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ABSTRACT

The courtship displays of male manakins (Pipridae) involve an array of acrobatic
and postural elements. Previously it was found that species with elaborate displays exhibit
specializations in motor planning and coordination areas of the brain. Several studies have
suggested a relationship between cerebellum (Cb) morphology and distinct motor-related
functions for the anterior Cb (somatosensory, flying, hopping/walking), posterior Cb
(vision, audition, flying, hopping/walking), and vestibular Cb (flying, hopping/walking,
vestibular). The anterior, posterior and vestibular Cb as well as basic morphological
features of the Cb were measured and tested for a relationship with courtship display
complexity in manakins. I compared Cb morphology of four species of manakins: Manacus
vitellinus, Pipra mentalis, Chiroxiphia lanceolata, and Lepidothrix coronata as well as one
species of flycatcher, Mionectes oleagineus, representing a range of display complexities. I
scored each species’s display for overall complexity, taking into account acrobatic
elements, sound production by the wings and level of coordination between two displaying
males. The following features of Cb morphology were measured: Cb volume, white matter
volume, molecular layer volume, granular layer volume, volume of the lateral cerebellar
nucleus (CbL), volume of the medial cerebellar nucleus (CbM), CbL cell density, CbM cell
density, Purkinje cell (PC) size and density, and the sizes of the anterior Cb, posterior Cb
and vestibular Cb cortices. Morphology variables were corrected for allometry, if

necessary. Parallel analyses were performed on data corrected for phylogenetic
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relatedness using independent contrasts and on non-corrected data. Data reduction was
accomplished by performing individual linear regressions of each Cb morphology variable
vs. display complexity were performed, and variables for which p<0.1 (CbM volume,
vestibular Cb size, white matter volume and PC size for both phylogenetically corrected
data and non-corrected data) were then tested in stepwise multiple regressions. For non-
corrected data, both vestibular Cb size (negative relationship) and CbM volume (positive
relationship) best predict display complexity. For phylogenetically corrected data, only
white matter volume predicted display complexity (positive relationship). This study is the
first to provide evidence that specific morphological features of the Cb may evolve in

conjunction with a sexually selected behavior.
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I. INTRODUCTION

The primary goal of this research was to determine whether there are
morphological adaptations in the brains of manakins (Pipridae), a group of suboscine
Passeriform birds, relating to the elaborate acrobatic courtship displays that they perform.
Specifically, [ examined the relationship between these displays and the cerebellum (Cb), a
brain region with functions that suggest that it is likely to be important in the acquisition
and/or performance of manakin displays. I used a comparative method to determine if
there is a relationship between the Cb and manakin displays. Each species of manakin in
this study has a display that is quite distinct from that of other species. These species differ
in the types and complexities of movements, flights, postures, mechanical sounds, and
social interactions involved in their displays. Although the Cb has recently been shown to
play a role in birdsong (DiGuisto & Day, unpublished data), manakins do not learn songs,
and their vocalizations are neither complex nor thought to be under strong selection.
Therefore, comparing features of the Cb between species with different display
complexities may reveal which features of the Cb are related to the ability to perform
complex displays. The specific features that I compared are the total Cb volume; granular
layer volume; molecular layer volume; white matter volume; size of anterior, posterior, and
vestibular Cb cortices; size of Purkinje cells (PCs), linear density of PCs; volume of the
medial and lateral cerebellar nuclei (CbM and CbL, respectively); and cell density in CbM

and CbL.



[ tested the hypothesis that there is an association between display complexity and
in Cb morphology. Each species was given a display complexity score based on the overall
complexity of their display behavior. According to the principle of proper mass (Jerison
1973), if an association exists between Cb and behavior, the species with more complex
displays should exhibit larger Cb regions or greater cell density than species with less
complex displays. Therefore, in analyses of four manakin species and a tyrant flycatcher (a
closely related, lekking non-manakin) that exhibit species-level variation in complexity of
courtship displays, I expected a positive correlation between Cb size and display
complexity for each portion of the Cb involved in the courtship displays with the exception
that allometric scaling might necessitate the expansion of some features with shrinkage of
others. Phylogenetic inertia—the tendency for a trait to be more similar in closely related
species than in distantly related species, even with no selective force acting on the trait—
could be a factor influencing display complexity or Cb morphology trends. Therefore, I used
independent contrasts to correct for phylogenetic relatedness. The Cb morphology features
found to be correlated with display complexity were then tested in a stepwise multiple
regression model to determine which variables most likely explain variation in display
complexity. [ predicted that Cb volume, PC size and density, and CbM and CbL volume and
cell density will be positively correlated with increasing display complexity since PC and

CbM/L reflect major functions and are convergence points for inputs and outputs in the Cb.

i. BRAIN SPECIALIZATIONS
The vertebrate brain has localized functional regions. Specific behaviors can be

strongly associated with the activity of these particular regions, and prevalence of a



behavior may be related to increased cell numbers in and size of the associated region.
Regions of the brain responsible for behaviors or functions more prevalent in one organism
than another should be larger in the former (Jerison 1973). For example, somatosensory
representation in the brain for unique, receptor-dense tactile appendages in the star-nosed
mole is localized and greatly increased in size relative to that for other senses (Catania &
Kaas 1995). The size of the hippocampus has been shown to be proportional to use in
spatial learning in mammals, birds and reptiles (reviewed in: Sherry et al. 1992; Day 2003).
The pretectal nucleus lentiformis mesencephali, which is involved in gaze stabilization in
vertebrates, is enlarged in a group of birds (hummingbirds; Trochilidae) that use gaze
stabilization to hover in flight versus non-hovering birds (Iwaniuk & Wylie 2007).
Similarly, the auditory midbrain nucleus, which integrates auditory input for sound
localization, is enlarged in owls (Strigiformes), which primarily use sound cues to hunt
prey at night (Iwaniuk et al. 2006b).

A relationship also exists between courtship behaviors arising evolutionarily
through sexual selection and their related brain regions. Because female birds carry the
burden of egg-laying, limiting their maximum potential number of offspring and increasing
their investment in reproduction relative to males, the theoretical benefit to a female’s
lifetime reproductive success is maximized by further investing her time and energy into
the rearing of her offspring. Hence, a male is free to invest his time and energy in strategies
that lead to a greater number of females mating with him rather than caring for his
individual offspring. Because of this greater investment in fewer offspring by females, and
the large number of males willing to mate with nearly any female, a female has the privilege

of choosing with whom she mates. Females judge male quality by observing specific traits,



which are often advertised by the male in a courtship display. Those males that excel at the
display behavior get to mate and pass their genes and traits on to offspring, while other
males may not obtain any offspring. Presumably, these traits reflect a male’s quality in
terms of health and social status. Therefore, over many generations, these male traits
evolve and diverge from those of females, and may become quite exaggerated. If extensive
neural processing underlies the display behavior, the nervous system may become
specialized over evolutionary time.

In many species of oscine (Passeriformes, passeri) birds, males learn particular
songs that they sing to females in order to attract and convince them to mate. There exist
unique brain regions related to the learning and production of song. The size of the major
song learning region, HVC, is positively correlated with song syllable repertoire size both
within and among songbird families (Devoogd et al. 1993; Szekely et al. 1996). The sizes of
three song regions, including HVC, are greater in males that sing than in females that do not
sing in several species including canaries and zebra finches (e.g. Nottebohm & Arnold 1976;
Brenowitz et al. 1997). One group of oscines, the bowerbirds (Ptilonorhynchidae), not only
learn vocalizations and have related song circuitry, but also construct complex display
“bowers”. Males build these elaborate bowers out of sticks or grasses and decorate with
insects, flowers, fruits and other objects and use these bowers to attract mates. The
building of these bowers requires procedural learning, planning and performance of
stereotyped postures and movements, and the size of the Cb across five species of
bowerbird relates to the complexity of the bower that the species builds (Day et al. 2005).
This relationship demonstrates that the Cb is subject to the force of sexual selection and

suggests that sexual selection for complex motor displays in manakins may affect Cb size.



ii. MANAKIN OVERVIEW

Several species of manakins perform acrobatic courtship displays that may
correspond to specializations of particular brain regions. While the manakin displays are
distinct from those of bowerbirds, the presence of common elements such as intensive
motor planning and performance of stereotyped movements and postures raises the
possibility that the manakins may also have evolved neurological specializations in the Cb
independently of bowerbirds. The manakins inhabit neotropical forests and are nearly all
sexually dimorphic lekking birds. A lek breeding system is one in which females freely
choose their mates among males located in close proximity to one another—in a “lek”—
and the males never assist with raising offspring (Bradbury 1981). In addition to acrobatic
and postural elements, displays of many manakin species include mechanical sounds
produced by extremely rapid and forceful movements of the wings and also include
male-male cooperation in some species. The complexity of display elements and types of
acrobatics performed, if any, depend on the species.

While progress has been made in understanding the hormonal regulation of display
behaviors in the golden-collared manakin, Manacus vitellinus, (Schlinger et al. 2001; Day et
al. 2007; Schlinger et al. 2008), virtually nothing is known about neural adaptations related
to manakin displays. One would expect, given the uniqueness of most manakin species’
displays, that there exist specializations in brain regions that control these physical
behaviors. Because the displays are acrobatic in nature, one would expect specializations to
exist in a region involved in learning, planning, and coordination of complex motor
movements such as the Cb. The Cb is also involved in aspects of motor cognition (Fuentes &

Bastian 2007; Glickstein et al. 2009), as well as in learning-by-observation of stereotyped



procedural movements such as those performed during bowerbird displays (Day et al.
2005; Torriero et al. 2007). Below I describe the display of each manakin species included
in this study and the neuroanatomical features of the Cb that are predicted to be most

important to these displays.

iii. MANAKIN DISPLAY DESCRIPTIONS

Four species of manakins and one flycatcher were examined in this study: golden-
collared manakin (Manacus vitellinus), red-capped manakin (Pipra mentalis), lance-tailed
manakin (Chiroxiphia lanceolata), blue-crowned manakin (Lepidothrix coronata), and
ochre-bellied flycatcher (Mionectes oleagineus). Each of their displays are distinct from one
another and also differ in complexity and types of elements included. The procedure for
scoring display complexity is described in the Methods section (Table 2).

Golden-collared manakin (M. vitellinus) males are black and olive with a bright
yellow collar and long, yellow “beard” feathers that the birds extend during a display. At the
start of the breeding season, a male clears a patch of leaves on the forest floor in a circle
~0.5 m in diameter. Surrounding this “arena” are a few small vertical saplings. When
displaying, a male perches on a vertical sapling with his body and beard extended in a
precise posture. He then hops very rapidly between saplings in his arena, and in midair on
each hop he snaps his wings behind his back to produce a loud firecracker sound, a
“wingsnap,” before alighting on the next sapling and righting his posture (Figure 1;
Chapman 1935). To conclude the sequence of hops between saplings he often performs a
back-flip from the sapling to the ground and then alights, producing a “grunt” sound with

the wings (Fusani et al. 2007) and sliding down the sapling to mount a female if there is



one present (Figure 1 arrow b). Perched males also produce rapid “rollsnaps,” wing snaps

at ~5.6 Hz that are believed to be involved in territorial communication.

Figure 1. Depiction of M.
vitellinus courtship display.
Display largely consists of
rapidly hopping between
vertical saplings over a
cleared court while making
loud wingsnaps with each
hop.

Red-capped manakin (P. mentalis) males are black with bright red heads and bright
yellow-feathered legs. Males’ displays consist of swooping flights in the lower canopy with
non-vocal mechanical ‘pop’ noises upon landing. While perched on a branch, a male
performs a “moonwalk” display in which tiny, rapid hops give the illusion that the bird is

sliding backwards along a branch (Figure 2; Skutch 1969).

Figure 2. Depiction of P.
mentalis courtship display.
Bird swoops into the perch
(a), making a wingsnip sound.
Then the male “moonwalks,”
making small up-and-down
hops very rapidly while
moving backward (b).




Lance-tailed manakin (C. lanceolata) males are black with a red crown, blue upper
wing coverts, and elongated central rectrices. These males’ displays require cooperation of
two individuals. The display occurs on a low horizontal liana 0.5 m to 2 m above the
ground. One male flies and hovers approximately one quarter of a meter above the perch
while another male slides under him across the vine. The hovering male then lands on the
perch while the other male hops up to hover, and the male now on the perch slides under
him. The males thus take turns in leap-frog fashion (Figure 3). Males also have a small

mechanical sound repertoire (DuVal 2007).

\A Figure 3. Depiction
of C. lanceolata

"\, courtship display.
7 ale Z ‘\\-\ The display always
/i g N involves more than
' \ | one male, and males
/ Male 1 s~ | alternately “leapfrog”
' over one another as
shown.

Blue-crowned manakin (L. coronata) males are black with a blue crown. Their
displays are the least complex of the species examined in this study. The display area
consists of several display perches where a male perches and performs bowing and side-to-
side jumping displays. Males also fly rapidly between perches and between small vertical
saplings (Figure 4). No mechanical sounds are produced. Males chase each other using
deep, exaggerated wing beats, a behavior which is considered to be a low level of male-

male coordination (Skutch 1969; Duraes et al. 2007).
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Figure 4. Depiction of
L. coronata courtship
display. Display
consists mostly of
simple flights between
perches.

The ochre-bellied flycatcher (M. oleagineus) is a member of the tyrant flycatchers
(Tyrannidae). Similar to the manakins, this species is lekking, frugivorous, and lives
sympatrically with the manakins examined in this study. Male M. oleagineus also perform a
simple courtship display, making this species a good non-manakin to examine. Males’
displays involve a perched, crouching posture with exaggerated wing flicks. A male then
proceeds to perform flight displays, which involve rapid flights between perches; slow
butterfly-like flights between perches, similar to flights seen in C. lanceolata and L.

coronata; and hovering several seconds above a perch (Westcott 1994).

iv. CEREBELLUM ANATOMY OVERVIEW

The Cb can be divided into the deep Cb nuclei and a surrounding cortex. The cortex
consists of three layers: granular layer, PC layer, and molecular cell layer (Figure 5). The Cb
nuclei in birds are homologous to those in humans and follow similar organizational
principles: the CbL is more corticocerebellar while the CbM is more spinocerebellar
(Arends & Zeigler 1991b; Wild & Williams 2000). The CbM projects to a number of regions
in the brainstem and spinal cord: vestibular complex, reticular nuclei, plexus of Horsley
portion of the parvicellular reticular formation, nucleus centralis medullae oblongatae, pars

dorsalis, intermediate layer VII of the cervical spinal cord extending to cervical segment 8-



9, dorsal lamella of the inferior olive, locus coeruleus, dorsal subcoerulean nucleus, and
motor trigeminal nucleus (Arends & Zeigler 1991b). The CbL sends mostly ascending fibers
to midbrain and brainstem areas: red nucleus, nucleus of Cajal, midbrain central grey,
prerubral fields, nucleus intercalatus thalami, ventrolateral thalamic nucleus, medial
spiriform nucleus, nucleus principalis precommissuralis, nucleus of the basal optic root,
nucleus geniculatus lateralis pars ventralis, dorsolateral thalamus, papilioform nucleus,
medial pontine nucleus, gigantocellular and paramedian reticular nuclei, and inferior olive
(Arends & Zeigler 1991b). These connections suggest that the CbL is involved in motor
planning and cognitive aspects (Schwarz & Schwarz 1986), while the CbM is more involved
in controlling postural muscles (Karten & Finger 1976; Wild 1992; Necker & Neumann
1997; Person et al. 2008). The cells of the Cb nuclei are either large glutamatergic
projection neurons or small GABA-ergic interneurons. Further characterizations of these
neurons using immunohistochemistry to identify the expression of several antigens within
the nuclei has revealed a more complex differentiation of neurons within the Cb nuclei
(Chung et al. 2009; Paxinos et al. 1999).

The cortical region of the Cb in birds is divided into ten distinct structures called
folia (labeled I-X) and, if necessary, further divided anteroposteriorly into subfolia (ex. Vla,
VIb; Figure 7). Mossy fiber inputs from the spinal cord, brain stem, reticular and pontine
nuclei, and cerebral cortex to the Cb synapse with granule cells in the Cb cortex (Figure 6).
The granule cell axons form excitatory parallel fibers in the superficial molecular layer and
synapse with Purkinje cell dendrites, stellate cells, and basket cells. It has been proposed
that the granular layer transforms the mossy fiber inputs to generate well-timed spike

bursts to the molecular layer (D’Angelo & De Zeeuw 2009). Basket cells and stellate cells in
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the molecular layer then form inhibitory synapses on Purkinje cell dendrites and soma. The
PCs form a single-cell layer between the granular layer and the molecular layer and are the
sole output cells of the cortex. They send inhibitory projections to the Cb nuclei. The Cb
nuclei then send mostly glutamatergic excitatory projections to their targets, as well as
some inhibitory projections to the inferior olive. In addition to mossy fibers, climbing
fibers, another type of Cb input, arise from the inferior olive, which receives
somatosensory, visual and cerebral cortical information. Climbing fibers from a particular
set of olivary neurons have excitatory synapses on PCs as well as excitatory collaterals that
synapse on the same Cb nuclei neurons that receive projections from those PCs. The
nuclear cells then project back to the original olivary neurons. These loops are called
olivocorticonuclear complexes or modules. The different components described in this
paragraph play different roles in Cb processing, and | have measured several of these
components to determine which aspects of Cb function relate to manakin display

complexity.
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Molecular Layer
Purkinje Cell Layer
Granular Layer

Figure 5. Cerebellar cortex. The molecular layer is the most superficial layer and consists
mostly of the dendrites of PCs. The Purkinje cell (PC) layer is a single-celled layer of large
PCs that are the sole output neurons of the Cb cortex. The granular layer consists of densely
packed granule cells that relay mossy fiber inputs to the molecular layer.
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PF

Ascending/
Descending
Projections

—

MF
—_—

Precerebellar
Nuclei (-)

Figure 6. Cb circuitry. Excitatory mossy fiber (MF) inputs synapse on granule cells (GC),
the axons of which form excitatory parallel fibers (PF) in the molecular layer. PCs are the
sole output of the Cb cortex and send inhibitory projections to the cerebellar nuclei (DCN),
which also receive excitatory inputs from MF collaterals. The DCN then project out of the
Cb. Golgi cell (GgC) modify inputs to GCs, while basket cells (BC) and stellate cells (SC)
modify inputs to PCs in the molecular layer. Olivocorticonuclear complexes consist of
excitatory climbing fiber (CF) projections from the IO to the PC/molecular layer with
collateral climbing fibers (CFC) to the DCN. The PCs receiving the CF then project to that
very same part of the DCN receiving the CFCs, and then the DCN sends an inhibitory
projection back to the original set of neurons in I10.

v. HISTORY OF RESEARCH INTO FUNCTIONAL ORGANIZATION OF THE CEREBELLUM
Initial investigations into the functional organization of the Cb were done in

mammals. Because the Cb is a highly homologous structure, I describe in detail findings
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regarding the mammalian Cb as these findings may also apply to the avian Cb. The idea that
the Cb is somatotopically organized was denied by 19t century scientists (Luciani 1891),
and although early reports provided evidence of potential functional organization
(Sherrington 1897; Lowenthal & Horsley 1897), the scientific community overlooked them
(Manni & Petrosini 2004). However, in 1904 two researchers working independently of
one another published influential reports of functional localizations in the Cb (Bolk 1904;
Pagano 1904). Bolk (1904) used careful phylogenetic comparisons in mammals of Cb
anatomy to determine locations of functional areas, while Pagano (1904) utilized direct
experimentation by injecting curare into different areas of the animal Cb and observing the
effects. Both researchers simultaneously concluded that what are now referred to as
lobules or folia I and II (Larsell 1947, 1948) are involved in limb coordination. In the 1940s
electrophysiological techniques were employed to investigate afferents to the Cb, and these
results shifted representations of the limbs to lobules IIl and IV, as well as completely
reversed the map created by Bolk and instead suggested a body representation going
roughly head-to-toe, posteroanteriorly within the Cb anterior lobe (Adrian 1943; Snider
1944) with more diffuse representations in the posterior lobe (Snider 1944). This shows
that there may be multiple somatotopies, each detected by different methods, or there may
be one somatotopy that neither method alone is sufficient to detect. Snider and Stowell
(1944) also described visual and auditory inputs to lobules VI and VII. The Cb, however, is
not so simple. Snider and Stowell’s (1944) recordings were performed in anesthetized
animals, and many of these results have not been replicated in awake animals (Manni &
Petrosini 2004). Nevertheless, in recent studies in humans using imaging techniques such

as positron emission tomography (PET) and functional magnetic resonance imagining
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(fMRI), the existence of the two homunculi, one in the anterior and one in the posterior
lobe have been confirmed (Manni & Petrosini 2004), but with considerable noise caused by
other relevant features of Cb organization.

From anterograde and retrograde tracings, one concludes that the main efferent and
afferent projections are organized in a band-like parasagittal topography. There also exist
parasagittal divisions of the Cb into olivocorticonuclear complexes which consist of
modules of distinct groups of inferior olivary neurons, climbing fibers, and deep cerebellar
nuclei neurons (Figure 6; Garwicz 1992; Trott 1987; Trott & Armstrong 1987; Ekerot
1979). These in turn can be divided into microzones that consist of groups of climbing
fibers, with the same receptive fields, that innervate small groups of Purkinje cells that
project to specific deep cerebellar nuclei neurons (Trott 1987; Andersson 1978). Some of
these microzones are somatotopically organized while others respond to different types or
aspects of movement in rats (Manni & Petrosini 2004).

More recently it has been shown with molecular markers that Cb nuclei are
compartmentally organized into at least twelve topological expression domains (Chung et
al. 2009). Therefore, Cb morphology—including deep cerebellar nuclei (Van Kan 1993;
Asanuma 1983) as well as cortex -may contain somatotopic body representations, and the
functional topology of the Cb reflects more complex functional classifications. Further
evidence of localization of complex functions is seen in fMRI studies in humans. Stoodley
(2010) examined fMRI recordings during five different motor and cognitive tasks, such as
finger tapping and mental rotation, and found that each task consistently activated distinct
areas of the cortex that corresponded either to specific lobules or to functional zones,

which could represent olivocorticonuclear modules. In addition, the Cb nuclei can be
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divided into distinct regions based on connectivity with the Cb cortex (Sugihara & Shinoda
2007). Together, these findings suggest that functional connectivity of the Cb cortex and
nuclei may be spatially partitioned. Given the homologous nature of the Cb in vertebrates,
most of the features demonstrated in mammals and described in this section likely apply to

the avian Cb.

vi. FUNCTIONAL ORGANIZATION OF THE AVIAN CEREBELLUM

Specific functions have been ascribed to specific morphology of the avian Cb, and
the current study investigates this Cb morphology as it relates to manakin displays. As in
mammals, the folia are grouped anatomically into the anterior lobe (I-V), posterior lobe
(VI-IXcd) and vestibular cerebellum (IXcd-X), and specific folia are thought to be related to
certain parts of the body or to have certain functions (Table 1). Folia I-III likely are
involved in coordinating hindlimb muscles, as bird families with small hindlimb muscles
and minimal behavioral use of the hindlimbs exhibit large reductions in these folia (Larsell
1967; Zusi & Bentz 1984; Cleere 1998; Iwaniuk et al. 2006b). In a recent, large comparative
study, species classified as having strong hindlimbs have significantly larger anterior lobes
and smaller posterior lobes than other species, and species classified as strong fliers have
significantly smaller folia I-III and larger folia VI-VII (Iwaniuk et al. 2007). The larger VI-VII
in strong flyers likely reflects increased visual demands during flight, as folia VII and the
posterior part if VI respond strongly to visual stimulation in electrophysiological studies
(Whitlock 1952; Gross 1970; Clarke 1974), and these folia appear enlarged specifically in
raptors, which have good visual acuity (Larsell 1967). Folia VIII responds mostly to

auditory stimuli in electrophysiological studies (Whitlock 1952; Gross 1970). Expression
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patterns of the immediate early gene, ZENK, confirm some of these comparative findings.
Expression in hopping finches and parrots and walking doves in the dark is localized to the
anterior lobe, VI, and IXcd (Feenders et al. 2008). Warblers wing whirring in dim light
exhibited similar ZENK distribution with additional expression in VII. Therefore, there is
some consensus in the distribution of functions across the folia—e.g. vision is localized to
VII and leg use is localized to the anterior lobe. The current study may provide additional
support for this localization of function or help to refine these functional localizations.
Largely consistent with the Feenders et al. (2008) findings, electrophysiology experiments
show that folia II-VI and IX respond to somatosensory stimuli of the wings and legs
(Schulte & Necker 1998). To summarize, there is consistent evidence that hindlimb
function is associated with folia I, I, IIL, IV, V, VI, IX, and X; wing function with [, I, III, IV, V,
V], VII, IXcd, X; vision with VII; and audition with VIII. Overlapping somatotopies seen in the
previous studies are likely due to measurement of different functions—e.g. complex motor
and sensory aspects of hopping and wing whirring versus somatosensory stimulation in an

anesthetized animal.
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Table 1. Cb folia function summary based on comparative, electrophysiology, and ZENK
studies described above. (1) Comparative: Larsell (1967), Zusi & Bentz (1984), Cleere
(1998), Iwaniuk et al. (2006b & 2007); (2) Electrophysiology: Schulte & Necker (1998); (3)
ZENK: Feenders et al. (2008); (4) Comparative: Iwaniuk et al. (2007); (5) Comparative and
Electrophysiology: Larsell (1967), Whitlock (1952), Gross (1970), Clarke (1974); (6)
Elecrophysiology: Whitlock (1952), Gross (1970); (7) Retrograde tracing: Pakan et al.
(2008).

Folium Functions
AnteriorCb
I hindlimbs?, hopping3, walking3, wing-whirring3
hindlimbs?, somatosensory legs/wings2, hopping3, walking3, wing-
1l whirring3
hindlimbs?, somatosensory legs/wings2, hopping3, walking3, wing-
111 whirring3
1\ somatosensory legs/wings2, hopping3, walking3, wing-whirring3
\Y somatosensory legs/wingsZ2, hopping3, walking3, wing-whirring3
PosteriorCb flying#, some vision®, somatosensory legs/wings2, hopping?,
VI walking3, wing-whirring3
VII flying?, vision®, wing-whirring3
VIII audition®
IXab somatosensory legs/wings?
somatosensory legs/wingsZ, hopping3, walking3, wing-whirring3,
VestibuloCb Xcd vestibular’
X somatosensory legs/wings?, vestibular’

Figure 7. Nissl stained midsagittal
section of golden-collared manakin Cb
with folia and subfolia labeled.
Anterior to the right.
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Anterograde and retrograde tracings have been performed in pigeons to determine
the corticonuclear and corticovestibular projections (Arends & Zeigler 1991a).
Connectivity of the CbM and CbL does not differ with respect to the folia from which
projections to CbM and CbL originate. Rather, as in mammals there appear to be
longitudinal zones in which more medial PCs project to CbM while CbL receives projections
from more lateral zones. These longitudinal zones may represent distinct functional areas
that this study does not examine. The existence of longitudinal zones in birds is further
demonstrated with zebrin II staining (Iwaniuk et al. 2009; Pakan et al. 2007). Recall that
CbL projects to premotor and planning cerebrocortical regions while CbM projects to the
brainstem and spinal cord. Therefore, by examining folial morphology (rostrocaudal) as
well as CbM and CbL (longitudinal zones), this study has the potential to determine
whether rostrocaudal or longitudinal functional organization is more important in manakin
displays. Furthermore, since the CbM has mostly descending projections while the CbL has
mostly ascending projections, this study may differentiate contributions from Cb motor
loops versus those that are more pre-motor/cognitive, respectively.

No comparative studies or studies examining behavioral complexity directly
demonstrate that features of Cb morphology measured in this study might relate to display
complexity in manakins. However, many examples show that specific changes in Cb

morphology can be associated with variation in behavior.
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vii. BEHAVIORAL CORRELATES OF CEREBELLUM MORPHOLOGY

[ described above that total Cb volume is correlated with bower complexity, but the
following examples demonstrate that differences in specific aspects of Cb morphology can
be associated with differences in behavior.

In humans, several disorders heavily affecting cognition, such as fragile X syndrome
and attention deficit hyperactivity disorder, are associated with a decrease in the size of the
posterior Cb (Steinlin 2008). Down syndrome, which is the most common cause for mental
retardation (Hook 1981), is associated with a disproportionately greater reduction in
cerebellar volume than other brain regions (Aylward et al. 1997). In the Down syndrome
mouse model, Ts65Dn, a reduction in volume in the granular and molecular layers is
observed but no impairment of motor function, suggesting that these layers may be more
associated with cognitive behaviors (Moran et al. 2000).

PC deficits have also been shown specifically to affect behavior. In mutant mice
strains in which PCs never develop or degenerate after birth—Lurcher or Shaker strains,
respectively—mice develop a marked ataxia, indicating that these cells in particular are
necessary for Cb motor function and that a decrease in PC number effects motor ability in
an individual (D’Angelo 2009; Wolf et al. 1996). In humans cerebellar degeneration in
alcoholics also is associated with ataxia, mainly of the lower limbs, and appears to be the
result of a decrease in PC size (Andersen 2004).

The volumes of the Cb nuclei in several anthropoid species have been compared
with respect to differing locomotor types and spatial habitats. In species of most locomotor
types, CbL is relatively larger than CbM. However, arboreal quadrupeds, whose locomotor

functions involve forelimb and hindlimb coordination in a 3-dimensional environment,
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have Cb nuclei which are each similar in size to one another (Matano & Hirasaki 1997).
Additionally, the authors of that study found that the enlargement of CbL versus CbM in
humans is much greater than in other anthropoids and propose that the

larger CbL, which is more corticocerebellar, in humans reflects their complex, voluntary
finger movements and may even be an evolutionary prerequisite to language.

Given that these features of the Cb are capable of associating with behavioral
variability, [ examined whether Cb morphological features relate to the evolution of
courtship behaviors in manakins. These courtship behaviors require complex acrobatic
movements and likely require a great amount of Cb processing. By comparing manakin
species with displays that vary in complexity, I sought to determine if specific Cb features
are enlarged, presumably to allow for greater capabilities for Cb processing, in species with
more complex displays. [ hypothesized that Cb volume, PC size and density, and CbM and
CbL volume and cell density would be most likely to increase with increasing display
complexity because Cb volume represents total Cb processing capacity and the PCs and Cb

nuclei are major convergence points for information within the Cb.
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II. METHODS

i. SCORING DISPLAYS

In order to objectively quantify the display complexities of each species, published
reports describing unique and shared display elements between each species were utilized.
Scores were determined from rigorous descriptions and summaries by Prum (1990), as
well as additional descriptions of social behavior and mechanical sounds (Chapman 1935;
Prum 1994; Prum 1998; DuVal 2007; Bostwick & Prum 2003; Duraes et al. 2007). The
information utilized in scoring the displays are 1) Number of discrete display elements
performed and type of display site (Table 2, “Display Characters”), 2) Level of social
interaction between displaying males (Table 2, “Cooperation”), and 3) Presence, number
and type of mechanical sounds produced (Table 2, “Mechanical Score”). The scores for each
criterion were added together to create the overall Display Complexity score (Table 2).

Table 2. Display complexity score breakdown. Display Complexity equals the sum of
Mechanical Score, Cooperation, and Display Character columns.

Species Display Complexity | Mechanical Score | Cooperation | Display Characters
Manacus vitellinus 28 10 1 17
Chiroxiphia lanceolata 22 7 2 13
Pipra mentalis 18 8 0 10
Lepidothrix coronata 11 0 1 10
Mionectes oleagineus 3 0 0 3
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The number of Display Characters refers to the total number of discrete display
elements described in the literature. These elements include such behaviors as frenzied-
flutter flights, to-and-fro hops, butterfly chases, and swoop flights (Prum 1990). The type of
display perch was also included in Display Characters. A species received one point for
using only one or a couple of horizontal perches, two points for using a fallen log (a very
specific display perch), three points for using a loose court of several perches, and four
points for actually clearing an arena and manipulating the environment to produce the
court. The Mechanical Score adds information regarding the presence of mechanical
sounds in the display (1 point), the number of display elements that include mechanical
sounds, the number of sounds per element, and whether the species is capable of
producing mechanical sounds in flight (2 points), only perched (1 point), or both (3 points).
Cooperative displays involve two or more individuals who behave together. One point was
given for the presence of coordinated display elements that also may be performed solo,
and 2 points was given if there were display elements in the species’ repertoire that may

only be performed cooperatively.

ii. OBTAINING SPECIMENS

In June-August of 2008 and 2009, I collected a total of 15 adult male manakin
specimens and two male flycatchers in Panama in the eastern Canal Zone near the town of
Gamboa. This time period is within the breeding seasons for these species, but at the very
early or very late end for some species, so the gonads were examined to determine
presence of active spermatozoa using standard hematoxylin and eosin stain. Presence of

spermatozoa confirms that the sampled individuals were in breeding condition. The
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breeding specimens included three Manacus vitellinus, four Pipra mentalis, three
Chiroxiphia lanceolata, three Lepidothrix coronata and two Mionectes oleagineus. All
necessary permits were obtained from USDA, IACUC, and Panamanian authorities,
Autoridad Nacional del Ambiente and Autoridad del Canal de Panama.

Mist nets were set up daily from 0600 to around 1300 and sometimes again from
1400 to 1700. Nets were checked every thirty minutes. Adult male manakins were
identified by plumage. Birds were kept in a cloth bird bag for transport back to the
laboratory for processing. Mionectes oleagineus is not sexually dimorphic in plumage, so

specimens were sexed in the laboratory by examination of the gonads.

iii. TISSUE PREPARATION

Each specimen was transported to the field laboratory in Gamboa, usually within an
hour of removal from the mist nets. They were then exposed to an overdose of isoflurane
anesthetic. A peristaltic pump was used to perform a transcardial perfusion of the bird. The
outflow needle of the pump was placed in the left ventricle of the heart, and the jugular
vein was severed to allow fluids to flow out after traveling through the body.
Approximately 30 ml 0.1M phosphate-buffered saline (PBS) solution was slowly (appx.
3ml/min) pumped through the bird followed by 40 ml 10% neutral-buffered formalin
(NBF). The brain was then dissected out and placed in NBF for 24 hours of post-fixation
before being transferred to 20% (w/v) sucrose in PBS for cryoprotection. After the brain
sank (appx. 24 hours), indicating that the sucrose had permeated the tissue, it was
solidified in a gel block of 8% (w/v) gelatin and 16% (w/v) sucrose in RO-Hz0. The gel

block was then placed in NBF for 24 hours to harden it and then transferred to 30% (w/v)

24



sucrose in PBS until it sank. Finally, the gel block was frozen and stored on dry ice until
transferred to -80 °C at the University of Mississippi. The bodies, including gonads, were
stored in formalin and kept at 4 °C.

For one specimen of each species, after the brain was dissected out and postfixed in
NBF for 24 hours but before being cryoprotected, the brain was cut midsagittally using a
razor blade. For one of the halves, the CB was then separated from the rest of the brain, and
photographs were taken of the medial, lateral, and dorsal views for record of the
orientation of the CB in relation the rest of the brain and to assist in defining folia. This
tissue was otherwise treated as described above for the intact brains.

In the lab at the University of Mississippi, each whole brain was sectioned sagittally
on a cryostat into 3 series at a thickness of 30 pm. One series of sections—i.e. every third
section—was placed directly onto gelatinized slides and allowed to air-dry. The slides were
then Nissl-stained with cresyl violet to define cells and nuclei. The second and third series
were placed in cryoprotectant solution (Watson et al. 1984) and stored at -20°C to be used

later for immunohistochemistry or other procedures.

iv. DATA COLLECTION
A. Confirmation of Breeding Condition

[t was important that all individuals were in breeding condition when caught
because seasonal fluctuation in brain region size has been shown to occur in birds
(Brenowitz 1997). To confirm that all individuals were indeed in breeding condition, the
testes were examined for spermatozoa production using hematoxylin and eosin stain. In

breeding birds, the spermatozoa are clearly visible entering the seminiferous tubule
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(Figure 8). A testis was dissected out of the body, then cryoprotected in 30% sucrose (w/v)
in PBS until it sank. The testis was placed in a gelatin block (w/v), allowed to solidify,
placed in NBF overnight, then cryoprotected in 30% sucrose (w/v) until it sank. Each testis
was sectioned as thinly as possible (5-20 um) without damaging tissue, and sections were
placed on a gelatinized slide and allowed to dry. Sections on the slides were then stained
with hematoxylin and eosin. Testes for M. oleagineus specimens were need by another lab
for other purposes and not examined for spermatozoa, but the individuals were caught

during their reported breeding seasons (Westcott 1994).

Spermatozoa

5/

Figu 8. Lef)Prple spermatozoa clearly lining the seminiferous tubules in testis of
breeding bird. Right) No spermatozoa visible in non-breeding individual. Only manakin
individuals producing spermatozoa were included in the study.
B. Whole brain, Cb, molecular layer, granular layer, and white matter volume measurements
Images of every 3rd section on the slides (ie. every 270 um) were taken using a Zeiss
Stemi 2000-CS dissecting microscope and Zeiss Axiocam HRc digital camera. Image ]
software from NIH was used to measure areas on each section, and estimates for whole
brain volume, whole CB volume, molecular layer volume, granular layer volume, and Cb
white matter volume for each specimen were determined using the Cavalieri estimator

formula: estimated volume = (sum of cross-sectional areas) x (thickness of each section) x
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(# sections between measured sections) (e.g. Rosen & Harry 1990). Hence, the sum of areas
measured in cm? on each section was multiplied by 0.027 cm, the distance between slices,
to give the volume estimate. White matter volume was determined by measuring the
volume of the boundary of the white matter and granular layer, then subtracting the
volume of the Cb nuclei. Granular layer volume was determined by measuring the volume
within the granular layer and molecular layer, then subtracting the volume traced at the
white matter/granular layer boundary (see Figure 5 in Introduction). Molecular layer
volume was determined by subtracting the volume traced at the molecular/granular layer

from total Cb volume.

C. Purkinje cell size and density

Using a Zeiss Imager.M1 microscope with Axiocam HRc camera and Axiovision
image capture and analysis software, a random sampling scheme was employed to measure
the size and density of Purkinje cells, the sole efferent source of the cerebellar cortex. The
Purkinje cell layer is located at the boundary of the molecular and granular layers and is a
single cell in thickness (Figure 9). Therefore, in tissue sections the linear density was
measured. Measurements were done in the midsagittal section at 1000X magnification
(Figure 9c), and the maximum cross-sectional area of an intact PC was measured. In order
to prevent PC-profile-area underestimates, PC area was only measured if the cell was intact
and a nucleolus was visible (Tran et al. 1998). Only a visible nucleolus was required to
count a cell for density measurements. Each folium was measured from anterior to
posterior. The first field-of-view (FOV) measured for each folium was decided by randomly

obtaining a number between one and three. Then every third FOV was measured as one
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moves along the PC layer while maximizing the layer length at each FOV. The leading edge
of the PC layer in each FOV was considered forbidden and partial cells on that edge were
not counted in order to prevent overestimation of cell number (Figure 9). PC density was

measured by dividing the total number of cells by the total length measured in each FOV.

Figure 9. Views of the curving PC layer of the Cb. A) 50X magnification with PC layer
shown by red line. B) 400X magnification, PCs visible. C) 1000X magnification for
measuring PC cell size. Leading forbidden end of PC layer shown. Partial cell visible but not
counted.

D. Cb nuclei volumes

The volumes of CbM and CbL were also calculated using the Cavalieri estimator
formula. Area measurements, in cm?, of CbM and CbL were made on each 30 um section,
which is separated by a gap of 60 um. Therefore, the sum of areas was multiplied by 0.009
cm to obtain each volume estimate. Area measurements were made at 50X magnification
using the same equipment as with PC measurements. The CbL was defined as the collection
of large neurons located superior to the lateral cerebellar peduncles, and the CbM was
defined as the collection of large neurons superior and medial to the cerebellar peduncles,
with reference to zebra finch and pigeon atlases (Figure 10; Karten 1967; Nixdorf-

Bergweiler & Bischof 2007).
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CbL CbM

Figure 10. Sagittal sections of the cerebellum. Left frame) CbL is located in lateral sections
superior to the cerebellar peduncles where white matter enters and exits the Cb. Right
frame) CbM is located in sections medial to the cerebellar peduncles.
E. Cb nuclei cell densities

Cell density was determined at 1000X magnification using the same Zeiss
equipment as for PC and Cb nuclei measurements. First, a grid was created at 50X
magnification such that each square was the size of a FOV at 1000X. For CbM, a random
number between one and four was generated, then that number of squares was counted
down from the top left square. Starting with the next square down, in every fourth square
for which the top right corner lay within the region, the number of cells was counted at
1000X. For CbL, cells were counted in all squares because the region is smaller than the
CbM. This sampling scheme resulted in an acceptable coefficient of error (Schmitz & Hof
2000), less than 0.1, for each species data point (Gokcimen et al. 2007). The microscope
focus was adjusted in-and-out to determine depth boundaries, and only cells for which an
in-focus nucleolus, full or partial, was visible were counted, except cells crossing the

bottom or left edges, which were considered forbidden. These measurements were
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performed on every 4th section through the cerebellum, and the first section was chosen by
obtaining a random number between one and four. Then the volume of each FOV was
calculated by multiplying section thickness, 0.003 cm, by the area of the square,
0.000059965 cm?. The total number of cells from each FOV measured for a specimen was
added together, then divided by the total number of FOVs. This density was divided by the

volume of a FOV to give density in number-of-cells/cm3.

F. Anterior, posterior, and vestibular Cb size

Measurements were done in Image ] using the same sections as with Cb volume
measurements. The length of the PC layer in the midsagittal section was measured as a
proxy for anterior Cb size (folia I-V), posterior Cb size (VI-IXcd), and vestibular Cb size
(IXcd-X). The length of the PC layer in the midsagittal section is known to correlate well
with Cb volume and has been used to measure folia size in other studies (Iwaniuk et al.

2007).

v. DATA ANALYSIS

Analyses were performed on both phylogenetically corrected species contrast
means and non-corrected means. I used both corrected and non-corrected species means
because the phylogenetic correction reduces n from 5 to 4, reducing statistical power, and
hence may distort true relationships rather than reveal them.

Prior to analyses, all morphology data was In-transformed to improve fit to
normality. Then each variable was corrected for any allometric effects. Allometric effects

involve the scaling up of organ structure sizes in larger animals (e.g. West et al. 1997). For
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example, the size of the Cb in bowerbirds is correlated with bird weight (Day et al. 2005).
Therefore, if allometry exists in these manakin specimens for the Cb measurements, they
need to be corrected to standardize comparisons of specific brain morphology. To
determine if allometric corrections were necessary, | performed stepwise linear
regressions with each morphological variable as responses and candidate covariates (Cb
volume, Brain minus Cb volume, Brain Weight) as predictors to assess the predictive value
of the potential covariates. If there was a significant covariate for the Cb morphology
variable, this was used as a covariate to adjust the value of this measurement.

Next, general linear models (GLM) were run with each morphological variable as the
response, Species as a fixed factor, and any covariates, as determined from the stepwise
regression. If there was no significant interaction between Species and the covariates, the
interaction term was removed from the model. Marginal means (species means adjusted
for covariates) from the GLM for each species were then used for comparison with Display
Complexity.

To correct for species relatedness, phylogenetically independent contrasts were
created for marginal species means for Cb morphology, along with the Display Complexity,
using the computer software module PDAP (Midford et al. 2005) run within the software
Mesquite (Maddison & Maddison 2006). This is necessary because the species in the study
are relatively closely related and, hence, may not be considered independent data points.
Independent contrasts are generated between each node in the phylogeny, also taking into
account the distance between those nodes. The topology of relationships used to generate
the contrasts was created using a molecular tree created by McKay et al. (2010) based on

the mitochondrial ND2 and COI loci and nuclear MUSK intron 3 (Figure 11). Because this
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phylogeny did not include the ochre-bellied flycatcher (M. oleaginous), branch lengths
between each node were set equal to one. Setting each branch length to one is the most
unbiased method of assigning values to unknown branch lengths. Display complexity
scores and the independent contrasts from each Cb morphological variable were then
analyzed using simple regressions forced through the origin as required for independent
contrast correlations. This analysis tells one if the brain region in question and display

complexity evolved together.

Mionectes

Chiroxiphia

Lepidothrix

Manacus

Pipra

Figure 11. Phylogenetic tree of manakin species with flycatcher (Mionectes) outgroup
used to create independent contrasts. Topology from McKay et al. (2010).

Next, simple regressions of each Cb morphological variable versus Display Score
were performed. [ used these regressions to reduce the number of variables that would be
included in a more complex model. This was necessary because there were more variables
than species. Only Cb morphology variables that were nearly significant (p < 0.10) for the

non-corrected marginal mean analyses or the corrected contrast analyses were further
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tested in a stepwise multiple regression. Two separate stepwise regressions were
performed, one for phylogenetically corrected data and one for non-corrected data.

Historically, Cb folia have been described as species-specific (Larsell 1967), using
only single individuals as representatives (Iwaniuk et al. 2007), but this study utilizes
multiple individuals of each species. Therefore, foliation patterns were examined across
individuals within each species to determine if this assumption was valid. Furthermore,
since the degree of foliation has been shown to relate to the size of the Cb across orders of
birds, a cerebellar foliation index (CFI; Iwaniuk et al. 2006a) for each specimen was
generated to represent the degree of foliation, and these indices were regressed against Cb
Volume to determine if this relationship holds within more closely related species. The CFI
was calculated in the midsagittal section as the length of the PC layer divided by the

cerebellar envelope as in Iwaniuk et al. (2006a; Figure 12).

Figure 12. Envelope drawn around tips of folia at the PC layer. The CFI was calculated as
the total length of the PC layer (see Figures 5 & 10) in the midsagittal section divided by the
envelope: CFI = PC Layer / Envelope.
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III. RESULTS

i. CB FOLIATION

Upon examination of subfolia in all specimens, only folia II, IV, VI, and IX ever split
into subfolia. Within each of the five species examined in this thesis, there is variation in
the number of subfolia between individuals within a species: M. vitellinus (n=4) in folia II,
IV and VI (Figure 13); P. mentalis (n=3) in folium VI (Figure 14); C. lanceolata (n=3) in folia
IV and VI (Figure 15); M. oleagineus (n=3) in folia Il and VI (Figure 16); and L. coronata
(n=4) in folium VI (Figure 17). One individual of L. coronata actually has an entire extra

folium between Il and IV.
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Figure 13. Golden-collared manakin (M. vitellinus) subfoliation differences across four
specimens. Folium II: (A) and (B) have single folium while (C) and (D) have two subfolia.
Folium IV: (A), (B), and (C) have one folium while (D) has two subfolia. Folium VI: (A) has
two subfolia while (B), (C), and (D) have three subfolia.

Figure 14. Red-capped manakin (P. mentalis) subfoliation differences between two
specimens. Folium VI: (A) has two subfolia while (B) has three subfolia.
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Figure 15. Lance-tailed manakin (C. lanceolata) differences in subfoliation across three
specimens. Folium [V: (A) has one folium while (B) and (C) have two subfolia. Folium VI:
(A) and (B) have two subfolia while (C) has three subfolia.

Figure 16. Ochre-bellied flycatcher (M. oleagineus) differences in subfoliation between two
specimens. Folium II: (A) has one folium, though it appears widened, while (B) has two
subfolia. Folium VI: (A) has two subfolia while (B) has three subfolia.

Figure 17. Blue-crowned manakin (L. coronata). Folium VI: (A) has three subfolia while (B)
has two subfolia. In (B), between folia Il and IV there is an entire extra folium that does not
appear to be a subfolia of either II, III or IV.
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In a regression of CFI versus Cb Volume in all individuals, including two additional

manakins whose testes were in non-breeding condition, a positive relationship was
detected (F(1,16) = 6.992, p = 0.018, r? = 0.32; Figure 18). This suggests that the amount of

foliation can be partially explained by the size of the Cb. Because of the unexpected
variation in foliation patterns within species, only measurements of anterior, posterior and

vestibular Cb were done rather than measurements of individual folia.

CFl vs. Cb Volume
1.3

1.28 <
1.26 r2=0.32
w p=0.018

122
1.2
1.18

1.16 &
1.14 ¢
1.12
-3.4 -3.2 -3 -2.8 -2.6 -2.4
Ln-Cb Volume (cm?)

Ln-CFl

Figure 18. Regression of Ln-CFI versus Ln-Cb Volume. There was a significant positive
relationship, suggesting that in these specimens having a greater degree of foliation in the
Cb is partially the result of having a larger Cb.

ii. CB MORPHOLOGY AND DISPLAY COMPLEXITY
Stepwise multiple regressions were performed to determine which potential

covariates contributed to allometric effects. Potential covariates tested for Cb Volume
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included Brain minus Cb Volume and Brain Weight. For all other variables, potential
covariates included Cb Volume, Brain minus Cb Volume, and Brain Weight. Table 3 lists
each morphology variable and the significance of covariates. Where no covariate was

significant, a correction factor is not necessary in the GLM.

Table 3. Results of stepwise multiple regressions for each Cb morphology variable and its
potential covariates. Cb morphology variables were later corrected for allometric scaling

o «

with significant covariates. a = 0.05. Dash (“-“) indicates no significant covariate.

Cb Morphology Variable Covariate RZaq;

Cb Volume Brain minus Cb Volume 0.640 <0.001
CbM Volume Cb Volume 0.240 0.037
CbL Volume Brain Weight 0.265 0.029
CbM+CbL Volume Brain Weight 0.238 0.038
CbM # Cells - - -
CbL # Cells - - -
CbM+CbL # Cells - - -
CbM Cell Density Brain Weight 0.338 0.014

Cb Volume 0.504 0.006
CbL Cell Density - - -
CbM+CbL Cell Density - - -
Granular Layer Volume Cb Volume 0.844 <0.001
White Matter Volume Brain minus Cb Volume 0.730 <0.001
Molecular Layer Volume Cb Volume 0.765 <0.001
PC Layer Length Brain minus Cb Volume 0.594 <0.001
Anterior Cb Size Cb Volume 0.865 <0.001
Posterior Cb Size Cb Volume 0.489 0.002
Vestibular Cb Size Cb Volume 0.797 <0.001
PC Size Brain Weight 0.430 0.005

Brain minus Cb Volume 0.571 0.002
PC Density - - -
PC # Cb Volume 0.545 0.001

The GLMs were run with each morphological variable as the response, Species as a
fixed factor, and any appropriate variables as covariates as determined from the previous
stepwise regressions (Table 3). There were no significant interactions detected between

Species and covariates for any of the variables-of-interest. Therefore, the GLMs were run
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again with the interaction term removed, and the marginal means for each species were
obtained for use in comparisons with Display Complexity. If no covariates existed then
species means were calculated without using GLMs. In the individual linear regressions of
Cb morphological variables versus Display Complexity, [ used a cutoff of p < 0.1 rather than
0.05 to decide which Cb variables to include in a multiple regression because the sample
size was somewhat low, reducing statistical power. Individual regression results are
summarized in Table 4. Given the potential association of Vestibular Cb Size with display,
additional measurements in the vestibular Cb—PC size, density and number—were

included to determine if there might be further associations in the vestibular Cb.
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Table 4. Results from linear regressions of each non-phylogenetically corrected Cb
morphology variable vs. Display Complexity. The sign of the relationship is given for
variables for which p < 0.1, highlighted in blue. These variables were then tested in a
stepwise regression.

Cb Morphology Variable r2 p slope
CbL Volume 0.05 0.706

CbM Volume 0.70 0.078 | pos.
CbL+CbM Volume 0.59 0.129

CbL Cell Density 0.20 0.447

CbM Cell Density 0.58 0.133
CbL+CbM Cell Density 0.38 0.265

CbL # Cells 0.26 0.383

CbM # Cells 0.00 0.963
CbL+CbM # Cells 0.09 0.620

Cb Volume 0.31 0.329

White Matter 0.72 0.071 | pos.
Molecular Layer 0.59 0.127
Granule Layer 0.14 0.535

PC Layer Length 0.27 0.368
Anterior Cb Size 0.11 0.593
Posterior Cb Size 0.14 0.531
Vestibular Cb Size 0.78 0.046 | neg.
PC Size, all folia 0.72 0.068 | neg.
PC Density, all folia 0.12 0.571

PC #, all folia 0.00 0.935
Vestibular Cb PC Size 0.04 0.764
Vestibular Cb PC Density 0.08 0.646
Vestibular Cb PC # 0.18 0.478

Variables for which p < 0.1—CbM Volume, White Matter Volume, Vestibular Cb, and
PC Size—were then included in a stepwise multiple regression with entry probability of F
set at 0.05 and removal probability of F set at 0.1. The resulting model included both
Vestibular Cb and CbM Volume (F(1,4) = 337.3, R%.4=0.994, p=0.003). Vestibular Cb was
negatively related to Display Complexity while CbM Volume was positively related to
Display Complexity. The collinearity tolerance for Vestibular Cb and CbM Volume was 0.76

indicating that these variables are independent of one another in the model. Figure 19
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depicts the results from the individual linear regressions of Vestibular Cb Size vs. Display

Complexity and CbM Volume vs. Display Complexity.

A. Vestibular Cb Size
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Figure 19. A) Linear regression of Vestibular Cb Size vs. Display Complexity. B) Linear
regression of CbM Volume vs. Display Complexity. Both Vestibular Cb Size and CbM Volume
were found to predict Display Complexity in a stepwise multiple regression. Standard error
bars shown for each species, although they were not used in statistical analyses.
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Phylogenetically corrected data showed similar results as for the non-corrected

data. As required for independent contrasts analyses, linear regressions were forced

through the origin. Results are summarized in Table 5.

Table 5. Results from phylogenetically corrected simple regressions of contrasts for each

Cb morphology variable versus Display Complexity. The sign of the relationship is given for

variables for which p < 0.1, highlighted in blue. These variables were then tested in a

stepwise regression.

Cb Morphology Variable r2 p slope
CbL Volume 0.000 0.983

CbM Volume 0.688 0.083 pos.
CbL+CbM Volume 0.537 0.159

CbL Cell Density 0.140 0.536

CbM Cell Density 0.556 0.148
CbL+CbM Cell Density 0.303 0.336

CbL # Cells 0.213 0.434

CbM # Cells 0.001 0.964
CbL+CbM # Cells 0.071 0.666

Cb Volume 0.279 0.360

White Matter 0.809 0.038 pos.
Molecular Layer 0.620 0.114

Granule Layer 0.050 0.717

PC Layer Length 0.511 0.175

Anterior Cb Size 0.006 0.905
Posterior Cb Size 0.167 0.495
Vestibular Cb Size 0.749 0.058 neg.
PC Size 0.685 0.084 neg.
PC Density 0.121 0.567

PC # 0.001 0.955
Vestibular Cb PC Size 0.082 0.640
Vestibular Cb PC Density 0.028 0.787
Vestibular Cb PC # 0.111 0.583

Variables in Table 5 for which p < 0.1—the same variables as in non-corrected

analyses (Table 4): CbM Volume, White Matter Volume, Vestibular Cb Size, and PC Size—

were then tested in a stepwise multiple regression with entry probability of F set at 0.05
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and removal probability of F set at 0.1. The significant model included only White Matter

Volume (F(4) = 12.745, R%,4;=0.746, p=0.038, B=48.2).
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IV. DISCUSSION

The acrobatic courtship displays of manakins require coordination and planning of
complex motor sequences. The substantial interspecific variation in display complexity
allows one to compare the morphology of the Cb, a motor-planning region, across species
to examine how the Cb functions in the performance of acrobatic displays. This system
provides a novel perspective for studying the function and evolution of the Cb, a
homologous structure found throughout vertebrates. Several Cb morphological variables
were tested for an association with courtship display complexity. I hypothesized that at
least the major measures of Cb morphology—Cb Volume, PC size and density, and CbM and
CbL volume and cell density—would increase with increasing display complexity since PC
and CbM/L measurements reflect major functions and are convergence points for inputs
and outputs in the Cb.

The phylogenetically corrected results suggest a significant positive relationship
between White Matter Volume and Display Complexity. That is, species that perform more
complex displays have more white matter within the Cb. An increase in white matter would
suggest an increase in the number of projections into and out of the Cb and Cb cortex. No
other variables in this analysis were found to relate to Display Complexity despite the
potential relatedness of many of the variables with white matter. The white matter consists
of axons of PCs, cells in CbM and CbL, and cells located outside the Cb. Either there was not

enough power in this analysis to detect other relationships or the white matter largely
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originates from cells outside the Cb. Future studies could additionally examine the size of
the Cb peduncles. This could be done by estimating the area in the transverse plane of each
peduncle at the narrowest point on its path into the Cb. Focusing on the peduncles would
provide information on all inputs and outputs to the Cb and would not include connections
between the Cb nuclei and cortex.

Because the relationships did not seem to change substantially between the
phylogenetically corrected and non-corrected analyses, and n was reduced from 5 to 4 with
phylogenetic corrections, there is a possibility that differences in the stepwise regression
results between the corrected and non-corrected data were affected by reduced statistical
power. Therefore, the results of the non-phylogenetically corrected analyses should be
interpreted along with that of the corrected data.

The model from the stepwise regression for non-corrected data consisted of a
negative relationship between Vestibular Cb Size and a positive relationship between CbM
Volume and Display Complexity. The increasing size of CbM Volume with Display
Complexity indicates greater demand for processing by the Cb of motor information in
more complex displays since the CbM projects to regions of the spinal cord and brainstem
(Arends & Zeigler 1991). This result also suggests that Cb function related to display may
be longitudinally organized because the Cb nuclei reflect parasagittal zones in the Cb
cortex. Though few studies have specifically examined Cb nuclei size in relation to
behavior, these data are consistent with the findings of Matano & Hirasaki (1997)
regarding locomotor behavior in anthropoids. They found that CbL was enlarged relative to
CbM in most species except in arboreal quadrupeds, which, like manakins, utilize both

hind- and forelimbs to navigate a 3-dimensional environment. Arboreal quadrupeds had Cb
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nuclei that were similar in development to one another, suggesting an increased demand
for CbM function in arboreal quadrupeds relative to species with less complex locomotor
types. The results for both CbM Volume and White Matter Volume support the hypothesis
that regions of the Cb related to Display Complexity are larger due to increased processing
demands as predicted by the principle of proper mass (Jerison 1973). However, the
negative relationship reported here between Vestibular Cb Size and Display Complexity is
contrary to this hypothesis.

Because the vestibular system contributes to balance and a sense of spatial
orientation with respect to gravity, one would expect features of this system to be
important in complex acrobatic displays. Hence, this negative relationship remains a
mystery. The potential negative relationship between Vestibular Cb Size and Display
Complexity could further be investigated by measuring the size of the vestibular nuclei in
the brainstem. Because these nuclei receive inputs from the vestibular Cb, the size of these
nuclei should also be inversely related to Display Complexity if there really is a reduction in
vestibular processing with increased display complexity. If these nuclei are not inversely
related to display, this could indicate that the results obtained in this study regarding the
vestibular Cb do not reflect the true relationship and should be investigated in more
species.

Strangely, PC Size trended toward a negative relationship with Display Complexity.
In the simple regressions, this relationship had a p-value < 0.1, but PC Size did not reach
significance in the stepwise regression. A decrease in PC size or density is associated with
ataxia (D’Angelo 2009; Wolf et al. 1996; Andersen 2004 ), so one would not expect to see a

decrease in PC size or density in manakin species with more complex acrobatic displays.
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The prediction that Cb Volume would show a positive relationship with Display
Complexity was not supported. Therefore, this relationship likely would remain absent
even if other manakin species were included. Cb volume in males of five species of
bowerbirds has been shown to be positively related to the complexity of the bower
structure built by each species (Day et al. 2005). Building of a bower requires procedural
learning, planning and performance of stereotyped postures and movements, so one also
would have expected Cb Volume in manakins to relate to display complexity. However, a
major difference between manakin and bowerbird courtship behaviors that could explain
the discrepancy is that bower construction involves a high degree of manipulation of the
environment. In both birds and mammals there is a correlation between Cb size and visual-
guided manipulative skills (Sultan 2005; Sultan & Glickstein 2007), and the lack of
manipulative skills involved in manakin displays could explain the lack of relationship of
display with Cb size. Further support for this idea is that the golden-collared manakin (M.
vitellinus), which removes forest litter in order to create a display arena, is the only
manakin species in this study that manipulates its environment to a substantial degree, and
M. vitellinus also has the largest Cb Volume.

Historically, Cb morphology, especially with regard to foliation patterns, has been
described for species comparisons using only a single representative of each species with
the implicit assumption that there is little to no intraspecific variation (Larsell 1967).
However, in this study there was a remarkable amount of intraspecific variation in foliation
patterns. Larsell (1967) mentioned that in a species of duck for which he examined at least
two individuals, he noticed a difference in the number of subfolia, but few researchers have

elaborated on this point or taken it into consideration when performing multispecies

47



studies. The substantial intraspecific variation in subfoliation, and even in basic foliation in
one species, seen in the manakins suggests that even major morphological features of the
Cb are not species specific, and confirms the necessity of including multiple individuals to
represent a species in future research in this field. It also suggests that the assignment of
functionality to specific folia cannot be done if foliation patterns themselves are not
consistent.

There is evidence that this intraspecific variation in Cb morphology may reflect the
size of the Cb. In a large comparative study including representative individuals of several
avian orders, Cb volume predicted the degree of foliation, as measured using a
standardized Cb foliation index (Iwaniuk et al. 2006a). Within the individuals in this study,
which include three to four individuals per species within the same family (Pipridae) as
well as two closely related flycatcher individuals, Cb volume significantly predicts the
amount of Cb foliation as measured by a standardized foliation index. This is the first
demonstration of such an effect at the family level.

A major limitation in this study was the limited access to brain tissue. Because these
birds were wild caught, many months of work were required to obtain only a few
individuals. Because fieldwork was done only in the Canal Zone of Panama, where the only
manakin species present are those included in this study, it will be necessary to travel to
new field sites to obtain different species. Given the amount of intraspecific variation
present and the number of Cb morphology variables examined, it would help to include
more individuals and more species in the future. However, because the results for
Vestibular Cb Size and CbM Volume indicate such a strong significant relationship with

Display Complexity despite low statistical power, it is likely that one or both of these
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relationships would still be seen upon inclusion of more specimens. From museums, [ have
obtained eleven individuals representing six species of manakin and processed the brain
tissue. These could not be included in this study due to major differences in tissue
preparation between museum and fresh caught specimens as well as the amount of
intraspecific variation. With the addition of more specimens, a separate parallel study of
museum-prepared individuals could be performed. However, even though inclusion of
more species will increase statistical power, the diversity of Cb functions could still
interfere with the examination of the relationship of Cb morphology with display
complexity.

The Cb has a wide variety of connections with the rest of the brain and the spinal
cord and is involved in several types of behaviors. While it seems likely that the non-
display behaviors of manakins are very similar, this is not necessarily the case. For
example, subtle species differences in foraging behavior could exist. Certain species might
prefer certain types of fruits that require different sallying behaviors, or species that live in
more arid regions might rely on hunting insect prey more than species in strictly rainforest
environments. Furthermore, if food is less localized for some populations, these
populations will have larger home ranges and may even display in different lek locations
throughout their lifetime. It is unknown how the Cb varies in relation to these potential
variations in foraging and social behavior. It is also unknown whether manakin displays are
learned, either fully or partially. Because bowerbirds learn how to build their bowers from
watching others males, future research in bowerbirds should examine the size of CbL,
which is thought to be related to cognition and motor planning, in relation to bower

complexity.
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In conclusion, the relationships determined in this study were a negative
relationship for Vestibular Cb Size, a positive relationship for CbM Volume, and a positive
relationship for White Matter Volume versus Display Complexity. The latter two results
support my hypothesis and suggests that CbM’s descending motor projections and the
amount of neural communication in the Cb are related to the acrobatic nature of the
displays. The negative relationship for Vestibular Cb Size contradicts my hypothesis and
remains unexplained. Because non-phylogenetically corrected data produced relationships
very similar to corrected data, species relatedness does not appear to confound the
relationships in this study. Analyses of phylogenetically corrected data suggest that only
White Matter Volume is positively related to Display Complexity, implying a greater
number of inputs and outputs traversing the Cb in species with more complex displays.
These findings suggest that there is correlated evolution of manakin display complexity
and Cb morphology. Given the diversity of functions with which the Cb is involved, for the
Cb to exhibit specializations specifically related to display, there likely is a strong selective
force driving this correlated evolution. To further examine the strength of these findings,
additional manakin species will be examined. Further research also should compare Cb
morphology of males and females within species that perform complex displays. Because

females do not display, Cb specializations should not be present.
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