University of Mississippi

eGrove

Open-File Reports

Mississippi Mineral Resources Institute

1989

Engineering Properties of Mississippi Clays

Nolan Aughenbaugh

Follow this and additional works at: https://egrove.olemiss.edu/mmri_ofr

Recommended Citation

Aughenbaugh, Nolan, "Engineering Properties of Mississippi Clays" (1989). *Open-File Reports*. 143. https://egrove.olemiss.edu/mmri_ofr/143

This Report is brought to you for free and open access by the Mississippi Mineral Resources Institute at eGrove. It has been accepted for inclusion in Open-File Reports by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.

Open-File Report 89-7F

Engineering Properties of Mississippi Clays

Dr. Nolan B. Aughenbaugh

1989

The Mississippi Mineral Resources Institute University, Mississippi 38677

FINAL REPORT

ENGINEERING PROPERTIES

OF

MISSISSIPPI CLAYS

BY

NOLAN B. AUGHENBAUGH DEPARTMENT OF GEOLOGY AND GEOLOGICAL ENGINEERING SCHOOL OF ENGINEERING THE UNIVERSITY OF MISSISSIPPI

SUBMITTED TO MISSISSIPPI MINERAL RESOURCES INSTITUTE MMRI GRANT NO. 89-7F USBM GRANT NO. G1184128

AUGUST, 1989

ABSTRACT

This report summarizes the results of a second investigation to determine the feasibility of using the Atterberg Limits test as an initial evaluation of clay deposits being considered for economic use. The first study sampled and tested clays only from Northern Mississippi. The results of that sampling and testing, when plotted on a Plasticity Chart, exhibited an apparent grouping correlation between the Atterberg Limits test data and the industrial use of the clay. However, the number of samples from clay mines were few, so the validity of the groups by use could not be confirmed. This study sampled all known active clay mines in Mississippi. The Atterberg Limits were made on the samples and the results were plotted on the Plasticity Chart. The apparent groupings by commercial use that were observed in the first study were verified by the results of this investigation. This investigation has proven the Atterberg Limits are a good test to make preliminary assessments on the potential of clay deposits for commercial use.

TABLE OF CONTENTS

PAGE

ABSTRACT	ii
LIST OF FIGURES	iv
LIST OF TABLES	iv
INTRODUCTION	1
1986-87 Project	1
1987-88 Project	2
PROJECT FOCUS	3
SAMPLE COLLECTION	3
LABORATORY TESTING	4
TEST RESULTS	4
SUMMARY AND CONCLUSIONS	6
REFERENCES	8

.

LIST OF FIGURES

<u>FIGURE</u>	PAGE
1.	1986-87 Plasticity Chart Test Data
2.	Sample Location Map 10
3.	Plasticity Chart Test Data 11

LIST OF TABLES

•

TABL	E PAG	E
I.	List of Clay Sample Sites 12	2
II.	List 1986-87 Sample Sites 15	;
III.	Summary of Atterberg Limits Test Data	5

INTRODUCTION

This report summarizes the findings of a study to determine if the basic properties of clay as defined by the Atterberg Limit tests conducted on clay samples collected throughout the State of Mississippi are correlative to the commercial use of clays. All known active commercial clay mines in Mississippi were sampled and tested.

The study covered by this grant was a continuation of two previous funded investigations involving Mississippi clay resources.

1986-87 Project

In 1986, the author was awarded a small research grant by the Mississippi Mineral Resources Institute (MMRI) to investigate the basic engineering properties of clay deposits in northern Mississippi. The main focus of the study was to determine if the Atterberg Limits tests could be used as a first assessment when evaluating clay deposits for commercial exploitation.

The Atterberg Limits tests were selected during the 1986-87 investigation because, as a standard index test in geotechnical engineering, the tests are:

- 1. easy to perform
- 2. rapid
- 3. reproducible
- 4. inexpensive

In addition, the amount of material needed to perform a test is minimal so that core samples are adequate to use as test samples. However, the primary reason for selecting the Atterberg Limits in assessing clay deposits for possible commercial exploitation was the tests evaluate the basic plastic properties of clay and silt soils. Much data existed from previous geotechnical evaluations and research which served as a standard in evaluating the project's data.

Although the 1986-87 study was limited to clay samples collected in northern Mississippi, of which only eleven were from commercial mines, the test data exhibited distinct grouping trends when plotted on a Plasticity Chart, Figure 1. The author concluded the Atterberg Limits might be a good index test for making preliminary appraisals of clay deposits for commercial exploitation. Because the number of data points of clays mined for commercial use were only eleven and were confined to northern Mississippi, it was acknowledged the apparent correlation of the Atterberg Limits to the commercial use required more sampling and testing for verification.

1987-88 Project

A second grant was awarded the following year to test the samples collected in 1986-87 for flexibility. Flexibility is the ability of a clay, when excavated and recompacted, to differentially deform without cracking. The importance of this investigation was to see if the clay deposits of northern Mississippi were pliable (putty-like) enough to be source material for compacted clay liners used as permeability barriers in hazardous waste sites, landfills, lagoons, mining refuse disposal, and levees.

The results of the 1987-88 flexibility study were inconclusive when correlated to the Atterberg Limit data of the previous year. In the author's opinion, the erratic nature of the test data was due primarily to poor testing procedures. The tests were done as special projects by different students to give them experience in laboratory testing and research.

The 1986-87 and 1987-88 investigations provided the foundation for this study. For more information and details of the two previous studies, the reader is referred to the final reports listed in the references.

PROJECT FOCUS

The project summarized in this report focused on verifying the apparent groupings/ trends between the Atterberg Limits data of the 1986-87 project and the commercial use of clay when plotted on the Plasticity Chart, Figure 1. To accomplish this objective, the investigation limited the new sample collection to commercial clay pits and expanded the sample area to the whole State of Mississippi. The Atterberg Limits again were designated as the primary laboratory test to be made on the samples. Several simple in situ tests were to be tried at the collection sites for possible additional correlations to the Atterberg Limits and commercial use.

SAMPLE COLLECTION

Samples tested in the 1986-87 study were collected mostly from the northern third of the State of Mississippi. About half of the samples were from active clay mines. The remaining samples were from unmined outcrops.

Prior to the field sampling program, Mr. William A. Gilliland, Head of the Mining and Reclamation Division in the Bureau of Geology of the Mississippi Department of Natural Resources, was contacted to obtain a list of all active clay mining companies in Mississippi. The various companies were called to request permission to sample their pits and stockpiles. In each case, permission was granted, and every known commercial clay operation was visited and sampled in the state. This included resampling the northern operations that were sampled in the 1986-87 study.

In every case, bulk material was taken from the company's stockpile. Since the stockpiles in some cases were admixtures from different pits, an attempt was made to obtain samples from each pit. This was not possible in several cases. Approximately 25 pounds of clay was obtained from each sample site.

The geographic locations of the sites where samples were collected are shown in Figure 2. The company and county in which the samples were obtained are listed in Tables I and II. Table I lists those sites that were sampled for this project. Table II lists the companies and property owners from which samples were taken in the 1986-87 study.

LABORATORY TESTING

The field sampling and laboratory testing for this grant was done by Mr. Nicasio Lozano, a research graduate assistant, under the supervision of the author. The data is very reliable compared to the two past projects where a number of undergraduate and graduate students performed the testing as special student projects.

As noted earlier in the text, several in situ field tests were attempted with the hope additional correlative data could be obtained. The two in situ tests tried were a soil pocket penetrometer and a soil shear vane. Neither test was of any value. Since both test apparatus are designed for dense, in-place material, they could not be used for stockpile material, because it was disaggregated and weathered. The clays in the pits were shale-like and were too hard and strong for either apparatus to penetrate and function.

The laboratory tests consisted of conducting the liquid limit and plastic limit tests of the Atterberg Limits on each sample. If Mr. Lozano felt the test results were not indicative of the gross sample, he would make one or more test runs to substantiate the correct data. The tests were conducted in accordance with ASTM Standard D 4318-84 for the Atterberg Limits. Description and details of the tests are described in the 1986-87 Final Report.

TEST RESULTS

The results of the ATterberg Limits tests are summarized in Table III. Also included in Table III is the commercial use of the clay, if known. The data are plotted on a Plasticity Chart, Figure 3. The commercial use of the clay is identified by different plotted symbols.

The new data confirms the interrelationship between the Atterberg Limits and the commercial use of clays, especially for bricks and for absorbents and bleaching.

The largest number of data points and the best grouping is for bricks. The Liquid Limits vary from a low of 25 percent to slightly less than 60 percent. The Plastic Index (Liquid Limit minus the Plastic Limit) spans from 7 to 30. The grouping falls into the soil classification category of "medium" plasticity and/or silty clays and clayey silts.

The second best grouping are the clays that are used as absorbents or for bleaching. Also known as Fuller's Earth, these clays are described in the literature as clays rich in the expanding clay mineral smectite (montmorillonite). Although no X-ray or other mineral identification was performed on the samples, the Atterberg Limits have numerical values that are consistent with smectite-rich clays. Compared to clays in which kaolinite and illite dominate, smectite-rich soils have very high Liquid Limits.

The areal extent of the absorbent and bleaching clays is much larger and the scatter of the data points is much greater in comparison to the brick groupings. However, it is well defined and bounded.

Two other groupings are evident even though the number of data points are small. Clays used for lightweight aggregate lie above the absorbent-bleaching group. More data points from other out-of-state, lightweight aggregate manufacturers would establish if this apparent grouping is valid.

There are only four data points for ball clays. However, these points on the Plasticity Chart are located in a very small area as can be seen in Figure 3. At the lower Liquid Limits and Plasticity Indices, the ball clays overlap the higher values for bricks. The apparent group does extend beyond the brick boundary but terminates before interfacing with the absorbent

clays. As with the lightweight aggregate clays, the validity of this group can only be verified by more data points from other bah clay mines.

There is the possibility that other clay use groupings may exist. This study was limited to commercial clays in Mississippi and what the companies listed their product was used for either at an on-site plant or to whom the clay was shipped. As a result, not all commercial uses were identified in the study.

SUMMARY AND CONCLUSIONS

The purpose of this research project was to verify the apparent correlation in the Atterberg Limits and the commercial use of clay which emerged from a previous small, limited study of clays in northern Mississippi. Although the number of data points were small, the previous study found that five clays used for bricks plotted on the Plasticity Chart in a very small area. Therefore, the author proposed a study to sample all the active commercial clay mines in Mississippi and conduct additional Atterberg Limit tests to get a statistically significant number of data points to assess the apparent correlation.

All known commercial clay mines in Mississippi were visited and sampled. In situ shear and penetration tests attempted at the site were not successful because the in-place clay beds were shale-like and had strengths that exceeded the apparatus upper limits.

Liquid Limits and Plastic Limits of the Atterberg Limits were conducted on the samples in the laboratory. The results of the test data were plotted on the Plasticity Chart and identified by symbol as to commercial use.

The apparent groupings of commercial use of clays on the Plasticity Chart was verified for bricks and absorbents/bleaching. The grouping for bricks is very well defined. The absorbent and bleaching clays exhibit a broader and more scattered pattern. Although only four data points exist for each, ball clays and lightweight aggregates have distinct areal groupings.

From the test results and the groupings of the data points on the Plasticity Chart, it has been demonstrated that the Atterberg Limits are an inexpensive, simple index test that can be used as a first evaluation of clay deposits being considered for commercial exploitation. The Atterberg Limits will indicate for what commercial use a clay deposit can or cannot be mined.

The Atterberg Limits also offer a very rapid and inexpensive way to evaluate the homogeneity and extent of a clay deposit. Since this test requires only a small amount of material, small diameter cores drilled across a prospective site are sufficient to make the analysis.

In summary, this investigation has demonstrated the Atterberg Limits are a viable test for exploration and initial assessment of clays for commercial use.

REFERENCES

- Aughenbaugh, N. B., 1987, "Basic Engineering Properties of Some Northern Mississippi Clay Deposits," Final Report, MMRI Grant No. 87-7F, Mississippi Mineral Resources Institute.
- Aughenbaugh, N. B., 1988, "Evaluation of the Flexibility of Northern Mississippi Clays," Final Report, MMRI Grant No. 88-6F, Mississippi Mineral Resources Research Institute.
- Murray, H. H., 1982, "Clay Resources of the Midwest States," Mining engineering, Vol. 34, No. 1, pp.68-71.
- Patterson, S. H. and Murray, H. H., 1983, "Clays," Industrial Minerals and Rocks, 5 Ed., Vol. 1, SME of AIME, pp. 585-651.

- O Bricks, tiles
- Ball clay, Refractory and fire clay
- χ Lightweight aggregate
- Unknown or undeveloped

Figure 2

Figure 3

List of Sample Hunber, Company and County

÷

Sample	Coapany	Location (County)	
Humber	Каве		
MI	Kentucky Clay Co.	Panola	
И2	Kentucky Caly Co,	Panola	
K3	Kentucky Clay Co.	Panola	
K4	Southern Brick & Tile	Marshall	
Н5	Southern Brick & Tile	Marshall	
Кб	Southern Brick & Tile	Marshall	
K7	Oil Dri Production	Tippah	
К3	Oil Dri Production	Tippah	
N9	Oil Dri Production	Tippah	
KIO	Oil Dei Production	Tippah	
Hil	Holly Springs Brick & Tile	Marshall	TABLEI
H12	Holly Springs Brick & Tile	Marshall	
К13	Holly Springs Brick & Tile	Marshall	
M14	Unknown	Benton	
H15	INCORE Division	Tippah	
И16	IKCO8E Division	Tippah	
H17	Oil Dri Production	Tippah	
Ì18	Oil Dri Production	Tippah	
И19	Unknown	Prentiss	
H20	Unknown	Tishozingo	
K21	Unknown	Tishomingo	
822	Unknown	Pontotoc	
H23	Unknown	Lafayete	
824	Unknown	Itawaaba	

H25	American Colloids	Oklahona
И26	Aaerican Colloids	Monroe
Й27	IMCORE Division	Monroe
828	Louisville Brick Co.	Hinston
И29	Colubus Brick Co	Lowndes
ИЗО	Colubus Brick Co.	Clay
И31	Coloabus Brick Co.	Winston
К32	Louisville Brick Co.	Winston
И33	Louisville Brick Co.	ïinston
К34	Boydston Loaber Co.	Ïinston
835	Boydston Lumber Co.	ïinston
H36	Boydston Luaber Co.	ïinston
H37	Boydston Luaber Co.	ïinston
И38	Delta-Macon Brick Co.	Hoxubee
839	Delta-Macon Brick Co.	Keeper
И 40	Delta-Macon Brick Co.	Reaper
H41	Delta-Macon Brick Co.	Reaper
И42	Delta-Macon Brick Co.	Keeper
H43	Delta-Macon Brick Co.	—
Й44	Presley Oil Soak	Keeper
845	Presley Oil Soak	Keeper
И46	Jacson Ready Mix	Hinds
И47	Jackson Beady Mix	Hinds
H48	Green Brothers Gravel Co.	Hinds
849	Tristate Brick Co.	Hinds
850	Tristate Brick Co.	Ïinston
851	Laurel Brick Co.	Jones

К52	Laurel Brick Co.	Jones
И53	Boreal Brick Co.	Lincoln
K54	Boreal Brick Co.	îinston

Sample

Number	Property Owner	County
C-1	Southern Brick & Tile	Marshall
C-2	Southern Brick & Tile	Marshall
C-3	Doss Brown	Marshall
C-4	County	Marshall
C-5	Holly Springs Brick & Tile	Marshall
C-6	Holly Springs Brick & Tile	Marshall
C-7	Holly Springs Brick & Tile	Marshall
C-8	County	Lafayette
C-9	Kentucky-Tennessee Clay Corp.	Quitman
C-10	Unknown	Prentiss
C-11	International Minerals Corp.	Tippah
C-12	International Minerals Corp.	Tippah
C-13	Melvin Posey	Lee
C-14	Elizabeth Young	Choctaw
C-15	Verbie Estis	Monroe
C-16	Jackson.Ready-Mix	Hinds
C-17	American Colloid Co.	Monroe
0-1	T.W. Bready	Benton
L-l	Unknown	Monroe
K-l	City of Oxford	Lafayette
K-2	Unknown	Pontotoc
K-3	Jackson Ready-Mix	Hinds
J-1	City of Oxford	Lafayette
J-2	International Minerals Corp.	Tippah

TABLE ïl, List of Clay Samples

Table Ш- List of Sample Number, Plastic Limit, Liquid Limit, Plasticity Index and products.

Sampi e	Pl asti c	Li qui d	Plasticity	Product ,
Number	Li mi t	Limit	Index	
N1	30	64	34	ball clay
N2	33	58	25	ball clay
N3	28	54	26	ball clay
N4	32	49	17	bricks
N5	19	27	8	bricks
N6	24	41	17	bricks
N7	69	109	41	absorbents
N8	87	111	24	absorbents
N9	78	117	39	absorbents
N10	60	75	15	absorbents
N11	23	37	14	bricks, tiles
N12	28	54	26	bricks, tiles
N13	26	3*^	7	bricks, tiles
N14	30	47	17	undevel oped
N15	69	105	36	absorbents
N16	70	100	30	absorbents
N17	52	104	52	absorbents
NIS	78	101	23	absorbents
N19	18	28	10	undeveloped
N20	24	45	21	undeveloped
N21	0	23	0	unknown
N22	45	81	36	undeveloped
N23	19	37	18	undeveloped
N24	16	37	21	unknown
N25	50	89	30	dessicant
N26	61	85	24	bentonite, foundry clay
N27	40	76	36	bentonite
N2S	26	51	25	bricks
N20	10	27	25	bricks
N20	24	52	28	bricks
N31	24	JZ 11	12	bricks
N22	22	41	10	bricks
N32	32	40	10	bricks
N33	20	42	10	obarbanta
N34	30	00	44	absorberns
N35 N2C	19	41	22	Dricks
N30	24	46	22	Dricks
N37	27	40	13	Dricks
N38	26	48	22	bricks, tiles
N39	25	39	14	bricks, tiles
N40	24	40	16	bricks, tiles
N41	28	49	21	bricks, tiles
N42	27	49	22	bricks, tiles
N43	21	38	17	bricks, tiles
N44	37	70	33	absorbents
N45	45	78	33_	absorbents
N46	30	86	56	light weight aggregate
N47	46	100	54	light weight aggregate
N48	48	74	26	gravel wash waste

N49	22	35	13	bricks
N50	31	55	24	bricks
N51	20	38	18	bricks
N52	^ <u>7</u> ^	47	2~2	bricks
N53	18	39	21	bricks
N54	27	56	28	bricks
CI	15-2	29	13-8	bricks
C2	26.2	42= 4	16-2	bricks
C3	19.9	34£-/5—t—f	15-6	unknown
C4	19.0	27.9	8.4	unknown
C5	18.4	33=4	15	bricks
C6	21 = 8	41.8	20	bri cks
C7	26=5	33=8	7-3	bricks
C8	20.4	29.9	9=5	unknown
C9	29. 1	56-4	27.3	ball clay
CIO	69.3	106.8	37.5	unknown
CII	29.6	62.5	32=9	absorbents
C12	64.8	91.9	27. 1	absorbents
C13	31.0	46.8	15=8	unknown
C14	28. 1	47=8	19- 7	unknown
C15	37.4	47	9-6	unknown
Clb	62.4	200	137.6	lightweight aggregate
C17	68.3	132	63.7	bleaching clay
01	20= 1	22=9	2=8	unknown
LI	27=4	35= 1	7.7	unknown
K1	20.7	29,9	9.2	unknown
K2	29=6	56-3	26.7	unknown
КЗ	22 » 2	103	80-8	lightweight aggregate
J1	19.7	33.9	14.2	unknown
J2	13.3	27.9	14.6	bricks