaloosa Formation", (2) 

"The Marine Tuscaloosa Formation", and (3) "The Lower 

Tuscaloosa Formation". The Lower Tuscaloosa Formation was 

further divided into a lower "massive sand" member and an 

upper "stringer sand" member.

Although this nomenclature is widely used, it has 

not been formally accepted (Parker, 1983). Early studies 

traditionally concluded that the "Lower Tuscaloosa 

Formation" unconformably overlies the Lower Cretaceous 

Dantzler Formation of south Mississippi. The "Lower 

Tuscaloosa Formation" underlies the marine shales of the 

"Middle Tuscaloosa Formation". Chasteen (1983) reported 

that although an unconformity does exist in updip areas, no 

downdip unconformity exists between the Dantzler and the 

Lower Tuscaloosa. In his view, they are facies equivalents 

and form a single diachronous depositional unit which 

bridges the Upper-Lower Cretaceous boundary (Chasteen, 

1983) .

Jules Braunstein (1950) accurately described the 

Lower Tuscaloosa Formation of southern Mississippi as a 

unit of "rapidly alternating sands and shales of shallow 

marine origin, overlying a nearly unbroken sand section of 

still shallower marine or continental origin". He reported 
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that the oil-producing sandstones of the Lower Tuscaloosa 

of southern Mississippi are variable and lenticular, 

indicating deltaic or fluvial deposition.

Karges (1962) pointed out that the sandstone 

isopach patterns of the Lower Tuscaloosa Formation in 

southwestern Mississippi are suggestive of meandering 

stream channels in a deltaic environment.

Vaughan Watkins (1962) described the "stringer 

sand" member as alternating sandstones and shales with 

varying amounts of siltstone and mudstone representing a 

transitional sequence with marine rocks predominant in the 

upper part and less evident in the lower part. Rainwater 

(1960) described the environment of deposition of the basal 

part of the Upper Cretaceous in southern Mississippi as 

deltaic and shallow water marine. Scull and others (1966) 

studied the reservoir sandstones in the Smithdale field 

area in southwest Mississippi. They concluded that the 

sandstones were deposited as point bars in a meandering 

stream. Narrow channel-fill sandstones were also reported 

to be present.

Berg and Cook (1968) investigated the petrography 

and origin of Lower Tuscaloosa sandstones at Mallalieu 

field in Lincoln County, Mississippi, and assigned a 

"fluvio-deltaic" origin to the reservoir rocks. Berg and 

Cook subdivided the fluvial depositional environments into 

channel-fill and point-bar sub-environments based on 
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mineralogy, texture, sedimentary structures, and areal 

geometry of the sandstones.

Chasteen (1983) divided the Lower Tuscaloosa into 

two main depositional facies: a marine facies and a 

nonmarine facies. The marine facies consist of the upper 

portion of the Stringer zone, just below the middle marine 

shale. The nonmarine facies is divided into sub-facies — 

namely, basal braided stream deposits overlain by 

meanderbelt point bar facies.

McComb Field Area Stratigraphy

According to V. Watkins (1962) the ”massive sand” 

member of the Lower Tuscaloosa Formation is not present in 

the McComb and Little Creek field areas. This is based on 

isopach data of the ”massive sand” member and regional 

cross sections constructed from electric logs of wells in 

southwest Mississippi. Only the ”stringer sand” member is 

present; however, there are numerous thick "box car” 

sandstones (so named for their distinctive electric log 

signature) present in and around the McComb and Little 

Creek fields (Fig. 5). These sandstones look very similar 

on electric logs to the "massive sand" member which is 

present east of the study area.
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Biostratigraphy

Selected well cuttings from the John L. Harlan 

No. 1 well (Sec. 11-2N-7E), Pike County, Mississippi, were 

used by Dunn and others (1985) to evaluate the 

biostratigraphic zonation of the Lower Tuscaloosa 

Formation. The well is located approximately four miles 

south of the study area. The samples were analysed for 

their foraminiferal and microfossil content, using standard 

micropaleontological techniques. The foraminifera 

identified in the Lower Tuscaloosa Formation samples were 

classified by the taxonomy listed in Pessagno (1967), and 

the bio-zonal assignments used herein are those of Pessagno 

(1967) .

The fossiliferous samples from McComb field contain 

foraminiferal specimens that are badly recrystallized and 

poorly preserved, so these specimens were not definitively 

identified as to species. Foraminifera similar to 

Heterohelix moremani and Rotalipora greenhornensis in 

general form, chamber arrangement, and size were noted. If 

these taxonomic identifications are correct, then this 

section may be assigned to the Rotalipora greenhornensis 

zone of Pessagno (1967) which is Late Cenomanian 

(Woodbinian-Eaglefordian stage) age. This age assignment 

is in agreement with a more-detailed study by Mancini and 

others (1980), who found the Lower Tuscaloosa in southern 

Alabama to be of Cenomanian age.
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Objectives

The primary objectives of this project were as 

follows ;

(1) To determine the detailed stratigraphy and 
depositional environment(s) of Lower Tuscaloosa 
Formation oil reservoir sandstones in and around 
McComb field. Pike County, Mississippi.

(2) To develop predictive depositional models in the area 
of intensive study in order to expand local 
interpretations to regional scales.

(3) To provide an enhanced stratigraphic and depositional 
environment framework for companion studies of 
sandstone petrology and diagenesis.

Scope

An understanding of the three-dimensional 

frameworks of modern clastic sedimentary environments is 

critical to the proper interpretation of vertical sequences 

of lithofacies, lateral facies relationships, sand body 

geometries, and inhomogeneities of sandstone reservoirs. 

The methods and techniques of process-oriented 

sedimentology are used to relate the data which describe an 

ancient depositional system to that which define its modern 

analog.

The four-step procedure described below was 
I 

utilized to provide the basic data which describe the 

reservoir sandstone trends in the McComb and Little Creek

fields. This approach is useful in depositional 
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environment analysis because it is flexible and maximizes 

available data to the fullest.

1. Determination of the Vertical Sequence of Lithofacies 
and Depositional Environments. Cores were examined 
using a binocular microscope and graphic lithologic 
logs were prepared. Vertical variations in texture 
and sedimentary structures as well as general 
mineralogy were recorded. A comparison of cores from 
the McComb field with those from Little Creek aided 
in determining the depositional environment(s) of the 
McComb field area.

2. Determination of Lateral Variations of Lithofacies 
and Depositional Environments. Once the vertical 
distribution of lithofacies and depositional 
environments were recorded, stratigraphic 
cross-sections were constructed through areas of 
greater control to areas of lesser control.

3. Environment Analysis. At this stage, lithofacies and 
depositional environment models were constructed by 
preparing a network of correlated cross-sections 
which also integrated available core data. Aspect 
maps showing sand body sizes, shapes, and trends were 
generated using these data.

4. Regional Interpretation. Comparison of petrographic 
data from studies throughout the southwest 
Mississippi updip Tuscaloosa trend (e.g., H. Watkins, 
1984; Berg and Cook, 1968).

Core Examination

Detailed environmental facies analysis of cores

from McComb and Little Creek fields comprises a major part 

of this study. The location and distribution of cores and 

cross-sections used during this investigation are shown on 

Figure 6 and Table 2. The amount of core footage per well 

ranges from 11 to 70 feet with an average core footage of 

34 feet per well.
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TABLE 2. CORE DATA

OPERATOR WELL NAME LOCATION COUNTY CORE INTERVAL FIELD
SUN #3 Boggan Sec. 4-3N-7E Pike 10934 - 10954 McComb
SUN #1 R. E. Schmidt Sec. 10-3N-7E Pike 10899 - 10915 McComb
SUN Lenoir А-l Sec. 10-3N-7E Pike 10938 - 10964 McComb
SUN #1 Harvey Lenoir Unit Sec. 10-3N-7E Pike 10885 - 10918 McComb
SUN Johnson А-l Sec. 10-3N-7E Pike 10896 - 10949 McComb
SUN Crowder M.F.U. 11-11 Sec. 11-3N-7E Pike 10912 - 10946 McComb
SUN #1 Sinclair Sec. 11-3N-7E Pike 10892 - 10954 McComb
SUN #1 Andrews Sec. 14-3N-7E Pike 10876 - 10892 McComb
SUN #1 F. Z. Mills Sec. 15-3N-7E Pike 10948 - 10024 McComb
SUN #1 Jas. McCarthy Sec. 15-3N-7E Pike 10896 - 10907 McComb
SUN #1 L. P. Martin Sec. 17-3N-7E Pike 10961 - 10976 McComb
SUN Lampton Wallace G-l Sec. 22-3N-7E Pike 10939 - 10972 McComb
SUN Lampton Wallace А-l Sec. 22-3N-7E Pike 10992 - 10948 McComb
SUN McComb Field Unit 27 Sec. 27-3N-7E Pike 10926 - 10949 McComb
SUN Atkinson В-l Sec. 2-4N-8E Pike 10772 - 10821 Little Creek
SUN #2 Kenna Sec. 11-4Ν-ΘΕ Pike 10773 - 10815 Little Creek
SUN #1 Busby A Sec. 23-4N-7E Pike 10711 - 10769 Little Creek
SUN #1 Mae Busby Sec. 23-3N-7E Pike 10745 - 10778 Little Creek
SUN #1 Nunnery Busby Sec. 23-4N-ÔE Pike 10723 - 10767 Little Creek

IO
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The cores were examined in detail using standard 

methods of megascopic core analysis as described in the 

AAPG Sample Evaluation Manual (Swanson, 1983). Textural 

analysis was performed using a binocular microscope and a 

grain size comparitor chart. The textural, sedimentary 

structure, and mineralogical data were recorded on graphic 

lithological logs using common sedimentological symbols 

(Appendix A and B, Fig. 14).



SUBSURFACE GEOLOGY OF THE McCOMB FIELD AREA

The subsurface investigation of the McComb field 

area combined detailed studies of 19 conventional cores (14 

from McComb field and 5 from Little Creek field), with 

interpretation of over 200 electric well logs.

Structural Setting

McComb field is situated on a broad gentle 

structural nose (Plate I, in pocket). The greatest amount 

of closure found in the field is only ten to fifteen feet. 

The gentle nosing reduces the regional southwest dip from 

75 feet per mile (0.8 degrees) to 12.5 feet per mile (0.2 

degrees). The oil trapping mechanism for McComb field 

combines this gentle structural nosing with a stratigraphic 

pinchout of permeable sandstone into updip impermeable 

shale. This mechanism is not unique to the McComb field 

but is the trapping mechanism for many of the fields in the 

Lower Tuscaloosa updip trend (e.g., Olive, Little Creek, 

East Fork) .

Sandstone Thickness and Geometry

The general shape of the producing sandstone is 

arcuate to lobate as derived from an isopach map of the 

McComb sandstone (Plate II, in pocket). The sandstone is 

thickest in the northwest portion of the field (30 - 35 

feet) but shows an irregular pattern of thinning and 

21
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thickening along an easterly and southeasterly trend. 

Thicknesses vary widely from well to well, particularly 

near the field margins where the sandstone pinches out. 

Sandstone thickness variations are commonly in the 5-10 

feet range and are occasionally as much as 25 feet over a 

quarter of a mile.

Sandstone Composition

The Lower Tuscaloosa Formation in the McComb field 

area is characterized by alternating sandstone, siltstone, 

and shale lithologies. The approximate thickness of the 

formation is 320 feet. The sandstones are very-fine to 

medium grained quartz arenites (H. Watkins, 1984; based on 

the classification chart of Folk, 1980) with variable 

degrees of cementation, porosity and permeability. 

Detailed core descriptions of reservoir sandstones of 

McComb and Little Creek are given in appendices A and B.

Petrographic Analysis

A petrographic study was conducted by H. Watkins 

(1984) on the productive sandstone in the McComb field. A 

total of six thin sections from two wells was examined 

(Figures 7 and 8). The wells sampled included Sun Oil 

Company, R. L. Boggan #3 (Sec. 4-3N-7E), and Sun Oil
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Figure 7. Characteristics of the McComb sandstone in Sun Oil Co, and J. W.
Hughes, H Crowder Unit (Sec. 11-3N-7Ľ), showing grain size ю
variations and mineral composition (from 11. Watkins, 198A) .
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SUN OIL COMPANY
R.L. BOGGAN #3 
SEC 4-3N-7E
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Figure 8. Characteristics of the McComb sandstone in Sun Oil Co., #3 
Boggan (Sec. 4-3N-7E), showing grain size variations and 
mineral composition (from H. Watkins, 1984). to
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Company and J. W. Hughes, J. M. Crowder Unit #1 

(Sec. 11-3N-7E). Samples were taken approximatly every 

three feet within the perforated intervals.

Three hundred point counts were made for each thin 

section to determine sandstone composition. Petrographic 

size analysis was also performed for each thin section.

Watkins’ results revealed that the sandstones are 

quartz arenites with average composition as follows:

652 Quartz (12 Polycrystalline)

252 Matrix material

62 Carbonate cement

32 Rock fragments

<12 Detrital chert

<12 Muscovite

<12 Feldspar

The petrographic size analysis was performed 

according to methods used by Berg and Davies (1968). For 

each slide fifty quartz grains were measured along the long 

diameter, and the mean grain size calculated. The McComb 

sandstone in both wells coarsened upwards. Sandstone in 

the Boggan #3 well coarsens upward from a very fine grain 

sand to a fine grain sand and the Crowder well coarsens 

upward from a very fine to a medium grain sandstone.

A similar study was performed by Berg and Cook

(1968) at Mallalieu field in Lincoln County, Mississippi. 
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They determined that the sands at Mallaleiu field fine 

upwards. Eisenstatt, 1960 and Bush, 1974 reported fining 

upwards cycles in sandstones of Little Creek field.

Chasteen, 1983 reported that sandstone textures fine upwards 

in Smithdale field. These results are contrary to those 

derived from studies of the McComb field cores and indicate 

that at least two major depositional environments 

characterize the Lower Tuscaloosa Formation in this area; a 

lower fluvial sequence and an upper nearshore marine or 

marine section.

Vertical Variations in Structure and Texture

Of the fourteen McComb field logged in detail 

(Appendix A) ten are upward coarsening sequences, two are 

upward fining sequences and two cores exhibit mixed sequence 

of both coarsening and fining upward cycles within the cored 

interval (Appendix 1).

All of the Little Creek field cores, five in all, 

exhibit fining upwards textures with a comcomittant shift to 

lower energy sedimentary structures.
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McComb Field Coarsening Upwards Sequences

A "typical" coarsening upward sequence can be seen 

in the Sun Oil Company, #1 Harvey Lenoir, in section 

10-3N-7E, Pike County, Mississippi (Appendix A). This well 

was cored from 10,885-10,918 feet. The base of the core is 

composed of dark gray siderite-bearing mottled siltstone (4 

feet), which grades upward into an intensely bioturbated, 

very fine grain sandstone (7 feet). This bioturbated zone 

is below the productive McComb sandstone, and generally is 

found throughout the field. Directly above the bioturbated 

zone is a gray siltstone (7 feet) which usually grades into 

a dark gray carbonaceous shale containing abundant plant 

fragments and occasional pyrite and or lignite. Some soft 

sediment deformation within this interval is also common. 

Above the shaley - silty zone is the McComb sandstone (24 

feet) which is the main producing sandstone in McComb 

field. A sharp contact is usually found between the shaley 

- silty zone and the McComb sandstone. The base of the 

sand is generally fine to very fine grained with occasional 

small clay clasts. The cross-bedding throughout the sand 

varies from high to low angle planar. Overall coarsening 

upward from very fine grain to medium grain sandstone is 

quite evident. Calcium carbonate cement is commonly found 

throughout the sandstone; however, megascopic observations 

suggest that there may be an inverse covariance between 

carbonate cement and chlorite. It appears that wherever 
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there is more clay mineral accumulation (chlorite) within 

the sandstone, there is less calcium carbonate cement 

present, and vice versa.

Permeability varies throughout the sandstone 

(4.82-540 millidarcies) with an average of 91 millidarcies 

(Davis, 1963, and Fletcher, 1967). Generally there is 

greater permeability within the sandstone wherever there 

are clay mineral accumulations. Throughout the middle and 

upper parts of the McComb sandstone, textures coarsen 

upwards. The dominant sedimentary structures are large 

scale, low to high angle, planar cross-beds. Sorting 

varies throughout, ranging from poorly sorted, usually at 

the base, to well sorted at the top of the sandstone. 

Roundness of the quartz sand grains varies from sub-angular 

to sub-rounded. Traces of carbonaceous organic debris are 

generally present throughout the sandstone.

Nine other cores from McComb field display much the 

same general variations in structure and texture as those 

described above (Appendix A).

McComb Field Fining Upwards Sequences

The Sun, #1 Sinclair, and the Sun, MFU 27-11, cores 

show evidence of overall fining upward sequences from 

medium to fine grain sandstones. Sedimentary structures 

generally exhibited lower energy structures grading upward, 

into flaser and lenticular bedding at the top of the 
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sandstone. However, the Sun, #1 Sinclair, well was cored 

through only the base of the McComb sandstone; therefore, 

data throughout the upper parts of the sandstone are not 

available for study.

McComb Field Mixed Sequences

Cores from two wells in McComb field contain 

sequences of both coarsening and fining upward sandstones. 

Cores from pay zones in Sun, Johnson A-1 (Sec. 10-3N-7E), 

and Sun, Lampton Wallace G-1 (Sec. 22-3N-7E), exhibit 

intervals of flaser bedding and small scale cross-bedding. 

The fining upward sequence may be found directly above a 

coarsening upward cycle (Sun, Johnson A-1), or found 

directly below a coarsening upward cycle (Sun, Lampton 

Wallace G-1) (Appendix A).

Little Creek Fining Upward Sequences

All five cores in Little Creek display upward 

fining sequences (Appendix B). Throughout the Little Creek 

cores, sedimentary structures generally followed those 

described by Busch (1974) as being typical of point-bar 

sandstones. Four characteristic zones were generally 

recognized in each Little Creek field core. From the base 

of the sandstone upward, the zones included 1) poorly 

bedded sand or gravel, 2) giant-ripple 

cross-stratification, 3) very low angle laminated beds, and 
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4) small ripples. Two wells (Sun, Atkinson B-1, and Sun, 

#1 Busby A) contain two cycles of upward fining cycles 

within the cored interval.

The Sun Oil Company, #1 Mae Busby, well in section 

23-4N-8E displays a typical fining upward sequence. The #2 

Kenna, well in section 11-4N-8E, a dry hole, has only four 

feet of sand within the cored interval. The rest of the 

core in the #2 Kenna, well contains mostly gray and red 

mottled, siderite-bearing siltstone and shale. Sedimentary 

structures contained in the core include some small scale 

ripple cross-bedding, soft sediment deformation, thin 

laminated siltstone, and sandstone. Plant fragments, root 

structures, bioturbation, and mottling are also present 

throughout the core.

Electric Log Interpretation

Where core data were not available, electric well 

logs were used to provide information as to the general 

lithologies. Lack of nuclear logs (gamma, neutron) or 

sonic for lithology made it necessary to use the 

spontaneous potential (S.P.) curve on the electric log 

which yields a measure of permeability. The S.P. curve 

(for lithologies) must be used with extreme caution when 

attempting to determine lithology. The S.P. of sandstones, 

for example, can vary considerably with clay content and 

cement (Timmons, 1984). In this study, the S.P. curve was 
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used for lithologic determination only after careful 

comparison with core. In general, S.P. curves usually 

followed grain size variations. The resistivity curves on 

the electric logs proved unreliable for porosity and oil 

indication mainly due to the chlorite build-up within the 

sandstone. These grain-coating clays have micropores (tiny 

pores between individual clay crystals). Water trapped 

within the micropores effectively coats the quartz grains 

with a thin layer of brine-saturated, very conductive clay. 

The increase in conductivity reduces resistivity, causing 

the resistivity curve to read ”wet”.

A problem with the evaluation of Lower Tuscaloosa 

Formation reservoir sandstones using modern gamma logs 

occurs when the sandstone contains small amounts of mica 

and/or illite clay. These constituents can raise the 

amount of radioactive potassium normally found in 

sandstone. As a result, the gamma log response may be 

mistakenly interpeted as a shale or "tight” sandstone 

instead of a porous and permeable productive sandstone 

(Timmons, 1984).

McComb Field Cross-Sections

Seven detailed stratigraphic cross-sections were 

constructed through McComb field (Fig. 6 and Plates III - 

IX). These cross-sections include graphic core data and

interpretations of depositional environments. The
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cross-sections reveal the following general aspects of the

McComb field.

(1) The McComb sandstone varies in thickness (0-35 
feet) within the field.

(2) The top of the McComb sandstone is generally found 
about sixty feet below the top of the Lower 
Tuscaloosa Formation.

(3) The McComb sandstone and the thin sandstones above 
it are continuous and can be easily correlated 
throughout the field.

(4) Most of the sandstones below the McComb sandstone 
are discontinous and can not be correlated for any 
great distance.

(5) Oil production is generally limited by 
stratigraphic pinchout of the McComb sandstone to 
the northeast, east, and southwest.

(6) The only exception to (5) above is illustrated on 
section B-B’ in the Cashon, #2 R. E. Schmidt, well 
where the sand is thin and the pronounced 
attenuation of the S.P. curve indicates a lack of 
permeability. A similar situation occurs in the 
Lyle Cashion well immediately adjacent to the west 
also a dry hole.



INTERPRETATION AND DISCUSSION OF RESULTS

Depositional Setting

Recognition of the depositional environment(s ) of 

productive sandstones in the McComb and Little Creek field 

areas is based on 1) the sand body geometry, 2) the 

vertical variations in sedimentary structure and texture 

within the sand body, 3) the nature of boundaries with 

underlying and overlying sediments, 4) the bedding 

architecture, and 5) regional stratigraphic setting. The 

compiled results indicate that:

1) Productive sandstones of McComb field were 

deposited in a nearshore marine shoreline environment 

during a major marine transgression. Specifically, the 

data suggest that the producing sandstone was deposited as 

part of a barrier complex at a time when sand supply to the 

area was diminishing.

2) Productive sandstones of the Little Creek field 

were deposited in a well-developed, mature, high-sinuosity 

meander belt as concluded by Eisenstatt (1960) and Busch 

(1974). However, the meandering stream system responsible 

for the deposition of the Little Creek point bars was 

considerably smaller that that proposed by Busch (1974).

3. The McComb sandstone occupies a higher 

stratigraphic position relative to the base of the Middle

34
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Marine Shale Formation than do producing sandstones of the 

Little Creek field.

The McComb Sandstone - A Barrier Island Shoreline System

Detailed core and electric log studies reveal that 

the main producing sandstone in the McComb field area, the 

McComb sandstone, was deposited as a transgressive barrier 

island complex along a coastline influenced by wave action 

and tides. Moslow (1984) lists the following 

characteristics of transgressive coastline barriers of this 

type:

a. Barrier complexes often assume arcuate, stunted 
”drumstick” shapes as shown in Figure 10.

b. An individual barrier complex can extend for 
several miles and is often cut by tidal inlets 
and channels. Sand supply and the duration and 
strength of shoreline currents determine the 
size of barrier complexes.

c. Transgressive barriers will migrate in a 
landward (updip) direction as a result of sea 
level rise.

d. Barrier complexes display both upward coarsening 
textures and upward fining textures.
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The deposition of a transgressive barrier complex 

takes place when a relative rise in sea level exceeds 

sediment supply and barrier aggradation can no longer take 

place. The barrier complex migrates in a landward 

direction by storm washover and tidal flooding into shallow 

and restricted waters of the lagoon (Kraft and John, 1979; 

Penland and Suter, 1983; Heron and others, 1984). During 

the transgression, the shoreface is the zone of erosion and 

may not be preserved as well as other parts of the barrier 

complex. As recently documented by Galloway and Cheng 

(1985), thin and volumetrically small back-barrier facies 

and multiple inlet fills make up the bulk of the preserved 

sand body. Preserved barrier complex sediments may thus be 

topped by fining upward textural trends that reflect the 

marine incursion and deeper water environments. The result 

is a transgressed barrier complex surrounded by lagoonal 

and marine muds (Fig. 11).

Recognition Criteria of Transgressive Barriers

Transgressive barriers are generally erosional in 

nature and are referred to as retrograding or landward 

migrating. Vertical sedimentary sequences of the shoreline 

and barrier core tend to coarsen upward and are comprised 

of interbedded sands and muds (Table 3). Grain size can 

vary from fine to coarse sand and abrupt facies contacts 

within the sand body are frequent (Moslow, 1984).
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TABLE 3. TRANSGRESSIVE BARRIER CHARACTERISTICS

Deposit ional 
Environment

Lithology Sedimentary
Structures

Large Scale Features

Overwash 
and

Foreshore

Clean, mod. sorted 
fine to med. sand

Horizontal and planar 
laminations

Caps inlet and 
barrier sequences

Shoreface Well sorted, fine 
to med. sand and 
silt

Cross-bedded (upper 
half) and burrowed 
(lower half) sequence

Coarsening upward 
sequence; increase 
in mud content 
towards base.

Backbarrier 
(lagoon, 
tidal flat, 
salt marsh)

Well sorted, fine 
to med, silty 
sand and sandy 
clay

Burrowed ; thin parallel Capped by salt 
clay laminations marsh; increasing

mud and organic 
content upwards

Flood-Tidal
Delta

Mod. sorted, med. 
to coarse silty 
sand

Gently dipping cross­
laminae; burrowed

Interbedded with 
backbarrier facies; 
cyclic fining upward 
sequences

(Modified fron Moslow, 1984)
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Sedimentary structures recognized in the McComb sandstone 

strongly resemble those described by Moslow (1984) and 

Galloway and Cheng (1985) as characteristic of a 

transgressive barrier complex. These structures include 

large-scale low-angle planar laminations and cross-bedded, 

burrowed sequences typical of foreshore and shoreface 

environments as well as thinly laminated, flasered, and 

burrowed sequences representative of lagoonal and tidal 

flat sequences.

According to Moslow, transgressive sands are 

relatively thin and lenticular in strike and dip sections. 

This type of geometry is classically referred to as ”sheet 

like". The sands pinch out updip and thicken in a downdip 

(seaward) direction. McComb field cross sections D-D’ and 

G-G' (Plates VI and IX) show the same general 

architecture, resembling that described by Galloway and 

Cheng (1985). Isopachs of the McComb sandstone (Plate II) 

exhibit a thickening of the sandstone to the west. This 

pattern of sandstone thickening is consistent with regional 

structural maps in the McComb field area which indicate 

that seaward directions during deposition of the Lower 

Tuscaloosa Formation probably lay to the west and 

southwest.

Transgressive barriers do not form an easily 

recognizable thick vertical sequence of sediments. 

Although generally they exhibit overall coarsening upward 
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textures, trangressive barriers are complex mosaics of 

depositional sub-facies, including barrier-core, inlet 

fill, flood-tidal delta, washover fan, barrier-flat, and 

shoreface facies (Galloway, 1985; Fig. 12). Since they are 

landward migrating, sandstones of trangressive barriers 

commonly overlie lagoonal, marsh, and/or tidal flat 

deposits comprised mostly of silts and muds (Fig. 13). 

Intense bioturbation, especially burrows, is often a 

feature of fine-grained and sandy tidal flat and lagoonal 

sediments.

The core study revealed that strongly bioturbated, 

and flasered, silty and sandy mudstones (interpreted as 

tidal flat and lagoonal facies) occur throughout the McComb 

field immediately below the base of the productive 

sandstone (Appendix A).

Even though transgressive barriers are typically 

coarsening upward sequences, recognition of ancient 

barriers is difficult based on observation of this sequence 

alone (i.e., in a single core). Often, recognition of a 

transgressed barrier complex depends of the identification 

of directly associated fining upward cycles. Most 

transgressed barrier complexes will include washover fan, 

tidal inlet channel, and/or flood-tidal delta deposits 

which exhibit overall fining upward textures characterized 

by variations over short distances (Geehan, Grimes, and 

Swanson 1983; Hayes, 1967; Andrews, 1970; Balsley, 1980;



Figure 12. Barrier island sand body components in a 
microtidal barrier system (from Galloway and 
Cheng, 1985).

Depositonol

SHOREFACE

Ccoss section showing mitinai 
deposihonal orchilecture ol 
facies clement

FLOOD-TÎDÂÎ 
DFLTA-^

,/ ////////‘ //=77 
BARR/F R CORF ' ,,,



TRANSGRESSIVE BARRIERS
EROSIONAL (RETROGRADING))
WASHOVER MORPHOLOGY 
COARSENING-UP SEQUENCE

INTERBEDDED SAND 
ψ MUD

F-C GRAINED 
ABRUPT CONTACTS

OM

IOM

Figure 13. Geologic features of 
sequence of a modern 
island complex (from 

a coarsening upward 
transgressive barrier 
Moslow, 1984).



44

Hobday et al», 1980; Hayes and Kana, 1976; Moslow, 1984; 

and McCubin, 1982).

Channel sands and tidal deltas associated with 

inlets are common depositional sub-facies of the barrier 

environment. Processes associated with these features 

rework tidal flat and barrier sands (Moslow, 1984). Tidal 

inlets tend to migrate laterally along a shoreline, 

reworking barrier island sediments, which are re-deposited 

as sequences of fining upward inlet-fill. Tidal channel 

and/or inlet sequences in the McComb sandstone were 

identified in as many as three wells (Sun, MFU #27-11; 

Sun, Johnson A—1 ; and Sun, Lampton Wallace G-1). These 

tidal inlet sequences generally are bounded above and below 

by bioturbated fine-grained facies.

Recent studies have shown that as much as 50^ of the 

sediment associated with modern Holocene barrier shorelines 

is deposited as inlet deposits (Moslow, 1984).

Preservation Potential

Preservation of transgressive barrier island 

sequences depends on adequate rate of sand accumulation 

and on subsidence capable of progressively burying the 

deposits. The preserved sediments may be capped by fining 

upward cycles that reflect transgression and increasingly 

deeper water environments. The result is a transgressed 

barrier complex isolated between lagoonal muds in the 
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landward direction and marine shelf muds in the seaward 

direction (Galloway and Cheng, 1985).

Ancient Examples

Reservoir facies thought to typify transgressive 

barrier complexes include the Upper Cretaceous Bell Creek 

field in Montana (Berg and Davies, 1968; McGregor and 

Biggs, 1968; Horne and Ferm, 1976). The Muddy Sandstone 

reservoir in Bell Creek field consists of a barrier island 

sequence with washover fan deposits pinching out updip into 

fine-grained lagoonal sediments.

The Glasscock reservoir of the West Ranch field of 

the Greta barrier strandplain play produces oil from the 

middle coastal plain of Texas (Galloway and Cheng, 1985). 

These transgressive barrier deposits consist mainly of 

large washover fan and associated barrier-flat sands. The 

Book Cliffs in Utah have also been reported to be at least, 

in part, transgressed barrier complexes (Balsley, 1980).

It is of interest to note that the geometry and 

thickness of the McComb field sandstone are similar in most 

respects to the producing sandstones in Bell Creek field, 

Montana, and Glasscock field reservoir sandstone in Texas.

Alternate Interpretations of the McComb Field Sandstone

The coarsening upward cycles of the McComb 

sandstone body resemble the textural pattern characteristic 
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af distributary mouth bars, particularly those which have 

been reworked by shoreline processes. The fining upward 

cycles could be distributary channel deposits; however, 

these deposits normally thicken updip. Furthermore, there 

is no evidence of a major distributary system to the north 

or east (the assumed landward direction) and fluvial cycles 

have not been detected in this stratigraphic position in 

the McComb field area. Fluvial sand deposits do, however, 

occur lower in the section (e.g., Little Creek Denkman 

sandstone).

The McComb sandstone is arcuate convexly to the 

northwest-southeast which is the opposite of what one would 

expect to find if the sandstone had been deposited as a 

distributary mouth bar. This arcuate pattern to the 

northwest-southeast is more easily explained by washover 

barrier flat facies pinching out updip into lagoonal 

sediments. The presence of what appears to be tidal inlet 

channels in the McComb sandstone suggests that if it was a 

distributary mouth bar it was reworked by tidal currents.

Little Creek Depositional System

The producing sandstone in Little Creek field 

Denkman sandstone differs from that in McComb field with 

respect to depositional environment and stratigraphic 
Į 

position. The Denkman sandstone occupies a lower \ 

stratigraphic position in the ”stringer sand” sectuoVi than 

Μ 
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the McComb sandstone. The McComb sandstone (Fig. 5) is 

approximately 50-60 feet below the base of the Middle 

Marine Shale Formation, a unit clearly of marine origin on 

the basis of glauconite occurrence and fossil evidence. 

The Denkman sandstone is 70-80 feet below the Middle Marine 

Tuscaloosa Formation.

Eisenstatt (1960) and Busch (1974) reported that 

sandstones of the Little Creek field are the product of 

meander belt deposition. Their conclusion is based on the 

Denkman sandstone isopach map produced by Eisenstatt 

(1960) which illustrates the concentric and ovoid pattern 

of irregular shape and thickness often observed in point 

bar deposits. The core analysis of the present study is in 

accord with their conclusion regarding the depositional 

environment of the reservoir sandstones. Sandstone 

textures and structures typical of multi-story point bar 

cycles are clearly evident in the Sun Oil Co., #1 Busby A 

(See. 23-4N-8E) and Sun Oil Co., Atkinson B-1 (Sec. 

2-4N-8E). The Little Creek reservoir sandstones are up to 

66 feet thick and composed of at least two full or partial 

point bar cycles, the thickest of a single point bar being 

on the order of 30 feet.

The thickness of a full point bar, as measured in 

cores or on outcrops, is a good approximation of the depth 

of the channel (Leopold, Wolman and Miller, 1964).

Empirical measurements of more than 50 modern meandering 
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streams have established that there is a close relationship 

between stream depth, stream width, size (mean annual and 

bankfull discharge), and meander length (Lorenz and others, 

1985; Carlson, 1965; and Cameron, 1985). Isopachs of point 

bar sandstones frequently have concentric and ovoid 

patterns and are often tightly spaced adjacent to channel 

fills and flood plain deposits, a pattern reproduced in the 

isopach maps of Eisenstatt (1960) and Busch (1974).

In general, high-sinuosity meandering streams (i. 

e., those with sinuosities in excess of 1.7) have the 

following characteristics:

1. Stream depth at bankfull discharge 
approximates that of the full point bar 
thickness.

2. Depth at average annual discharge is 
approximately one-third that at bankfull 
discharge.

3. Bankfull widths of asymmetric meandering 
stream channels usually vary between 1.3 
and 1.6 times the width at mean annual 
discharge, values which give 2 to 4 
degrees as the most likely depositional 
slopes of the point bar surface.

Size estimates for the streams which deposited the 

Little Creek point bars were made by using the core logs 

(for point bar thickness) and graphs published by the 

authors cited above. Two variables of point bar thickness 

were used to estimate the size of the Little Creek river 

system. The Little Creek ”A” river system parameters were 

calculated using a point bar thickness of 30 feet, and the 
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Little Creek "В” river system parameters were calculated 

using a 35 foot point bar. These estimates are presented 

in Table 4 which also provides hydraulic parameters and 

point bar sizes for some modern meandering streams. By 

comparison then, the stream which deposited the Little 

Creek point bars was in the same size range as the modern 

lower Brazos river (at Richmond, Texas).

Exploration and Production Guidelines

Moslow (1984) cites three features of transgressed 

barrier complexes which make them attractive exploration 

targets. The same features apply to the McComb field 

reservoir sandstone.

1. They are typically composed of clean, 
well-sorted, parallel-laminated sand with 
good primary porosity.

2. Locally, they are associated with 
organic-rich, fine grained lagoonal 
sediments, and they change facies downdip 
to basinal shales; both may provide 
excellent source rocks (Fig. 11).

3. Because they ”pinch out” up-dip into 
fine-grained lagoonal sediments they 
provide excellent stratigraphic traps.

Future exploration for barrier reservoir facies in 

the ”updip” Lower Tuscaloosa trend should concentrate on 

distinguishing between sandstones having characteristic 

upward coarsening sequences and which pinch out in a 

paleo-landward direction into lagoonal shales from fluvial



TABLE 4. RIVER TABLE

River-Location Mean Annual Discharge 
cu. ft./sec.

Mean Annual Width 
feet

Point Bar Thickness 
feet

Mississippi at Natchez 540,000 2,900 130

Niger-Lower Delta 29,700 750 50

Brazos-Richmond, TX 15,700 560 33

Laramie-Wyoming 400 100 8

Little Creek A 12,000 500 30

Little Creek B 19,000 600 35

(modified after Cameron, 1985, Leopold et al., 1964 and Carlson, 1965)

о
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channel cycles which exhibit upward fining textures and 

which are commonly hosted in root-mottled floodplain 

deposits.

In the McComb field area, fluvial cycles occur 

stratigraphically lower in the "stringer sand" member of 

the Lower Tuscaloosa Formation than the barrier facies 

which is closer to the base of the Middle Marine Shale 

Formation. The barrier facies marks the shore-zone phase 

of the Upper Cretaceous marine transgression in the McComb 

field area.

Cuttings may indicate a rapid succesion of 

interbedded sandstone and carbonaceous shale. Cores 

through barrier complexes should display features similar 

to those described in Table 3. Care should be exercised in 

interpreting fining and coarsening cycles due to the 

effects of permeability changes throughout the sandstones. 

Where fining upward cycles occur in a barrier complex, the 

sandstones would generally be bounded above and below by 

bioturbated tidal flat sediments. Sandstone isopachs in a 

transgressive barrier island complex may reveal a 

shore-parallel trend of sand "thicks" with lobate sands 

consisting of washover fans or flood deltas.

Suggestions for Further Study

This study documents the different depositional

systems and subfacies in the McComb field area which may 
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have a profound influence on diagenetic paths and creation 

of secondary porosity in sandstones. A companion study is 

needed to document the details of the McComb and Little 

Creek reservoir petrology and diagenesis. The study should 

attempt to determine what causes local loss of production 

within the McComb field. The study should also attempt to 

verify the apparent inverse covariance between carbonate 

cement and chlorite within Lower Tuscaloosa Formation 

reservoir sandstones. Listed below are the suggested 

objectives of the recommended research:

1. To characterize the sandstones petrologically in 
order to gain a full appreciation of their 
compositional and textural variations, provenance 
implications, diagenetic alteration, distribution of 
secondary porosity, and any post-secondary porosity 
alterations which may have affected the reservoir 
quality of the rocks.

2. To determine aspects of diagenesis most closely 
linked to textural and sedimentological 
characteristics of specific depositional environments 
highlighted by the core study.

3. To ascertain if specific depositional facies or 
sub-facies have more favorable development of 
secondary porosity and hence, better reservoir 
quality. Can a reservoir ’'Continuity Index” be 
generated by the combined study of depositional 
environments and diagenetic aspects?

4« To estimate the response of these reserviors to 
secondary and tertiary recovery methods and enhance 
predictive modelling in such exercises.



Part II. PETROLOGY AND DIAGENESIS

Petrography­
Sixty standard thin sections were prepared from samples of 

18 cores, 13 from McComb and 5 from Little Creek. These samples 

were point counted to determine compositional and textural 

variations in the sandstones. 300 point counts were completed 

for each slide the results of which are listed in Appendix C.

Rock fragments were counted and classified under three 

headings, metamorphic, sedimentary, and volcanic. Due to the 

advanced degree of alteration of these fragments this effort was 

not altogether fruitful and the degree to which these results 

exhibit the original composition of the rock can not be 

positively determined.

Monocrystalline quartz comprises approximately 95% of the 

frame work grain composition. Although a small amount of 

polycrystalline quartz is present both monocrystalline and 

polycrystalline grains were counted under one heading. The 

extreme alteration of feldspars again made the task of counting 

difficult therefore only "feldspar” was noted for these grains. 

The heading "matrix" includes opaques, dead oil, and all of the 

clay minerals including chlorite but excluding 

Vermicular-kaolinite. Vermicular-kaolinite is listed under the 

heading kaolinite and indicates that form of well crystallized 

kaolinite which occurs in the sandstone pores as authigenic 

books. Microcrystalline chert, grouped under its own heading, 

occurs as detrital grains. Pore space was filled by a blue dyed 

53
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impregnation media during thinsection preparation and therefore 

the appearance of a clear blue space in the thin section 

indicates porosity.

The results of the point count data were tabulated on a 

microcomputer spreadsheet program from which percentages and 

totals were calculated.

Sandstones

General Description

The sandstones of the McComb and Little Creek fields sampled 

by the authors are classified as quartz arenites (Folk,1980) 

[figures 14,15].

Quartz is the most common grain in these samples and of the 

two types presented, monocrystalline and polycrystalline, 

monocrystalline is by far the most common.

Due to the varying degrees of rock fragment alteration the 

determination of the specific types of rock fragments is largely 

controlled by the ability to recognize grain shape and 

crystalline characteristics. Those materials that were too 

altered to be specifically identified were counted as matrix. 

Chlorite is commonly present as grain rims and pore-lining clay.

Shales and Siltstones

Silts and shales generally tend to be laminated and consist 

almost totally of matrix material and quartz. The matrix consist 

mostly of clays, siderite, calcite, pyrite, hematite, biotite, 

muscovite, organic debris, and dead oil. The quartz in these
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Figure 14. Quartz - feldspar - lithic fragment variation 
in sandstone reservoir rock, McComb Field.
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Figure 15. Quartz - feldspar - lithic fragment 
variation in sandstone reservoir rock 
Li ttle Creek field.
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samples is always monocrystalline.

Texture
The samples could not be adequately disaggregated to perform 

sieve analysis. Instead, a size analysis was performed on the 

sandstones petrographically by measuring the intermediate 

diameter of several of the dominant mineral clast. Information 

on the average size of individual grains is given in Appendix 

[C ] .

In both McComb and Little Creek samples the sandstone grains 

are coated with authigenic chlorite clay. In areas where the 

chlorite does not occur the grains are severely embayed and 

corroded. Some grains are almost completely dissolved. It is 

difficult to determine the original grain shape in many 

instances. Where the clay (chlorite) coating on a grain is well 

developed it is reasonable to assume that the grain was isolated 

from other diagenetic changes which affected the sediment and the 

original grain shape was probably preserved. In most cases where 

chlorite rims a dissolved grain the shape is moderately to well 

rounded. Where grains are unprotected by chlorite grain shapes 

are very angular.

The relationship of grains to matrix and cement was 

determined petrographically and is represented in the ternary 

diagram ill strated in figures [16,17]. These relationships show 

that in general there is very little carbonate cement remaining 

in the rocks sampled. However, the detailed core logs [Appendix 

A] show that in many places cementation of the sandstones is
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PLOT

Figure 16. Grain - Matrix - Cement relationships in 
sandstone reservoir rock, McComb field.
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Figure 17. Grain - matrix - cement relationships in 
sandstone reservoir rock, Little Creek 
field.
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pervasive and laminar zones of well-cemented sandstone alternate 

with relatively uncemented zones on a regular and frequent basis.

Sedimentary structures include horizontal and gently 

inclined planar laminations, and occasional burrows in the fine - 

medium grained sandstone. The uncemented zones in the 

sandstones are commonly friable.

Clay Mineralogy
Off cuts of core samples taken for petrographic slide 

preparation were used for clay mineral analysis. These samples 

were ground to a powdered in a ball mill for 10 minutes and 

sieved through a(#230) 0.0025 inch sieve. Approximately 10 cc. 

of the powered sample was placed in a 75 cc. beaker containing a 

solution of 15 gm. calgon (hexa-metaphosphate) to 1 gal. of 

water. The mixture, after being well homogenized, was allowed to 

stand for at least 24 hours. Oriented clay slides were prepared 

by withdrawing a sample of solution containing the 9.0 phi and 

finer size fraction and allowing it to dry on a glass slide. 

Pipette withdrawal times were calculated from Stokes’ law and are 

listed in (Carver,1971).

Selected oriented clay slides from both McComb and Little 

Creek were heated for 1 hour at 600 degrees Centigrade converting 

kaolinite into metakaolinite and therefore eliminating the 7A 

peak and causing an increased intensity of the 14A Chlorite 

reflection

X-ray clay mineral identification was accomplished using a

General Electric Co. X-ray Defractometer 700D. Best machine 
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settings for 2 Theta angles from 2 degrees to 30 degrees were 

determined using American Petroleum Institute Clay Mineral 

Standards samples of Kaolinite and Illite. These settings are 50 

KVP, 19 ma, 2.5 seconds time constant, a range setting of 100, 4 

amplitude gain, 0.4 degree defining beam slit, 0.02 detector 

slit, and 2 degree/min. scanning speed.

Results of x-ray diffraction showed that the clay 

composition of the McComb sands consist of 7A, 10A, and 14A clay 

minerals. This data has been interpreted as representing 

Kaolinite/Chlorite, Illite, and chlorite, respectively. 

Sandstones of the Little Creek field showed a sharp reduction of 

10A minerals or illite, a more well ordered 14A mineral 

(Chlorite) and kaolinite.

Shales from both fields are characterized by large amounts 

of mixed layer clays ranging from 22A - 32A, and shifting to as 

much as 80A when exposed to ethylene glycol for a period of 24 

hours. Also present in the shales are kaolinite, Illite, and 

chlorite.
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Diagenesis

Introduction

The diagenesis of the McComb and Little Creek sandstone 

reservoirs affected the whole body of the sandstone resulting in 

greatly enhanced porosity by the dissolution of detrital grains 

and cements. Evidences of secondary porosity include the presence 

of partially dissolved feldspars, rock fragments, and quartz; 

oversized pores; relic clay rims that outline totally dissolved 

grains; a patchy distribution of carbonate cement; and broken 

chert grains in carbonate-free zones.

Franks (1980) performed a petrographic analysis of the lower 

Tuscaloosa interpreting a diagenetic sequence as follows:

1) Precipitation of authigenic smectite clay rims at shallow 

depths (converted to chlorite during burial).

2) Cementation of some sandstones by ferroan calcite which 

post-dates clay rims and replaces many framework grains.

3) Progressive silica cementation by quartz overgrowths in 

sandstones not cemented earlier by ferroan calcite (stage 2). 

sandstones with more than 10-15% volcanic clasts generally do not 

develop quartz overgrowths.

Watkins (1985) added a fourth diagenetic process which is 

contemporaneous with Frank’s sequence: rock fragment alteration.

Mechanical Compaction of Sediments

Diagenetic processes are largely the result of compaction 

and of the interaction of pore fluids with detrital constituents 
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and cements (Schmidt 1980). Mechanical compaction of the 

sandstones is indicated by the appearance of deformed ductile 

grains (detrital mica minerals) and broken chert grains (figures 

18,19). This type of compaction is indicative of the first stage 

in diagenesis and indicates a reduction of primary rock volume as 

well as initial diminishment of primary porosity and 

permeabili ty.

Quartz Overgrowths

The occurrence of quartz overgrowths represents a period of 

chemical compaction and is accomplished by the dissolution of 

sand grains at points and interfaces of contact (Schmidt 1983). 

Due to the relatively few quartz grains that exhibit substantial 

quartz overgrowths it is possible that a large volume of 

dissolved silica was removed from the sandstone bed. This process 

could reduce rock volume and the percentage of intergranular 

primary porosity.

Carbonate Cement

Carbonatization began shortly after the beginning quartz 

dissolution. Calcite filled the remaining intergranular porosity 

and replaced quartz cement and part of the margins of quartz 

grains. The completion of the carbonatization process halted 

chemical compaction and no further changes took place until the 

onset of decarbonatization [figures 20,21].
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Figuře 18. Photomicrograph of reservoir sandstone from the 
No. 1 F. Z. Mills well (10,957 feet) 
illustrating mechanical compaction of the 
sandstone as indicated by the appearance of 
deformed ductile grains (mica minerals) and 
broken chert grains.
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Figure 19. The photomicrograph illustrated in Figure 18 is 
shown here under crossed niçois.
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Figure 20. Quartz grain margins are replaced, by calcite 
which filled remaining intergranular porosity. 
This photomicrograph is from a sample taken from 
the No. 1 Jas. McCarthy at 10,906 feet.
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Figuře 21. The photomicrograph shown in Figure 20 is viewed 
here under crossed niçois.
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Decarboxylation

Decarboxylation of maturing organic matter, possibly 

including the maturation of organic-rich oil source rocks, is 

related to the generation of carbon dioxide which, in the 

presence of water, produces carbonic acid (Schmidt 1980). This 

acid reacts with carbonate and rock fragments causing grain 

dissolution, partial and complete [figures 22,23].

Rock Fragment Alteration and Clay Mineral Production 

Dissolved rock constituents include the majority of the 

minerals found in clastic sediments (Schmidt 1980). Alteration of 

rock fragment constituent minerals such as feldspars, micas, 

amphiboles, and pyroxenes resulted in the precipitation of clay 

minerals (kaolinite, illite,and chlorite) as well as formation 

of pyrite and siderite [figures 24,25].

Vermicular kaolinite appears late in the diagenesis of the 

sandstones. This is indicated by the appearance of kaolinite in 

pore spaces which have been formed during the development of the 

secondary porosity [figure 26].

Stewart (1981) places the occurrence of authigenic chlorite 

before the appearance of calcite cement in his description of the 

Tuscaloosa of south Louisiana. In the thin sections of 

the McComb field there are sections in which calcite has not been 

completely dissolved. In areas such as this chlorite has 

overgrown quartz grains along the outer portions of the cemented 

area. In the center of these areas there is no chlorite 

overgrowths present indicating that the occurrence of chlorite
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Figuře 22. Partial and complete dissolution of carbonate 
cement and rock fragments is shown in this 
photomicrograph (plane-polarized light) of a 
sample taken at 10,935 feet from the No. 3 R. L. 
Boggan well, (McComb Field).
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Figure 23. Same photomicrograph as that shown in Figure 22 
viewed under crossed niçois.
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Figure 24. Alteration of rock fragments resulted in the 
precipatation of clay minerals as well as the 
formation of pyrite and siderite.
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Figure 2э. Crossed nichols view of the thin section shown 
in Figure 24. Core sample taken at depth 10,900 
feet from the No. 1 Harvey Lenoir well at McComb 
Field.
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Figure 26. Vermicular kaolinite exhibiting intercrystalline 
porosity is shown here filling previously formed 
secondary porosity in a sandstone at a depth of 
10,020 feet, No. 1 F. Z. Mills, McComb Field.
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precipitation or formation postdates the cementation of the sand 

by calcite.

The determination of the clay mineral diagenesis in these 

rocks is limited by the equipment available to the authors. 

Microprobe analysis of these rocks is greatly needed in order to 

determine not only what clay minerals appear where but the 

precise composition and zonation of the minerals. In general the 

formation of illite, chlorite, and kaolinite occurred as a result 

of the alteration of feldspars and rock fragments during and 

after the formation of carbonate cement.
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Diagenetic Reactions and Sequence

The following diagenetic history for the McComb and Little 

Creek reservoirs is inferred from the combined petrographic and 

x-ray diffraction results:

1) Mechanical compaction of the sediments and the 

precipitation of quartz overgrowths.

2) Replacement of quartz overgrowths by carbonate cement was 

accompanied by carbonate precipitation between framework grains 

during the first stages of mesodiagenesis.

3) During a more mature diagenetic stage, perhaps 

corresponding to hydrocarbon migration and emplacement, 

decarboxylation of contained organic matter in the adjacent 

fine-grained units led to wide-spread decarbonatization of the 

reservoir rocks and the creation of hybrid, oversized, moldic and 

intergranular pores with good pore-throat interconnection. 

Complete and partial alteration of rock fragments and feldspars 

was accompanied by neoformation of kaolinite, chlorite (as grain 

rims), and illite.

4) There is some evidence of further dissolution and 

reprecipitation of quartz and carbonate, as well as the formation 

of vermicular kaolinite, after the main phase of secondary 

porosity generation and hydrocarbon emplacement. Late stage 

diagenetic events also include the precipitation of euhedral 

quartz crystals in some pore spaces and over chlorite rims.



76

CONCLUSIONS

The results of this study, supported by 

petrographic size analysis data, show that two major 

depositional facies characterize the Lower Tuscaloosa 

Formation in the study area; a lower fluvial sequence 

topped by nearshore marine deposits.

1) Detailed core data, isolith maps, and 

cross-sections of the McComb field area reveal that the 

McComb sandstone closely resembles a transgressed barrier 

island system as described by Moslow (1984); Galloway and 

Cheng (1985); and Geehan, Grimes, and Swanson (1983).

2) Future exploration for barrier reservoir 

sandstones within the ”stringer sand” member of the Lower 

Tuscaloosa Formation should attempt to target sandstones 

having characteristic upward coarsening sequences and which 

pinch out in a paleo-landward direction into lagoonal 

shales. The sand body geometry, the vertical variations in 

sedimentary structure and texture within the sand body, the 

nature of boundaries with underlying and overlying 

sediments, the bedding architecture, and regional 

stratigraphic setting provide the best criteria for 

identification of ancient transgressive barrier complexes. 

Such interpretations require the use of available well log, 

drill cuttings, and, most importantly, conventional core

control.
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3) The sandstone units of reservoir sandstones in 

McComb field are higher stratigraphically in the "stringer 

sand" member (approximately 50-70 feet below the top of the 

Lower Tuscaloosa Formation) than the productive meanderbelt 

facies of Little Creek field (approximately 70-100 feet 

below the top of the Lower Tuscaloosa Formation).

4) Productive sandstones of the Little Creek 

field appear to have been deposited by a well-developed, 

mature, high-sinuosity meandering stream, as reported by 

Eisenstatt (1960) and Busch (1974). Isopachs of point bar 

sandstones frequently have concentric and ovoid patterns 

and are often tightly spaced adjacent to channel fills and 

flood plain deposits.

5) Core examination reveals that the fining 

upward sandstone cycles identified as point bars at Little 

Creek field occur as stacked, multistoried sandstone units. 

The thickness of full point bar cycles preserved in cores 

from two wells suggests that the sandstones were deposited 

by a medium-sized stream (e.g., the modern lower Brazos 

River) which meandered with high to moderate sinuosity 

across a low gradient floodplain.
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6) Petrological studies reveal that the sandstones of 

both fields were deposited as very fine to medium-grained quartz 

arenites and quartz litharenites. A good secondary porosity 

developed by disolution of rock fragments and carbonate cements 

which replaced the margins of quartz grains.

7) Results of the petrographic and X-Ray diffraction 

analysis of the clay mineral content of the sandstones indicate 

that most of the clays are authigenic and comprise a suite which 

includes kaolinite, chlorite, and illite. Illite appears to be 

considerably more abundant in the McComb reservoir sandstones 

than at Little Creek.

8) The combined petrographic and X-Ray diffraction 

results suggest a diagenetic history which begins with mechanical 

compaction of the sediments and the precipitation of quartz 

overgrowths. Replacement of quartz overgrowths by carbonate 

cement was accompanied by carbonate precipatation between 

framework grains during the first stages of mesodiagenesis. 

During a more mature diagenetic stage, perhaps corresponding to 

hydrocarbon migration and emplacement, decarboxylation of 

contained organic matter in the adjacent fine-grained units led 

to wide-spread decarbonization of the reservoir rocks and the 

creation of hybrid, oversized, moldic and intergranular pores 

with good pore-throat interconnection. Complete and partial 

alteration of rock fragments and feldspars was accompanied by 

neoformation of kaolinite, chlorite (as grain rims), and illite.
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9) There is some evidence of further dissolution and 

reprecipitation of quartz and carbonate, as well as the formation 

of vermicular kaolinite, after the main phase of secondary 

porosity generation and hydrocarbon emplacement. Late stage 

diagenetic events also include the precipitation of euhedral 

quartz crystals in some pore spaces and over chlorite rims.
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737"

738"

7391 

10747

741

742
743

1

!

I

1

1

Buff, small scale cross-bedded 1

sandstone. tr. clav cl ast .moderate 1

sorting, clav throughout matrix
1

tr. CaCO3 cement, small scale i

riñóle cross-bedding. good P & P 

trace of carbonaceous material
—

thrcuchout sandstone, increase į

* ** ·

CaCO3 . 1

in II ===^· !

111II
-

X· ·χ· !

Песгр.яяр CaCm. Low angle Ц
cross-bedding i

-------------------- ---  ■ — ---------------------------------------------------------

1 Cao cement
•

----------  ag

* ·'** Ί IIJII .. 1 —'

• · II II
· * il1 ■

·. · · Slight increase in carbonaceous i 
;

• ‘Л ·.' material, trace of mira in matriv

’Χ<· -
-

Missing 1 foot of core.

..:M· Buff, cross-bedded. CaCOa cemented

.\i. ·*· sandstone. Clav clast in sand

matrix, good porositv and perm. —
•4, ľ ·
• , „ -X· 1
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10750

LO74¿

1O76Q

745

748

754

753

755

761

764

763

768

767

□ о

о

VA:

О

C
VJ VJ

STRUCTURES

α

о

c
о

,and siltstone. evidence of soft

Silty shale, red mottling, fissile

occasional clay clast within matrik

sorted, sub-rounded, quartz

.saada.

Interhedded vf. grain sandstone

cast common

.Field

1 i r k p n s 1 idi

.moderately

clay in ma

on

746
747

765
766

751
752’

756
757'

758
759

W VA 
VA V

X о

VJ
О

COMMENTS.

MISCELLANEOUS DATA

Dark grav- maroon mottling, root

LOCATION SUN 01L C0MPANY 
//1 Busby "A" 
Sec. 23-4N-8E

STRATIGRAPHIC UNIT:

SHEET NO. z OF _________ __
DATE: Echruaru_1985 
LOGGED BYW.S.H.

Apparent scaur into dark grav silty 

shale and siltstonoj with abundant 

plant fragments, wavy to lenticular 

bedding, small scale ripple cross­

bedding_______________________________________

.Little Çreek.
OPEN 

CATEGORIES

,CaCOl cement, tr. carbonaceous___________________  

material throughout sandstone,____________________

Very good porosity and permeability



APPENDIX C

PETROGRAPHIC DATA

Cl



С2

ť

íö

#

Lã®
#1 !
#1 !

41 Hi

#1 Ji 
Și Ji

!®ptcn Wďii

nCLOiTib 
МсСсшЬ



сз

SANDSTONE FETFDLŰGY AND DIAGENESIS ŪF TUSCALOOSA

POINT COUNT DATA

SAMPLE 4 FIELD DEPTHWELL NAME

·“ í ” Little Creek 41 Mac Bushy 10,766
230 Little Creek 41 Mac Busby 10,746
23? Little Creek 42 Kenna 10,795

242 Little Creek 42 Kenna 10,790

249 Little Creek 41 Nunnery Busby 10,762
254 Little Creek 41 Nunnery Busby 10,743

2:4 Little Creek 41 Nunnery Busby 10,723

26S Little Creek Atkinson B-l 10,812
271 Little Creek- Atkinson B-l 10,802

27A Little Creek Atkinson B-l 10,790

2S4 Little Creek Atkinson 8-1 10,773

295 Little Creek Busby A-1 10,752

300 Little Creek Busby A-1 10,732

315 Little Creek Busby A-1 10,713
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SANDSTONE PETROLOGY AND DIAGENESIS GF TUSCALOOSA

POINT COUNT DATA

SAMPLE “RF X SRF X VRF XRF TOTAL FELDS X QTZ X CŪ3 X MTX X POR X CHERT X KÃCL X TOTAL X

001 1.61 8.03 0.40 10.04 0.40 61.04 2.41 10.84 10.44 4.02 0.80 100.00
»3 2.58 7.30 0.00 9.87 0.86 53.-65 3.43 10.30 19.31 2.15 0.43 100.00
017 0.67 8.75 1.01 10.44 0.34 54.88 2.69 10.77 17.17 2.69 1.01 100. GO
025 1.94 11.00 0.00 12.94 0.32 55.66 2.27 7.77 16.50 2.91 1.62 100,00
026 1.12 8.40 0.56 10.08 0.56 61.34 2.24 8.12 11.20 3.64 2.80 100.00
027 1.42 4,61 1.77 7.80 0,00 •66.31 1.06 1.77 15.96 3.55 3.55 100.00
030 0.66 2.97 0.00 3.63 0.66 48.18 0.00 45.87 0.00 1.65 0.» 1».»

1.26 2.21 0.00 3.47 0.00 60.25 0.00 31.86 0.00 4.42 0. co 100.00
034 1.01 3.29 0.00 4.30 0.25 63.54 7.85 4.81 17.22 1.77 0.25 100. co
039 2.57 0,96 1.93 5.47 0.00 57.23 4.50 8.68 18.33 5.47 0.32 100,00
041 0.72 1.08 0.00 1.79 0.00 63.08 0.72 8.60 24.73 1.08 0.00 100,00
043 0.00 0.00 0.00 0.00 0.32 31.51 0.00 68.17 0.00 0. CO 0,00 100.1»
048 0.00 0.00 0.00 0.00 0.00 33.44 0.00 66.56 0.00 0.00 0.00 100.00
050 0.00 0.00 0.00 0.00 0.00 58.23 0.00 40.85 0.00 0.91 0.00 100.00
052 0.98 4.59 0.33 5.90 0.66 59.02 7.87 2.95 17.70 2.30 3.61 100.00
057 0.64 5.14 0.32 6.11 0.32 54.02 26.69 6.75 л 77 2.57 0.32 100.00
058 0.00 5.38 0.00 ■2.38 1.58 59.18 0.63 31.96 0.00 1.27 0.00 100,00
064 0.67 0.00 0.00 0.67 0.67 53.18 0.00 34.45 9.70 1.34 0.00 100.00
CÓS 2.32 6.09 0.87 9.28 ”32 40.29 0.00 20.87 17.97 3.48 5.30 100.00
070 2.31 5.94 0.00 8.25 2.64 57.10 20.79 0.33 9.57 1.32 0.00 100.00
07i 3.09 6.79 0.» 9.88 1.2-3 56.48 0.00 9.26 19.75 1.85 1.54 100.00
073 J « 52 0.95 0.00 3.47 0.32 54.89 0.00 17.67 19.24 1.58 2.84 100.00
076 1.25 0.94 0.00 2.19 0.31 56.25 21.56 3.13 15.66 0.94 0.00 100.»
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SANDSTONE PETFŪLŪ8Y AND DIASENESIS OF TUSCALOOSA

POINT COUNT DATA

SAMPLE YRF X SRP X ORF X RF X FEDS X STZX ИЗ MTX x POR X CHERT X KAGL X TOTAL X

07 è 025 0.94 0.00 2.19 0.31 56.25 21.56 3.13 15.63 0.94 0.60 100, C0

080 2,54 20.00 0.28 22.82 1.69 43.94 2,25 4.51 22.32 1.69 0.28 100.00

081 0.94 0.31 0.00 1.26 0,31 49.69 0. CO 45.28 1.26 2.20 0.00 100.00

083 0.00 1.35 0.45 1.80 0.00 67.57 0.00 16.22 13.06 1.35 0.00 100.00

086 1.66 - TT 0.33 4.32 0,66 58.14 7.64 8.97 18.60 1.00 0.66 100.00

089 3.44 1.56 1.25 6.25 0.94 46.88 2.19 18.44 21.25 2.19 1,88 100.00

091 2.47 0.55 0.55 3.06 0.82 51.23 21.10 5.75 14.79 1.37 1.37 100.00

093 J x ¿3 4.25 0.00 9.48 1.31 5" "ç Ó.98 12.09 21.57 1.31 0,98 100.00

09è 1.22 1, 53 0.00 2.75 0.00 53.82 21.41 8.87 7,34 3.06 2.75 100.00

101 0.00 0.00 0.00 0.00 0.00 8.75 0.00 91,25 ô. 00 0.00 0.00 100.00

109 2.64 1.76 0.29 4.69 4.40 55,43 21.41 11.14 0,00 2.93 0.00 100.00

ПО 0.33 0.00 0.00 0.33 0.33 63.93 0.00 34.10 0.66 0.66 0.00 100.00

112 1.82 0.91 1.22 3.95 0.00 57.75 14.59 6.99 11.85 1.82 3.04 100.00

117 3.28 3.93 0.33 7.54 0.98 50.82 0.33 17.70 17.70 3,28 1.64 100.00

112 0.32 2.85 0.00 3.16 1.58 5Í). 32 0.00 14.24 29.75 0.95 0.00 100.00

119 0.30 0.30 0.30 0.91 0.00 52.13 0.00 46.65 0.00 0.30 0.00 100.00

125 0.00 3.90 0.00 3.90 0.32 52.60 8.12 20.78 10.71 0.65 2.92 100.00

127 0.33 0.33 Ô. 00 0.65 0.00 31.37 0,00 67.97 0.00 0.00 0.00 100.00

130 0. СО 0,00 0.00 0.00 2.19 51.88 29.69 15,63 0.00 0.63 0.00 100.00

133 1.73 1.45 0.29 3.47 0.00 50.87 15.03 10.12 16.76 3,18 0.58 ICO.oo

136 0.62 1.85 0.31 2.78 2.16 54.32 6.79 11.11 20.99 0.62 1.23 100,00

140 0.65 0.65 0.00 1.30 0.32 55.84 3,25 10.39 28.25 0,65 0.00 100.00

145 0.32 0.00 0.00 0.32 0.00 43.83 0.00 55.84 Ó. 00 0.00 0.00 100.00

212 0.90 0.30 0.00 1.20 0.00 57.36 17.12 7.51 15.92 0.90 0.00 ПО
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SANDSTENE PETROLOGY AND DIAGENESIS ŪF TUSCALOOSA

POINT COUNT DATA

SAMPLE MRP 7. 5RF 7. ORF X Ś- X FELDS X QTZ X СОЗ X MTX X FOR X CHERT X KAOL X TOTAL X

239 0.00 1.01 0.00 1.01 0.00 64.19 0.00 15.54 7.43 1.01 10.81 100.00
242 0.32 0.00 0.00 0.32 0.32 32.38 3.81 63.17 0.00 0.00 0.00 100.00
249 0.00 0.00 0.00 0.00 0.00 5.50 0.00 94.50 0.00 0,00 0.00 100.00
254 2.39 0.32 0.00 ■ ZZ 0.00 55.31 2.25 10.61 27.33 0.96 0.32 100.00
264 0.96 0.32 0.00 1.28 0.96 50.96 1.60 22.44 21.79 0.96 0.00 100. (Μ)

276 1.46 1.17 0.29 2.92 1.46 60.06 17.78 10.50 5.54 1.75 0.00 100.00
284 1.43 1.71 0.57 3.71 1.14 55.43 7.71 12.29 12.57 4.86 2.29 100.00
295 0.96 0.00 0.00 0.96 0.32 56.23 5.75 13.10 21.73 1.28 0.64 100.00
Ж 2.56 0.32 0.64 3.51 0.00 57.51 0.96 15.02 22.36 0.00 0.64 100.00

' 315 0.26 0.53 0.26 1.06 0.00 40.48 0.53 21.43 34.66 1.32 0.53 100.00
306 0.32 0.00 0.00 0.32 0.00 43.83 0.00 55.84 0.00 0.00 0.00 100.00
263 0.29 0.29 2.92 1.17 51.31 4.37 14.87 20.12 1.75 3.50 100.00



APPENDIX A

McCOMB FIELD CORE LOGS

Al



А2

COMPOSITION STRUCTURES

LITHOLOGY

CHERT

MARL

LIMESTONE

DOLOMITE

MUDSTONE

SANO. SANDSTONE

ANHYDRITE

GYPSUM

SALT

SHALE

COAL

CLAYSTONE 
(Non fissile)

TRANSITIONAL
LITHOLOGY 
(Shly SItst in example)

INTERLAMINATED
UNITS
Ss and sh in example, 
sh increasing upsection; 
see auxilary svmbols.

CONGLOMERATE. 
GRAVEL

SILT. SILTSTONE

MINOR COMPONENTS CURRENT-FLOW

SHALE CLASTS

PYRITE

ORGANIC DEBRIS

SHELL

BROKEN SHELL

FORAM

GLAUCONITE

CALCITE CEMENT

DOLOMITE CEMENT

QUARTZ 
OVERGROWTHS

CONCRETION 
(Composition in 

parenthesis)

WAVY PARALLEL

PARALLEL 
LAMINATION

INCLINED
LAMINATION
ILip shown)

WAVY, 
DISCONTINUOUS 
SUBPARALLEL

HOMOGENEOUS 
(Massive)

FESTOON CROSS 
BEDDING

large scale, >2"
small $cale.< 2"

WAVE OSCILLATION 
truncated)

TABULAR FORESETS

* * SIDERITE í Ί SYMMETRICALÄ aí 1______ j RIPPLE

CURRENT RIPPLE

CLIMBING RIPPLE

FLASER

PULL APART

GROOVE OR FLUTE

SCOUR

GRADED (Arrow 
(length equals thickness

ORGANIC. DEFORMATION

MOTTLED. CHURNED

MICROFAULT

SWIRLED. FLOW

TRAIL

FLAME

DIKE. FLUID ESCAPE

STYLOLITE

BURROW

ROOT

LOAD

CONVOLUTE

BOUDINAGE

MUDCRACK

FRACTURE

BURROW 
Sand lined, 
shale matrix

AUXIL IARY SYMBOLS USED WITH STRUCTURE SYMBOLS

Vertical range of 
Structure: structure 
symbol placed in 
gap-

Thickness of interlaminated 
units: bracket placed to right 

Į °* lamination tymool.
ММ ж millimeter 
CM * centimeter 
DM ж decimeter

Figure Al. Symbols used in core logs in appendix A»
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LOCATION SUN 0IL COMPANY
#3 Boggan

Sec 4-3N-7E
STRATIGRAPHIC UNIT:

McComb Fi pld
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STRUCTURES
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OPEN

< 0- "Т Ц
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N
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G
A
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CATEC

1093“ •ή .* . Ý*.
Lt.

935

93б"

9 37~

■ · · jrai™—
® ---------------------

938

9 39"

10947 

941”

94 2”

94 3~

94 4- 

945~

946 

947”

948

я —

:—: ' 1 Г-

ί£:

FIi
.· -L; в -u

Dk.

ЗГЗ5
1 “C—

I =
949 H

10950 -J
951 V__
952

953
—

954

— et Bik.

gray
TM,

-

i

1
i

SHEET NO. □— OF _L_
DATE: -Aus—12Я4------------------
LOGGED B Y c · p ·c · .^ ·s ·H

COMMENTS, 

MISCELLANEOUS DATA FA
C

IE
S.

IN
TE

R
PR

E 
TA

TI
O

N
S

xon

Moderately well sorted, tr СаСОЗ

coarsen upward sequence

Ripple cross-bedding, tr. organics

interlaminated silt & sandstone,

small scale cross-beddinq

Whaley streaks with some soft sed.

defarmation, _ _ .

СаСОт cemented vf. grain sandstone

vf. wavy sub-parallel bedding

sand with shale, soft sed. def.

boudinage and load structures

verv fine sand with clav and silt

in matrix

tr. pyrite, siderite, and organics

Planer laminations, wood chips

Black shale, organic-rich

bioturbated, churned

zf. sand & siltstone
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LOCATION SHN OIL COMPANY SHEET NO. 1 OF J___________
DATE:November, 198A
LOGGED RY W.S.H.

Lenoir Л-1 
Sec. 1O-3N-7E 

STRATIGRAPHIC UNIT: Mccomb Field

į
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IT
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Н
 C

O
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E 
N

O
 I

C
O

M
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TI

O
N

STRUCTURES

c
5

OPEN 
CATEGORIES

■ COMMENTS.

MISCELLANEOUS DATA FA
C
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S.
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N
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h « 
ω

C Ml

N ω

Perf

10937

93t

93< 
10947

94'

942

943

944

945

946

947

948

949

0950

95 Г

952*

953 
954

955

956

957

958
959

0960

961

• · * I · 

•

*·’ · -1“ .

•X· : -X 

/ ·JL·’··

li

CT

S3 

— О

<=x 

_ *

* _ —

* 8:3

* -

lt. 
buf

Dk.

f

Low angle planar cross-bedded sand 

Mod. sorted. Good P & P, СаСОз cem 

Ruh-rounded sand erains, tr. orgs. 

tr. glauconite ?, clay in matrix

— 1
csn. upward. .

Carbonaceous plant fragments & 

tr. clay clast in sandstone 

tr. siderite

inerease angle planar cross-beds 

sand grains sub-prismoidal to 

snh-di srni dal

Zoned СаСОз cemented concretion 

tr. siderite less than 1% 

Carbonaceous matter abundant 

thrnuphout sandstone 

Ui’nhof angin______planar cross beds 

1 mm carbonaceous layer 

rsn. unward. mod. sorted, tr. sid. 

Decrease Porosity and Permeability 

Çuk-rcnnHtirl tn swh-anpnlnr grains

i 

H 
Ή

——J
Sandy shale, soft sediment deform, 

clay clast throughout, plant frag. 

Black lignite with pyrite & sulfui

962

963

964

965

/Ле · /· 
-JL .

♦ 
V

 
в 

· S 
J

gra

B Ik

О 

о 

о 

О

о i— 
i
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SHEET NO. .L_Or
DATE :
LOGGED RY W, S , H.

STRATIGRAPHIC UNIT:

LOCATION SUN 0IL CQMPANY 
Johnson A-l 

Sec. 10-3N-7E

10920

10900

924

923

925

921

922

917

912

913

914

911

907

906

901

902

903

О

о

о

о

ИЛ

STRUCTURES

А?

о

Perf

о

о

о

Micro faulting within sandstone

Low angle pinnar cross-beds

Wavy bedding

cemented. fina, grained quart

small scale cross-boddi

Grav lenticular bedded sandstone

„s e d i me η Г- d,
tr. siderite, bioturbated, wavy

.Inad, „s

ub­

re

to

918
919“

Q
C

915
91Γ

904
905“

OPEN 
CATEGORIES

Off-white, moderatelv sorted, CaC^i

McComb Field

COMMENTS.

MISCELLANEOUS DATA

Dark gray fissile shale

verv carbonaceous________________

and siltstone interbedded, soft

a

S3

ά Perm., tr

rounded sand_erains

10896 

897' 

898~ 

899“

trough cross bedding..sharp cont 

й Į on Įn1 high angle cross-beds 

Med, grained, no СаСОч cement

908
909 j

10910

bedding, small scale cross-beddini 

trace carbonaceous material.

ω ΟΊ

small, scale cross-heddi

Gray sandy siltstone

Parallel laminated dark and light ; 

siltstone and sandstone. load ' 

structures, lenticular bedding
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SHEET MO.
DATE: April, 1985

LOCATION SUN 0IL COMPANY

Johnson A-l
LOGGED RY W-S-H.

OF

1093

10940

933

934

935

936

939

942

946

949

941

948

о

о

о

α

.а

STRUCTURES

Ý

О

McComb Field

scattered throughout silt
ma

5cm sand 3 109341; Verv thin

slightly XLg.msd.
P

сл

40

943_
944*

a о

937

938'

2 5 
№.

OPEN 
CATEGORIES

COMMENTS.

MISCELLANEOUS OATA

Light gray siltstone, siderite

Sec. 10-3N-7E
STRATIGRAPHIC UNIT:

Gray-maroon mottled siltstone 

crumbles easily when handled

Dark gray fissile shale______________________  

abundant carbonaceous materini
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LOCATION - SUN OIL COMPANY SHEET NO. —1 OF I 

Sec 10-3N-7E
STRATIGRAPHIC UNIT:____________________ McComb Field

Ш 
a

0 z
z 0
c 0

z □

C
O

M
PO

SI
TI

O
N

 

x 
M

O
D

A
L

STRUCTURES

S

OPEN

COMMENTS.

MISCELLANEOUS OATA ÉA
C

IE
S.
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R
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A
TI

O
N

S

ω

ï 
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O
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C
U
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R

EN
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E 
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W

D
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O
R

M
A

TI
O

N
. 

O
R

G
A

N
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CATtt 5ORIÊ5

1088

886'

887'

888'

889

L089(

891_ 
892~
893~

894~

895"

896"

897~

898“

899~

1090C

901
902“

. · . · “ Buff, low anele planar cross-bedd« d
wpll ЧЛГТРГ! suh-angular rn Riib-

• : roundpd quart? grains, dav J
- .

material throughout sandstene.

1

«S
У

Good porosity & permeabilitv,

no CaCO3 cement.N
: : ; . ;

·· · : · ·

Verv good norosi tv and permeabilit

• * t · Abruot change into highly cementedэ
(CaCO3) Sandston®, no change in

»3111 erain size or sed. structures

JJ small clav clast.

НИН ■г IIS1···
Overall coarsen upward sequenceII IŁv11 -, 1
Dark gray carbonaceous shale
abundant plant fragments

903

904 

905~

906 

907 

908 

909_ 

1091g
911 

912~

913 
914Ί

-1 
915 
91У 

917^ 

918“|

1

&

У 
rl

CORE

ľ
1

MISSING“

Aq-ww
ΆΛ.- VA.·».! Crav 4 i 1 r c r nn P

;

л . 1
■'мо.к

Rinrnrhqfod silry candcrnne. ■
• *Λ·’. lr soft sediment deformation f
.·’.·· ■· Intenselv bioturbated
• ·* * · . · л
VA' · VA· jjrz

- -
VA'- *AA

AA-V-MA! Į
illT^ Пягк gray mottled siltstone
1 * ’ ’

1 siderite, hearing

11ΤΤΊ я т ' 1 ·
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LOCATION SUN OIL COMPANY'
DATE: -December1984
LOGGED BYW. S, H,

#1 R. E. Schmidt
Sec. 10-3N-7E

STRATIGRAPHIC UNIT: _NT r» í n i
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N
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MISCELLANEOUS OATA FA
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S

5 2
2 5 

€ιΜ
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O
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O
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A

TI
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CATEC ORIES

10891 

LO9O7

9ol

90;

90:

904

90S

9oe

• : 
¿ 

fri ; · d f-: ·?·/.’: : q S+í’ :

О
Lt.
’газ

ik.
îraj

ix

s

....... .........  -

Low ancle planar cross beds.

CaCOa cement, clay throughout matr

tr. glauconite ?. mod. sortine.

.· m

suh- rnunded qunrfr. sand grains.

tr. organic material
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McComb field
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