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Abstract: Greener analytical methodologies for the estimation of ascorbic acid (AA) are poorly re-
ported in the literature. Furthermore, the green indexes of the literature’s analytical assays of AA
estimation have not been assessed. As a consequence, the aim of this research is to invent and
validate a simple, cost-effective, and green reverse-phase “high-performance thin-layer chromatogra-
phy (HPTLC)” method for the estimating AA in the solvent extracts (SE) and ultrasound-assisted
extracts (UAE) of Phyllanthus emblica, Psidium guajava, and Capsicum annuum. The greener mobile
phase for AA estimation was a binary mixture of water and ethanol (70:30, v/v). At a wavelength
of 265 nm, the detection of AA was carried out. The greener HPTLC technique was linear in the
25–1200 ng/band range. In addition, the method was simple, cost-effective, accurate, precise, ro-
bust, sensitive, and green. The amount of AA was highest in the SE and UAE of P. emblica com-
pared to the SE and UAE of P. guajava and C. annuum. The amount of AA in the SE of P. emblica,
P. guajava, and C. annuum was found to be 491.16, 168.91, and 144.30 mg/100 g, respectively. How-
ever, the amount of AA in the UAE of P. emblica, P. guajava, and C. annuum was found to be 673.02,
218.71, and 199.30 mg/100 g, respectively. Using the “analytical GREEnness (AGREE)” methodology,
the greenness index for the developed method was calculated to be 0.88, showing that the developed
method has an excellent green profile. When it came to extracting AA, the UAE method outperformed
the SE method. These findings suggested that the developed method might be used to estimate the
AA in a variety of vegetable crops, plant-based extracts, and commercial formulations. Furthermore,
because of the use of greener solvent systems against the commonly utilized hazardous solvent
systems for AA determination, this technique is also safe and sustainable.

Keywords: AGREE; ascorbic acid; greener HPTLC; Phyllanthus emblica; Psidium guajava; Capsicum
annuum; ultrasound extraction; validation; vegetable crops

1. Introduction

Ascorbic acid (AA), also known as vitamin C or ascorbate, is a water-soluble vita-
min [1]. It is involved in several biological processes and is mainly synthesized by plants [2].
It is found in several fruits and vegetable crops [3]. It is abundantly found in fresh fruits
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and leafy vegetable crops such as Phyllanthus emblica or Emblica officinalis (family: Phyllan-
thaceae, common name: amla), Psidium guajava (family: Myrtaceae, common name: guava),
Capsicum annuum (family: Solanaceae, common name: capsicum), Mangifera indica (family:
Anacardiaceae, common name: mango), Carica papaya (family: Caricaceae, common name:
papaya), Brassica oleracea (family: Brassicaceae, common name: cabbage), Brassica juncea
leaves (family: Brassicaceae, common name: mustard), and Spinacea oleracea leaves (family:
Amaranthaceae, common name: spinach) [2–4]. The content of AA in different fruits
and vegetable crops varies depending on the species, variety, and climate conditions [1].
AA has been reported as a potent antioxidant and is also present in various commercial
formulations [2,3]. As a result, the qualitative and quantitative standardization of AA is
necessary for commercial formulations and plant extracts.

Several analytical methods have been proposed to estimate AA either alone or in
combination with other compounds in commercial formulations, plant extracts, and phys-
iological fluids. Some titration-based assays have been reported for AA estimation in
plant extracts [5,6]. The wide range of “high-performance liquid chromatography (HPLC)”
methods are reported to estimate AA in the variety of fruits and vegetable crops [6–12].
An HPLC method has also been reported to estimate AA in human milk samples and in-
fant milk formulas [13]. Various “high-performance thin-layer chromatography (HPTLC)”
methods are also reported to estimate AA in various fruits, vegetable crops, and commercial
formulations [14–18]. A variety of electrochemical methods have been reported for the
simultaneous determination of AA, dopamine, and uric acid in different samples [19–27].
Biosensor, electro-oxidation, and electrochemical methods have also been used to esti-
mate AA in plant extracts and pharmaceutical formulations [28–31]. Some other methods
such as Folin–Ciocalteu assay, voltammetry, and ultra-performance liquid chromatogra-
phy methods have also been used to estimate AA in plant extracts and pharmaceutical
formulations [32–34].

A single green HPTLC methodology has been used to determine AA in fruit juices and
pharmaceutical formulations [15]. However, its greenness index was not estimated. After
conducting a literature review, we discovered that the safety and environmental profiles of
reported analytical methods for estimating AA were not evaluated. Greener HPTLC tech-
nologies have a number of benefits over traditional liquid chromatography—such as HPLC
and TLC—methods [35,36]. These benefits include simplicity, economy, low operation
costs, fast analysis, the parallel detection of multiple samples, sharp detection, and reduced
environmental pollution [35–38]. As a result, the greener reverse-phase HPTLC method for
measuring AA was chosen in this investigation. There have been several methodologies for
determining the greenness of various analytical procedures [37–42]. Only the “analytical
GREEnness (AGREE)” approach for greenness assessment employs all twelve principles of
“green analytical chemistry (GAC)”. As a result, the greenness index of the greener HPTLC
method was determined using the “AGREE methodology” [41]. The present research
aims to invent and validate a simple, cost-effective, accurate, precise, robust, sensitive,
and green reverse-phase HPTLC method to estimate AA in its bulk form, solvent extract
(SE), and ultrasound-assisted extract (UAE) of P. emblica, P. guajava, and C. annuum, based
on these ideas. The greener HPTLC approach for estimating AA was validated using the
“International Council for Harmonization (ICH)” Q2-(R1) requirements [43].

2. Materials and Methods
2.1. Materials

The standard AA was procured from “Sigma Aldrich (New Delhi, India)”. The HPLC
grade ethanol (EOH) and water (WTR) were obtained from “E-Merck (Darmstadt, Ger-
many)”. Other solvents and reagents used were of analytical grade and obtained from
“E-Merck (Darmstadt, Germany)”. The fresh fruits of P. emblica (amla), P. guajava (guava),
and C. annuum (capsicum) were procured from a supermarket in “Al-Kharj, Saudi Arabia”.
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2.2. Chromatography and Instrumentation

The estimation of AA in its bulk form (pure drug or standard), SE, and UAE of
P. emblica, P. guajava, and C. annuum was performed using the “HPTLC CAMAG TLC
system (CAMAG, Muttenz, Switzerland)”. The HPTLC estimation of AA in reverse-phase
conditions was conducted on “10 cm × 20 cm glass plates pre-coated with RP silica gel 60
F254S plates (E-Merck, Darmstadt, Germany)”. The solutions were spotted as the 6 mm
bands with the help of a “CAMAG Automatic TLC Sampler 4 (ATS4) Sample Applicator
(CAMAG, Geneva, Switzerland)”. The “CAMAG microliter Syringe (Hamilton, Bonaduz,
Switzerland)” was linked with the sample applicator. The application rate for estimating AA
was fixed to 150 nL/s. Under linear ascending mode, the TLC plates were developed in a
“CAMAG automated developing chamber 2 (ADC2) (CAMAG, Muttenz, Switzerland)” at a
distance of 80 mm. The greener solvent system/mobile phase was a binary mixture of WTR-
EOH (70:30, v/v). For 30 min at 22 ◦C, the development chamber was saturated with vapors
of WTR-EOH (70:30, v/v). The bands in TLC plates were visualized under a UV cabinet
at different wavelengths. Finally, the detection of AA was carried out at a wavelength of
265 nm. The slit size (band length × width) and scanning rate were set to 4 mm × 0.45 mm
and 20 mm/s, respectively. Each estimation was performed in three or six replicates.
The software used was “WinCAT’s (v1.4.3.6336, CAMAG, Muttenz, Switzerland)”.

2.3. AA Calibration Curve and Quality Control (QC) Samples

AA is freely soluble in WTR. Hence, the needed quantity of AA (10 mg) was dispensed
in 5 mL of WTR and the volume was increased to 100 mL by diluting with methanol
(95 mL) to obtain a stock solution of 100 µg/mL. Variable quantities of this stock solution
were diluted again with methanol to achieve AA concentrations in the 25–1200 ng/band
range. The resultant AA solutions were spotted in various concentrations on reverse-phase
HPTLC plates. The HPTLC response for AA was measured using the greener HPTLC
method at each AA concentration. Graphing the AA concentrations vs. the measured TLC
response produced the AA calibration curve. Furthermore, low QC (LQC; 100 ng/band),
middle QC (MQC; 400 ng/band), and high QC (HQC; 1200 ng/band) samples were created
individually for the validation evaluation of the developed method.

2.4. Sample Preparation for the Estimation of AA in SE of P. emblica, P. guajava, and C. annuum

The fresh fruits of P. emblica, P. guajava, and C. annuum were obtained from the market.
The fruits were crushed and 1.0 g of each fruit was dispersed in 20 mL of WTR. The ob-
tained dispersions were dried via a lyophilization process using a “Lyophilizer (Freezone®

2.5 model 76530, Labconco Corp., Kansas, MO, USA)” for 40 h and then stored at 20 ◦C
until further use. The lyophilized samples of crushed fruits were extracted by maceration
with WTR (3 × 100 mL) at room temperature. Each sample was filtered using Whatman
filter paper (No. 41). The filtered samples were dried again via the lyophilization process.
The extract of lyophilized samples was initially dissolved in 5 mL of WTR and the volume
was maintained at 100 mL using methanol. This solution was used to determine the AA
content using the developed analytical method.

2.5. Sample Preparation for the Estimation of AA in the UAE of P. emblica, P. guajava,
and C. annuum

The fresh fruits of P. emblica, P. guajava, and C. annuum were obtained from the market.
The fruits were crushed and 1.0 g of each fruit was dispersed in 20 mL of WTR. The obtained
dispersions were dried via a lyophilization process using a “Lyophilizer (Freezone® 2.5
model 76530, Labconco Corp., Kansas, MO, USA)” for 40 h and then stored at 20 ◦C until
further use. The UAE was performed using ultrasonic vibrations with the help of an ultra-
sonic probe type (Ultrasonic processor-200 Ht, power 200 W, Darmstadt, Germany) at low
frequency (26 kHz), power (30%), duration (20 min), and temperature (25 ◦C). The probe
used for extraction has a vibrating horn diameter of 7 mm which was directly immersed
in the solvent-containing sample, which was then irradiated with the ultrasonic waves
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generated from the tip of the probe. Approximately 1 g of each crushed fruit was separately
extracted with 20 mL of WTR using the above apparatus. The residue obtained was dis-
solved in 5 mL of WTR and volume was maintained at 50 mL using methanol. The obtained
samples were used to determine the AA content using the developed analytical method.

2.6. Validation Parameters

The developed method for determining AA content was tested for multiple validation
settings using the ICH-Q2-R1 criteria [43]. The linearity of AA was tested by graphing
its concentrations vs. its recorded TLC response. The AA linearity was determined in
the 25–1200 ng/band range for the developed method. To evaluate the system suitability
parameters for the developed method, the “retardation factor (Rf), tailing factor (As),
and theoretical plates number per meter (N/m)” were employed. The “Rf, As, and N/m”
were calculated using the formulae provided [44].

The accuracy of the developed method was determined using % recovery. The %
recovery was assessed at LQC, MQC, and HQC for the greener HPTLC method.

The intra/interday precision of the developed method was estimated. The intraday
fluctuation was determined by measuring AA at LQC, MQC, and HQC on the same day.
The interday precision was determined by measuring AA at LQC, MQC, and HQC on three
consecutive days [43].

The method’s robustness was evaluated by introducing some planned alterations in the
greener solvent systems. The original WTR-EOH (70:30, v/v) greener solvent system was
altered to WTR-EOH (72:28, v/v) and WTR-EOH (68:32, v/v) systems, and the necessary
changes in chromatographic response and Rf values were recorded [43].

Using the standard deviation method of blank, the sensitivity of the proposed method
was determined as “limit of detection (LOD) and limit of quantification (LOQ)”. The “LOD
and LOQ” for AA were calculated using regular formulae previously reported [43,44].

The method specificity was determined by comparing the Rf values and overlaid
UV-absorption spectra of AA in the TE and UAE of P. emblica, P. guajava, and C. annuum
with those of standard AA.

2.7. Estimation of AA in the SE and UAE of P. emblica, P. guajava, and C. annuum

On reverse-phase TLC plates, the TLC responses of the obtained SE and UAE solutions
of P. emblica, P. guajava, and C. annuum were recorded. The AA content of all of these
samples was determined using the developed method’s AA calibration curve.

2.8. Greenness Assessment

The developed method’s greenness index was assessed using the “AGREE metric
approach” [41]. The AGREE index (0.0–1.0) of the developed method was calculated using
the “AGREE: The Analytical Greenness Calculator (v0.5, Gdansk University of Technology,
Gdansk, Poland, 2020)”.

3. Results and Discussion
3.1. Method Development

In the literature, the greener analytical methodologies for determining AA are poorly
reported. Accordingly, the aim of this research was to invent and validate a simple, cost-
effective, sensitive, and greener reverse-phase HPTLC method for estimating AA in the SE
and UAE of P. emblica, P. guajava, and C. annuum.

For the AA determination using the greener HPTLC method, different proportions of
WTR and EOH, including WTR-EOH (30:70, v/v), WTR-EOH (40:60, v/v), WTR-EOH
(50:50, v/v), WTR-EOH (60:40, v/v), WTR-EOH (70:30, v/v), WTR-EOH (80:20, v/v),
and WTR-EOH (90:10, v/v) were investigated as the greener solvent systems for the devel-
opment of a suitable band for the estimation of AA in SE and UAE of P. emblica, P. guajava,
and C. annuum. The greener solvent system, which was developed under chamber satura-
tion conditions, is depicted in Figure 1.
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Figure 1. Developed thin-layer chromatography (TLC) plate for standard ascorbic acid (AA),
P. emblica extract, C. annuum extract, and P. guajava extract developed using water-ethanol (70:30 v/v)
as the mobile phase for the greener “high-performance thin-layer chromatography (HPTLC)” method.

The greener solvent compositions and different chromatographic parameters are
included in Table 1.

Table 1. The optimization of the greener solvent systems and chromatographic conditions of ascorbic
acid (AA) estimation for the greener high-performance thin-layer chromatography (HPTLC) method a.

Mobile Phase As N/m Rf

WTR-EOH (30:70, v/v) 1.290 ± 0.0200 1653 ± 1.912 0.7800 ± 0.0300
WTR-EOH (40:60, v/v) 1.280 ± 0.0200 1871 ± 1.942 0.8000 ± 0.0200
WTR-EOH (50:50, v/v) 1.270 ± 0.0200 1945 ± 2.021 0.8200 ± 0.0300
WTR-EOH (60:40, v/v) 1.260 ± 0.0300 2067 ± 2.123 0.8400 ± 0.0200
WTR-EOH (70:30, v/v) 1.070 ± 0.0300 5378 ± 2.980 0.8600 ± 0.0200
WTR-EOH (80:20, v/v) 1.120 ± 0.0300 4143 ± 2.432 0.8800 ± 0.0200
WTR-EOH (90:10, v/v) 1.160 ± 0.0300 3243 ± 2.121 0.9000 ± 0.0200

a Mean ± SD; n = 3; WTR: water; EOH: ethanol; Rf: retardation factor; As: asymmetry factor; N/m: theoretical
plates number per meter.

The findings indicated that the WTR-EOH (30:70, v/v), WTR-EOH (40:60, v/v), WTR-
EOH (50:50, v/v), WTR-EOH (60:40, v/v), WTR-EOH (80:20, v/v), and WTR-EOH (90:10,
v/v) greener solvent systems offered a poor densitogram of AA with a high value of As
(As = 1.120–1.290) (Table 1). However, the WTR-EOH (70:30, v/v) greener solvent system
showed an intact and well-resolved peak of AA at Rf = 0.8600 ± 0.0200 with an acceptable
As value (As = 1.070 ± 0.0300), as illustrated in Figure 2. As a consequence, for the estima-
tion of AA in the SE and UAE of P. emblica, P. guajava, and C. annuum, the WTR-EOH (70:30,
v/v) greener solvent system was selected as the final solvent system. The chromatogram
for the suggested analytical method was densitometrically determined, and the highest
chromatographic response for the proposed analytical method was observed at 265 nm.
Accordingly, the entire estimation of AA was performed at 265 nm.
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3.2. Validation Parameters

The developed method for estimating AA was validated for different parameters
using the ICH-Q2-R1 criteria [43]. The results for the linear regression analysis of the
calibration curve of AA are included in Table 2. The AA calibration curve was linear in
the 25–1200 ng/band range for the developed method. The values of the “determination
coefficient (R2)” and “regression coefficient (R)” for AA were determined to be 0.9956
and 0.9977, respectively, for the developed method. These results revealed a solid linear
relationship between AA concentrations and TLC response.

Table 2. Results of the regression analysis for the estimation of AA using the greener HPTLC method a.

Parameters Values

Linearity range (ng/band) 25–1200
Regression equation y = 31.78x + 1974

R2 0.9956
R 0.9977

SE of slope 0.3919
SE of intercept 9.959
95% CI of slope 30.10–33.47

95% CI of intercept 1931–2017
LOD ± SD (ng/band) 8.630 ± 0.1600
LOQ ± SD (ng/band) 25.89 ± 0.3900

a Mean ± SD; n = 6; R2: determination coefficient; R: regression coefficient; CI: confidence interval; LOD: limit of
detection; LOQ: limit of quantification.

Table 1 lists the results of the system suitability parameters for the developed method.
For the developed method, the “Rf, As, and N/m” were determined to be 0.8600 ± 0.0200,
1.070 ± 0.0300, and 5378 ± 2.980, respectively. These results revealed that the devel-
oped method was suitable for estimating AA in the SE and UAE of P. emblica, P. guajava,
and C. annuum.

Table 3 lists the findings of the accuracy assessment for the developed method.
The % recovery of AA for the developed method was determined to be 100.26%, 99.05%,
and 101.28%, respectively, at LQC, MQC, and HQC. These % recovery results illustrate
the accuracy of the developed method for estimating AA in the SE and UAE of P. emblica,
P. guajava, and C. annuum.
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Table 3. Determination of the accuracy of AA for the greener HPTLC method a.

Conc. (ng/Band) Conc. Found (ng/Band) ± SD Recovery (%) CV (%)

50 50.13 ± 0.61 100.26 1.21
400 396.21 ± 3.71 99.05 0.93

1200 1215.45 ± 10.58 101.28 0.87
a Mean ± SD; n = 6.

The precision assessment results for the developed method were calculated in the per-
cent of the coefficient of variation (% CV), and the results are shown in Table 4. The % CVs
of AA for the developed method were 0.68%, 0.56%, and 0.53% at LQC, MQC, and HQC,
respectively, for intraday precision. The % CVs of AA for the developed method at LQC,
MQC, and HQC, respectively, were estimated to be 0.81%, 0.61%, and 0.54% for interday
precision. These findings suggested the precision of the developed method for estimating
AA in the SE and UAE of P. emblica, P. guajava, and C. annuum.

Table 4. Determination of the intra/inter-day precision of AA for the greener HPTLC method a.

Conc. (ng/Band) Intraday Precision Interday Precision
Conc. (ng/Band) ± SD SE CV (%) Conc. (ng/Band) ± SD SE CV (%)

50 49.89 ± 0.34 0.13 0.68 50.24 ± 0.41 0.16 0.81
400 407.41 ± 2.32 0.94 0.56 409.12 ± 2.52 1.02 0.61
1200 1187.43 ± 6.41 2.61 0.53 1184.74 ± 6.48 2.64 0.54

a Mean ± SD; n = 6.

The findings of the robustness assessment for the developed method are listed in
Table 5. The % CVs for the robustness assessment were evaluated to be 0.73–0.77% for
the developed method. The Rf values of AA were determined to be 0.85–0.87 using the
developed method. The robustness of the developed method for estimating AA in the SE
and UAE of P. emblica, P. guajava, and C. annuum was demonstrated by minor fluctuations
in Rf values of AA and low CVs.

Table 5. Robustness analysis for AA for the greener HPTLC method a.

Conc. (ng/Band) Mobile Phase Composition (Water-Ethanol, v/v) Results
Original Used Level Conc. (ng/Band) ± SD CV (%) Rf

72:28 +2.0 393.54 ± 2.89 0.73 0.85
400 70:30 70:30 0.0 398.71 ± 2.98 0.74 0.86

68:32 −2.0 404.61 ± 3.12 0.77 0.87
a Mean ± SD; n = 6.

The developed method’s “LOD and LOQ” values were determined, and the results
are shown in Table 1. For estimating AA, the developed method’s “LOD and LOQ” were
calculated to be 8.630 ± 0.1600 and 25.89 ± 0.3900 ng/band, respectively. The sensitivity of
the developed method for estimating AA in the SE and UAE of P. emblica, P. guajava, and C.
annuum was revealed by these “LOD and LOQ” values.

By comparing the overlaid UV-absorption spectra of AA in the SE and UAE of
P. emblica, P. guajava, and C. annuum with those of standard AA, the method specificity was
determined. Figure 3 represents the overlaid UV spectra of standard AA and AA in the SE
and UAE of P. emblica, P. guajava, and C. annuum. For the developed method, the maximum
chromatographic response for AA in standard AA and AA in the SE and UAE of P. emblica,
P. guajava, and C. annuum was measured at 265 nm. The specificity of the developed method
was revealed by the identical UV spectra, Rf values, and wavelengths of AA in standard
AA and AA in the SE and UAE of P. emblica, P. guajava, and C. annuum.
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3.3. Estimation of AA in the SE and UAE of P. emblica, P. guajava, and C. annuum

The developed method was used for the estimation of AA contents in the SE and
UAE of P. emblica, P. guajava, and C. annuum. The HPTLC chromatogram of AA from
the SE and UAE of P. emblica, C. annuum, and P. guajava were identified by comparing
their single TLC band at Rf = 0.86 ± 0.02 with that of a standard AA for the developed
method. The representative HPTLC densitogram of AA in the UAE of P. emblica, C. annuum,
and P. guajava is presented in Figure 4, which showed an identical peak of AA with that of
standard AA. In addition, four, six, and ten additional peaks were also detected in the UAE
of P. emblica (Figure 4A), P. guajava (Figure 4B), and C. annuum (Figure 4C), respectively.
The detection of additional peaks in the UAE of P. emblica, C. annuum, and P. guajava
suggested that the developed method can be efficiently used in the estimation of AA in the
presence of impurities/other phytoconstituents.

The calibration curve of AA was used to determine the amount (mg/100 g) of AA
in all samples, and the findings are shown in Table 6. The amount of AA in the SE
of P. emblica, P. guajava, and C. annuum was determined to be 491.16 ± 2.34 mg/100 g,
168.91 ± 1.41 mg/100 g, and 144.30 ± 1.17 mg/100 g, respectively. However, the amount of
AA in the UAE of P. emblica, P. guajava, and C. annuum was determined to be
673.02 ± 3.16 mg/100 g, 218.71 ± 1.67 mg/100 g, and 199.30 ± 1.32 mg/100 g, respectively.
The amount of AA was computed as higher in the SE and UAE of P. emblica compared
to the SE and UAE of P. guajava, and C. annuum. Furthermore, the amount of AA in all
UAE samples was considerably greater than the respective SE (p < 0.05). Based on these
observations and results, the UAE method for extracting the AA in P. emblica, P. guajava,
and C. annuum is superior to the SE method of extraction. Overall, our results showed that
the developed method may be utilized to assess AA in a variety of food and pharmaceutical
samples with AA as one of the constituents.
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Figure 4. Representative HPTLC densitograms of AA in the UAE of (A) P. emblica, (B) P. guajava,
and (C) C. annuum.

Table 6. Application of the greener HPTLC method for the estimation of AA in the SE and UAE of
P. emblica, P. guajava, and C. annuum a.

Samples SE UAE
Amount of AA (mg/100 g)

P. emblica (Amla) 491.16 ± 2.34 673.02 ± 3.16
P. guajava (Guava) 168.91 ± 1.41 218.71 ± 1.67

C. annuum (Capsicum) 144.30 ± 1.17 199.30 ± 1.32
a Mean ± SD; n = 3.

3.4. Greenness Assessment

For the quantitative estimation of the greenness of analytical methods, various method-
ologies have been used [37–42]. Only the “AGREE methodology”, on the other hand, ap-
plies all twelve GAC principles [41]. As a consequence, the developed analytical method’s
greenness index was determined using the “AGREE methodology”. Figure 5 depicts
the calculated AGREE index for the developed analytical method using the twelve GAC
principles. The overall AGREE index for the developed analytical method was 0.88, demon-
strating that the developed analytical method was extremely green for determining the AA
in studied samples. A single green HPTLC technique has been applied in the determina-
tion of AA in fruit juices and pharmaceutical formulations. The quaternary combination
of ethyl acetate–acetone–WTR–formic acid was used as the green solvent system in this
study [15]. However, the greenness index of this method has not been reported. As a
consequence, the greenness index of the present HPTLC methodology could not compare
with the reported HPTLC technique of AA estimation.
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3.5. Comparison with Reported HPTLC Methods

The developed HPTLC method of AA estimation was compared with reported HPTLC
methods of AA estimation. The findings of the comparative analysis are included in
Table 7. Three different validation parameters, such as “linearity, accuracy, and preci-
sion”, in addition to the solvent system and environmental toxicity of the developed
HPTLC method, were compared with reported HPTLC methods. The linearity range, accu-
racy, and precision of a reported HPLC method have been reported as 200–800 ng/band,
98.25–99.12%, and 0.60–1.30%, respectively [15]. The linearity range of this method was
much inferior to the present HPTLC method. The solvent system used in this study was
green (ethyl acetate–acetone–WTR–formic acid), but the greener index of this method was
not estimated using any of the reported quantitative approaches [15].

Table 7. Comparative assessment of the greener HPTLC method with reported HPTLC methods of
AA analysis.

Analytical
Method

Linearity
Range

Accuracy
(% Recovery)

Precision
(% CV) Solvent System Environmental

Toxicity Ref.

HPTLC 200–800
(ng/band) 98.25–99.12 0.60–1.30

Ethyl acetate–acetone–
water–formic
acid

Non-toxic/green [15]

HPTLC 400–2400
(ng/band) 100.41 0.98–1.11

Chloroform–acetone–
trifluoroacetic
acid

Toxic [16]

HPTLC 400–1400
(ng/band) 99.25–99.97 0.18–0.23

Ethyl
acetate–methanol–formic
acid

Toxic [17]

HPTLC 1000–15,000
(ng/band) 100.10–101.58 0.48–1.77

Toluene–ethyl
acetate–methanol–acetic
acid

Toxic [18]

HPTLC 25–1200
(ng/band) 99.05–101.28 0.53–0.81 Water–ethanol Non-toxic/greener Present work

The accuracy and precision of other literature HPTLC methods were within the
limit of ICH guidelines and hence similar to the present HPTLC method [16–18]. How-
ever, the linearity range of all these methods was much inferior to the present HPTLC
method. In addition, the solvent systems of all these methods, such as chloroform–
acetone–trifluoroacetic acid, ethyl acetate–methanol–formic acid, and toluene–ethyl acetate–
methanol–acetic acid were environmentally toxic compared with the greener solvent sys-
tems (WTR–EOH) of the present HPTLC method [16–18]. Overall, the present HPTLC
method to estimate AA was found to be superior to all reported HPTLC methods of
AA analysis.
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4. Conclusions

The goal of this study was to invent and validate a simple, cost-effective, sensitive, and
green reverse-phase HPTLC method for measuring AA in the SE and UAE of P. em-blica,
P. guajava, and C. annuum, due to the scarcity of greener analytical methodologies for
determining AA in the literature. The developed analytical method for estimating AA is
simple, cost-effective, sensitive, accurate, precise, robust, and green. The UAE of P. emblica,
P. guajava, and C. annuum had much more AA than their corresponding SE. As a result,
it is recommended that the UAE process be used to extract AA from P. emblica, P. guajava,
and C. annuum. The calculated overall AGREE index indicated the excellent green profile
of the developed method for AA analysis. The present HPTLC method was found to be
superior to other reported HPTLC methods of AA analysis. These findings indicate that
the developed HPTLC method can be used to estimate AA in a variety of food, plants,
and pharmaceutical products containing AA as one of the ingredients.
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