
University of Mississippi University of Mississippi 

eGrove eGrove 

Honors Theses Honors College (Sally McDonnell Barksdale 
Honors College) 

2014 

Influence of Whole-Body Vibration on Delayed Onset Muscle Influence of Whole-Body Vibration on Delayed Onset Muscle 

Soreness Soreness 

Cecilia Drennen 
University of Mississippi. Sally McDonnell Barksdale Honors College 

Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis 

 Part of the Exercise Science Commons 

Recommended Citation Recommended Citation 
Drennen, Cecilia, "Influence of Whole-Body Vibration on Delayed Onset Muscle Soreness" (2014). Honors 
Theses. 174. 
https://egrove.olemiss.edu/hon_thesis/174 

This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell 
Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized 
administrator of eGrove. For more information, please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/hon_thesis
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/hon_thesis?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1091?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/hon_thesis/174?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


 

 

INFLUENCE OF WHOLE-BODY VIBRATION ON DELAYED ONSET MUSCLE 

SORENESS  

 

by 

Cecilia Drennen 

 

A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of 

the requirements of the Sally McDonnell Barksdale Honors College.  

 

 

Oxford 

May 2014 

 

 

Approved by 

_________________________________ 

Advisor: Dr. John C. Garner 

_________________________________ 

Reader: Dr. Mark Loftin 

_________________________________ 

Reader: Dr. Sarah Liljegren 



	  

	   ii	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

Cecilia Drennen 

ALL RIGHTS RESERVED 



	  

	   iii	  

 

 

 

 

 

ABSTRACT 

 

 Exercise induced muscle damage (EIMD) results in delayed onset muscle 

soreness (DOMS). Whole body vibration (WBV) may be a method that can be 

implemented to allow a subject suffering from DOMS to recover more quickly. The 

purpose of this study was to determine if WBV aids in managing symptoms of EIMD 

over a recovery period of 72 hours and to determine the effects of WBV on jumping 

performance following exercise-induced muscle damage. Measurements of performance 

like vertical jump height, peak-Z force, and pain pressure threshold were recorded. 

Twenty-seven recreationally trained females participated, and were damaged by 

performance of the eccentric portion of split squats. WBV was found to not be effective 

in the pain management of DOMS. Further research should be conducted, as literature 

shows some support for the management of DOMS symptoms via WBV. Inappropriate 

methodology for damage may have occurred in this study, damaging the subjects too 

much for WBV to be effective. 
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CHAPTER I: INTRODUCTION 

 

List of Abbreviations 

DOMS  Delayed Onset Muscle Soreness 

EIMD  Exercise Induced Muscle Damage 

WBV  Whole Body Vibration 

PPT  Pain Pressure Threshold 

RF   Rectus Femoris 

VJH   Vertical Jump Height 

RFD   Rate of Force Development 

 

Hypotheses 

Ho1: There will be no difference in PPT responses between and within groups over time. 

Ho2: There will be no difference in VJH responses between and within groups over time. 

Ho3: There will be no difference in peak Z force during VJ responses between and within 

groups over time. 
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Definitions 

Concentric muscle action: a muscle shortening under tension  

Contraction: a reduction in the distance between two ends of a muscle due to active 

shortening of the muscle 

Eccentric muscle action: muscle lengthening under tension 

Force: A vector quantity that describes the action of one body on another 

Ground Reaction Force: An equal and opposite force that acts on the body in response 

to the force applied by the body to the ground 

Length tension relationship: variation in force output of a muscle over a range of 

lengths due to different number of active sites available for cross-bridge formation 

Muscle action: the development of muscle tension 

Power: The rate of doing work; P=W/t 
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Introduction: 

 Repeated eccentric muscle contractions have been shown to cause exercise 

induced muscle damage (EIMD) resulting in decreased force production (5, 66). This 

muscle damage is evident as a disruption of the normal alignment of the skeletal muscle 

and disruption of the Z-lines of sarcomeres (40, 41, 76). EIMD results in symptoms such 

as delayed onset muscle soreness (DOMS), tenderness, edema, and muscle stiffness (43, 

62). Inflammation results in pain, edema and decreased range of motion (ROM), force, 

and vertical jump (VJ) height. DOMS has been reported as an undesirable side effect of 

exercise due to its painful and debilitating effects on individuals (74). Peak DOMS 

usually occurs 24 to 48 hours following exercise (62). 

 Previous research has studied several ways to control or prevent EIMD symptoms 

(21). In physically active individuals, decreased swelling, stiffness and pain may allow a 

quicker return to activity. For individuals clinically diagnosed with pain, decreasing 

muscle pain for any period of time results in pain management and can enable activities 

of daily living. Treatment modalities such as massage, ultrasound, cryotherapy, and 

stretching have not been consistently effective in treatment of muscle pain (21). 

 Whole-body vibration (WBV) is a mechanical stimulus consisting of oscillatory 

motions. Frequency and amplitude are defining characteristics of the oscillatory motions 

of vibration exposure. The exact mechanism for WBV is still unknown but exposure to 

WBV has been shown to increase neuromuscular activity. There are many positive 

effects from the neuromuscular activity such as: joint flexibility (38), strength (30), 

performance (27, 29) and power output (13). Some research concerning how WBV 

affects EIMD symptoms has been conducted. Previous studies suggests that WBV results 
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in less disruption of the excitation-contraction coupling due to increased muscle spindle 

activity and muscle pre-activation (4, 10, 55). When WBV exposure was given prior to 

EIMD, there was less reduction in force compared to control treatments of no vibration 

(4, 10, 55). It has been suggested that due to an increase in muscle pre-activation, 

theoretically, there should be an increase in the number of motor units and muscle fibers 

recruited. As a result, there could be a decrease in myofibril stress during repeated muscle 

actions, which leads to increased muscle recovery (14). This indicates that a decreased 

amount of force loss might occur when WBV is utilized prior to EIMD. 

 Increased blood flow to the muscle, leading to an increase in removal of waste 

and delivery of nutrients, may result from WBV (10). Increased blood flow could also 

accelerate repair and remodeling in the muscle (28). Another proposed mechanism is that 

WBV inhibits pain receptors, which allow for a higher pain tolerance in patients with 

chronic pain (68). It is proposed that vibration receptors in the skin stimulate inhibitory 

interneurons in the spinal cord, which act to reduce the amount of pain signals 

transmitted (64). 

 There are conflicting results in studies concerning WBV prior or immediately 

following EIMD and how it affects muscle pain, pressure pain threshold (PPT), range of 

motion (ROM) and limb circumference measurements (4, 9,10, 17, 55, 68, 84). A smaller 

reduction in force has been found when WBV is utilized prior to EIMD (4, 10).  

There are many variables concerning vibration that may contribute to the different 

effects observed when studying EIMD. The timing of when WBV is applied may 

contribute to fundamental differences in the effect on EIMD symptoms. The type of 

vibration, whether whole body or direct, may influence the applicability of using 
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vibration as a treatment, and the best type of vibration may be specific to a population. 

One purpose of this investigation was to determine if WBV aids in managing symptoms 

of EIMD over a recovery period of 72 hours.  

During most performance activities, the main goal is to maximize power output. 

Power is the product of force and velocity. Power output may be compromised when 

EIMD occurs. It has yet to be determined if reduction in force or velocity contributes 

more to the decrease in power output following EIMD, as most studies have only 

calculated power, and not the subcomponents.  It has been shown that peak power output 

is immediately reduced following eccentric muscle actions while the power is continued 

to be reduced up to 2 days post injury. These studies involved the knee extensors during 

isokinetic cycling (72) and a Wingate cycle test (20). A decrease in power output has also 

been shown during intermittent maximal sprints on a cycle ergometer after 10 sets of 10 

plyometric jumps to induce damage (80). Vertical jump performance is related to peak 

power output and could be compromised following EIMD. Studies have found prolonged 

reduction in maximal force production, ground reaction forces, and muscle and joint 

stiffness regulation following EIMD, all of which affect jumping performance. VJ 

performance with and without a countermovement has been shown to have immediate 

and long-lasting reductions in performance up to 4 days post-injury but is dependent on 

jump type (19).  

 Eccentric exercises are commonly used as a component of strength-training 

programs and have been shown to elicit EIMD, potentially causing a reduction in sport 

performance. Recently, WBV has been suggested as a novel modality to reduce or 

control symptoms of EIMD (10, 68). One study, in 2007, found that vibration prior to 
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eccentric exercises may prevent and control DOMS with possible mechanisms of 

increased blood flow to facilitate recovery, muscle regeneration, and possible pain 

inhibition (10). Another study, in 2009, implemented WBV in combination with 

stretching and massage after strenuous exercise over a period of 72 hours, and showed 

decreased pain perception (68). A study in 2011 showed a reduction in EIMD symptoms 

and maximal isometric and isokinetic voluntary strength loss, creatine kinase, pain 

threshold, and muscle soreness with WBV performed prior to eccentric exercises (4). A 

secondary purpose of this investigation was to determine the effects of WBV on jumping 

performance following exercise-induced muscle damage. To our knowledge, no study has 

investigated these measures. 
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CHAPTER II: REVIEW OF LITERATURE 

 

Exercise Induced Muscle Damage 

Exercise Induced Muscle Damage (EIMD) can be categorized as either 

acute or delayed damage. Often, both types of damage occur together when 

unaccustomed exercise is performed. Acute damage is the damage seen immediately 

following the exercise and up to 24 hours post-damage. Delayed muscle damage can be 

most easily observed 24 hours through 72 hours following damage, although it can last 

up to 10 days (22).  

There are two theories for the causation of the damage. The initial damage 

is thought to be due to the mechanical disruption of the fiber (63). Stretching of “weak” 

sarcomeres result in a reduction in myofilament overlap, which then affects the length-

tension relationship.  Damage occurs to the cell membrane, t-tubules, Z-lines and 

sarcoplasmic reticulum (54). Focal myofibrillar damage is observed immediately 

following a bout of eccentric contraction (61). This structural damage is associated with a 

decrease in force production. There are multiple suggestions for why there is a decrease 

in force, which are further considered below.  
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The immediate reduction may be attributed to a shift in the length-tension 

relationship. With the “popping sarcomere” hypothesis (66), the lengthening of active 

muscles doesn’t occur with uniform lengthening. Some sarcomeres over-extend 

(“popping”) beyond myofilament overlap and fail to re-interdigitate upon relaxation. The 

other sarcomeres must compensate with a shorter length, and a shift in the length-tension 

relationship. Thus, a longer muscle length is needed following eccentric exercise in order 

to achieve the same myofilament overlap as prior to damage (80).  

“Streaming” or widening of the Z-lines is the most prominent visual 

indication of damage. The Z-disk provides an important structural linkage in the 

transmission of tension and contractile forces along the muscle fiber and has a role in 

sensing of muscle activity and signal transduction. The alterations to the Z-line can be 

associated with amorphous structures of the fiber, such as the sarcomere, Z-line, or even 

the alignment of A or I bands (87). This “streaming” is associated with decreased force 

production.  

In injured muscles, there is impairment of calcium release from the 

sarcoplasmic reticulum.  Eccentric contractions alter the structure of T-tubules. As 

damage to the sarcoplasmic reticulum increases, there is an increase in tetanic 

intracellular calcium. In the muscle, tetanus is a state of smooth, sustained contraction. 

Tetanus often occurs when a motor unit is maximally stimulated by its motor neuron, 

which occurs when there is a high frequency of stimuli. This increase in intracellular 

calcium is associated with increased protease activity, such as calpains (65).  

Calcium is associated with calpains, which are proteolytic enzymes that 

initiate breakdown of myofibrils. Calpains have also been found to degrade Z-discs, and 
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other proteins, such as desmin (81). Calpains ultimately cause sarcoplasmic reticulum 

damage, which results in a decrease in intracellular calcium, leading to decreased force 

production (65).  Further study is required to more fully understand the relationship 

between calpains, and extent of muscle damage. 

Following the mechanical trauma, there is an inflammatory response by 

the body. The inflammatory response occurs with the purpose of removing damaged 

debris from the injured area. Neutrophils destroy necrotic tissue via phagocytosis and 

work with macrophages found within the tissue. Infiltration of neutrophils occurs in the 

skeletal muscle 45 mins-2 hours after damage (63). Other inflammatory cells, such as 

macrophages and T-lymphocytes begin to flood the cell 6 hours or longer following 

exercises, and can be seen present in the muscles up to 9-14 days later (63). It is 

suggested that the presence of these cells at the later times is related to muscular repair, 

not removal of cellular debris.  

The inflammatory response in a damaged muscle is responsible for 

decreased ROM, force, vertical jump height, percent activation and an increase in pain 

and swelling. To an extent, force production and ROM are directly related. As ROM is 

decreased, force production is also decreased. In the example of a squat-jump, with a 

decreased ROM, the individual isn’t able to squat as deep before exploding up. In the 

length-tension curve, the curves for active and passive force overlap slightly. The 

maximum force created is at 125% resting length of the muscle.  

The exact mechanism responsible for the decreased ROM requires further 

research. However, a decrease in ROM is a reliable indication of EIMD and can be 

observed immediately (81).  Force loss immediately following eccentric exercise may be 
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partially attributed to damage in the excitation-contraction coupling system (82). The 

delayed damage is due to the body’s response to the initial inflammation, resulting in 

DOMS. 

 

Delayed Onset Muscle Soreness 

Physiology and Mechanism 

 Delayed onset muscle soreness occurs when unaccustomed exercise is performed, 

and is primarily associated with eccentric exercise. Eccentric exercise is the lengthening 

or stretching of active muscle fibers.  Eccentric movements function to slow or stop the 

movement. When muscle damage occurs, DOMS along with stiffness, swelling, 

decreased range of motion and several other indicators of damage can be observed. 

DOMS generally lasts 24 to 72 hours and peaks in intensity at 24-48 hours.  

 Muscle injury results in a decrease of force production in the damaged muscle 

(66). Eccentric contractions create more force than concentric or isometric contractions, 

while having lower motor unit activation (37). Contractions detach the cross-bridges of 

muscle fibers, and in eccentric contractions, the detachment is much more forceful. This 

creates a substantial amount of mechanical stress on the muscle fibers resulting in 

damage (37). 

 Structural damage to the fibers is supported by research. Z line streaming occurs 

which is disruption of the myofibrils at the Z bands. Disruption of the striation pattern has 

also been recorded (40). Damage to the Z lines is more likely to occur in Type II fibers, 

due to their more narrow and thus weaker Z lines. Damage to the excitation-contraction 
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coupling system also occurs (6). It is attributed to a reduction in Ca2+ released after 

eccentric contraction (65). 

 The inflammatory response is initiated due to damage at the cellular level of the 

muscle. This response causes fluid to accumulate in the affected muscle in order to 

remove damaged proteins and other byproducts.  Lysosomes create an indigestible 

residue termed lipofuscin granules. There is an increased presence of the granules in the 

damaged muscles 72 hours post-exercises (41). The inflammatory response in a damaged 

muscle is responsible for DOMS, decreased ROM, increased plasma creatine kinase 

(CK), decreased power and muscular strength.   

 

Assessing Muscle Damage 

 To assess muscle damage, there are several methods. Maximal voluntary 

contraction (MVC) torque is related to force, and is one of the more practical 

assessments.  Torque is force times the moment arm, and is dependent on the length-

tension curve of the muscle, velocity and joint angles. The best way to measure torque is 

to control for both joint angle and velocity, through an isometric MVC (81).   

 Fatigue, motivation, and pain are all disadvantages for using an isometric MVC 

to measure damage following eccentric induced damage. It can be difficult to 

differentiate decreases in torque due to muscle injury and those of fatigue (39).  

Motivation can also be a factor for MVC torque measurements, as there is a concern 

about whether or not all motor units have been recruited (77). Over the time course of 

muscle degeneration and regeneration, there is a consistent reduction in MVC torque 
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(81). Following muscular damage, MVC torque decreases about 60% and takes a period 

of 1-2 weeks to recover to baseline measures (73). 

 Range of Motion (ROM) can also be used to assess damage. ROM 

determines the amount of swelling, which occurs as fluid accumulates in the damaged 

cells.  ROM is joint specific and is dependent on many factors including the amount of 

skin, musculature, subcutaneous tissue, and bone. Goniometer is the instrument that 

measures ROM and can be used in two measurements, active and passive ROM. Passive 

ROM is when the investigator moves the joint through the ROM until pain occurs. Active 

ROM is how far the individual can move the joint. Reliability of ROM following 

exercise-induced damage has shown to have a high level of correlation (42). 

 A needle biopsy, an invasive procedure removing a small (10-50 mg) 

section of the muscle, can be taken to more accurately measure muscle damage.  The 

sample is examined through an electron or light microscope to look for damage of the Z 

lines and other structural features.  Due to the small size of the biopsy, it is not depictive 

of the entire injured muscle. As well, biopsies are generally taken from only one muscle, 

while generally several muscles are injured.  MVC torque production does not correlate 

strongly with needle biopsies, mainly due to the different time courses of damage. MVC 

torque production occurs immediately while damage at the sarcomere level can take 

several days to become evident (41). An increase in blood CK levels is associated with 

needle biopsies, making it difficult to differentiate CK levels due to exercise injury and 

the biopsy (46). 

 Conflicting evidence exists for the accuracy of blood markers of muscular 

damage. One study shows a strong correlation between myoglobin and CK with ROM 
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and MVC torque, only after 24 hours post damage (70). Blood proteins, such as 

myoglobin and CK have been  shown to increase 24 hours after damage (23). This 

correlates poorly with the known fact that MVC decreases immediately. Individual 

variability of CK blood levels has also been revealed, which results in CK being an 

inconsistent injury marker (23). Thus, CK and other blood markers do not properly 

reflect exercise induced muscle damage.  

 The visual analog scale (VAS) is a subjective technique used to measure 

pain and soreness.  With VAS, subjects rate the amount of soreness and pain currently 

experienced. Because of the 24-48 hour delay in DOMS, VAS correlates poorly with 

functional movements such as MVC torque (49). Another method to assess pain due to 

soreness is the pain pressure threshold (PPT).  

 Non-invasive imaging devices can also be used as assessments of exercise 

induced muscle injury. Devices such as ultrasound, computed tomography (CT) and 

magnetic resonance imaging (MRI) can be used. CT and MRI are typically used to 

measure increased volume of localized muscle damage. As with previous assessment 

tools, CT and MRI imaging poorly correlate with functional measurements due to the 

delayed onset (49).  However, these methods do allow more precise measurements of the 

volume.  

 

Effects on performance 

 Generating the greatest amount of power output possible is often the goal 

for performance activities. When exercise induced muscle damage occurs, changes in 

power production can occur. Peak power output has been shown to decrease immediately 
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and persist for several days after eccentric exercise (20). A method to measure peak 

power performance is through the vertical jump, which can also decrease after muscle 

damage. Stretch-shortening cycle, ground reaction force, muscle and joint stiffness 

regulation, electromyographic (EMG) activity, and maximal force production have all 

been studied and found to have reduced measurements following muscle damage (7,8). 

There is an immediate reduction that can last up to 4 days post-damage for vertical jump 

performance, both with and without countermovement (19). The squat jump, when 

compared to the depth jump and countermovement jump, has the longest reduction in 

jump height (19). 

 Maximum muscle force recruitment and motor unit activation is reduced 

after exercise-induced damage. EMG activity showed a decline in muscle force output 

following damage (7), which suggests greater central activation is required to reach a 

maximal force or given submaximal force. EMG can be used to reveal if a muscle is 

more or less active, but is more useful when used to apply the interpolated twitch 

technique (ITT). ITT measures the percent activation of motor units during voluntary 

contractions.  An estimate of true maximum force can be determined by deduction of the 

relationship between the evoked and voluntary force. Activation percentages, inferred by 

ITT, depend upon muscles tested. For instance, the ankle plantar flexors have activation 

ranging from 80-99% (75) while the quadriceps femoris activation is 85-95% (50).  

 

 

 

 



	  

	   15	  

Recovery Modalities 

 DOMS symptoms have been treated with recovery modalities such as 

stretching, massage, and ultrasound. The tested effectiveness of these treatments shows 

inconsistent results. The more widespread modalities used are stretching and massage. 

Not one modality studied has seemed to function more efficiently than another. 

Examined modalities, both alternative and customary, include: whole body vibration 

(68), aerobic exercise (78), light exercise (4), acupuncture (57), massage (79), stretching 

(59), and ice massage (85).  

  

Whole-Body Vibration 

 Synaptic plasticity is the ability of synapses to either increase or decrease 

signal transduction efficiency in response to changes in their activity (47). Synaptic 

plasticity can be either short-term or long-term, often referred to as short and long-term 

potentiation. While synaptic plasticity is a term often applied to physiology and 

neuroscience, potentiation, specifically short-term, is a concept of importance when 

discussing WBV. 

 Potentiation is a heightened or improved state of readiness of muscles 

often associated with the enhancement of force, which is achieved after repetitive 

activation of skeletal muscle (45). There are two means of eliciting short-term 

potentiation: concurrent activation potentiation and post-activation potentiation. 

Concurrent activation potentiation occurs during the activation of a muscle.  Post-

activation potentiation follows activation of a muscle.  
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Concurrent Activation Potentiation 

 Concurrent activation potentiation (CAP) provides a potential ergogenic 

advantage, which is associated with simultaneous activation of muscles other than the 

prime synergists (32). A prime example of CAP is the Jendrassik maneuver where the 

subject cups and links the fingers of both hands in front of their chest and then pulls 

strongly outwards across the chest. A larger knee jerk reflex response along with other 

reflexes should be elicited when the subject is performing the Jendrassik maneuver (JM) 

(88). In one study, JM was associated with a larger H-reflex than either CAP, or CAP and 

JM combined (88). CAP works via activation and presynaptic modulation of the H-reflex, 

and cortical overflow. The H-reflex is elicited by selectively stimulating the sensory Ia 

fibers, and can demonstrate neural adaptation with training. Cortical overflow works 

when one part of the motor cortex is active, other areas of the motor cortex are affected, 

allowing for functional synergy.    

 Another example of CAP is clenching of the jaw during various exercises. 

Jaw clenching during CMJs showed a RFD that was 19.5% greater when compared to no 

clenching (33). Jaw clenching is a type of remote voluntary contraction (RVC), which is 

proposed to facilitate reflexes via the activation of muscles remote from the reflex (34). 

Research performed by Ebben yielded 14.6% and 14.8% higher isometric average torque 

and peak torque when compared to test conditions without RVC.  

 This study included both young women and men, who had previously 

participated in sports at a high school level or above. Remote voluntary contractions 

(RVC) conditions were measured and compared to baseline measurements of maximal 

measurement concentric isokinetic knee extensions and flexion. RVC conditions included 
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maximal volitional jaw clenching on a mouthpiece, Valsalva maneuver and maximal 

bilateral hand gripping using hand dynamometers. Ebben et al. concluded that RVC 

increased the performance of several outcome variable assessed, which coincided with 

the concomitant increase in the EMG of the prime movers (34). 

 

Post Activation Potentiation 

 Post activation potentiation (PAP) is a phenomenon by which muscular 

performance is enhanced as a result of previous contractions. PAP may be attributed to 

the phosphorylation of myosin regulatory light chains, which results in increased 

sensitivity of actin and myosin to calcium. This increased sensitivity may increase the 

rate and velocity of contraction, as myosin regulatory light chains are a protein 

responsible for contraction. The more responsive myosin-actin binding sites trigger 

events that lead to an enhanced muscle force output at the structural level, ultimately 

resulting in faster contraction rates and rates of tension development (31).  

 PAP results in an increase in alpha motor neuron excitability (33), which 

is measured via an increase in the H-reflex (5). PAP increases the efficiency and rate of 

impulses, leading to a greater recruitment of motor neurons. PAP also occurs at the spinal 

level, with an increase in the synaptic efficiency between Ia afferent terminals and alpha-

motoneurons (47). 

 Post activation potential caused by the acute exposure of WBV may cause 

enhanced performance (25). WBV is being utilized as a warm-up for its PAP effect prior 

to performance. To prevent injury and prepare the body for activity a warm-up is often 

performed. As an alternative to traditional active warm-up methods, WBV is being 
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utilized as an active passive warm-up method (24, 26, 69). Cormie used WBV as an 

active passive warm-up by applying 30 seconds of WBV prior to performing a jump.  

 For power sports, acute lower body WBV may be beneficial for activating 

the neuromuscular system (1, 2). Initial strength and power gains during weight training 

are attributable to neuromuscular facilitation. In one study, individuals performed bicep 

curls on a pulley system with vibration delivered through the cables. In elite and amateur 

athletes, a respective 10.4% and 7.9% increase in maximal power was measured (52). 

Neural factors include increased recruitment, synchronization, muscular coordination and 

proprioceptor response (2). These neural factors may improve with traditional weight 

training or WBV. 

 

Methods of PAP 

Complex Training 

 Complex training involves the incorporation of principles of PAP to 

induce long-term neuromuscular adaptations. Such an adaptation could be the rate of 

force development (RFD) in muscle performance. Complex training is performing heavy 

resistance exercises (HRE) prior to an explosive movement, which involves similar 

biomechanical characteristics. It is assumed that the HRE will cause a PAP reaction and 

increase the performance of the latter exercise (47). Prerequisite strength and the intensity 

of the load used in the weight training portion of the complex may be important in 

eliciting a complex training effect (34). When this complex training is continued for a 

long period, it is believed there will be long-term alterations in the ability of the muscle 
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to produce power, as evident in performances such as vertical jump height. It is also 

believed to enhance short-term performance. 

 A common complex training pair is heavy back squats with vertical 

countermovement jumps (CMJs) (47). There are some studies supporting the idea of 

complex training. For instance, performance of 3-5 repetitions at 90-100% of 1 maximal 

voluntary isometric increase in a single leg-press position resulted in a 1.4 cm increase in 

the mean of eight CMJs (86). A correlation has been found linking a greater proportion of 

type II fibers to greater individual performance benefits due to PAP (45). 

 

Whole-Body Vibration 

 Vibration is a mechanical stimulus consisting of oscillatory motions. 

Frequency and amplitude of the vibration are defining characteristics. The exact 

mechanism for whole-body vibration (WBV) is still unknown, although it is believed to 

be associated with PAP. WBV has been shown to have significant performance and 

clinical benefits.  One suggestion is that the enhanced performance occurs from amplified 

muscle spindle sensitivity and gamma activation, which leads to an increase in motor unit 

recruitment and neuromuscular facilitation (67). Adaptations similar to resistance training 

have been observed, thought to be due to an increased neuromuscular activation (16). The 

increase in strength may be attributed to the Ia afferent mediated myotatic reflex 

contraction, which activate, via large alpha-motor neurons, mainly type II muscle fibers 

(69). The tonic reflex, a sustained muscular contraction, has also been observed when 

vibration is applied directly to the muscle (71).  
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 Variables of WBV– frequency, amplitude, duration and rest intervals– can 

be adjusted to optimize performance. Optimal rest intervals are vital for the greatest 

enhancement of sport performance from WBV. If the rest period is too short, it is 

possible to over-stimulate the neuromuscular system while the positive effects of WBV 

may dissipate with too long of a rest (2). Rest intervals following acute bouts of WBV 

have been chiefly studied in intervals ranging from immediate to 10 minutes (2,12, 18, 

25, 26). These studies have revealed conflicting results. It has been shown that for 

optimal enhancement of performance, highly individualized rest periods are necessary 

(27). 

 WBV, when the variables are suitably optimized for an individual, has the 

potential for performance and training applications in athletes.  For athletes that have a 

short one-time performance (i.e. track (high jump, sprints)), WBV can be implemented 

immediately prior to performance. For athletes that have longer performances, training 

with WBV may be suitable. With conditioning, WBV can be used to train the muscles to 

produce greater peak power output, which can be carried over to future athletic 

performance. Increased proprioceptive abilities such as sprint speed, greater force 

production or even greater VJH can be attained with WBV training and utilized in 

athletic performances such as basketball.   

Pain   

 WBV is also thought to inhibit pain receptors, allowing individuals to be 

more tolerant of pain (68). It has been suggested that vibration may influence the 

activation of afferent input from sensory units of the muscle fibers.  It is also associated 
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with the removal of metabolic wastes, increased lymphatic blood flow and attenuated 

pain sensation associated with exercise (36, 55, 58). 

 One theory proposed was that the activity in large diameter sensory fibers 

interacts with impulse transmissions in pain pathways, which alleviates pain (60). It is not 

certain what kind of receptive units are excited by the vibratory stimulus, but it is thought 

to be both superficial and deep cutaneous mechanoreceptors (60). The Pacinian 

corpuscles, which perceive deep pressure, such as vibrations, are primarily though to be 

affected by WBV.  Vibratory stimulation is believed to depress the excitability of 

motoneurons innervating the antagonistic muscle via reciprocal inhibition, which reduces 

the perceived pain when vibration was applied directly to the antagonistic muscle (44). 

These findings are consistent with the gate control hypothesis (64), which states that 

afferent signals that are mediated by large myelinated fibers inhibit small pain fibers 

presynaptically in the dorsal horn of the spinal cord. 

 Research conducted concerning WBV relief in symptoms of exercise-

induced pain reveals positive effects of reduced pain associated with both unexercised 

muscle (83, 84) and exercised muscle (60, 84). It has been shown that after DOMS has 

set in, 24 hours post-injury (53), perceived pain from local pressure increased with 

vibration. It was suggested that it sensitizes nociceptors to the point where they become 

vibration responsive (64, 83).  It has also been proposed that activity in large diameter 

sensory fibers interacts with impulse transmission in pain pathways. Activation of 

Pacinian corpuscles may contribute to reduced pain, as when moderate pressure and 

cushion were applied along with vibration a more effective pain reduction was observed 
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(60). Additional research is needed, as there are conflicting conclusions involving 

vibration and the alleviation of pain.   

Performance 

 It is important to enhance performance in both athletes and recreationally 

trained athletes. Greater power production is an essential portion of athletic performance. 

Studies have shown a significant increase in average power, maximal power, and 

mechanical power following bouts of vibration by facilitation of an explosive strength 

effort (13). Including non-traditional techniques, such as WBV, may enhance traditional 

techniques such as strength training, plyometrics, and weightlifting (26, 30). Plyometric 

training is associated with an increase in jump height and may be associated with an 

increase in sprinting speed (3). It appears that when training, improvements in 

performance measurements are more likely to occur when biomechanically and 

metabolically specific movements are employed (3). Increased performance in both upper 

and lower body muscular activity has been described with WBV, and can be found with 

both trained and untrained individuals (13, 18, 24, 25). 

  WBV exposure has been shown to be safe at a moderate intensity. WBV 

has been associated with a variety of positive effects including the following: stimulating 

the neuromuscular system (24), inducing non-voluntary muscle contractions (51) and 

increasing power production when connected with an explosive strength effort (13, 52).  

The latter leads to an enhancement of performance via motor function and muscular 

strength (14).  

 Sprinting and jumping performance has also increased after bouts of WBV 

(2, 12, 18, 26).  Cormie et al. had moderately resistance-trained men serve as subjects in a 
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study which measured power and height differences during CMJ and isometric squats 

when vibration was applied. Each subject served as his own control for both exercises. 

The primary finding of the study was that the jump height was significantly increased 

following vibration, although there was not a significant difference in other variables 

measured in the study. 

 Bosco et al. did a small-scale study with female volleyball players who 

played on the national level and measured average force, power and velocity of a single 

leg press with and without a vibration treatment. Each female served as her own control, 

with one leg being assigned the vibration and the other serving as the control. It was 

found that there was a significant change in the Velocity-Force and Power-Force 

relationships, and the Velocity-Force and Power-Force curves were shifted to the right. 

The improvements in performance only lasted about 10 minutes (14). 

 No or little effort is required by the subjects to achieve the enhanced acute 

performance (69). Contrasting studies do exist, with WBV being shown to not increase 

performance and only having the effectiveness similar to traditional training techniques 

(24, 25, 26, 30, 54).  

 It appears that there may be a higher sensitivity of muscle receptors and 

the CNS of trained athletes when compared to those untrained. This has resulted in 

greater increases in maximal power when vibration is applied to trained individuals (51). 

It is also known that stretched muscles are more sensitive to vibrations and contract more 

strongly (44). These differences and others still yet to be identified may contribute to 

conflicting results concerning benefits of training with vibration.  
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Whole-Body Vibration and Recovery 

 Recently, there have been several studies concerning WBV as a muscle 

recovery modality prior or following muscle injury (4, 10, 55, 68). A variety of 

measurements can be used to assess exercise induced muscle damage, which can be used 

in determining the time course of muscle recovery. WBV has been proposed to increase 

muscle spindle activity and muscle pre-activation, which is a lower firing threshold. Less 

disruption in the excitation-contraction coupling (4,10, 55) is the result. A larger number 

of motor units and muscle fibers would be recruited following the muscle pre-activation. 

This could lead to a reduction in myofibrillar stress during repeated muscle contractions, 

accelerating the muscle recovery (14). 

 In a particular study with elbow flexors, investigators discovered that 

vibration was effective for lessening DOMS. There was a decrease in soreness both 

immediately before and after vibration, and over a time course of seven days. 

Furthermore, an increase in ROM measurement over a time course of seven days was 

recorded. The vibration treatment had no effect on CK activity, swelling, and recovery of 

muscle strength (55). Similar results were recorded in other studies, with a lower 

perceived pain in the vibration treatment group compared to the control group, which 

proposes that WBV inhibits pain receptors (68). It was suggested that WBV stimulates 

blood flow to the musculature by increasing the disposal of metabolic waste (58). A 

decrease in soreness, isokinetic force, PPT, and plasma CK activity was detected when 

vibration was administered prior to muscle damage (4,10). When WBV is performed 

prior to muscle damage, it acts as more of a protective mechanism. This occurs due to a 

heightened sensitivity of the musculature, which allows for lesser amount of damage to 
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occur (4). Although positive effects of WBV as a recovery mechanism have been 

observed, more investigation is needed. There are many different ways that studies 

regarding WBV as a recovery mechanism for DOMS have been structured. Differences 

include selection of subjects (untrained, recreationally trained and elite athletes) and 

whether vibration is included pre- or post damage.  To our knowledge, there have not 

been any previously published studies concerning recreationally trained athletes and 

WBV applied as a mechanism for recovery post-damage. 
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CHAPTER III: METHODS 

 

Participants 

 Thirty recreationally trained females (age 21 ± 1.9 yrs., height 165.69  ± 7.3 cm, 

mass 58.69  ± 10.95 kg) volunteered and twenty-seven females completed a 7-session 

protocol that was approved by the University’s Institutional Review Board. Any 

participant with a recent history of lower body musculoskeletal or orthopedic injury was 

excluded. Any participant taking any medications that alter balance, musculoskeletal 

system, or central nervous system functions relating to posture and motor control or those 

taking prescription pain and/or psychiatric medication were also excluded. Participants 

were screened by questionnaire for potential risk factors to this exercise protocol such as 

bruising easily, rhabdomyolysis etc. Participants were asked abstain from lower body 

exercise and from pain medication 48 hours prior to testing sessions and during all testing 

days. Furthermore, participants were asked to keep all food and water intake consistent 

during the study. To avoid failure of the above requests, participants were not scheduled 

for testing during their menstrual cycle. 
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Measures 

Pressure Pain Threshold (PPT) 

 PPT was assessed in all 7 visits, and assessed in the left quadriceps while 

participants were seated comfortably on a table, with the feet dangling over the edge and 

not touching the ground. To ensure consistency, marks were made on the belly of the 

rectus femoris (RF), at the mid-point between the patella and the proximal head of the 

femur. The participants were instructed to keep the quadriceps relaxed while the 

researcher placed a pressure algometer (Wagner Instruments, Greenwich, CT USA) on 

each test site. Mechanical pressure was applied to the muscle in the following order: VM, 

VL, RF during three trials and 20 seconds between each trial. Participants were asked to 

indicate when the pressure transitioned from being “uncomfortable” to “painful.” The 

researcher immediately removed the pressure stimulus when the participant said “pain.” 

The corresponding force value was recorded and all three trials for each muscle were 

averaged for each participant.  

 

Vertical Jump (VJ) 

 VJ performance was assessed on each visit to the laboratory using a combination 

of a Vertec® (Sports Imports, Columbus, OH, USA) free standing jump height 

measurement device and a Bertec® (Bertec Corp. Columbus, OH, USA) force platform 

sampling at 1080 Hz. The Vertec® device was used solely to measure the VJH, while the 

Bertec® plate collected data concerning force, which was later used to calculate GRFZ. 

Participants were instructed to perform three maximal CMVJ, with 15 s rest between, 

with arm swing and were instructed to jump as quickly and high as possible. The 
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Vertec® was used as a visual target where participants could hit tabs indicating jump 

height. VJ height was calculated by the difference between maximum jump reach and 

standing reach. Peak Power Output (PPO) was calculated via the Sayers Equation [PAPw 

= (60.7 x jump height (cm)) + (45.3 x body mass (kg)) – 2055] (Sayers, cross validation).  

Using the force plate, GRFZ and rGRFZ were calculated. Ground Reaction Force 

(GRF) is the force exerted by the ground on a body in contact with it. The subscript Z 

denotes that the GRF was measured in the vertical direction, in the Z plane.  

 

Experimental Procedures 

 Participants came into the laboratory for three familiarization sessions prior to 

testing days, which included informed consent, anthropometrics, and familiarization with 

all protocols. Following the three-familiarization sessions, participants visited the 

laboratory for four consecutive days and were randomly assigned to the control or WBV 

treatment group. Prior to each pre-value measurement, all participants performed 2 sets of 

15 meters of dynamic warm-ups including: jogs, gait swings, high-knees, exaggerated 

lunges, and Frankensteins. All participants were assessed for baseline PPT’s. After 

baseline measures were taken, participants performed an exercise induced muscle 

damage protocol. The protocol consisted of split squats using a Jones Machine® and 

performing 4 sets to task failure on each leg with a one-minute rest between sets. The 

Jones Machine® was front loaded with 40% of each participant’s body weight. During 

split squats, the back leg was placed on a bench for support with 90-degrees of flexion, 

which allowed focus on single-leg performance of the front leg. Researchers provided 
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assistance on the concentric phase after the participants reached 90-degrees flexion of the 

front knee on the exercising leg, allowing greater focus on the eccentric phase. 

 Immediately following the muscle damage protocol, participants in the control 

group performed two sets of body weight quarter squats on a flat surface, with 30 seconds 

of squats paired with 30 seconds of rest. Participants in the treatment group performed 2 

sets of body weight quarter squats on the vibration plate. An AIRdaptive (Power Plate, 

Inc.) system was utilized for tri-axial vibration exposure. Vibration frequency was set at 

30 Hz with amplitude of 2-4 mm. Following treatment or control, participants were 

assessed for PPT’s and VJ. Participants then rested for 10 minutes and all measures were 

reassessed. Participants were then asked to adhere to the restrictions of the study 

previously mentioned and to refrain from any other treatments. 

 Participants returned to the laboratory 24,48, and 72 hours following muscle 

damage protocol to evaluate muscle pain on movement and VJ performance. These 

sessions consisted of initial assessment of PPT’s and VJ followed immediately by the 

treatment or control protocol. After the treatment or control protocol, all measurements 

were re-taken, followed by a 10-minute rest period and a third set of measurements.  

 

Reliability of Measurements 

 Three days of measurements were obtained during familiarization sessions and a 

set of baseline measures on the first testing day for rectus femoris PPT and vertical jump 

performance. Measurements of reliability were quantified through the calculation of the 

intraclass correlation coefficient (ICC) with a 95% confidence interval. The ICC values 
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over the four measurements for rectus femoris PPT and for VJ performance were 0.92, 

respectively.  

 

Data Analyses 

 To test changes in PPT’s over time and between groups a 12x2 (time by group) 

mixed factor analysis of variance (ANOVA) was conducted. Time was 0Pre, 0Post1, 

0Post2, 24 Pre, 24Post1, 24Post2, 48Pre, 48Post1, 48Post2, 72Pre,72Post1, and 72Post2 

and the groups were WBV and control.  If interactions occurred, they were followed up 

with a one-way ANOVA’s. If main effects were observed in the absence of an 

interaction, they were followed up with least significance difference (LSD) post-hoc 

analyses for pairwise difference. 

 To test changes in VJH and peak Z over time and between treatment groups, a 

8x2 (time by group) mixed factor analysis of variance (ANOVA) was conducted. Groups 

were defined as WBV and control. Time was defined as Day0Pre, Day0Post, Day24Pre, 

Day24Post, Day48Pre, Day48Post, Day72Pre, and Day72Post. Similar to PPT analysis, 

interactions were followed up with one-way ANOVAs while main effects were followed 

up with LSD post-hoc analyses for pairwise differences. Again, all analyses were 

conducted using SPSS software (SPSS 21,IBM, Rochester, NY) and statistical 

significance was determined as a p-value less than 0.05. 

 All analyses were conducted using SPSS software (SPSS 21,IBM, Rochester, 

NY), when sphericity was violated. The Greenhouse-Geisser correction of degrees of 

freedom was used. Statistical significance was defined as a p-value less than 0.05 and eta 

squared was calculated to determine effect sizes.  



	  

	   31	  

 

 

 

 

 

 

CHAPTER IV: RESULTS 

 

Vertical Jump Height 

 No significant (p>0.05) interaction was found for VJH. There were no significant 

(p>0.05) main effects for group but there were significant (p=0.001) main effects for 

time.  

 

Figure I. Estimated Mean VJH. Means of VJH between groups and across time 

following exercise induced muscle damage. For VJH, 0Pre was greater than all other time 

points, and 72Pre was greater than 0Post, 24Pre, 24Post, 48Pre, 48 Post and 72Post. 
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Significant (p<0.05) differences from 0Pre are indicated with *. Significant (p<0.05) 

differences from 72Pre are indicated with +  

 

Peak Z Force 

No significant (p> 0.05) interaction was found for peak Z force. There was no significant  

(p>0.05) main effect for group but there was a significant (p <0.001) main effect for time.  

 

 

 

Figure II. Estimated Mean Peak Z Force in RF. Means of estimated peak Z force 

between groups and across all time points following exercise induced muscle damage. 

Peak Z force significant main effects were for time was that 0Pre was greater than all 

other time points. Significant (p<0.05) main effects from 0Pre are indicated with *.  
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PPT in RF 

 No significant (p>0.05) interaction of time by group was found for RF PPT. There 

was a significant main effect for time (p=0.002) but no significant main effect for group 

(p>0.05).  

 

 

 

Figure III. Estimated Mean PPT. Means of PPT for RF between groups and across all 

time points following exercise induced muscle damage. RF PPT’s significant main 

effects were for time was that 0Pre was greater than all time points at 24 and 48 hours 

Significant (p<0.05) main effects from 0Pre are indicated with *.  
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Legend for Figures I-III 
 
 
1: 0 Pre 

2: 0 Post 1 

3: 0 Post 2 

4: 24 Pre 

5: 24 Post 1 

6: 24 Post 2 

7: 48 Pre 

8: 48 Post 1 

9: 48 Post 2 

10: 72 Pre 

11: 72 Post 1 

12: 72 Post 2 
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CHAPTER V: DISCUSSION 

 

The current study investigated the possible effects of WBV as a pain management 

and function modality following EIMD. This investigation found that four sets to failure 

split-squats successfully induced muscle pain during movement and increased pain 

sensitivity to pressure stimuli and decreased VJ performance. WBV had no effects either 

acutely or on the day-to-day progression of symptoms, thus indicating that WBV was not 

effective in pain management in this study. 

Another aim of the investigation was to determine the effect of WBV following 

EIMD on VJ performance. The EIMD protocol resulted in an immediate and prolonged 

detrimental effect on VJ performance. However, no differences were found between 

WBV and control groups. DOMS peaked at 48 hours post injury, while the main 

performance findings were that VJH, and peak Z force both decreased over time, 

indicative of decreased performance. To our knowledge, no previous research has 

investigated the effects of WBV on VJ performance following EIMD. Current research 

has either examined the effects of EIMD on VJ performance without WBV (20), the 

effects of WBV on VJ performance without muscle damage (2, 11, 15, 18, 24, 26, 27, 
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56), or the effects of WBV on muscle recovery (4, 10, 55, 68, 83), which characterizes 

this investigation as novel in the performance and muscle recovery literature.  

 In the current investigation, incorporating WBV as a recovery modality aimed at 

attenuating any reduction in performance was not successful as measured by VJH and 

peak Z. Previous literature has shown mixed results when examining the effects of WBV 

on VJ performance. Some research has shown increases in VJH and peak Z force 

following WBV exposure (2, 12, 26, 27) indicating neuromuscular facilitation or a 

potentiation effect. It appears that when muscle is damaged, it alters the effectiveness of 

WBV during VJ performance. As previously mentioned, WBV has been researched as a 

recovery modality in the upper (55) and lower extremities (68) when measuring pain, 

force production and clinical variables with different damage and vibration protocols but 

has not been investigated for VJ performance effects. These mixed results are most likely 

due to the use of varying damage protocols, vibration exposures, and extremities tested.  

 It is necessary to discuss how the potentiating mechanism of the stretch 

shortening cycle during a VJ attenuates the detrimental performance effects of EIMD. It 

has been suggested that excitation-contraction coupling is impaired following muscle 

damage (35), decreasing the release of calcium per action potential (6), leading to an 

inability to activate force-generating structures. It is proposed that after EIMD, a 

reduction in stretch reflex sensitivity and muscle stiffness occurs (48), which leads to 

decreased force potentiating mechanisms during the stretch shortening cycle. Since the 

stretch shortening cycle is a key component in CMVJ, this may help explain our findings 

of decreased VJH, and peak Z force following EIMD. 
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The changes in muscle pain ratings during movement and PPT’s observed in the 

present study are consistent with previous literature following EIMD (4,55,68). Some 

research shows group difference from WBV and control groups in muscle pain (4, 55, 68) 

indicating that WBV aids in reducing muscle pain after EIMD. Muscle damage protocols 

varied in these studies, some used 6 sets of 10 repetitions of eccentric only exercises on 

an isokinetic dynometer (4, 55) in the elbow flexors (55) and knee flexors (4). Another 

study used a combination of resistance training, running and sprints to induce muscle 

damage (68). These studies also used different forms of vibration, such as direct vibration 

via a handheld device (55) while others used WBV platforms (4, 68). In the current 

investigation, hip extensors and knee flexors were used during a lower body resistance 

training exercise with WBV platform, which may account for the difference in findings. 

These differences are important. Since upper and lower body musculature may respond 

differently and different exposures of vibration may elicit different responses as well.  

In clinical pain populations, some potential mechanisms have been suggested that 

inhibits pain receptors, allowing for individuals to be more tolerant to pain (68). It is 

proposed that vibration receptors in the skin stimulate inhibitory interneurons in the 

spinal cord, which reduce the amount of pain signals transmitted to the brain (64). In the 

gate control theory, pain perception and inhibition via vibration has been suggested to 

occur by vibration gating the afferent signal from nociceptors to the spinal column and 

brain, increased pain threshold (64). It has been shown that vibration applied to an 

unexercised muscle reduces the perceived level of pain from local pressure (83, 84) while 

also showing reduced pain during muscle vibration in individuals suffering from chronic 

muscle pain (60,83), supporting the gate control hypothesis (64). However, it has been 
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shown that when DOMS is present, at 24 hours, perceived pain from local pressure 

increased with vibration (53). The authors suggest this was due to sensitization of 

nocireceptors to the point where they became vibration responsive (64, 83). In the current 

investigation, no differences in muscle pain when WBV was applied were found.  

Previous research has studied several ways to control or prevent EIMD symptoms 

(21). Decreasing these symptoms in individuals is critical in many populations. In 

exercising, physically active individuals, decreased swelling, pain and stiffness for any 

period of time is helpful in pain management and enabling activities of daily living. It 

may be plausible that WBV may be more effective for generally healthy recreational 

individuals and direct vibration may be more effective in pain management for injured 

individuals or those clinically diagnosed with pain, however this has not yet been 

identified in the literature. Most current modalities have not been shown to be 

consistently effective, making it difficult to treat individuals with muscle pain, swelling 

and stiffness. These include, but are not limited to massage, cryotherapy, stretching, 

homeopathy, ultrasound, and electrical current (21). Recently, WBV has been explored as 

a potential modality in treating symptoms associated with EIMD. It is important to note 

that the timing of when vibration is utilized may contribute to different findings in the 

literature, as several studies have reported that maximal effects of WBV on VJ 

performance are within 10 minutes post-treatment (2, 27). Whether WBV is more 

effective prior to muscle damage or after needs to be investigated further. The literature is 

sparse and conflicting on findings involving vibrations and alleviation of muscle pain 

during movement.  
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The present investigation provides a novel exercise in producing EIMD in the 

quadriceps, that to our knowledge has not been previously established. As well, 

investigating muscle pain during movement, PPT in recreationally trained individuals on 

the lower body effects of alleviating pain with WBV has not previously been done. The 

research is consistent with other investigations indicating that our participants did 

experience EIMD in quadriceps. This allows us to be confident that WBV exposure does 

not effectively aid in muscle pain management in health recreationally trained females, as 

found in our study. Future research should investigate a variety of populations (i.e. 

chronic and acute pain patients, recreationally trained males, and athletically trained 

individuals) for treatment in alleviating muscle pain. 

Previous research supports our findings that following EIMD VJ performance 

decreases immediately and up to 3 days after (20), irrespective of WBV treatment. In one 

investigation of VJ performance following EIMD, they found decreases in squat jump 

height, depth jump height and counter-movement jump height following damage and for 

3 days after (20). The present study extends findings by measuring peak Z force.  Since 

the current finding of peak Z force has similar trends as VJH, it may be expected that 

these trends would be similar in other jump performance studies. 

There are three studies that support the possibility of a reduction in DOMS when 

a vibration treatment is applied (4, 10, 55). Each study differed in methods of the 

procedure from this study. One study applied vibration prior to damage (10), another 

applied vibration for 30 consecutive minutes (55) and the last utilized direct vibration for 

non-athletic subjects (4). The differences in procedures could contribute to the 

discrepancies in results. There is the possibility that the use of split-squats to failure 
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created much more damage when compared to other exercises, such as walking on a 

treadmill at a decline. Application of direct vibration may also be important, as it may be 

more effective in treating DOMS, as more of the vibrations are applied to the damaged 

muscle.   

 In conclusion, it appears that WBV has no effect on VJH, PPT or peak Z force 

following EIMD. Utilizing WBV as a recovery modality has been shown to be ineffective 

in the current investigation. Future research should investigate a variety of WBV 

exposure times, frequencies, amplitudes, and rest intervals and their effects following 

EIMD. Different levels of soreness caused by EIMD should be examined to determine if 

the amount of soreness affects the results of WBV as a recovery modality. Additionally, 

trained athletes and males should be examined with similar protocols to determine effects 

of different participant populations. 
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