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ABSTRACT 

 

This thesis presents results from computational simulations of tungsten alloy segmented rod 

projectiles (SRP) penetrating an RHA semi-infinite target plate at high velocities. Penetration 

experimental data show improved penetration efficiency by the segmented projectiles when 

compared to monolithic (single solid rod) projectiles. For SRP with an aspect ratio (L/D) = 1/8, a 

loss in penetration efficiency was seen upon successive segment impacts. A numerical 

simulation impacting tungsten heavy alloy against RHA 4340 steel was performed using the 

Lagrangian finite element code EPIC 2006. The impact configuration that was modeled 

consisted of eight successive collinear impacts of discs measured 2mm in thickness and 16mm in 

diameter and travelling at 2.6km/sec. Normandia and Lee, using an Eulerian finite element code 

(AUTODYN), performed numerical simulations of the same configuration of the segmented rod 

penetration into RHA plates. Their results were compared and contrasted with those of EPIC 

2006. Additionally the role of back-flowing ejecta was examined and found to perforate 

incoming segments.  In an effort to increase penetration performance, an alternate SRP design 

was tested.  This design implemented a hole in the center through which back-flowing ejecta 

would be allowed to flow unimpeded. 
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Chapter 1 

INTRODUCTION 

 

The main objective of this thesis is to fundamentally understand the unsteady penetration 

of a segmented tungsten rod at high velocities into a thick steel target through high resolution 

computational simulations.  However, to acquire an understanding of unsteady penetration it is 

first necessary to understand the steady state penetration process.  When a body of arbitrary mass 

strikes another at an arbitrary velocity, compressive stress waves are initiated and propagated 

into both objects.  Material response to wave propagation is characterized by the velocity of 

impact, the sound wave velocity, density, and other mechanical properties of both impactor and 

target materials.  In addition, the geometry of the striker and target, and the impact configuration 

(obliquity of impact, presence of projectile spin, etc) can greatly modify the complexity of the 

penetration process. 

At low velocities, below the Hugoniot Elastic Limit (HEL) of both the projectile and 

target materials, elastic stress waves are generated from the impact surface.  These waves will 

eventually reflect back from lateral boundaries according to the boundary conditions.  However, 

above a certain threshold velocity (above HEL), plastic stress waves will propagate following the 

elastic waves (elastic precursor).  At impact velocity levels above the HEL, the 
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stresses imposed on both penetrator and target materials are significantly greater than their yield 

strengths, therefore, the deformation and material failure behaviors are significantly influenced 

by material strength.  In addition to equation of state (EOS), an accurate constitutive description 

(strength model) is essential in modeling the wave propagation characteristics.   

The problem of impact mechanics begins at the same place all mechanics problems do: at 

their governing equations.  The governing equations for elastic wave propagation problems are 

the force equilibrium equation (or equation of motion), Hooke’s Law, and the strain-

displacement relation: 

            ̈  (1) 

                  (2) 

    
 

 
            (3) 

    and      are the stress and strain components,         are Lame’s constants,   is the material 

density, and     are displacements The variable fi represents the body forces on the continuum.   

Combined they form the displacement equation of motion: the form of the classical equation of 

wave motion: 

   

   
      

      
 (4) 

For elastic wave propagation, the parameter c depends on whether target undergoes one-

dimensional stress or strain.  Equations (5) and (6) describe the characteristic elastic wave 

velocity for one-dimensional stress condition and one-dimensional strain condition, respectively. 
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   √
 

 
  (5) 

   √
    

 ⁄

 
  (6) 

K and G are bulk and shear modulus, respectively.  These equations are not adequate to 

describe the wave propagation, deformation, and material failure when a long rod projectile 

penetrates into thick metallic targets at velocities well above HEL.   The stress – strain states are 

multiaxial and plastic waves are generated due to material yielding.  The wave speeds become 

function of particle velocity (or pressure levels).  The projectile penetration problems become 

highly nonlinear and require advanced computing capabilities.  With the absence of such 

compuer capabilities during 60s and 70s, several analytical models were developed to describe 

penetration of cylinder shaped rigid projectiles into thick metallic targets.  For instance, Tate [1] 

first performed an analysis of this penetration configuration for a one dimensional case, while a 

thorough review and discussion of the models commonly employed for this type of penetration 

was made by Anderson and Walker [2].  A wide range of data is available on the penetration of 

heavy alloy long rods into thick targets having planar surfaces, and much effort has been put into 

computational and analytical modeling of the penetration process with generally acceptable 

results.  A comprehensive collection of penetration data for a planar target surface is available in 

the penetration mechanics database report compiled by Anderson et al. [3].  Rajendran [4] 

presented a computational analysis of penetration of tungsten alloy rods into a shallow-cavity 

steel target to understand the effects of ejecta from the cavity surfaces on penetration efficiency 

of the projectile. 
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The wave propagation, deformation, and failure processes related to the penetration of 

long rods into thick targets are highly complex, especially at very high striker or impact 

velocities.  The process is under such conditions is quasi-hydrodynamic.  The highly distorted 

projectile material due to large plastic deformation is basically ejected from the penetrator/target 

interface, in conjunction with failed target material.  Many papers discussing this system are 

available; Solutions to the problem of projectile penetration into thick targets according to Zukas 

[5], be divided into three different categories:  purely empirical, simplified analytical, and 

numerical models.  The expense of performing experiments and scarcity of existing experimental 

data for unsteady rod penetration does not allow for direct empirical modeling but certain related 

data may be used for comparison.  No experimental data exists on the topic of multiple collinear 

segments for different L/D (projectile length, L divided by the projectile diameter, D). Therefore, 

the solution must be approached from a numerical perspective whilst using analytical modeling 

which utilize certain assumptions as a check on the numerical solution.  With the advent of 

advanced hydrocodes (shock wave propagation-based finite element or volume codes which can 

be Lagrangian or Eulerian) and computer capabilities, it is now possible to estimate depth of 

penetration into targets by a variety of metallic projectiles using high resolution discretization 

techniques. 

During the past two decades, researchers working on the armor and anti-armor studies 

reported that compared to a single solid tungsten rod penetration into a thick steel target, a 

segmented tungsten rod of same mass penetrates more efficiently at very high velocities above 1 

km/sec.  Most results for segmented rod penetration problems have been reported in obscure or 

proprietary technical reports.  Unfortunately, there are hardly any DOP data available in open 

literature.  Most of the design concepts and enhanced understanding related to unsteady 
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penetration of segmented rods could be accomplished using high resolution hydrocodes 

simulations.   

 The main objective of this thesis is to study and understand the penetration mechanisms 

of segmented rods into a thick steel target at high velocities.  For this purpose, three distinctly 

different projectile configurations were considered in the present work.  A Lagrangian code 

called EPIC [6] was employed in the computational simulations.  The first configuration was a 

solid rod of length to diameter (L/D) ratio of 1, the second was an eight-solid disks (segmented 

rod), and the third was an 8-segment rod with alternate solid and annular disks.  The single solid 

rod penetration was simulated to establish the depth of penetration of a base line case for 

comparison with alternate projectiles with the same mass of the single long rod.  The DOP 

results for the second configuration from EPIC code simulations were directly compared with the 

results reported by Normandia and Lee [7] who performed simulations using the AUTODYN [8] 

(Eulerian) code.  Additional EPIC [6] simulations examined reasons for the differences between 

DOPs determined from EPIC and AUTODYN.  In the EPIC simulations, a phenomenon called 

“back flowing ejecta” was identified and the various effects of ejecta on the penetration 

efficiency of the segmented rods were studied.  The rest of the work examined the influence of 

several parameters such as projectile velocity, aspect ratio of the projectile, failure criterion, and 

type of failure on the DOP 
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1.1 Background 

 

In armor and other protection system applications, it is essential to develop a fundamental 

understanding of the penetration process of a projectile into these systems at high velocities.  

While experiments provide time-resolved DOP data, high resolution computational simulation 

often provide an in-depth understanding of the penetration process.  With the advent of 

computing capabilities, high resolution finite element simulations enable design analysis of 

protective systems, such as improved body and vehicular armors, impact resistant airplane 

canopies, nuclear reactor shrouds, and other structures.  However, the study of penetration 

mechanics often employ simplified analytical models [9,10] under mostly steady state 

penetration conditions.  The analytical modeling of a long rod projectile (LRP) penetration into 

semi-infinite targets is based on a one-dimensional state of stress at the impact point. The stress-

strain relation can be expressed as: 

   
 

    
    (7) 

Typically, kinetic energy (K.E) projectiles, such as a solid tungsten LRP will often have 

Length/Diameter (L/D) ratio of 10 or more.  However, a segmented rod projectile will have very 

small L/D ratio (<<1).  The stress state during the initial penetration phase (a few microseconds) 

is more closed to one-dimensional strain for the segmented rod penetrator.  For one-dimensional 

strain the stress and strain relations in the principal coordinates use the following relationships: 

     
    

 
  (8) 
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  (9) 

     
    

 
  (10) 

          (11) 

Where,              are total principal strains; the superscripts “e” and “p” represent elastic and 

plastic strain components respectively. 

  
     

  (12a) 

  
     

    (12b) 

Introducing the incompressibility condition allows the total one dimensional strain in terms of 

elastic strain: 

  
    

    
     (13) 

  
     

    
      

 
  (14) 

  
     

   (15) 

     
    

    
     

   (16) 

The elastic stress-strain relations may now be determined: 

  
  

  

 
 

 

 
        

  

 
 

  

 
    (17a) 

  
  

  

 
 

 

 
        

     

 
   

 

 
   (17b) 
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   (17c) 

A combination of equations (16) and (17) yields: 

   
        

 
 

         

 
  (18) 

By using the von Mises yield condition, equation (19), and combining it with equation (18) 

produces: 

          (19) 

   
 

       
   

 

 
       

   

 
  (20) 

When the disc thickness is much smaller compared to the diameter, the central region of 

the target remains under uniaxial strain condition for a longer period of time compared to a rod 

of L/D ratio 1.    This is important as it means that the projectile’s kinetic energy is not laterally 

dispersed and is thus more efficiently used during impact.  It is this concept of more efficient use 

of impact energy which forms the basis of improved penetration depths in segmented rods. 

The current state of research in the area of unsteady penetration processes is incomplete.  

A few reports and articles that are available in the open literature certainly support the basic 

trends related to projectile penetration efficiency and crater morphology in segmented rod 

penetration process.  However, there is hardly any detailed finding or discussion on the 

underlying mechanisms, such as the back flowing ejecta.  

The concept of segmented penetrators is that of creating more penetration with the same 

amount of mass launched at a target.  As early as 1956, Eichelberger [11] suggested that spaced 
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metallic jets (often used as an analog to rods impacting at high velocity) could improve 

penetration by up to 40%.  Since then, researchers [12-27] have demonstrated, through a mixture 

of numerical simulations and experiments, an increase in penetration efficiency (penetration per 

unit length of penetrator) with SRP over their monolithic equivalents (equal diameter and mass). 

 Current SRP literature generally pertains to either SRP with short-rod segments (1 ≤ L/D 

≤ 4) or disc-like segments (1/4 ≤ L/D ≤ 1/32).  Nearly all of the experimental literature involves 

short-rod segments while a fair amount of computational literature is dedicated to disk-like 

segments.  This interest in short rods is borne out of practical launch considerations.   In a direct 

ballistic loading method (projectile launched at target), these segments are less likely to yaw 

upon impact.  Experimental configurations include those which utilize a low-impedance metal 

tube (such as aluminum) with brittle material spacers (Figure 1.1).  Others utilize a thin threaded 

tube to join the segments into a coaxial train (Figure 1.2).  These systems are effective at 

launching segment with a short-rod type of aspect ratio but are limited in usefulness that they can 

only produce a limited amount of total penetration. 

 Segmented projectiles penetrate by means of an unsteady process.  Both Tate [1] and 

Walker and Anderson [28] developed engineering models based on equation (21) which is a 

modified Bernoulli’s equation.  Since this equation is one dimensional and a penetration event 

must be considered in at least two dimensions, variables must be created to account for the 

projectile and target’s resistance in one dimension to the penetration process.  This is the role of 

the parameters Yp and Rt (the projectile and the target respectively).  Tate’s analytical 

expressions focused on optimizing spacing between segments.  A problem in this model was 

some discrepancies seen during the transient beginning and end of penetration [1].  This problem  
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Figure 1.1.  SRP with tungsten alloy segments and plastic spacers slip-fit inside aluminum sleeve [23] 

1
0
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Figure 1.2.  SRP with tungsten segments threaded into titanium connectors.  [14] 

1
1
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was addressed by Walker and Anderson [28] by formulating time variation of the target material 

strengths.   

 

 
                

 

 
         

   (21) 

 

The Rt parameter does not represent the “real” flow strength of the target material and it 

is a pseudo strength parameter introduced by Tate [1].  Using its values, the target resistance to 

projectile penetration can be quantified and various impact configurations can be compared 

through this parameter.  Partom, Anderson, and Orphal [29] reported their investigation of this 

parameter through computer simulations of a tungsten long rod penetration into a semi-infinite 

steel target at various impact velocities.  The main purpose of their computational study was to 

validate the dependence of Rt on target strength and projectile impact velocity.  The final 

conclusion was that the Rt parameter cannot be defined due to the absence of a steady state 

penetration process; the eventual interactions between the penetrating projectile and the eroded 

projectile materials makes projectile penetration unsteady.  Therefore, use of the Rt parameter to 

characterize target penetration resistance is not possible in the SRP configuration.  

As mentioned before, spacing of the segments is key, maladjustment of which will result 

in less than optimal performance.  If the subsequent segment arrives too early, it will “clash” 

with the current segment and will lose significant energy penetrating through the current segment 

before it reaches the target.  Additionally, there is a point when backward-flowing ejecta 

interferes with the incoming segment.  Segment spacing has not always been a concern as 

practical considerations (such as a limit on overall package length) cause some experiment 

designers to use a less than ideal spacing. 
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Regarding ejecta resulting from impact, Hohler and Stilp [20] experimentally observed 

that such interference reaches a maximum for segment spacing of two diameters.  It should be 

noted that in their experiments, the segment L/D was 1 and shrinking the aspect ratio will 

undoubtedly alter the spacing at which such interference occurs. However, this observation does 

hold merit as the velocity regimes of the paper and the current work are similar.  Hunkler [26] as 

well as Weirauch and Wollman [23] mention significant loss in penetration performance due to 

ejecta interference while de Rosset [24] echoes a more commonly found opinion that the effects 

are negligible. While there is a divided consensus, it should be remembered this has been formed 

on data involving short rod segments and not disk-like segments. 

Segment penetration efficiencies, defined as DOP divided by penetrator thickness, have 

been shown by simulation and experimental results to vary with segment aspect ratio.  Figure 1.3 

(from the work of Normandia and Lee [7]) illustrates leveling of penetration efficiencies which 

becomes less pronounced as the aspect ratio (L/D) goes to unity.  The simulations reported by 

Tolman et al [30] give efficiencies which possess an odd oscillatory penetration efficiency 

(Figure 1.4). This is to be expected as the simulation results of Normandia et al [7] are based on 

perfectly normal impacts by each of the segments onto to the target surface whereas the work of 

Tolman et al [30] is experimental and so includes irregularities such as angular deflection of the 

segment caused by its interaction with the delivery system. Segment yaw and pitch is 

collectively termed angle of attack (AOA) and creates an irregular crater profile which in turn 

leads to non-uniform penetration processes by subsequent segment impacts.  Tolman et al [30] 

cited a maximum yaw of 1.62 degrees and minimum yaw of 1.12 degrees in the four datasets 

produced. 
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Figure 1.3.  Penetration efficiency (P/L) versus number of segments for 4 different segment aspect ratios of tungsten heavy 

alloy impacting RHA (4340) steel at 2.6km/s. [7] 

  

1
4
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Figure 1.4.  Experimental segment (91% W, 7% Ni, 3% Co tungsten alloy) penetration efficiencies impacting RHA (4340) 

steel at 2.13km/s [30] 

1
5 
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The enhanced performance of segmented penetrators must be taken in context: it is only 

useful if it can be harnessed.  There are several factors demonstrated in literature which detract 

from a segmented penetrator’s overall performance.  Segmented penetrators are typically 

launched with spacers or with threaded connectors composed of light metals or plastics as shown 

earlier in Figure 1.2.  In the case of spacers, there can be a considerable problem with yaw during 

segment flight. In the experiments of Hohler and Stilp, segments deviated from their trajectory 

by as much as 0.6 of their diameter [20].   If the launch package is too long, it will buckle upon 

launch and will have significantly reduced lethality. 

There are difficulties which are not launch related.  One such problem is cavity occlusion.  

Cavity occlusion is problematic as it hinders entry of subsequent projectiles and thus lowers 

penetration efficiency for segmented projectiles.  Chou and Toland [32] studied the effect of 

occlusion by firing duplex rounds into pre-drilled holes in homogenous lead blocks.  A duplex 

round consists of two projectiles: a leading projectile and a trailing projectile.  The trailing 

projectile has a hole bored through the centerline which allows a portion of the propelling gas to 

pass through and propel the leading projectile while allowing the desired spacing.  This spacing 

was varied to minimize the occlusion effect, which thereby determined optimal spacing between 

the projectiles.  It was found that the maximum occlusion did not occur at an infinity of space 

between projectiles, but at some intermediate time.  It should also be noted that while the Chou 

experiments were performed using a modified Sptizer-type of bullet, similar occlusive effects 

were observed in the experiments of de Rosset [33] which used a long rods of L/D ratio ranging 

from 9 to 1.5.  
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As most of the simulation results pertained to the subject of segmented rod penetration is 

kind of outdated, the present work revisited and also reexamined this impact configuration 

utilizing a state-of-the-art Lagrangian finite element code with special algorithms to handle 

excessive erosion and contacts between fragments.  It is important to fully understand the 

nonlinear phenomena associated with the complex interactions between the impacting segments 

so that various design parameters could be optimized for determining a most penetration efficient 

segmented rod projectile configuration.  Based on the open literature review, these interactions 

have not been actively studied by researchers working in the anti-armor design studies.   In the 

present computational simulations of segmented rod penetration into a thick steel target, new 

design concepts to optimize projectile efficiency are also considered and reported in the present 

study.   
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Chapter 2 

MATHEMATICAL BACKGROUND 

2.1  Shock Wave Propagation 

 

 There are three distinct requirements needed to solve impact problems:  1) shock wave 

propagation, 2) equation of state, and 3) the material constitutive equations.  The shock wave 

propagation involves the equation of motion, stress-strain relations, and strain-displacement 

relations.  It is also important that the shock discontinuity is treated through appropriate jump 

conditions involving conservation of mass, momentum, and energy.  This section briefly 

describes these conditions for the sake of completion. 

The Rankine-Hugoniot jump conditions are essential to the understanding of shock wave 

propagation which is a singular phenomenon.  The discontinuity across the shock front required 

to satisfy the so called Rakine-Hugoniot jump conditions are based on conservation of mass, 

momentum, and energy.  The subscripts in the proceeding equations indicate the current state 

and the previous state by 1 and 0, respectively.  U is the shock velocity, u is the particle velocity, 

v is volume, and e is specific internal energy.  Foregoing their derivations, the equations for 

mass, momentum, and energy conservation are: 

  

  
 

    

    
    (22)
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                         (23) 

      
 

 
                  (24) 

While these jump conditions do not constitute an equation of state, they are used as such, 

accepting any error that may result.  It has been discovered through rigorous experimentation 

that the shock velocity is related to the particle velocity by the equation: 

                (25) 

where C0 is the bulk speed of sound, and s is an empirical constant unique to the material. In 

high velocity impact problems, the thermodynamic pressures generated by the impact often 

exceeds Hugoniot elastic limit.  To determine the stress state at a material point, the pressure is 

determined from an equation of state.  The EOS can be written as relationships between shock 

velocity and sound speed as shown in equation 25.  When the impact velocities are very high, 

this linear relationship will not be adequate to describe the nonlinear response between pressure 

and volume.  Equation 25 could be modified to include high order terms, such as a quadratic 

term.  Most computational codes implement a variety of EOS equations that explicitly describe 

pressure – volume relationships containing higher order terms in volumetric strain or relative 

density.  In the EPIC simulations, the following form of the Mie-Gruneisen EOS is employed for 

both tungsten and steel. 

    (    
 

 
   )             (26) 

Where, 
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   (27) 

K1,K2, K3 are empirical constants, I represents internal energy per uint mass, I0 is that quantity at 

ambient pressure and density, Γ is Gruneisen parameter, PH is the Hugoniot pressure at density ρ, 

and µ is the relative density.  Library constants were used from the EPIC code. In all hydrocodes 

that solve shock wave propagation problems, the total stresses are calculated from the sum of 

deviatoric stresses and the pressure obtained from the EOS.  Since the deviatoric stresses are 

determined from the strength models, it is appropriate to employ viscoplastic models that include 

the effects of strain hardening, strain rate hardening, and thermal softening on strength.  

2.2  Material Strength Models 

 

Given the dynamic nature of material response during an impact event, simple quasi-

static plasticity theories must be discarded.  There are several different material strength models, 

such as Zereilli-Armstrong [34], Johnson-Cook [35], and Bodner-Partom [36,37] available in 

open literature for describing strength variation with respect to plastic strain, strain rate, and 

temperature.  The Johnson-Cook (J-C) model is widely used in impact problems involving 

ballistic penetration and crash worthiness studies.  In addition, the J-C model parameters are 

fairly straight forward to determine and are available for a wide variety of materials.  The J-C 

model is given by the following relationship: 

  [        ][         ̇  ][     ]  (28) 
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 In the present work, both the tungsten and steel are described by the Johnson-Cook 

model.  The corresponding parameters used in the numerical simulations are given in Table 2.1. 



22 
 

 

Table 2.1.  Johnson-Cook parameters used in EPIC simulations [6] 

Material C1 (MPa) C2  N C3 M 

Tungsten 960 1.33E+09 0.85 0.06875 1.15 

RHA (Steel) 792.208 509.523E+06 0.26 0.014 1.03 

  

2
2
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Chapter 3 

MODELING AND SIMULATIONS 

 

Performing numerical simulations of dynamic events holds many advantages over 

experimental methods.  For one, the cost of a single set of experimental data is many times that 

of an extremely robust PC or workstation.  The next is the ability to observe trends and identify 

penetration mechanisms through a parametric study.  Simulations facilitate greater creativity and 

efficiency by allowing for multiple impact configurations to be modeled in a relatively short 

amount of time.  The ability to rapidly make changes to the simulation configuration allows for 

rapid understanding of results.  A wider range of parameters influence the penetration efficiency 

and therefore it is important to optimize them for narrowing down the most feasible projectile-

target configurations.  In the present study, one of the main objectives is to understand the 

complex interactions between not only the segment and the target but also the interactions 

between the segments themselves.  The secondary objective is to compare the DOP results from 

the current study with the results reported by Normandia and Lee [7] using the AUTODYN code.  

There are several commercial- and government-supported finite element and finite 

difference based codes that specifically handle shock wave propagation and projectile 
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penetration into targets.  These codes are often called as “hydrocodes.” One of the ‘hydrocodes ’ 

most used by the penetration mechanics researchers in government laboratories is the Lagrangian 

code: EPIC.  In the present work to study segmented rod penetration into a thick steel target 

plate, the 2006 version of the EPIC code was selected.  EPIC simulations were run on an Xi 

system with a 2.67GHz Intel Core i7 CPU and 2.99GB RAM.  Additionally, some simulations 

were run on the Sequoia Cluster of the University of Mississippi Supercomputer.  This server 

contains nodes which run Dual Intel Xeon Quadcore E5420 “Harpertown” processors.  These 

supercomputer runs were performed in serial.   

One feature of EPIC which makes it particularly useful for high velocity impact is 

utilization of an element conversion algorithm.  Once an element experiences a set level of 

equivalent strain (default is 0.40) it is converted to a particle which behaves in a fluid manner.  

There is also an “erosion” option to simply remove these highly distorted elements from the 

calculations since the time steps become extremely small preventing convergent solutions. 

3.1 EPIC Code Simulation Design 

 

In EPIC simulations, a two dimensional axisymmetric configuration was used since the 

projectile-target configurations used in this study are cylindrical.  Normandia and Lee [7] did not 

provide all of the model parameters for the tungsten that was employed for the projectile in their 

study.  However, in the present study, the material parameters were taken from EPIC’s materials 

library. The target material considered was 4340 (RHA) steel. The semi-infinite target 

dimensions were:  200 mm in diameter and 200 mm in thickness.  
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To study the effects of mesh resolution, one fine and one coarse mesh were used.  For the 

baseline mesh, each composite element measured 1 mm x 1 mm.  The number of nodes and 

elements were: 40,645 and 80,512.  For the fine mesh, each composite element measured 0.5 mm 

x 0.5 mm and the number of nodes and elements were: 160601 and 322048.  Each composite 

element was composed of four triangular elements with a total of five nodes.  In both the 

baseline and fine mesh cases a uniform mesh was used in both the target and projectile.  While 

the coarse (baseline) mesh had two layers of elements for the segment, the fine mesh contained 4 

layers.   

The present study considered the number of segments as a design parameter.  In 

literature, the case of the single segment is almost universally addressed so as to establish an 

optimum segment performance.  However, for the given segment aspect ratio (disk-like), there 

has been little work done for multiple segments.  Historically, short rod-like segments have been 

the subject of experiment and simulation.  It has been demonstrated that the smaller the segment 

aspect ratio, the greater the gains in penetration efficiency over an equivalent monolithic rod.  

This ability to create greater penetration with the same amount of projectile mass is the basis of 

the current work.  Orphal et al [21] determined that the optimum aspect ratio for tungsten 

segments impacting 4340 steel was 1/8 for an impact velocity of 1.5 km/s and 1/16 for 3.0 km/s.  

It was decided to use eight segments of L/D=1/8 as it allowed for direct comparison with the one 

set of simulation data which exists [7] and produces near-optimal penetration which can be 

achieved by segmented penetrators.   

The purpose of these simulations was to compare the performance of EPIC and 

AUTODYN by attempting to recreate the simulations of Normandia and Lee [7].  In their work, 
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the spacing parameter between each segment was eliminated by performing the calculations of 

successive segments one at a time into the recovered target after the individual segment 

penetration processes came to a complete stop (but before elastic rebound).  However, in the 

present study, the spacing was explicitly considered.  This spacing was achieved in the present 

work by a process of several steps, repeated for each segment.  For reference, the currently 

impacting segment will be referred to as segment, n, and the impending segment will be 

segment, n+1.  Initially the two segments were conservatively spaced far apart (8 cm).  A tracer 

particle was placed on the front edge of segment n+1.  When the DOP reached its maximum due 

to the penetration of segment, n, impacting, the position of the tracer particle and the crater depth 

were compared.  This distance was then subtracted from the initial 8 cm spacing, thus giving the 

ideal segment spacing.   This spacing estimation was continued for each of the segments.  Figure 

3.1 illustrates the initial configuration of the eight segment SRP in which the spacing between 

adjacent segments was not uniform. 

In addition to the comparison of Normandia and Lee’s work [7], simulation results were 

compared between the baseline and fine meshes.  As the basis for SRP’s is to produce more 

penetration than their equivalent monolithic rods, simulations were also conducted to verify this 

improvement. Before proceeding with such comparison study, the numerical artifact of certain 

assumptions used in the EPIC code, especially in handling highly distorted elements, is discussed 

in this section. 

EPIC 2006 handles highly deformed elements using two different options, both of which 

are based on a critical value of volumetric strain in an element.  The first option (conversion) 

converts the over-strained element into a particle which behaves as a fluid but retains the 

element’s mass.  The second option (erosion) removes the over-strained element from the  
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Figure 3.1.  Initial configuration of 8-segment SRP with segment L/D ratio of 1/8 used in EPIC simulations 

2
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calculations.  With erosion, the user decides whether to maintain the mass at the nodes or not.  

Additionally, EPIC 2006 provides an option in which the projectile elements can be converted 

entirely into particles before the simulation begins.  When the erosion option that retains the 

highly distorted element mass as a particle is used in the simulation, an anomalous particle 

penetration along the centerline of the target (Figure 3.2) was observed.  In this particular run, 

only a two-segment SRP was considered since numerical instabilities prevented an investigation 

of the full eight segments. Therefore, the erosion without element-to-particle conversion option 

was not used in rest of the simulations presented in the following sections.  

 

3.2 The Ejecta Phenomenon 

 

The impact by the “flyer” plate like penetrator (first segment) generates a uniaxial strain 

state during the first few microseconds after the impact.  Compressive shock waves propagate in 

both the target and first segment.  The shock stress levels as per the pressure contours in Figure 

3.3 reach well above the Hugoniot Elastic Limit (HEL) of both steel and tungsten.  As per the 

following shock relationship for planar impact: 

        
                

                
      (29) 

where Z is the impedance of respective materials.  For the impact velocity of 2.6 km/s, the shock 

stress is about 82 GPA; this is in agreement with the pressure levels as shown by the contour 

plot.  But due to the complex interactions between the reflected waves from the lateral surfaces 

and the edges, the pressure contour plot shows different levels of pressure in both the segment 

and target.   
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Figure 3.2.  Final configuration of 8 segments using element erosion which retains nodal mass 
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Figure 3.3.  Pressure distribution (in Pa) at t=0.5µs for one-segment impact (fine mesh)
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In the preceding section, a simulation setup of multiple collinear impacts of tungsten discs was 

discussed.  The segmented rod penetrator concept is predicated on reconfiguring the mass of a 

long rod penetrator, the result of which is greater depth of penetration.  One interesting facet of 

the segmented penetrator which will be discussed in further detail in the forthcoming sections is 

the phenomenon of backward flowing crater ejecta perforating incoming segments. The 

projectile-target configuration plot from the EPIC code using particle conversion algorithm is 

shown in Figure 3.4 for a 2-segment projectile penetration at an impact velocity of 2.6 km/s. 

After the initial penetration of the first segment into the target, ejecta consisting of both the target 

and first segment materials emanates from the penetration cavity and flowing backwards towards 

the incoming second segment. By 23 microseconds, the first segment has completely eroded 

away and the tungsten material is deposited entirely along the crater wall.  It can be seen from 

Figure 3.4 ejecta was formed from the bottom of the crater towards the second segment.  Before 

even this segment penetrated the steel target, some of its mass had been eroded away by the 

ejecta; however the penetration continued further until about 42-45 microseconds.  The DOP at 

23 microseconds was about 10 mm and the final DOP eventually was more than doubled (22 

mm).  It has been shown by Normandia and Lee [7] that once the ejecta is removed from 

calculations, the penetration efficiency of each segment remains nearly constant.  Table 3.1 lists 

the depths of penetration with residual tungsten included and excluded in the Normandia and Lee 

[7] calculations. 

The effects of ejecta on DOP were further studied through several EPIC simulations in 

which certain parameters were systematically varied.  The parameters are: 1) erosion strain, 2) 

mesh size, 3) segment spacing, 4) segment shape, and 5) striker velocity.  The following sections  
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Figure 3.4.  The penetration configuration at t=23µs for a 2-segment impact 
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Table 3.1.  Penetration results for L/D=1/8 segments with and without residual tungsten [6] 

 

 With Residue Without Residue 

Segment # P P/L Ptotal/Ltotal P P/L Ptotal/Ltotal 

First 8.7 4.35 4.35 8.7 4.35 4.35 

Second 6.5 3.25 3.80 8.5 4.25 4.30 

Third 6.4 3.20 3.43 8.6 4.30 4.30 

Fourth 5.9 2.95 3.31 8.5 4.25 4.29 

3
3
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will present results from several EPIC code simulations to address various parameters on 

projectile penetration depth into the target.  
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Chapter 4 

RESULTS AND DISCUSSION 

 

The penetration efficiency of a tungsten segmented rod projectile (SRP) is investigated through 

several EPIC simulations.  The penetration efficiency is directly determined from the depth of 

penetration (DOP) into the thick steel target.  The question is, for the same mass of SRP and 

striker velocity, how to obtain an optimum or deeper penetration by varying a) the space between 

the segments, b) the L/D ratio, and c) modifying the segment shape.  Results from the EPIC code 

showed significant effects of erosion on DOP.  To determine an appropriate element conversion 

algorithm for the SRP problem, a detailed exercise has been performed by repeating the 

simulation with different erosion options that were discussed earlier in Chapter 3. Since the final 

DOP and the time history of DOP as determined from the EPIC code are employed in the 

comparison study between various projectile configurations and striker velocities, it is necessary 

to discuss how these information or data are extracted from the simulations.  Therefore, it is 

indeed important to establish how the DOP is estimated or determined from the EPIC code.   
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4.1 Erosion and DOP 

 

 The DOP was assessed using an intrinsic function in EPIC which tracked the minimum z-

coordinate of the projectile as a whole.  Due to complex interactions (or motions) between the 

projectile (tungsten) and target (steel) mass particles in the cavity vicinity, slight inaccuracies 

could occur in the estimation of DOP, especially during the final phases of the penetration 

process.   Figure 4.1(a) shows an example of a configuration where the minimum z-coordinate 

function accurately predicts the depth of penetration.  Figure 4.1(b), on the other hand, illustrates 

material mixing which produces a degree of artificial penetration.  Unfortunately, such numerical 

artifacts make determination of DOP less ambiguous and generate sometime anomalous data.  

The work of Normandia and Lee [7] is compared in Table 4.1 with the current work.  They also 

examined the effects of residual penetrator matter on the depth of penetration.  Their DOP 

simulations with and without residual crater matter was presented earlier in Chapter 3 through 

Table 3.1.   

 Overall, EPIC’s Lagrangian results showed very good agreement with Normandia and 

Lee’s [7] AUTODYN results.  Normandia and Lee’s data [7] shows a clear leveling in 

penetration per segment.  The penetration produced by the EPIC 2006 simulations possess a 

similar trend but with a few anomalies.  Penetration for the second and sixth segments was 

abnormally high.  These disparities can easily be attributed to the method of DOP determination 

as material mixing was shown in Figure 4.1(b) to produce an artificially deep projectile 

minimum z-coordinate.  Additionally, it is possible that the complex mechanics of the interacting 

meshless particles caused unforeseen irregularities in penetration. 



37 
 

Table 4.1.  Penetration comparison between AUTODYN and EPIC 2006 

 

Segment # AUTODYN Penetration Depth (mm) 
EPIC 2006 Penetration Depth 

(mm) 

1 8.7 10.0 

2 6.5 11.2 

3 6.4 6.2 

4 5.9 6.3 

5 5.6 3.6 

6 5.2 7.3 

7 5.0 5.1 

8 5.0 2.0 

3
7
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(a)                                                                                                         (b) 

 

Figure 4.1.  (a) Final configuration where minimum z-coordinate function accurately measure bottom of the crater for a projectile 

impacting at a velocity of 2.6km/s;  (b)  Example of possible inaccuracy in minimum z-coordinate estimation due to material mixing 

during 2
nd

 segment impact at the bottom of the crater as indicated by the arrow. 

  

3
8
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To further validate, the crater morphology as observed in an experiment in which a  long 

rod tungsten projectile penetrated a thick steel target was compared with the EPIC generated 

crater.  A noticeable aspect of the crater morphology found while using SRP is that of scalloping. 

Examples of scalloping are given from previous works in both the computational (Figure 4.2) 

and experimental (Figure 4.3) realms.   

The normalized crater diameters due to the impact of first segment determined by 

AUTODYN (seer Normandia and Lee [7]) and present EPIC simulation were also compared.  

The crater diameter from AUTODYN was 1.61 while for the EPIC results utilizing element 

conversion was 1.68 which is a difference of only 4%.  At the other extreme, the normalized 

crater diameter of the impact configuration utilizing Type 1 erosion (removed distorted elements 

while retaining nodal mass) differed from Normandia and Lee [7] by 45%.  They also presented 

a schematic of typical deep crater observed in experiments as shown in Figure 4.2.   According 

to Tolman et al.[30], the scalloped crater edges are characteristic of segmented rod impact as 

shown in Figure 4.3. 

 

Scalloping is difficult to observe when utilizing EPIC’s particle conversion algorithm.  

However, it is much more pronounced when using the two different erosion algorithms (Figures 

4.4 and 4.5).  Another feature of crater morphology explored was the crater diameter.  Table 4.2 

lists the crater diameters for particle conversion, erosion type 1, and erosion type 2 algorithms.  

These results were compared with the diameter obtained by Normandia and Lee [7].  However, 

the EPIC results in Figure 4.4 for a two segment impact configuration using type 1 erosion 

exhibited somewhat over-exaggerated slope of the crater and an unrealistic crater shape as  
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Figure 4.2.  Example of crater scalloping in simulation [7]
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Figure 4.3.  Example of crater scalloping in experiment [30] 
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Figure 4.4.  Final configuration of two segment impact at 2.6 km/s using type 1 erosion algorithm with crater scalloping highlighted 

(fine mesh)
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Figure 4.5.  Final configuration of two segment impact at 2.6 km/s using type 2 erosion algorithm with crater scalloping highlighted 

(fine mesh)
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Table 4.2.  Crater diameters normalized by segment diameter 

 

Simulation Type D1/Dseg D2/Dseg 

Conversion algorithm 1.68 1.01 

Type 1 erosion algorithm 2.33 1.27 

Type 2 erosion algorithm 1.25 1.04 

Normandia and Lee [6] 1.61 N/A 

4
4
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compared to experiments (see Figure 4.3).  The scalloped edges of the crater observed in type 2 

erosion (Figure 4.5) are far closer to the demonstrated examples of proper crater scalloping.   

For all types of simulations, the second normalized crater diameter was smaller than the 

first which indicates crater necking (see Figure 4.3) which agrees with Tolman’s work [30].   

Table 4.1 compares the normalized diameters of the crater formed by the first and second 

segments for various erosion options in the EPIC code.  It appears that type 2 erosion seems to 

compare well with element-to-particle conversion algorithm, especially the smaller crater 

diameter.  This validation provides additional confidence in using a suitable and realistic erosion 

option for determining depth of penetrations from EPIC simulations.     

 

4.2 DOP comparison of Single Long Rod versus SRP 

 

 To further validate the concept of increased penetration by a segmented rod, the depth of 

penetration comparison between the 8-segment SRP and its monolithic equivalent is provided in 

Figure 4.6.  By 50 microseconds, the penetration process is ceased in the single long rod case 

while the SRP took about 150 microseconds to complete the penetration process.  The DOP in 

SRP was 25% more than the DOP by the single solid rod.  These simulations further validated 

that increased DOP could be obtained using SRP.  The stair stepping of the DOP as time 

progressed can be seen from Figure 4.6.  As each segment completed its penetration and while 

the cavity bottom elastically rebound, the subsequent segment arrived to begin its penetration 

into the steel target.  In this simulation, an optimum spacing estimated from several trial EPIC 

runs was used so that maximum DOP could be achieved following the discussions by Normandia 

and Lee [7].  The monolith reaches its maximum penetration depth much quicker than the SRP.   
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Figure 4.6.  Depth of penetration comparison between 8-segment SRP and monolithic equivalent rod
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95% of its maximum penetration was achieved in 39 µs whereas it took the 8-segment SRP 141 

µs to achieve this same percentage. The average rate of penetration to 95% of its max is 1.07 

mm/µs for the monolith and 0.42 mm/µs for the 8-segment SRP.   

Since 8-segment rod simulation is computationally more complex as compared to a single 

solid rod case due to the interactions between various segments, it was necessary to compare the 

effect of mesh resolution on DOP.  Figure 4.7 compares the time history of DOP for two 

different mesh resolutions that were described earlier in Chapter 3.  The fine mesh showed about 

4 -5% increase in final DOP as compared to the coarse mesh.  The coarse and fine mesh 

predicted similar DOP history up to the impact by the 3
rd

 segment and then started deviating 

slightly.  For the first 50 microseconds, the average difference of DOP between the two mesh 

resolutions was 0.16 mm.  From 50 to 125 microseconds, this average jumped to 2.09 mm.  For 

the entire penetration process, the average was 1.12 mm.  In general, the penetration process of 

the fine mesh closely mirrors the baseline mesh.  Another important aspect for discussions is 

how the mass of each segment eroded away as the penetration process continued.  The 

complexity of the erosion as well as the contact algorithm greatly influences the history of the 

erosion rate for each segment is shown in Figure 4.8.  No sequence-of-time event could be 

consistently observed between the erosion rates of various segments.  For instance, segment 3 

(green) erodes slowly for about 12 microseconds prior to complete erosion.  The ejecta 

phenomenon unfortunately throws several unforeseen complications in interpreting the 

numerical results from the EPIC code.  The mass particles that were generated, based on the 

conversion algorithm, penetrate the incoming “subsequent” segments.  As they eroded a 

significant percentage of mass in a premature manner; the overall penetration efficiency of the 

SRP is certainly degraded. 
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Figure 4.7.  Depth of penetration comparison for 8-segment SRP with different resolution meshes
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Figure 4.8.  Mass versus time for individual segments
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As was previously stated, incoming segments have significant interactions with backward 

flowing ejecta.  Figure 4.8 quantifies the mass loss experienced by the segments as a function of 

time while Table 4.3 tabulates the time required for complete dissolution of each segment.  Both 

Figure 4.8 and Table 4.3 pertain to an 8-segment SRP.  The zero time for each segment in Figure 

4.8 corresponds to the time when each segment starts to lose mass.  Aside from the first segment, 

this zero time indicates the segments’ first interaction with back flowing ejecta.  The 

computational simulation of the interactions between the ejecta and the in-coming segment is 

extremely complex and highly nonlinear due to excessive deformation, element-to-particle 

conversion, and slide line algorithms.  It is clear that there is no clear correlation between each 

segment’s time taken to completely erode away.   Table 4.4 presents a parameter, Δ, which 

measures the distance between the z-position at which the segment was fully converted into 

particles and the bottom of the crater.  As more and more tungsten segments pile up at the 

bottom of the crater, the incoming segments due to the back flowing ejecta get eroded well 

before they start penetrating the target further.  However, the pressure generated by the 

sequential impacts continues the penetration process and the DOP continually increases until 

after all segments impacted the crater surface. 

 For simplicity, the depth of penetration for various high-strain element conversion 

algorithms and impact velocities are shown only for a 2-segment SRP.  For completion, the DOP 

results for the LRP are also presented at three different velocities: 1500 m/s, 2000 m/s, and 2600 

m/s.  As the impact velocity increased the amount of increased DOP between the SLR and SRP 

significantly increased as can be seen from Figure 4.9.  The penetration ceases by 20  
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Table 4.3.  Time for complete segment dissolution into particles 

Segment Number Time to Complete Dissolution of Segment (µs) 

1 24 

2 19 

3 25 

4 13 

5 12 

6 13 

7 11 

8 11 

5
1
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Table 4.4.  Distance from crater bottom at which segment is completely converted to meshless particles (Δ) 

 

 

Segment Number 
Z-Position of Segment When 

Completely Converted to Particles 

(mm) 

Minimum Z-Coordinate of 

Projectile (mm) 
Δ (mm) 

1 -9.7 -10.9 1.2 

2 -17.2 -19.1 1.9 

3 -22.9 -27.1 4.2 

4 -22.7 -28.5 5.8 

5 -29.1 -37.0 7.9 

6 -28.3 -40.7 12.4 

7 -33.9 -43.3 9.4 

8 -32.4 -47.2 14.8 
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Figure 4.9.  Depth of penetration comparison for 2-segment SRP with different impact velocities
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μs for the lowest velocity (1500 m/s) in both cases and that is why there is no difference between 

the DOP time history. 

An unexpected finding was that the crater ejecta flowed upward and perforating the 

incoming segment prior to that segment impacting the bottom of the crater.  The crater “bottom” 

is defined as the top of the majority of the mass of the residual crater materials.  It should be 

noted that the phrase “bottom of the crater” is somewhat tenuous as the many dispersed meshless 

particles within the crater make it difficult or even impossible to pinpoint exact bottom.  The 

time for complete segment dissolution into particles due to this type of interaction with ejecta is 

tracked in Table 4.3.  Segments 1-3 took an average of 22.7μs to be completely converted into 

particles while segments 4-8 took an average of 12μs.  These latter segments were completely 

converted at a much greater height (designated as Δ in Table 4.4) above the crater bottom. 

 

4.3 An Alternative SRP Design 

 

Though it has been shown through various EPIC simulations that the ejecta indeed 

reduced the amount of kinetic energy of the subsequent segments due to premature erosion of 

segment mass, the overall penetration depth by a SRP is certainly higher than the DOP of a 

single long rod projectile.  The natural follow-up question to this:  is there a way to reconfigure 

the penetrator mass again to accommodate the ejecta?  Since the majority of the ejecta has been 

shown to act along the axis of symmetry, a logical method of accommodation is to provide a path 
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for the ejecta to flow unimpeded along the axis of symmetry, thereby retaining the kinetic energy 

and momentum of the segment.  A simple method of accommodating the ejecta is to create a 

hole in the segment (or disk) with the removed mass evenly redistributed on top of the resulting 

washer-shaped projectile.  The new SRP design will have the first segment as a solid disc and the 

second segment as a washer (a disc with a hole in the middle).  In EPIC simulations, five 

different hole diameters for the second washer-shaped segment was considered:  2mm, 4mm, 

6mm, 8mm, and 10mm as shown in figure 4.10.  

The main objective of EPIC simulations of this alternative design is to test whether there 

will be any gain in DOP over the standard SRP where all segments are solid discs.  Using a fine 

mesh, DOP versus time data was generated from the various EPIC simulations.  Figure 4.11 

shows a comparison between the DOP history for a standard 2-solid segment projectile and the 

washer-disc based new design configurations for various washer diameters.   As the washer 

diameter becomes larger, the DOP decreased showing reduction in the penetration efficiency of 

the new design.  The DOP difference, denoted by the variable delta, represents the percent 

difference between the depth of penetration of a standard two-disc SRP and an SRP consisting of 

one disc and one washer-type segment.   

The depth of penetration for this design was compared with a two-segment SRP 

consisting only of solid discs without a hole in the center.  Four out of the five hole diameters 

produced gains in penetration, though the gains were not significant compared to the solid discs.  

The EPIC results showed a clear trend in DOP with respect to the hole diameter.  As the 

diameter increased, the final DOP tended to decrease with the exception of the 8mm diameter 
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Figure 4.10.  Initial configuration for five different inner diameter (top left to bottom right): 2mm, 4mm, 6mm, 8mm, and 10mm 
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Figure 4.11.  Depth of penetration of various hole diameters compared with two-disc SRP
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hole.  The configurations with 2 and 4 mm diameter hole exhibited identical time history of the 

DOP.   

 

To further examine the penetration capability of the new design, an EPIC simulation with 

a 8mm hole diameter 8-segment SRP configuration was considered. The alternative SRP design 

produced gains in DOP up to the end of the third segment’s penetration process.  However, 

subsequent segment impacts confirmed that there was no advantage with the washer type discs to 

gain more penetration into the thick steel target plate.  For this new SRP design, any short term 

gains made by initially accommodating backward flowing ejecta is offset in the later stages of 

penetration by a decentralized ejecta plume.   Figure 4.12 demonstrates an example of the lack of 

a coherent central jet during the later stages of segment impacts.   Another factor affecting the 

efficacy of the alternative SRP design was the stress state induced by the segment geometry.  A 

thin disc (or plate) is an ideal geometry for inducing very high stresses due to a uniaxial strain 

condition being imposed.  The loading conditions move further away from this ideal. Once the 

geometry is modified (as it was in the alternative SRP design), a final DOP of 40.42 mm was 

observed, compared with 54.63 mm in the all-disc design.  The final DOP dropped by 25% for 

the new design; therefore it was very clear that a washer type design after all was not effective to 

reduce the detrimental effect of ejecta.  A time history of the DOP comparing the alternate 

design with the standard design is featured in Figure 4.13. 
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Figure 4.12 Fourth segment of alternate SRP design interacting with non-centralized ejecta plume
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Figure 4.13.  Depth of penetration comparison between all disc SRP and alternate washer SRP
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Chapter 5 

CONCLUSIONS & RECOMMENDATIONS 

5.1 Conclusions 

 

One of the ultimate goals of projectile design is obtaining optimum penetration 

performance by a projectile into thick targets.  In general there are four main phases of 

penetration: 1) transient, 2) primary, 3) secondary, and 4) recovery. Mainstream kinetic energy 

projectiles penetrate thick targets during the “primary” penetration phase which is typified by a 

steady-state process.  The basic concept behind segmented rod projectiles is that the initial 

transient penetration phase, typified by high transient shock stresses, is repeated over and over.  

Very little penetration by segmented rod projectiles is performed in a steady state regime.  It is 

because of this repeated transient stress that experiments and simulations have proven that SRPs 

provide greater penetration efficiency.  For a given mass of the projectile, the final DOP in the 

target seems to be influenced by the segment’s aspect ratio, number of segments, spacing 

between the segments, and impact velocity. 
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The present work considered modeling and simulation of a heavy alloy tungsten 

projectile penetration into thick steel targets at very high velocities.  The baseline velocity 

considered for this purpose was 2.6 km/sec.  The 2006 version of the Lagrangian finite element 

software EPIC was employed for simulating a variety of penetration configurations.  Since the 

DOP (depth of penetration) results were influenced by the various element erosion options 

available in EPIC, initially a sensitivity study was performed to establish a suitable erosion 

option for modeling the SRP problem.  Based on this study, the element-to-particle conversion 

algorithm in EPIC which produced consistent DOP results was chosen in all simulations.  To 

further validate the EPIC code results, a comparison study between this advanced Department of 

Defense penetration code (EPIC) with a commercially available Eulerian finite element software 

(AUTODYN).  Though these two codes produced quantitatively different results, the DOP 

results did agree with respect to increased efficiency by SRP as compared to a monolithic long 

rod.  Comparisons between the two codes were complicated by a lack of robust method to 

determine DOP in EPIC simulations.  In addition, the simulation results from 2006 version of the 

EPIC code compared the effects of variety of design parameters and projectile configurations on 

penetration depths. 

 As other researchers reported that the penetration efficiency of a SRP is significantly 

greater than a single rod with same mass, the current high resolution EPIC simulations further 

confirmed the increased penetration efficiency by about 25% (see figure 4.6).  However, an 

optimal spacing between the various segments needs to be estimated to obtain the best 

performance by a SRP.  A comparison was performed between three different impact velocities:  

1500m/s, 2250m/s, and 2600m/s.  Based on computational results, a unique optimal spacing for 

each velocity is confirmed.  
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 During the course of the penetration process, the tungsten penetrator dissolves into 

meshless particles.  These particles are products of an element-to-particle conversion algorithm 

to handle excessive erosion of materials due large scale plastic deformation.  Some particles 

embed in the crater walls but others form a focused ejecta jet that flow directly into the path of 

the incoming projectile segments.  To understand the effects of ejecta on diminishing the full 

potential of the SRP concept, several EPIC simulations were performed with just by modeling 

two-segment SRP penetration into a thick steel target.  It was observed that, during the first three 

segment impacts, this ejecta tended to flow in a coherent jet which was centralized along the axis 

of symmetry. An alternative design for an SRP was considered to accommodate this centralized 

plume by creating a hole in the center of the segment, thereby allowing the ejecta to flow through 

less impeded; this perhaps could enable the incoming segments to be intact for a longer period of 

time.  Five different configurations were considered in EPIC simulations to evaluate the 

performance of the new alternate design with different hole diameters. DOP increased during the 

impact of the first three segments, but overall DOP for the alternate SRP design was 25% less 

than that of the standard SRP design.  This decrease was likely due to the decentralization of the 

ejecta plume that destroyed the optimal shock and penetration loading conditions.  

 Based on these results, it was concluded that solid segments were far more efficient than 

“washer” type segments.  Indeed, the idea of a new configuration to accommodate the ejecta 

flow by removing mass from the center portion of a solid segment and adding this removed mass 

to increase the thickness of that segment did not improve the penetration efficiency any further.  

On the contrary, the washer type segment showed reduced penetration due to the absence of 

mass in the center.  In summary, the EPIC results reasonably established that an 8-segment SRP 

configuration was more efficient than a single long rod at high velocity impact. 
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5.2 Recommendations 

  

 

 The current work dealt entirely with two dimensional axisymmetric simulations.  Three 

dimensional runs are needed in order to verify that the ejecta phenomenon observed is not an 

artifact of the two dimensional simulation. Once similar backflowing ejecta is demonstrated in 

three dimensional simulations, experiments with high speed photography are needed to verify the 

existence and character of the ejecta plume.  If experimentally detected, new means of dealing 

with the ejecta problem can be developed.   
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