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Abstract: Mastitis is the commonest disease of bovines imposing a great economic setback and a
drastic public health concern worldwide. Antibiotic resistance is the preliminary con of excessive
antibiotics use for disease treatment. Studies validate an alarming increase in the antibiotic resistance
of both humans and animals. For ages, medicinal plants have been used to treat a number of ailments
in humans and animals, including mastitis. Curcuma longa, or turmeric, is the prerequisite in Indian
cooking and has been used in traditional medicine for its magical properties. The rhizome of C. longa
possesses significant anti-inflammatory, antibacterial, antifungal, and antioxidative properties. In the
current study, we evaluated the hexanic and ethanolic extracts of C. longa for their anti-inflammatory
and antioxidative potential against LPS-induced inflammation in buffalo mammary epithelial cells
(BuMECs). Pretreatment with the extracts downregulated the expression of proinflammatory cytokine
TNFα via the TLR4/NFκB-mediated signaling pathway. However, IL-6 was downregulated in only
the hexanic C. longa-pretreated group. A significant upregulation of NRF2 mRNA expression was
seen in both hexanic- and ethanolic-treated groups. A GC-MS/MS study of the extracts revealed
the presence of important sesqueterpenoids and phenolics as the main bioactive phytoconstituents
in the extracts. Sesqueterpenoids, such as turmerone, ar-turmerone, curlone, and atlantone, and
phenols, such as guaiacol (2-Hydroxyanisole phenol, 2-methoxy), and ethyl ferulate/ethyl 4′-hydroxy-
3′methoxycinnamate, were found in C. longa extracts. The protective role of C. longa in BuMECs
against LPS-induced inflammation and oxidant insult might be due to the presence of bioactive
compounds, such as terpenoid and phenolic compounds. However, we further propose the isolation
of these phytoconstituents and their analysis using HPLC and NMR studies.

Keywords: mastitis; BuMECs; ROS; TLR4; inflammation; LPS; oxidative stress; Curcuma longa;
GC-MS/MS

1. Introduction

The invasion of the parenchymatous tissue of the mammary gland by bacteria, a virus,
or fungi leads to a highly complex disease in bovines known as mastitis [1]. It is the most
prevalent disease of bovines, inflicting a huge economic burden on the dairy industry
worldwide. Bovine mastitis is mostly caused due to common udder pathogens, such as
Staphylococci, Streptococci, and Coliform species [2]. Bacteria, such as Streptococcus uberis,
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Streptococcus dysagalactiae, Klebsiella, and Escherichia coli, can be isolated from both the
animal’s outer surface as well as its surroundings [3]. E. coli is responsible for causing a
severe form of clinical mastitis. Lipopolysaccharides (LPS released from gram-negative
bacteria are the main virulence factors that induce an inflammatory reaction after binding
to the cell membrane receptors called Toll-Like Receptor-4 (TLR4) on mammary epithelial
cells [4]. TLR4 stimulates the transcription factor, nuclear factor kappa B (NFκB), which ac-
tivates downstream signaling proinflammatory molecules such as cytokines, which include
interleukin (IL)-6, 8, 1α, 1β, and tumor necrosis factor (TNF)-α [5]. Leukocyte migration
to the affected area is induced due to an increased chemokine secretion, eventually ampli-
fying the inflammatory response. Serum amyloid A (SAA), haptoglobin (Hp), C-reactive
protein (CRP), ceruloplasmin, α-1 antitrypsin, and fibrinogen are the major acute-phase
proteins (APPs) which increase after inflammatory reaction [6]. The upregulation of all
inflammatory mediators leads to bovine mastitis. Moreover, inflammation and generation
of oxidative stress in the cells are quite interrelated phenomena and exhibit significant
crosstalk within the diseased cell. The generation of reactive oxygen species (ROS) and
the disruption of antioxidative depots are the predominant results of increased oxidative
stress. The Nrf2 (nuclear factor erythroid 2-related factor 2) transcription factor is of high
significance with regard to the antioxidative status of the cell. Significant downregulation
of NRF2 expression has been observed in cells induced with LPS in many in vivo and
in vitro studies [4].

Currently, the main line of treatment followed for anti-mastitis therapy in bovines is
the administration of corticosteroids and antibiotics. Increased drug resistance to a number
of frequently used drugs, such as tetracycline, penicillin, oxacillin, cefoxitin, etc., has devel-
oped as a result of the excessive use of antibiotics [7]. The widespread and unsystematic
use of antibiotics contributes to the development of resistant strains of mastitis-causing
pathogens, resulting in the emergence of drug resistance in animals. The withdrawal
of these antibiotic residues in livestock products like meat and milk eventually leads to
antibiotic resistance in humans [8]. This has led scientists to search for alternative anti-
mastitic medications based on natural ingredients. Plant-based medications have been
used to treat veterinary patients throughout the world and have delivered appreciable
results, although the need for further technology drives studies [9]. For instance, Fuzvet-A
(from pumpkin seeds), Vivatone (a decoction of different herbs and ammonia), Penosept
(made from common nettle extract), and Mastig are some anti-mastitic drugs approved
and marketed worldwide [10]. The effectiveness of plant-based ointments, namely, Pihtoin,
synthesized from pine sapwood, was 16.7% effective in sub-clinical mastitis, while its com-
bination with a trauma gel led to 100% recovery in cows diagnosed with mastitis. Many
plants, such as Ocimum tenuiflorum (basil seeds), Brassica juncea (mustard oil), Rheum emodi
(Indian rhubarb), Curcuma longa (turmeric), Nelumbo (lotus roots), Syzygium aromaticum
(cloves), Elletaria cardamonum (cardamom), Piper nigrum (black pepper), Terminalia (Indian
almond), Trigonella (fenugreek), etc., are known to be used by local pastoralists to treat
udder infections in the state of Jammu and Kashmir [11]. Studies postulating the anti-
inflammatory, antioxidative, or antibacterial effects of pure bioactive compounds, such as
baicalin, curcumin, resvesterol, thymol, etc., in BALB/c mice, bovine mammary alveolar
cell (MAC-T), and bovine mammary epithelial cell (bMEC) mastitis models have been
carried out [12]. Moreover, studies elucidating the effect of natural compounds on bovine
mastitis at transcriptomic, genomic, and proteomic levels are still very meagre and largely
untapped.

Curcuma longa is an ancient Indian medicinal herb classically called Golden spice. It is a
perennial plant, and the part recognized to have the most beneficial effects is its rhizome [13].
A variety of bioactive compounds, including terpenes, phenolic compounds, curcuminoids,
fatty acids, and steroids, are present in the rhizome of turmeric [14]. Curcuma longa is
known to inhibit the production of ROS by decreasing lipid peroxidation and increasing
antioxidative enzyme concentrations [15]. Crude extracts of C. longa are known to decrease
the essential markers of inflammation, such as cyclooxygenase (COX), thromboxanes (Txs),
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prostaglandins (PGs), lipoxygenase (LOX), TNF, and interleukins [16]. Recently, curcumin-
loaded nanoparticles (CUR-NP) have led to the amelioration of inflammation in mastitic
mice by reducing oxidative markers and restoring histopathological aberrations [17]. Post-
milking polyherbal teat dips such as Mastidip, having Berberis lycium, Curcuma longa, and
Eucalyptus as its components, are known to decrease the occurrence of mastitis with the
subsequent increase in milk yield [18]. Curcuma longa is also an essential component of
Mastilep gel which has been used to alleviate the symptoms of subclinical mastitis in dairy
cattle [19]. In buffalo cows, the hydroalcoholic C. longa extracts cause a reduction in the
somatic cell count (SCC) and total bacterial count (TBC) with a concomitant increase in the
levels of L-selectin, a leukocyte adhesion molecule (LAM) which is significantly decreased
in mastitis and periparturient periods [20]. Curcumin treatment helps in attenuating LPS-
induced mastitis in rats by targeting the TLR4/NFκB-mediated pathway, downregulating
the activity of myeloperoxidase (MPO), and the expression of inflammatory mediators
such as TNF-α, IL-6, and IL-1β in a dose-dependent manner [21]. Nanocurcumin alleviates
inflammation and oxidative stress in LPS-induces mastitis in rats via the downregulation
of the TLR4-mediated NF-κB signaling pathway and the activation of Nrf2 expression,
respectively i [4]. A significant decrease in MDA levels and pro-inflammatory cytokines
such as IL-1β and TNF-α is also observed in these rats. Very recently, matrix-transdermal
patches with C. longa have been used in mastitic rat models wherein a significant alleviation
of inflammation, a decrease in the pain score, and an increased mean threshold of pain due
to an increased accumulation of curcuminoids and methoxyflavones were observed [22].

To date, no screens that have identified bioactive molecules from C. longa capable
of explicitly and effectively producing the anti-inflammatory and antioxidative action in
BuMECs have been published. Additionally, the research postulating the effect of pure
extracts of C. longa in bovine mammary epithelial cell lines has not been undertaken largely.
However, the activation of anti-inflammatory pathways and deactivation of prooxidative
actions by the use of C. longa directly or its active compounds is postulated in many
research studies, as stated above. In the current study, we used the hexanic and ethanolic
extracts of C. longa in LPS-induced BuMECs to investigate their anti-inflammatory targeting
TLR4/NFκB pathway and antioxidative potentials through the TLR4/NRF-2 pathway.

2. Material and Methods
2.1. Collection of Plant Material and Preparation of Extracts

The rhizome of C. longa was obtained from a traditional plant vendor (Zam Zam
Ayurvedic and Unani Medicinal Store, Srinagar, Kashmir), cleaned with distilled water,
and dried under a shade. The rhizomes were ground to form a fine powder and were
stored in an air-tight jar. For the preparation of the extracts, 100 g (gm) of dried powder
was subjected to cold extraction, wherein the powder was dissolved in the solvent and
kept in a shaking incubator for 4 days at 25 ◦C. Two solvents, i.e., hexane and ethanol, were
used in preference of their polarity indices. Extractions were carried out starting from less
polar to more polar solvents, i.e., hexane, followed by ethanol. HECl represents the hexanic
extract of C. longa, and EECl represents the ethanolic extract of C. longa. After 4 days, the
extracts were taken out from the shaking incubator and filtered using Whatmann Filter
paper No. 2. Then, the filtrates were kept in a hot air oven set at 25 ◦C in order to evaporate
the solvents. The dried extracts were weighed and stored in eppendorf tubes at −20 ◦C for
further experiments.

2.2. Chemicals and Cell Line

High glucose DMEM (Sigma) (Dulbecco’s Modified Eagle Medium) with sodium
pyruvate, sodium bicarbonate, and a HEPES buffer was used to make Complete DMEM
with 10–15% FBS (Sigma, Victoria, Australia), 1% Penicillin-Streptomycin, EGF (10 ng/mL)
(Sigma, Victoria, Australia), 1 µg/mL hydrocortisone (Sigma, Victoria, Australia), and
5 µg/mL bovine insulin (Sigma, Victoria, Australia).
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Buffalo mammary epithelial cells (BuMECs) were obtained from the Animal Biotech-
nology Centre, National Dairy Research Institute, Karnal, India. The cells were cryopre-
served in the NDRI lab itself and transported to our lab in a liquid nitrogen (LN2) can.
This cell line exhibited epithelial cell characteristics by immunostaining positively with
cytokeratin 18 and negatively with vimentin, as already performed at the NDRI lab [23].
The cell line was revived and cultured in a T-25 flask kept in a CO2 incubator set at 37 ◦C
with 5% CO2. The cells were grown to 70% confluency and trypsinised for further passages.

2.3. Free Radical Scavenging Activity (DPPH Assay)

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to assess the free radical
scavenging activity (RSA%) of the extracts by UV spectroscopy as per Padmapriya et al. [24].
A total of 20 µL of the different concentrations of each extract was pipetted out in a 96-well
plate, and subsequently, 180 µL of the DPPH reagent was added to make a final volume of
200 µL. Ascorbic acid was also added to the same plate and served as the positive control.
All the experiments were performed in a triplicate manner. The plate was incubated at
37 ◦C for 1 h following absorbance, which was measured at 517 nm using the ELISA plate
reader. The RAS% of the extracts were expressed as the mean of IC 50 ± S.D.

2.4. MTT Assay

The MTT assay is a colorimetric assay used to measure cellular activity by detecting
changes in color. The MTT assay was first carried out by Mosman et al., 1983 [25]. Cells
were seeded in 96 well plates at a cell density of 1 × 104 cells per well and allowed to
attach for 24 h in a CO2 incubator. The next day cell attachment was checked under a
microscope in 100× and the media was slowly taken out using a multichannel pipette,
and fresh media was added. The cells were then treated with various concentrations of
the extracts per mL of the media and were kept in an incubator at 37 ◦C for 24 h. Each
concentration was repeated in a triplicate manner. After overnight incubation, the media
containing the extracts was discarded from each well, and fresh media was added to each
well. Subsequently, 20 µL of the MTT working solution was added from a stock MTT of
5 mg/mL and incubated for 4 h at 37 ◦C in a CO2 incubator. Then, the media solution with
MTT was discarded, and DMSO was added; the plates were wrapped in aluminum foil
and incubated for 15 min. The absorbance was then measured for each well against a blank
column containing 100 µL of DMSO per well using an ELISA reader at 595 nm. The cell
viability was determined by comparing the absorbance values of the treated cells to the
absorbance values of the control cells. Data were expressed as a ratio of the percentage
reduction in the cell viability relative to that of the control cells and were expressed as the
mean ± standard error of the mean (SEM).

2.5. Preparation of LPS

Lyophilised LPS from E. coli, strain O111:B4, was ordered from Sigma. A total of 1 mg
LPS was dissolved in 1 mL sterile DPBS; it was dispensed in aliquots and kept at −20 ◦C
till further use. Do not filter the LPS.

2.6. Protocol for Treatment with Different Extracts

Both the extracts were dissolved in DMEM and heated in the water bath set at temper-
atures varying between 30 and 35 ◦C to make a homogenous solution. The extracts were
syringe filtered through 0.23 µm nylon filters (Himedia). BuMECs were seeded in 6 well
plates at a seeding density of 3 × 105, and 1 mL of complete DMEM was added to each
well. The plates were kept in a CO2 incubator, and the media was changed every three
days with fresh complete DMEM until the cells became 60–70% confluent. Then, the media
was discarded, new media was added, and the cell groups were subjected to different
treatments. Group I served as the control where BuMECs were grown in complete DMEM
without any treatment; Group II served as the infected group in which LPS treatment was
given @5 µg/mL of complete DMEM for 6 h. In Group III, BuMECs were treated with
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HECl @ 50 µg/mL for 24 h followed by LPS @ 5 µg/mL for 6 h, and in Group IV, BuMECs
were treated with EECl @ 50 µg/mL for 24 h followed by LPS @ 5 µg/mL for 6 h.

2.7. Total RNA Extraction

RNA from each group was extracted manually using the TRIzol method, as per
Sambrook and Russel [26]. The quality of RNA was checked by running the samples
on 1.5% Agarose to check for three bands of mRNA. The quantity of RNA was checked
by using the spectrophotometer at an optical density (OD) of 260 nm and 280 nm. The
samples showing an OD 260/280 ratio between 1.9 and 2 were used for cDNA synthesis
and qRTPCR.

2.7.1. cDNA Synthesis

cDNA was synthesized using a cDNA Synthesis kit (Promega) as per the kit guidelines.
To validate cDNA synthesis and primer Tm, the gradient polymerase chain reaction (PCR)
was carried out using all committed primers (Table 1). The PCR products were run on 2%
Agarose gel electrophoresis to check for the desired band.

Table 1. Melting temperature and amplicon size of the primers used.

S. No. Primer Name Primer Sequence Amplicon Size Tm (◦C)

1. β-Actin/
ACTB

Fwd: CCCTGGAGAAGAGCTACGAG
Rev: GTAGTTTCGTGAATGCCGCAG 160 bp 60

2. TLR4 Fwd: TCCCCGACAACATCCCCATA
Rev: GGCCCTGAAATGTGTCGTCT 159 bp 60

3. NFκB Fwd: CAGCCTGGTGGGAAAACACT
Rev: CAGGCATCTGTCATTCGTGC 150 bp 65

4. IL-6 Fwd: GCTGAATCTTCCAAAAATGGAGG
Rev: GCTTCAGGATCTGGATCAGTG 200 bp 65

5. TNFα Fwd: CCACGTTGTAGCCGACATC
Rev: CCCTGAAGAGGACCTGTGAG 155 bp 65

6. NRF2 Fwd: CATGGCATCACCAGACCACT
Rev: CGGTGTTTTGGGACCCTTCT 130 bp 63

2.7.2. qRT PCR

The Go Taq qPCR master mix from Promega Biotech India (A6001) was used to study
the expression of various genes in the open system qPCR machine by Qiagen (Rotor-Gene
Q). The experiment was run as per the kit guidelines. The amplification parameters were
as follows: initial denaturation at 95 ◦C for 2 min, followed by 40 cycles of denaturation at
95 ◦C for 15 s, the annealing temperature according to Tm for each primer and extension
at 72 ◦C for 20 s, and a melting curve from 60 to 95 ◦C, increasing in increments of 0.5 ◦C
every 5 s. Normalization was performed using the housekeeping gene, β-Actin. The
∆∆Ct/Comparative Ct method (Livack and Schmittgen, 2001) was used to calculate the
fold expression (given by 2−∆∆Ct) in each group to achieve the relative quantification. The
threshold cycle (Ct) is the cycle number at which fluorescence is detected by the machine.

∆∆Ct = ∆Ct (Treatment) − ∆Ct (Control)

where, ∆Ct = {Ct (Target gene) − Ct (Housekeeping gene)}.

2.8. Gas Chromatography-Mass Spectrometry

Both the samples were analyzed using a gas chromatograph (GC-7890B, Agilient
Technologies, Wilmington, NC, USA) and a mass spectrometer detector (MS-7000D, Agilient
Technologies, Wilmington, DE, USA) at the Centre for Residue and Quality Analysis
(RCRQA), SKUAST-Kashmir. Ethanolic and hexanic extracts of C. longa were dissolved in
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ethanol and hexane, respectively, to a concentration of 5 ppm. The samples were filtered
using syringe filters and then analyzed using GC-MS. The operating conditions were set as
the injector volume 1 µL, injector and detector temperatures 280 ◦C, inlet flow 1 mL/min,
and the oven temperature was programmed at an initial temperature of 60 ◦C, rising to
310 ◦C. The run time was 40.5 min, and helium was used as a carrier gas. Compound
identification in the extracts was based on GC retention times and computer matching with
the library. The relative percentage (Area Sum %) of the constituents was calculated from
the GC peak areas.

2.9. Statistics

The data generated were subjected to appropriate statistical analysis by using ap-
propriate software (Mini Tab 21.1.0, Pennysylvia University, Philadelphia, PA, USA). The
results were analyzed using one-way ANOVA followed by Tukey’s multiple comparisons
test.

3. Results
3.1. Cytotoxicity/MTT Assay

Both the extracts were tested for cytotoxicity using different doses of 10, 30, 50, and
100 µg/mL overnight. The extracts had no cytotoxic effects up to a dose of 50 µg/mL
compared to the control (Figure 1). Therefore, the dose of 50 µg/mL was used in the
subsequent experiments.
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Figure 1. Cytotoxicity assay using different doses (10, 30, 50, and 100 µg/mL) of Hexanic (CH) and
Ethanolic (CE) extracts of C. longa in BuMECs.

3.2. DPPH Assay of Extracts

Both the hexanic and ethanolic extracts showed the highest DPPH scavenging activity
at the doses of 50 and 100 µg/mL with IC50 values of 8–10 µg/mL. The positive standard
ascorbic acid/vitamin C showed the highest antioxidative or RAS scavenging potential
with IC50 of 7.81 µg/mL. Here, we found a dose-dependent increase in the antioxida-
tive potential of the extracts by decreasing the IC50 values from lower to higher extract
concentrations (Figure 2).

3.3. Effect of HECl and EECl on TLR4 Expression

There was a significant downregulation in the mRNA expression of the TLR4 gene
in both HECl and EECl-treated groups (group III and IV) as compared to the LPS-treated
group (group II), wherein a significantly upregulated expression of TLR4 was seen when
compared to the control group (group I) (Figure 3A).
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Figure 3. Relative expression of various genes in different groups of BuMECs normalized to house-
keeping gene, β-Actin, using the qRTPCR technique. (A) TLR4 (B) NFκB (C)TNFα (D) IL-6 (E) NRF-2.
Values represent mean ± SEM. Bars with ***, **, * represent p < 0.001, p < 0.01, and p < 0.05, respec-
tively. Different superscript letters denote significant differences (p < 0.05). Comparison of Group II
with Group I and Group III, IV with Group II has been conducted.

3.4. Effect of HECl and EECl on Inflammatory Gene Expression

Inflammatory cytokines viz TNFα and IL-6 were significantly downregulated in
the HECl-treated group compared to the LPS-treated group (group II) (Figure 3C,D).
NFκB expression was also downregulated in this group (group III) compared to group II
(Figure 3B).

TNFα expression was downregulated in the EECL-treated group (group IV) (Figure 3C)
compared to group II while a non-significant downregulation in the IL-6 expression was
seen in this group compared to the LPS-treated group (group II) (Figure 3D). NFκB expres-
sion showed significant downregulation in group IV compared to the LPS-treated group
(group II) (Figure 3B).



Separations 2022, 9, 414 8 of 14

3.5. Effect of HECl and EECl NRF2 Expression

NRF2 mRNA expression was significantly upregulated in both groups III and IV
compared to the LPS-treated group (group II) (Figure 3E).

3.6. GC-MS/MS Chromatogram Analysis

Tables 2 and 3 represent the compounds in HECl and EECl, respectively, with their
area sum (%), molecular weights, RT, compound class, and common plants in which
these compounds are present as observed in GC-MS/MS. Figures 4 and 5 represent the
GC-MS/MS chromatograms of HECl and EECl, respectively.

Table 2. Important bioactive compounds in HECl as analyzed by GC-MS/MS.

S. No. Compound Name Molecular
Formula

Molecular
Weight (g/mol) RT Area

Sum (%)
Compound

Subclass Common Plants

1. Atlantone C15H22O 218.33 11.4 0.37 Sesqueterpenoid Cedrus deodara,
Curcuma

2. dihydro-ar-Turmerone C15H20O 218.339 12.45 0.77 Sesqueterpenoid
C. longa,

Peltophorum
dasyrachis

2. Ar-Turmerone C15H20O 218.339 13.33 24.58 Sesqueterpenoid
C. longa,

Peltophorum
dasyrachis

3. Tumerone C15H22O 218.33 13.3 7.20 Sesqueterpenoid C. longa

4.

beta-Turmerone)
(4-methylidenecyclohex-

2-en-1-yl)
hept-2-en-4-one

C15H22O 218.33 14.03 11.7 Sesqueterpenoid
Gundelia

tournefortii,
Turmeric

5. Atlantone C15H22O 218.33 15.51 2.92 Sesqueterpenoid Cedrus deodara,
Curcuma

Table 3. Important bioactive compounds in EECl as analyzed by GC-MS/MS.

S. No. Compound Name Molecular
Formula

Molecular
Weight (g/mol) RT Area

Sum (%)
Compound

Subclass Common Plants

1.
Guaiacol

(2-Hydroxyanisole
Phenol, 2-methoxy)

C7H8O2 124.137 4.336 2.58 Phenol Solanum torvum,
Guaiacum officinale

2. dihydro-ar-Turmerone C15H20O 218.339 13.2 26.84 Sesqueterpenoid
C. longa,

Peltophorum
dasyrachis

3. Tumerone C15H22O 218.33 13.3 7.39 Sesqueterpenoid C. longa

4. Curlone C15H22O 218.33 13.9 12.67 Sesqueterpenoid
C. longa,

Karungkuravai” rice
medicinal variety

5. Atlantone C15H22O 218.33 15.36 2.22 Sesqueterpenoid Cedrus deodara,
Curcuma

6.
Ethyl ferulate/Ethyl

4′-hydroxy-3′-
methoxycinnamate

C12H14O4 222.24 18.18 0.99 Polyphenol Stemona tuberosa
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4. Discussion

Research on plant-based medicine is gaining importance among the scientific com-
munity all over the world. The comparatively low/no side effects arising as a result of
herb-based drugs compared to allopathic medicines create a high level of interest in elu-
cidating the diseases and alleviating the properties of these plants [27]. Ethnoveterinary
medicine (EVM) has been used for ages past to treat a number of animal diseases, mostly
by pastoralists and rural farmers [28]. The dairy industry faces the challenge of bovine
mastitis, which incurs a huge economic loss each year the world over [29].

LPS has been well studied to induce a strong inflammatory response in many cells,
including Bovine Mammary Epithelial Cell lines (BMECs) [30]. TLR4 is crucial for eliciting
the LPS-mediated inflammatory cascade. LPS is known to induce the mRNA expression of
several proinflammatory cytokines (IL-8, IL-1β, IL-6, and TNFα) via the NFκB transcription
factor activation in BMECs, which is in concomitance with our results [31]. In another
study, LPS-induced oxidative stress led to the downregulation of the NRF2 gene with the
simultaneous increase in superoxides and ROS levels [32]. Similar results were obtained
in our study wherein LPS caused a significant upregulation of pro-inflammatory genes
viz TLR4, NFκB, TNF- α, and IL-6 with a simultaneous downregulation of the NRF-2
transcription factor, which suggests that LPS has manifested a prominent inflammatory
and oxidative stress cycle in the BuMECs.

4.1. Anti-Inflammatory Effects of C. longa Extracts

Turmeric is an important ingredient in our cuisines and has been used for ages past
as an herbal remedy for various diseases. Many species of Curcuma have been used in
EVM for treating mastitis [33,34]. Many post-milking teat dips and teat ointments, such as
Mastidip and Mastilep, respectively, contain Curcuma as an active ingredient leading to the
inhibition of the growth of mastitis and bacteria [19]. These topicals have shown remarkable
results in mastitis by restoring the pH and SCC of milk, decreasing the microbial load on
teat surfaces, and the process of inflammation in subclinical mastitic animals, along with the
increase in milk yield. Very recently, Sedky and co-workers found that the ethanolic extract
of C. longa shows antioxidative action through the scavenging free radicals and antibacterial
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activity by diminishing growth of a wide range of mastitic milk isolated bacteria such as
E. coli, S. aureus, Strep. Agalactiae, Bacillus subtilis, and Pseudomonas [35]. Many in vivo and
in vitro studies also validate the essential biological roles, such as the anti-inflammatory,
antibacterial, and antioxidative role of the bioactive compounds isolated from C. longa. For
instance, Ghadiri et al., 2019 found that quercetin (5 µM) isolated from C. longa potentiated
the detoxifying system and decreased aflatoxin-mediated cytotoxicity in Bovine MECs [36].

C. longa extracts are known to cause a significant antioxidative and anti-inflammatory
effect in LPS-induced RAW 264, a macrophage cell line, by downregulating iNOS and TLR4,
respectively [37]. So far, no study is available which has proposed the anti-inflammatory
effect of the raw extract of C. longa on LPS-induced BMECs or in mastitic rat models us-
ing expressional analysis. The administration of curcumin, as an important constituent
of C. longa, leads to the downregulated expression of classical inflammatory genes such
as TLR4, NF-κB, IL-6, IL-1β, and TNFα in the LPS-induced mastitis of mice [21]. In the
current study, both the extracts of C. longa viz HECl and EECl led to a significant downreg-
ulation of TLR4, NF-κB, and TNFα mRNA gene expression compared to the LPS group
(Group II). However, IL-6 mRNA levels were downregulated significantly in HECl and
non-significantly in EECl treated cells. Similarly, the downregulation of proinflammatory
cellular molecules using bioactive compounds of C. longa has been seen in dental pulp stem
cells (hDPSCs) induced with 2-hydroxyethyl methacrylate (HEMA) [38]. This invitro study
proposed that nanotechnology-based liposomal curcumin formulation downregulates the
NF-κB/ERK transcription factor mediating inhibition of the Monocyte Chemoattractant
Protein-1 (MCP1) and Interferon-gamma (IFNγ) along with IL-6 and 8. Furthermore,
nanocurcumin administration in animal models significantly decreased the protein ex-
pression of TLR4, NF-κB, and TNFα, thereby validating the anti-inflammatory effect of
nanocurcumin on cerulein-induced acute pancreatitis [39]. Our study is in corroboration
with a very recent study conducted by Li et al., 2021, which proposes that treatment with
curcumin causes a downregulation in NF-κB along with proinflammatory cytokines such as
IL-6, IL-8, IL-1β, and TNFα in the LPS-induced inflammation of MAC-T: an immortalized
bovine mammary epithelial cell line [5]. A non-significant effect of EECl on IL-6 expression
might be possible in our study, and here, some other interleukins might be involved in the
inflammatory cycle, which needs to be studied in the future.

4.2. Anti-Oxidative Effects of C. longa Extracts
4.2.1. RAS Activity of the Extracts

The analysis of the antioxidative potential of the extracts was performed by evaluating
the potential extracts to quench DPPH radicals through their hydrogen-donating ability.
The conversion of DPPH to 1-1diphenyl-2-picryl hydrazine, a stable diamagenetic molecule,
is observed through a change in color from purple to yellow. A more intense yellow
color indicates the increasing RAS activity of the extract. In the present study, all the
concentrations of both HECl and EECl demonstrated remarkable DPPH scavenging abilities
with IC50 values of <20 µg/mL, explaining the potent antioxidative potential of the C. longa
extracts. According to Souri et al., 2008, it has been postulated that plant extracts with
IC50 < 20 µg/mL are known to have significant antioxidation properties [40]. Similarly,
in our study, all the extracts showed significant free radical degradation abilities, which
increased in a dose-dependent manner as observed by decreasing IC50 values. Our results
are in corroboration with the findings of Kodjio et al., 2016 who also found the highest
DPPH scavenging activity of C. longa extracts at a dose of 200 µg/mL [41].

Here, we found a more significant free radical scavenging property in ethanolic extracts
of C. longa at doses of 50 and 100 µg/mL compared to hexanic extracts at the same doses,
with IC50 values almost similar to ascorbic acid indicating EECl to be a potent antioxidative
candidate. Studies have shown that ethanolic extracts of C. longa possess a higher antioxi-
dant activity compared to aqueous extracts, as found by their lower IC50 concentration of
1.08 µg/mL [42]. The higher antioxidative properties of C. longa extracts may be attributed
to the presence of different bioactive constituents responsible for increasing the antioxida-
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tive depot. Phenolics, terpenoids, and flavonoids are largely involved in maintaining the
antioxidative properties of C. longa as they have strong reducing capacities.

4.2.2. Effect on NRF-2 Gene Action

The antioxidative properties of C. longa are indispensable and highly significant as
far as the alleviation of ROS levels and other oxidative parameters are concerned. A
number of studies postulate that curcumin from C. longa causes the activation of oxidative
stress related to the transcription factor, i.e., NRF2 along with KEAP (Kelch-like ECH-
associated protein 1), which highly potentiates cellular protection against oxidant insult [43].
Recently, the antioxidative effect of curcumin in LPS-induced oxidative injury in MAC-T
cells through the activation of NRF2, along with a decrease in ROS levels, was studied and
is in corroboration with our result. In our study, both the extracts of C. longa showed a
significant upregulation in the mRNA expression of the NRF2 gene compared to group
II. Several other studies validate the crosstalk between NRF2 and NF-κB signaling. For
example, curcumin, by inhibiting NF-κB and activating the Nrf2/HO-1 axis, leads to the
alleviation of quinocetone-induced apoptosis injury in human leukocytic cells [44] and
muscle damage in vivo animal models [45].

Another important bioactive compound of C. longa, i.e., ar-turmerone (aromatic
turmerone/ART), also displays many essential activities such as anti-inflammatory, an-
timicrobial, antibacterial, and antioxidative qualities. Turmerone is structurally similar
to curcumin and 6-shogaol. The attenuation of LPS-induced neuroinflammation in mice
using turmerone extracted from C. longa essential oil was studied by Chen et al., 2018 [46].
A significant downregulation in the TLR4-mediated inflammatory cascade with the de-
ceased protein expression of inflammatory markers such as TNFα, IL-1β, and NFκB was
observed in turmerone-treated mice. The anti-neuroinflammatory and antioxidative effects
of ART are explained in the study of Park et al., 2012 where the downregulation of both
proinflammatory and oxidative stress genes was validated [47]. The NFκB dependent
downregulation of inflammatory mediators such as MCP-1, IL-1β, IL-6, and TNF-α with a
concomitant decrease in ROS and iNOS levels was seen in the affected microglial cell.

4.3. Phytoconstituents in C. longa Extracts

Here, in our study, the GC-MS/MS of both HECl and EECl showed the highest presence
of ART. Sesqueterpenoids and phenols were the major active compound classes analyzed
in the C. longa. HECl was rich in sesqueterpenoids viz ART (24.58%), tumerone (7.20%),
Beta-turmerone (11.7%), dihydro ar-turmerone (0.77%), and atlantone (0.37%). On the other
hand, EECl was rich in sesqueterpenoids viz dihydro ar-turmerone (26.84%), curlone (12.67%),
tumerone (7.39%), and atlantone (2.2%), phenols viz Guaiacol (2-Hydroxyanisole Phenol,
2-methoxy) (2.58%), and ethyl ferulate/ethyl 4’-hydroxy-3’-methoxycinnamate (0.99%).
Previous GC-MS/MS studies have also confirmed the presence of these sesqueterpenoids
in the essential oil from C. longa rhizome and their importance for exhibiting a wide range
of pharmacological properties [48].

Phenolic compounds are secondary metabolites of plant metabolism, and these com-
pounds have received considerable attention because of the exhibition of potential bioac-
tivity such as antioxidant, antimicrobial, antipyretic, antibacterial, antihypercholestremic,
etc. [49]. The prominent metal ion chelating and free radical scavenging activity are quite
fundamental to phenolic compounds, and therefore, these compounds can be candidate
drugs for disease prevention and cure [50]. After careful analysis of the published articles,
we found that two phenolic compounds, i.e., Guaiacol and ethyl ferulate, which were found
in the current study, have not been reported so far in C. longa.

5. Conclusions

HECl downregulated the inflammation in LPS-induced BuMECs through TLR4/IL-
6/TNFα/NFκB signaling pathways. On the contrary, EECl downregulated the LPS-induced
inflammation via TLR4/TNFα/NFκB. Both extracts were able to decrease the LPS-induced
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oxidative stress by upregulating the NRF2 gene expression. The high DPPH free radical
scavenging activities of the C. longa extracts were confirmed by their corresponding low
IC50 values and also indicates the high antioxidative potentials of C. longa extracts. The
anti-inflammatory and antioxidative action of the C. longa extracts might be due to the
presence of phytoconstituents such as sesque-terpenoids, phenolic compounds, and certain
essential oils, which need to be further validated. Furthermore, studies are warranted to
determine the precise mechanism at the protein level and elucidate the regulation of other
downstream genes which might be involved in the protective effects of C. longa against LPS-
induced inflammation in BuMECs. The effect of the tandem mass spectroscopy detected
phytoconstituent on the LPS-induced inflammation in BuMECs needs to be studied vividly
using high throughput techniques.
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