
University of Mississippi University of Mississippi 

eGrove eGrove 

Honors Theses Honors College (Sally McDonnell Barksdale 
Honors College) 

2015 

Investigating the effects of alternative footwear on balance Investigating the effects of alternative footwear on balance 

David S. May 
University of Mississippi. Sally McDonnell Barksdale Honors College 

Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis 

 Part of the Exercise Science Commons 

Recommended Citation Recommended Citation 
May, David S., "Investigating the effects of alternative footwear on balance" (2015). Honors Theses. 255. 
https://egrove.olemiss.edu/hon_thesis/255 

This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell 
Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized 
administrator of eGrove. For more information, please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/hon_thesis
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/hon_thesis?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1091?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/hon_thesis/255?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


 

 

 

 

 

 

 

INVESTIGATING THE EFFECTS OF ALTERNATIVE FOOTWEAR ON BALANCE 

 

 

 

 

 

By David May 

 

 

 

 

 

A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the 

requirements of the Sally McDonnell Barksdale Honors College. 

 

 

 

 

 

Oxford 

May 2015 

 

 

 

 

 

Approved by 

_________________________________ 

Advisor: Dr. John C. Garner 

_________________________________ 

Reader: Dr. Michael A. Dupper 

_________________________________ 

Reader: Dr. Mark Loftin 



ABSTRACT 

 Falls are one of the leading causes of injuries and unintentional deaths in the United 

States, with 27,800 fatalities attributed to falls in 2012 (National Safety Council, 2014).  With 

two thirds of our body mass located two thirds of our body height above the ground, humans 

require constant work from balance control systems to prevent these falls (Winter, 1995).  

Because shoes can alter somatosensory input from the mechanoreceptors on the bottom of the 

foot and affect these balance control systems (Menant et al, 2008), they must be taken into 

account when looking into the causes of falls.  Traditional footwear designs have been studied 

extensively to examine which shoe characteristics are best for stability.  However, with the 

recent advent of alternative styles of footwear, more research is needed to determine how these 

new styles affect balance control.  The purpose of this study was to determine how three of these 

types of footwear (Crocs®, flip flops, and Vibram® Five Fingers) affect postural control in 18 

healthy males between the ages of 18-44 after walking one mile at a self selected pace.  The 

specific aims of the study were to (1) investigate the effects of a one mile, preferred pace walk 

on standing balance measures and to (2) examine the effects of three alternative styles of 

footwear on standing balance measures.  These standing balance measures included AP/ML 

(Anterior-Posterior/Medial-Lateral) sway velocity and AP/ML sway RMS (root-mean-square).  

Sway velocity and RMS were measured under four conditions of the Neurocom Equitest Sensory 

Organization Test (EO, EC, EOSRV, EOSRP) before and after the one mile walk.  Higher values 

for sway velocity and RMS were used to indicate decreased balance and postural stability.  A 

predetermined alpha level of 0.05 was used, and results were analyzed using a 2x3 repeated 

measures ANOVA [2 measurement times (pre/post walking) x 3 footwear types (CC, FF, MIN)] 

for each of the four sensory organization test (SOT conditions).   
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CHAPTER I 

INTRODUCTION 

 Proper functioning of balance control systems is obviously crucial for carrying out the 

daily activities of life.  Because of a relatively high center of mass and a bipedal orientation, 

humans are inherently unstable without these balance control systems (Winter, 1995).  The 

body’s center of mass must be constantly maintained over a continuously changing base of 

support in order to retain postural control (Winter, 1995).  Three major sensory systems work 

together to provide the central nervous system with the information needed to counteract balance 

perturbations.  The visual, vestibular, and somatosensory systems all help detect changes in the 

environment that could lead to a fall.  The visual system uses the eyes to provide feedback about 

changing environmental conditions and the body’s position in the environment.  The 

somatosensory system utilizes a variety of sensory organs such as the golgi tendon organ, muscle 

spindles, joint receptors, proprioceptors, and sensory receptors on the foot sole (Levangie, P.K. 

and Norkin, C.C. 2006) to provide information about external stimuli and the orientation of the 

body’s joints.  The vestibular system relies on input from the inner ear to sense linear and 

angular acceleration as well as to maintain a steady gaze and an upright vertical stance. 

 The skin on the bottom of the foot plays an important role in detecting balance 

information and is one of the most sensitive areas of the human body (Hosoda et al, 1998).  

Therefore since shoes alter the interface between these mechanoreceptors and the external 

environment, they must be taken into account when looking at factors that influence postural 

control.  45% of all falls can be attributed to improper footwear (Menant et al, 2008).  Some of 

the footwear characteristics that have the potential to affect balance include sole thickness, sole 

hardness, and overall shoe mass (Robbins et al, 1994; Perry et al, 2007; Garner, Wade, Garten, 



Chander, & Acevedo, 2013).  Fatigue has also been shown to have the ability to influence 

balance performance (Nardone, Tarantola, Giordano, & Schieppati, 1997).   

 While extensive research has been done to examine the effects of these shoe 

characteristics, new types of shoes have become more popular in recent years and differ from 

more traditional footwear in several ways.  More research is needed to determine whether these 

new footwear styles affect balance differently than more traditional footwear.  It has been 

observed that flip flops are associated with abnormal kinematics in the lower leg, but there is a 

lack of research on how they affect standing balance after walking (Shroyer, 2009).  Because the 

clog-style Crocs have textured insoles, it is thought that they could possibly provide increased 

somatosensory feedback and therefore improved balance performance, but there is not adequate 

research to fully support that notion (Dixon  et  al.,  2012;  Hatton,  Dixon,  Martin,  &  Rome,  

2009).  Also, the minimalist style Vibrams have become popular recently because they are 

supposed to mimic the barefoot running experience while still providing just enough protection 

to prevent puncture wounds and cuts on the foot, but there is not yet sufficient scientific data to 

support these claims (Gangemi, 2011; Squadrone & Gallozzi, 2009).   

 Because footwear can have a significant adverse effect on balance (Gangemi, 2011), it is 

important to know which types provide the most stability.  While many forms of footwear have 

been studied extensively, several of the new alternative styles lack any true scientific consensus.  

The purpose of this study was to observe balance measures such as sway velocity and sway root 

mean square (RMS) in the Crocs, flip flops, and Vibrams after a one mile walk to examine how 

these new footwear styles affect balance.  

   

  



Purpose: 

The purpose of this study was to determine the effects of alternative footwear on balance 

measures of sway velocity and sway RMS after a one mile walk at a self selected pace. 

 

 

Hypotheses:  

HO1: There will be no difference in AP/ML sway velocity between the different types of 

footwear. 

HA1: There will be a significant difference in AP/ML sway velocity between the different types 

of footwear.   

HO2: There will be no difference in AP/ML sway RMS between the different types of footwear.  

HA2: There will be a significant difference in AP/ML sway RMS between the different types of 

footwear.  

 

 It has been shown in previous studies that differences in shoe characteristics such as sole 

thickness, hardness, and overall shoe mass can significantly impact balance measures (Robbins 

et al, 1994; Perry et al, 2007; Garner, Wade, Garten, Chander, & Acevedo, 2013).  However, it is 

unclear exactly how much each variable contributes to overall stability.  Also, it is unclear 

whether or not the variance seen among the three shoes in each of these characteristics is enough 

to cause significant differences in balance measures.   

 

HO3: There will be no difference in AP/ML sway velocity between pre and post measures of a 

one mile, preferred pace walk. 



HA3: There will be a significant difference in AP/ML sway velocity between pre and post 

measures of a one mile, preferred pace walk. 

HO4: There will be no difference in AP/ML sway RMS between pre and post measures of a one 

mile, preferred pace walk. 

HA4: There will be a significant difference in AP/ML sway RMS between pre and post measures 

of a one mile, preferred pace walk. 

 

 We have also seen that fatigue can have the potential to influence balance performance 

(Nardone, Tarantola, Giordano, & Schieppati, 1997).  The one mile walk could possibly be 

expected to generate fatigue, thereby reducing balance performance in the post-walking values as 

compared to the pre-walking values.  However, it is unclear as to whether or not the one mile 

walk will generate enough fatigue to make a difference in balance measures.  

 

Definitions:  

Balance: also known as postural control; a dynamic equilibrium between internal and external 

forces and environmental factors (Yaggie & McGregor, 2002).  The maintenance of the center of 

gravity within the base of support (Winter et al, 1990).  

Center of Mass (COM): the point on a body that moves in the same way that a particle subject 

to the same external forces would move (Rodgers, Cavanagh, 1984).   

Center of Gravity (COG): the point at which the weight of the body or system can be 

considered to act and at which the weight of the body will be applied to create balance in relation 

to translational and rotational gravitational effects that act on the system (Rodgers, Cavanagh, 

1984).  



Center of Pressure (COP): describes the centroid of pressure distribution; sometimes referred 

to as the point at which the force is applied (Rodgers, Cavanagh, 1984). 

Fatigue: a reduction in the ability of a muscle or muscle group to produce force (Decorte, 

Lafaix, Millet, Wuyam, & Verges, 2012) 

Base of Support (BOS): the area defined in humans posteriorly as the tip of the heels and 

anteriorly as a line drawn between the tips of the toes; much smaller in humans than in 

quadrupedal species (Levangie & Norkin, 2011).   

Perturbation:  a variation of a system or process from its routine state; produced by an outside 

source (Winter, 1995).   

Visual System: the system charged with gaining information about the environment and the 

body’s position within it through the eyes (Sturnieks & Lord, 2008).   

Somatosensory System: the system that involves tactile receptors and proprioception; consists 

of input from central nervous system touch receptors such as Ruffini endings, Merkel’s disks, 

Pacinian corpuscles, and Meissner’s corpuscles (Sturnieks & Lord, 2008).  

Vestibular System: the system that obtains information about motion relative to body and eye 

movements, head posture and position, and gravity from structures in the inner ear (Sturnieks & 

Lord, 2008).   

 

 

 

 

 

 



CHAPTER II 

REVIEW OF LITERATURE 

 Balance, or postural control, is a dynamic equilibrium between internal and external 

forces and environmental factors (Yaggie & McGregor, 2002).  The bipedal nature of human 

locomotion presents a unique challenge to the balance control systems of the body that maintain 

this equilibrium (Winter, 1995).  Humans are inherently unstable, with two thirds of our body 

mass located two thirds of our body height above the ground, so these balance control systems 

must be working continuously and effectively (Winter, 1995).  The visual, vestibular, and 

somatosensory or proprioceptive systems are the three major balance control systems.  These 

systems of balance are responsible for determining the anterior/posterior and medial/lateral limits 

of stability (Yaggie & McGregor, 2002).   

Vision is primarily used in planning locomotion and navigating obstacles (Winter, 1995).  

This visual input is used to make postural adjustments in anticipation of changes in surroundings 

(Nashner, 1982).  However, under conditions of misleading or inappropriate visual input, the 

brain can suppress these signals in favor of vestibular or somatosensory input.  For example, 

when exposed to linear or circular movements of visual surroundings, an individual may make 

anticipatory adjustments but will not lose balance (Nashner, 1982).  Vision is also used while 

standing to monitor and moderate postural sway (Sturnieks & Lord, 2008).    

The vestibular system aids balance by way of the vestibulo-ocular reflex which controls 

eye muscles and direction of gaze in response to movements of the head and changes of direction 

(Guskiewicz & Perrin, 1996).  The organ responsible for detecting sensations of equilibrium is 

the vestibular apparatus, located within a chamber of the temporal bone known as the bony 

labyrinth (Guskiewicz & Perrin, 1996).  Using input from the vestibular apparatus, the body can 



sense linear and angular acceleration, allowing the head and neck to remain in an upright 

position (Winter, 1995).  The vestibular system is capable of balancing the body even under 

conditions of functionally inappropriate visual and somatosensory input (Nashner, 1982).  

Vestibular input, unlike visual and somatosensory input, is inertial and gravitational based and 

therefore cannot be affected by external context within an earthbound setting (Nashner, 1982).  

Research suggests that vestibular input is used primarily in stabilizing slow body sway, and that 

the body relies mostly on the visual and somatosensory systems to maintain balance under 

normal conditions (Guskiewicz & Perrin, 1996).  However, when the head tilts or when the body 

comes under sudden perturbations, the vestibular system’s ability to return the head to an upright 

position and the vestibulo-ocular reflex become crucial (Guskiewicz & Perrin, 1996).   

The somatosensory system involves tactile senses such as touch, pressure, and vibration 

as well as the sense of position, or proprioception, which determines the relative location and 

movement of all body parts (Guskiewicz & Perrin, 1996).  Meissner’s corpuscles, Pacinian 

corpuscles, Merkel’s disks, and Ruffini endings all supply the central nervous system with 

information about sensations of touch (Hijmans et al., 2007).  Also, cutaneous mechanoreceptors 

in the feet provide tactile feedback that allows the CNS to determine how much pressure is being 

applied to each part of the foot, leading to a greater consciousness of the body’s posture 

(Hijmans et al., 2007).  Proprioceptors play a major role in the somatosensory system as well and 

include muscle spindles and Golgi tendon sensory receptors.  Muscle spindles provide 

information about muscle length, while Golgi tendon receptors send information about muscle 

tension (Guskiewicz & Perrin, 1996).  Myotatic reflexes use information from these 

proprioceptors to correct for changes in muscle length and maintain correct posture (Guskiewicz 



& Perrin, 1996).  Like visual input, somatosensory input can be suppressed if it is functionally 

inappropriate or misleading (Nashner, 1982).   

 When studying balance, it is important to differentiate between the body’s centers of 

mass, gravity, and pressure.  The point on a body that moves in the same way that a particle 

subject to the same external forces would move is known as the center of mass (COM) (Rodgers, 

Cavanagh, 1984).  The location of the COM depends on the position of the body and may not 

necessarily be located inside the body (Rodgers, Cavanagh, 1984).  The center of gravity (COG) 

is the vertical projection of the center of mass (COM) onto the ground (Winter, 1995).  The COG 

is the point at which the weight of the body can be considered to act (Rodgers, Cavanagh 1984).  

The base of support (BOS), on the other hand, is the area where the body makes contact with the 

ground (Rodgers, Cavanagh 1984).  If the COG is allowed to move outside of the BOS, a limb 

must move in order to compensate and keep the body from falling by expanding the BOS (Maki 

et al., 2008).  Meanwhile, the center of pressure (COP) is completely independent of the COM.  

The COP is a weighted average of all pressures exerted onto the ground by the body (Winter, 

1995).  When standing, each foot has its own COP, but two separate force plates must be used to 

determine these individual points (Winter, 1995).  The net COP, which lies in between the two 

feet, is often measured instead when only one force plate is available (Winter, 1995). 

 By using plantarflexors to control net ankle movement, the COP can be shifted to 

regulate the position of the COG (Winter, 1995).  In the event of forward sway and an anterior 

shift of the COG, the body can activate plantarflexors to move the COP anterior to the COG.  

When the COP becomes anterior to the COG, angular acceleration will reverse, causing angular 

velocity to decrease until the body eventually moves in a posterior direction.  Similarly, when the 

body senses that a posterior shift of the COG needs to be corrected, the COP is moved to a 



position posterior to the COG through reduced plantarflexor activation.  In order for the body to 

maintain balance through ankle movement alone, however, the COP must have a greater 

dynamic range than the COG.  For example, if the COG is allowed to move to the far anterior 

portion of the toes, the COP may not be able to move far enough anteriorly to reverse the 

anterior angular acceleration, and the body may have to move a limb forward to maintain balance 

(Winter, 1995).   

 The body has two main methods of maintaining balance without stepping forward.  These 

methods are known as the ankle strategy and the hip strategy (Winter, 1995).  The ankle strategy 

uses the plantarflexors and dorsiflexors of the ankle to control for minor perturbations (Winter, 

1995).  When the perturbations become stronger, the body can utilize the hip strategy to flex or 

extend the hip, moving the COM in a posterior or anterior direction respectively (Winter, 1995).   

 These control systems all work together to maintain balance under normal conditions, but 

there are several external factors that also influence balance.  Fatigue, for example, can play a 

role in maintaining postural stability.  Fatigue is a reduction in the ability of a muscle or muscle 

group to produce force (Decorte, Lafaix, Millet, Wuyam, & Verges, 2012).  It has been found 

that fatiguing exercises, or those that cause the body to surpass the anaerobic threshold, can 

significantly increase sway path and especially sway area as compared to control levels 

(Nardone, Tarantola, Giordano, & Schieppati, 1997).  However, this effect is most prominent 

when visual input is restricted, suggesting that visual input may correct for fatigued 

proprioceptors (Nardone, Tarantola, Giordano, & Schieppati, 1997).  It is important to note, 

though, that these changes in sway were only transient and disappeared after fifteen minutes 

following the exercise (Nardone, Tarantola, Giordano, & Schieppati, 1997).  In place of a 

generalized muscle fatigue resulting from aerobic exercise, localized fatigue of ankle plantar- 



flexors has been shown to have a significant effect on balance as well (Corbeil, Blouin, Bégin, 

Nougier, & Teasdale, 2003).  It appears that this localized fatigue impacts balance by affecting 

motor output of the postural control system, rather than by affecting sensory input (Corbeil, 

Blouin, Bégin, Nougier, & Teasdale, 2003).   

 Clearly, though, our external conditions must be taken into account when observing 

postural control.  While some advertisers have claimed in the past that softer surfaces and mats 

can reduce fatigue, thereby increasing balance, little differences in COP patterns have been 

found when comparing hard and soft surfaces (Duarte, Harvey, & Zatsiorsky, 2000).  However, 

when looking at dynamic, rather than static standing conditions, it has been shown that variance 

in surface conditions can cause specific and measurable changes in gait.  Under wet surface 

conditions, for example, subjects were found to have a reduced walking velocity, decreased step 

length, and a flatter shoe-floor angle at heel strike (Menant, Steele, Menz, Munro, & Lord, 

2009).  Research suggests that subjects show differences in gait when walking on smoother 

surfaces as opposed to rougher surfaces but that the greatest differences in gait occur when 

subjects expect a contaminated surface (Cham and Redfern, 2002).  These anticipatory changes 

result in a decrease in the required coefficient of friction (RCOF) needed to maintain balance, 

with the knees and hips being utilized more than the ankles to achieve these postural changes 

(Cham and Redfern, 2002).  In another study by the same authors it was found that right after 

slipping, subjects tried to control for the slipping motion, sometimes even reversing heel motion, 

before the heel again slid forward resulting in a fall (Cham and Redfern, 2002).  The authors 

found that slip distances greater than 14 cm and peak forward sliding velocities greater than 0.7-

0.8 m/s invariably resulted in a total loss of balance and a fall (Cham and Redfern, 2002).   



 In addition to surface conditions, it is difficult to ignore the impact that footwear has on 

our stability and traction (Menant et al, 2008).  The hairless skin on the bottom of the foot is one 

of the most sensitive areas of the human body, with mechanoreceptors continuously converting 

static and dynamic balance information into nerve impulses to be carried to the brain (Hosoda et 

al, 1998).   Shoes can alter this somatosensory input and create a varying amount of friction 

between the floor and the shoe sole (Menant et al, 2008).  Because of this effect on cutaneous 

and proprioceptive input, many advocates of barefoot running proclaim that running in little or 

no footwear can help reduce injuries (Rose, Bowser, McGrath, & Salerno, 2011).  Some studies 

indicate an increased amount of dynamic balance while barefoot during a single leg jump landing 

test (Rose, Bowser, McGrath, & Salerno, 2011).  This seems to suggest that shoes impede 

mechanoreceptor feedback.  However, most scientists conclude that wearing appropriately fitted 

shoes is the best way to reduce falls, as opposed to wearing just socks or going barefoot (Menant 

et al, 2008).   

Studies show that shoes with thin and hard soles tend to be the best for maximizing 

stability.  While shoes with thick, soft soles are often selected for their comfort, these soft soles 

tend to increase ankle motion in the medial-lateral plane (Robbins et al, 1994).  It is believed by 

some researchers that increased rapid ankle movements may lead to a poor sense of ankle 

proprioception and that soft soles may impact the body’s ability to judge plantar pressure 

distribution (Robbins et al, 1994).  Because they provide less of a support base, softer soles also 

make it harder for the body to counteract balance perturbations (Perry, Radtke, & Goodwin, 

2007).  Thus, as the softness of the sole of a shoe increases, the body must exert increasingly 

strong mechanical responses to maintain balance and becomes less able to deal with more severe 

perturbations (Perry Radtke, & Goodwin, 2007).  In addition, when looking at soles, arch support 



and heel cups need to be taken into account.  For example, when examining balance performance 

among varying styles of flip flops, one study found that flip flops with arch support and heel 

cups tended to lead to a more normal gait pattern than those without these features, suggesting 

that arch support and heel cups are beneficial to proper gait function (Shroyer, 2009).  However, 

it is possible that arch support can lead to increased lateral sliding and a decreased stride length 

when compared to barefoot walking (Shroyer, 2009).  Soles with stabilization and anti-pronation 

devices, as well as those with too much cushioning, have been shown to lead to unnatural gait 

patterns when compared to barefoot walking (Gangemi, 2011).   

In addition to soles, heel height can also have an effect in determining balance.  Studies 

have shown that high heels (9 cm) can cause the body’s COP to shift anteriorly to the forefoot, 

even after just one hour of walking (Ko, Lee, 2013).  Similarly, flat shoes (0.5 cm) can cause the 

COP to shift to the hindfoot (Ko, Lee, 2013).  Heel height can induce excess plantar flexion or 

dorsiflexion in high and low heels respectively (Ko, Lee, 2013).  This displacement of COP and 

overuse of specific muscles needed to maintain this increased plantar flexion or dorsiflexion can 

lead to musculoskeletal disorders (Ko, Lee, 2013).  Therefore, medium heeled shoes (4 cm) are 

recommended, since they do not cause a displacement in COP (Ko, Lee, 2013).  Indeed 

researchers seem to have found an acceptable range of heel heights and indicate that heels up to 

at least 4 cm seem to cause no problems with balance (Lindemann et al, 2003).  In comparing 

heels of 1 cm, 2 cm, and 3.2 cm; no significant differences in balance was found (Lindemann et 

al, 2003).  In fact one study found, in comparing shoes with heel heights of 2.1 cm, 3.5 cm, and 

3.8 cm; that the shoes with heel heights of 3.5 cm and 3.8 cm performed better in balance testing 

than the shoe with a heel height of 2.1 cm (Chander, 2012).  However, these results could be due 

to differences in shoe shaft height and sole surface area (Chander, 2012).   



 Shoe mass can even play a role in balance.  In studying firefighter boot types, it was 

found that heavier types of boots led to a more pronounced decrease of maximum torque 

produced by the muscles of the ankles and knee (Garner, Wade, Garten, Chander, & Acevedo, 

2013).  Increased amounts of fatigue may be why heavier rubber boots were found to cause 

increased sway velocity as opposed to lighter leather boots (Garner, Wade, Garten, Chander, & 

Acevedo, 2013).  Again though, differences in mass may be less important than other differences 

in shoe dimensions.  For example, shaft height and sole surface area were seen to be more 

influential in determining balance performance than mass (Chander, 2012).  When walking, shoe 

mass has been thought to play a role in stride length.  Shoes with greater mass have been shown 

in some studies to correlate with longer stride lengths, possibly due to increased inertia 

(Mundermann, et al, 2003).  However, when comparing different styles of flip flops, heavier flip 

flops do not always produce longer stride lengths.  In one study, flip flops with greater mass 

were shown to have a shorter stride length than those with a reduced mass, suggesting that mass 

may not be the only factor affecting stride length (Shroyer, 2009).   

 Obviously, there are differences between alternative footwear such as flip flops and more 

traditional athletic footwear.  However, flip flops are not the only alternative footwear that has 

been produced in recent years.  Alternative styles such as Crocs® and Vibram® Five- Fingers 

have also entered the market and may possibly affect the biomechanics of the foot in different 

ways from more traditional shoes.  The purpose of the present study is to see how these 

alternative footwear types affect standing balance and postural control.   

 

 

 



CHAPTER III 

METHODOLOGY 

Purpose 

 The purpose of this study was to determine the effects of three different styles of 

alternative footwear on balance after a one mile walk at a self selected pace.  The study focused 

on how the different styles of footwear affected human balance and postural control under quiet 

standing conditions.  Participants were also tested for lower limb extremity muscle activity using 

EMG.   

Participants 

 The participants in this study were 18 healthy, recreationally trained males between the 

ages of 18 and 44 years.  All participants were required to fill out two forms prior to the 

experiment: the physical activity questionnaire (PAR-Q) and the seven day physical activity 

recall (7-day PAQ) in order to determine if they were physically active and healthy enough to 

participate.  Written informed consent was obtained by the Institutional Review Board (IRB).  

Participant information is located in Table 1.   

 

Table 1 

Participant Demographics        Mean ± SD 

Age (years)    22.9 ± 2.9 

Mass (kg) 81.3 ± 8.8 

Height (cm) 179.2 ± 6.0 

 

 



Instrumentation 

 The NeuroCom EquiTest Balance Master® was used to assess balance control and 

postural stability under dynamic test conditions.  The system uses an 18” x 18” dual forceplate to 

measure forces exerted by the feet and includes a moveable visual surround to affect visual input.  

The system uses a Motor Control Test (MCT) and a Sensory Organization Test (SOT) in 

measuring balance.  For the MCT, the system uses unexpected anterior and posterior shifts, 

known as translations, of the forceplate.  This displaces the COG and forces the body to shift to 

maintain balance.  Latencies were defined as the time between the forceplate shift and the 

initiation of the muscle response in the legs.  As part of the SOT, the forceplate and the visual 

surround can be “sway referenced,” meaning that the forceplate and visual surround can be made 

to follow the subject’s anteroposterior body sway.  Sway referencing can effectively eliminate 

useful visual and somatosensory input, causing the central nervous system to rely on other 

senses.  Four sensory conditions from the SOT were used: (1) standing with eyes open (EO) and 

(2) closed (EC) with the force plate fixed, (3) standing with the eyes open and the visual 

surround sway referenced (EOSRV),  and (4) standing with the eyes open and the platform sway 

referenced (EOSRP).  Latencies were defined as the time between the translation onset and the 

active response in the leg.  COP data was collected from these tests and used to calculate AP/ML 

sway RMS and AP/ML sway velocity using the equations below:  

 

 



Experimental Conditions 

 Participants were asked to be a part of three different experimental conditions.  These 

included wearing thong style flip flops (FF), Crocs with clogs (CC), and Vibram Five-Fingers 

minimalist shoes (MIN).  Sole hardness was measured on the Shore A hardness scale, which 

assigns a hardness value ranging from 0A (very soft) to 100A (hard/extra hard materials).  Shoe 

measures are included in Table 2. 

Table 2 

 Crocs (CC) Flip Flops (FF) Vibrams (MIN) 

Heel Height (cm) 2.0 1.4 0.4 

Toe Height (cm) 1.6 1.4 0.3 

Weight (individual shoe in oz) 7.0  4.0 6.0 

Average Sole Hardness 51.2A 71.4A 99.0A 

Midsole Hardness 68.4A 61.3A 66.63A 

 

Experimental Procedures 

 A Repeated Measures, counter balanced design using within-subjects factor was used.  

Participants visited the Kevser Ermin Applied Physiology Laboratory and the Applied 

Biomechanics Laboratory at the University of Mississippi four times, with each time separated 

by at least 24 hours.  The visits occurred as follows. 

Day 1: Each participant was familiarized with the experiment and testing procedures after 

university approved informed consent was obtained.  Measures such as height, weight, resting 

heart rate, and resting blood pressure were taken, and participants completed a physical activity 

readiness questionnaire (PAR-Q).  If any participants were deemed unfit by answering “yes” to 

any question, they were asked to leave the study.  After the questionnaire, the walking-gait trials 



protocol was explained, and participants were asked to walk on a 70 ft indoor track to determine 

a self selected pace.   

Day 2: The first part of experimental testing began at the Applied Biomechanics Lab.  

Participants were prepared and randomized for one of the three footwear conditions.  They were 

then asked to stand as still as possible on the NeuroCom plate for a Sensory Organization Test 

(SOT) and a Motor Control Test (MCT).  Following the SOT and MCT, participants moved to 

the Kevser Ermin Applied Physiology Laboratory, and each one was evaluated while walking 

one mile on a treadmill at his or her self selected pace.  This self selected pace was determined 

by walking 70 ft on an indoor track 6 times and taking the average of the pace times. The first 

and last 10 ft were not counted in determining mean pace of each trial.  Each participant was 

allowed a short warm-up period at half of this selected pace prior to walking a mile on the 

treadmill.  After collecting necessary data in the physiology lab, participants moved back to the 

biomechanics lab where the SOT and MCT were used again in the same manner as before to 

assess balance.   

Day 3 and 4: The next two days followed the same protocol as Day 2 but with a different one of 

the three footwear conditions selected for each participant.  After the fourth day, each participant 

had completed the procedure in each of the three types of footwear.   

Statistical Analysis: With a predetermined alpha level of 0.05, results were analyzed in SPSS 

using a 2x3 repeated measures ANOVA [2 measurement times (pre/post walking) x 3 footwear 

types (FF, CC, MIN)] for each of the SOT conditions and for the MCT latency times. 

 

 

 



CHAPTER IV 

RESULTS 

Analysis 

 Static Balance was measured using the four conditions of the Neurocom® Equitest SOT 

(EO, EC, EOSRV, EOSRP).  These conditions were numbered 1-4, with EO as condition 1, EC 

as 2, EOSRV as 3, and EOSRP as 4.  The values of the average sway velocity and root mean 

square of the COP were used to measure postural sway in the anterior-posterior direction 

(APVEL and APRMS) and the medial-lateral direction (MLVEL and MLRMS).  A repeated 

measures analysis of variance (ANOVA) was used to examine these values across the four SOT 

conditions.  Values were also compared across two time points (pre-walk and post-walk).  

Significance was set at an alpha level of p≤ 0.05.  If a significant main effect or interaction effect 

was found, a pairwise comparison with a Bonferroni correction was used to identify post-hoc 

differences.   

Anterior-Posterior Sway Velocity 

 A significant difference was found when looking at footwear main effect (p= 0.002, η
2
= 

0.305) on APVEL under condition 3 (EOSRV).  In the pairwise comparison for condition 3, 

significant differences were found between the CC and the MIN (p= 0.014) and the FF and MIN 

(p= 0.010).  No significant effects were found for footwear-time interaction, so the differences in 

sway velocity values can be generalized across the two time points.  There were no significant 

effects seen for footwear, time, or footwear-time interaction under conditions 1, 2, and 4 for 

APVEL.   

 



Figures: Averaged Sway Velocity measures in the Anterior-Posterior direction for each of the 

four Neurocom® SOT conditions. * represents a significant difference in footwear conditions, † 

represents a significant difference across time conditions, # represents a significant interaction 

and the bars represent the standard error. 
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Figure 2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

Figure 4 
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Anterior-Posterior Sway RMS 

 There was a significant difference in footwear main effect (p=0.002, η
2
= 0.318) under 

condition 2 (EC) for APRMS.  In the pairwise comparison for condition 2, a significant 

difference in APRMS was found between the CC and the MIN (p= 0.001).  Because there was no 

significant effect by footwear-time interaction, the footwear effects can be generalized across the 

time points.  There were no significant differences in APRMS found for footwear main effects, 

time main effects, or footwear-time interaction effects for condition 1 and conditions 3 and 4.   

 

Figures: Averaged Sway RMS measures in the Anterior-Posterior direction for each of the four 

Neurocom® SOT conditions. * represents a significant difference in footwear conditions, † 

represents a significant difference across time conditions, # represents a significant interaction 

and the bars represent the standard error. 
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Figure 6 
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Figure 7 

Figure 8 
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Medial-Lateral Sway Velocity 

 A significant difference was found in footwear main effect (p=0.036, η
2
= 0.178) on 

MLVEL under condition 3 (EOSRV).  In the pairwise comparison for condition 3, a significant 

difference was seen between the FF and the MIN (p= 0.010).  No significant interaction effects 

were seen for condition 3, so the footwear effects can be generalized across the two time points.  

There were no significant effects seen for footwear, time, or footwear-time interaction for 

MLVEL under conditions 1, 2, and 4.   

 

Figures: Averaged Sway Velocity measures in the Medial-Lateral direction for each of the four 

Neurocom® SOT conditions. * represents a significant difference in footwear conditions, † 

represents a significant difference across time conditions, # represents a significant interaction 

and the bars represent the standard error. 
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Figure 9 

Figure 10 
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Figure 11 

Figure 12 



Medial-Lateral Sway RMS 

 Significant differences were found under condition 3 (EOSRV) for time main effect (p= 

0.020, η
2
= 0.278) and under condition 4 (EOSRP) for time main effect (p= 0.008, η

2
=0.346).  No 

significant effects were found for footwear-time interaction under condition 3 or 4, so the effects 

of time can be generalized across footwear types for both conditions.  There were no significant 

effects seen for footwear, time, or footwear-time interaction for MLRMS under conditions 1 and 

2.   

 

Figures: Averaged Sway RMS measures in the Medial-Lateral direction for each of the four 

Neurocom® SOT conditions. * represents a significant difference in footwear conditions, † 

represents a significant difference across time conditions, # represents a significant interaction 

and the bars represent the standard error. 
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Figure 15 

Figure 16 
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CHAPTER V 

DISCUSSION 

 The purpose of this study was to determine whether or not alternative styles of footwear 

have an impact on postural control after a one mile walk.  The three footwear styles were the 

Crocs (CC), flip flops (FF), and Vibrams Five-Fingers minimalist shoes (MIN).  By using four 

conditions of the SOT (EO, EC, EOSRV, EOSRP) to observe each of the four postural control 

measures (APVEL, APRMS, MLVEL, MLRMS), variance was observed across footwear type.  

Significant differences were found between the CC and the MIN for the measures of APVEL and 

APRMS and between the FF and the MIN for the measures of APVEL and MLVEL.  There was 

a significant main time effect for only one of the four postural control measures (MLRMS).   

One possible reason for the difference in performance across footwear could be sole 

thickness.  The MIN had the thinnest soles of the three footwear types (0.4 cm heel height and 

0.3 cm toe height).  The FF and CC were both at least 1 cm thicker than the MIN at the heel and 

toe.  Also, the MIN had the hardest soles of the three shoes, with an average sole hardness of 

99.0A as compared to the FF and CC at 71.4A and 51.2A respectively.  Sole hardness was 

measured on hardness scale Shore A, which assigns a hardness value ranging from 0A (softer 

than a rubber band) to 100A (harder than a shopping cart wheel).  These results are consistent 

with previous studies which found that hard and thin soles tend to outperform soft and thick soles 

in measures of balance (Robbins et al, 1994).  These previous studies have shown that soft, thick 

soles tend to increase ankle motion in the medial-lateral plane (Robbins et al, 1994).  However, 

Menant et al found that soft, thick soles did not really have an effect on standing balance but 

rather on stability during walking (Menant et al, 2008).  Future studies could look into the effects 

of these three shoes on more dynamic measures of balance.   



 Another factor that has been shown in previous studies to have an effect on balance is 

shoe mass.  Some studies have found that heavier shoes induce increased amounts of sway 

velocity due to greater amounts of fatigue (Garner, Wade, Garten, Chander, & Acevedo, 2013).  

Other studies have shown that mass may not be as important as other factors in determining 

balance performance (Chander, 2012).  In the current study, the FF was the lightest shoe of the 

three at 4 oz.  The MIN and the CC were more similar in mass at 6 oz and 7 oz respectively.  

Despite its lighter mass, the FF did have a significantly greater sway velocity in both the 

anterior-posterior direction and the medial-lateral direction than the MIN.  This suggests that, 

under the conditions of this study, another factor may be more important in determining balance 

than mass.  One reason for this could be that in the current study, subjects were only required to 

walk one mile on a treadmill.  More fatiguing exercises may show a greater effect due to mass.  

Also, the difference in mass between the FF and the MIN (2.0 oz) may not be great enough to 

show any real effect due to mass.  Future research could focus on determining whether or not 

there is a threshold shoe mass value at which fatigue becomes a factor that affects balance 

performance. 

Despite textured insoles, the CC did not exhibit significantly better performance than the 

other two shoes in any of the balance measures or conditions.  This seems to support earlier 

findings that textured insoles do not have a significant impact on balance performance (Hatton, 

Dixon, Martin, & Rome, 2007).  However, because there were other significant differences 

between the three shoes besides textured insoles, future research could isolate textured insoles as 

a possible cause of changes in balance.  Hatton, Dixon, Martin, & Rome isolated textured insoles 

as a variable, but there were only 8 participants in the study, and a larger sample size would be 

beneficial.  While flip flops have been found to lead to decreased dorsiflexion when walking 



(Shroyer, 2009), this change in kinematics did not seem to impact standing balance measures.  

The FF did not perform any worse than the CC during any of the studies, since both performed 

significantly worse than the MIN in two measures of balance apiece.  Although, future research 

could compare the flip flop with a standard running shoe of similar mass and sole thickness to 

determine if the thong-style build of the shoe is responsible for differences in balance 

performance.   

 A significant main effect was seen for time for the measure of MLRMS, but since it only 

appeared as a main effect for one measure, it does not seem that time is a major contributing 

factor to balance performance under the conditions of this experiment.  The one mile walk may 

not be strenuous or long enough to elicit enough fatigue to make any difference in postural 

control.  Also, previous studies have found that changes in sway due to fatigue are typically 

transient and often disappear within fifteen minutes of the exercise (Nardone, Tarantola, 

Giordano, & Schieppati, 1997).  The latency time between the walk and the balance testing may 

have been long enough for some fatigue effects to wear off.  Future studies could minimize this 

latency time and also observe the effects of localized fatigue on these footwear types instead of 

just studying general aerobic fatigue caused by walking, since localized fatigue has led to 

impacts in postural control in some previous studies (Corbeil, Blouin, Bégin, Nougier, & 

Teasdale, 2003).   

 

 

 

 

 



Conclusion 

 In this study, we see that there are significant differences in APVEL and APRMS 

between the Crocs (CC) and Vibrams (MIN).  There were also significant differences in APVEL 

and MLVEL between the flip flops and Vibrams (MIN).  There was only one balance measure in 

which time played a significant role in affecting balance performance (MLRMS).  These results 

suggest that the decreased sole thickness and increased sole hardness of the MIN as compared to 

the CC and FF may have played a role in its better balance performance.  Fatigue induced during 

the one mile walk may have had a small effect on balance performance, as indicated by the 

differences in MLRMS over time, but it did not have as strong of an effect as footwear.  Based 

on the results of this study, future alternative footwear designs should focus on decreasing sole 

thickness and increasing sole hardness.   
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