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ABSTRACT 

ERIN LEIGH DYER: Economic Optimization of an Ethylbenzene Process 

(Under the direction of Adam Smith) 

 

 

 

 This report describes the process of optimizing an existing design for a chemical 

plant that produces the chemical intermediate ethylbenzene. For an engineer, economic 

optimization involves manipulating the design variables of a chemical process in order 

to improve the economic outcome of the project. In this case, the objective of the 

optimization was to maximize the net present value of the ethylbenzene plant. After 

analyzing the net present value of the existing design, the team conducted subsequent 

analyses on the operation of the process, adjusting variables such as temperature, 

pressure, and flow rate in order to minimize the costs of manufacturing.  

 The most important tool in the analysis of this chemical process was SimSci 

Pro/II process simulation software, which allowed the team to determine the effects of 

varying many different process parameters simultaneously. The team made all decisions 

about the final design of the process according to what would be the most economical 

design and still be within the constraints of the project.  

 The team found that the most economical design would use both a new catalyst 

with higher selectivity and a lower grade benzene feed. The new catalyst would 

suppress the production of chemical by-products, thereby reducing the extent of the 

purification process. Using the lower grade benzene feed would allow the plant to save a 

significant amount of money on raw materials. The team also made other 

recommendations for optimization of the process equipment. 

 The final optimized design is estimated to have a net present value of $50.9 

million, a substantial improvement from the base case net present value of -$10.7 

million. However, the team recommends many more detailed analyses of this design 

before any action is taken. 
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Introduction 
 

At the beginning of the Fall 2014 semester, my team in Ch E 451 (Plant Design I) 

began the task of designing an ethylbenzene plant at the hypothetical Ole Miss 

petrochemical facility, which produces a wide range of chemicals derived from 

petroleum. The purpose of the plant was to produce ethylbenzene for use in an on-site 

styrene facility. Our assignment was to optimize the process from the given base case 

design of the ethylbenzene plant, with our main objective to maximize the net present 

value (NPV) while keeping within the plant’s specifications. These specifications were to 

produce 80,000 tonne/yr of ethylbenzene with a purity of 99.8 mol% and a maximum of 

2 ppm diethylbenzene. Another constraint on our design was that we were unable to 

perform heat integration, since the utilities produced in the ethylbenzene process were 

already integrated into the styrene facility. 

The process concept diagram, Figure 1, shows how benzene and ethylene react to 

form ethylbenzene. Benzene is purchased at $1.04/kg, ethylene is purchased at $0.72/kg, 

and ethylbenzene can be sold for $1.34/kg. Because benzene and ethylene react to form 

ethylbenzene in a 1:1:1 stoichiometric ratio, the process has an economic potential of 

$0.528/kg benzene. The economic potential is a positive value, indicating that the process 

warrants further investigation. 
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Figure 1: Process concept diagram for production of ethylbenzene from benzene and 

ethylene. 

 

Any of the assumptions made in analysis of this process were based on the 

heuristics presented in Chapter 11 of Richard Turton’s Analysis, Synthesis, and Design of 

Chemical Processes [1] textbook for Ch E 451, including assumptions on calculating the 

sizes of process equipment and evaluating the operating parameters of the equipment. In 

addition, Chan Park’s Contemporary Engineering Economics [2] was used as a reference 

for all economic analyses. 

In addition to the base case, the project presented two possible changes for the 

plant, with the option of making one, both, or neither of the changes. The first possible 

change was to use a new catalyst, which was more expensive, but would suppress the 

reaction of ethylbenzene to form diethylbenzene. The second possible change was to use 

a less expensive, lower purity benzene feed. After evaluating these possible changes and 

deciding which, if any, we would implement in the plant, we further optimized the 

process. 

In Turton’s Analysis, optimization is defined as “the process of improving an 

existing situation, device, or system such as a chemical process.” In optimization, an 

engineer has control over the design variables, which can either be continuous (such as 
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temperature) or discrete (such as the number of trays in a distillation column). An 

engineer uses an objective function, a mathematical function with minimums or 

maximums, to make decisions when optimizing a process. In most optimizations, 

including the one described in the following pages, the objective function relates to the 

economic outcome of the process. If the objective function describes the costs of the 

process, an engineer will search for its minimum; if the function describes profit, the 

engineer will search for its maximum. In the case of this optimization, the objective 

function is the net present value of the ethylbenzene plant. 

The result of the objective function is limited by certain constraints on the process 

and on the design variables. For example, a catalyst may have a maximum operating 

temperature of 500°C (as is the case in this particular optimization), and therefore the 

engineer cannot choose to operate the process above 500°C, no matter how beneficial it 

may be to the economic outcome. 

Optimization of a process generally begins with analysis of a base case, which is 

the starting point for optimization. In this case, the base case is a proposed ethylbenzene 

process that is already designed, and the goal is to improve its economic outcome. 

Engineers use two types of optimization: topological optimization, which deals with the 

arrangement of process equipment, and parametric optimization, which deals with 

operating variables such as temperature and pressure. This analysis of the ethylbenzene 

plant mainly uses parametric optimization. For each piece of equipment in the process, 

our team varied the design variables over a range within the constraints of the process 

and observed their effect on the objective function, which was different depending on the 

purpose of the equipment. For example, because we desired maximum conversion of raw 
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materials and maximum selectivity of the desired product over the undesired product in 

the reactor train, we varied the operating temperature and pressure to find the temperature 

and pressure that would produce maximum conversion and selectivity. 

In the following pages, I will briefly discuss how we decided which of the options 

to use in our design, and I will explain how we optimized the process. We used SimSci 

PRO/II process simulation software to simulate the ethylbenzene plant and Microsoft 

Excel to create the needed figures and tables to present our results. We used the 

CAPCOST program in Excel to estimate the costs of all equipment and referred to 

Turton’s Analysis when calculating the sizes and operating conditions of the equipment. 
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Comparison of Possible Changes 

Base Case Analysis 

 

Before we decided which of the proposed changes to make to the ethylbenzene 

plant and began to optimize the process, we performed an analysis on the base case 

design. We began by simulating the process in PRO/II, referencing the stream tables and 

equipment descriptions provided in the original process description. We then used 

heuristics to size all of the equipment and calculated the cost of each piece of equipment 

in CAPCOST. Heuristics are experience-based rules of thumb or shortcut methods that 

practicing engineers use to solve problems. We calculated the costs of manufacturing, 

including utility costs, labor, and raw materials, and finally created a cash flow statement 

that allowed us to calculate the net present value of the project. With a project length of 

12 years and a minimum acceptable rate of return (MARR) of 12%, we calculated the net 

present value of the base case to be -$10.7 million. Figure 2 is the process flow diagram 

of the base case design.  
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Figure 2: Process flow diagram of the base case design. 
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We then began to evaluate which elements in the base case were negatively 

affecting the net present value. Sensitivity analysis dictates that the cost of raw materials 

and the revenue from the desired product have the greatest effect on net present value. As 

shown in Figure 3, the cost of raw materials dramatically impacts the net present value 

when the base case value is varied by 30% in either direction. The amount of 

ethylbenzene produced impacts the net present value on the same scale as the raw 

materials but in the opposite direction. However, because the plant is constrained to a 

constant ethylbenzene production of 80,000 tonne/yr, our team could not alter the 

production rate in order to improve the net present value. Figure 4 shows the effect of 

utilities, operating labor, and equipment. Both the cost of utilities and the cost of 

operating labor have a significant effect on the net present value, since they are 

continuous costs over the length of the project, though their effects are not as dramatic as 

the effects of revenue and raw materials. One-time capital costs such as equipment costs 

have little effect on the net present value. 
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Figure 3: Sensitivity analysis of the base case, showing the variation of net present value 

with respect to the percent deviation from the base case value for ethylbenzene 

production and raw materials fed. 
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Figure 4: Sensitivity analysis of the base case, showing the effects of operating labor, 

utilities, and equipment costs. 

 

From this analysis, we recognized that using less expensive raw materials and/or 

decreasing the feed rate of raw materials would decrease production costs and have a 

sizeable impact on the net present value. We also recognized that increasing the 

conversion and selectivity of the ethylbenzene reaction would enable us to decrease the 

feed of raw materials, while still producing the required amount of ethylbenzene. For 

these reasons, we considered both the new catalyst and the less expensive benzene feed. 
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The main reaction in our process was the reaction of benzene and ethylene to 
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C6H6 + C2H4 → C6H5C2H5                                                (1) 

      benzene + ethylene → ethylbenzene 

Ethylene can also react with ethylbenzene to form diethylbenzene, in reaction 2: 

        C6H5C2H5 + C2H4 → C6H4(C2H5)2           (2) 

ethylbenzene + ethylene → diethylbenzene 

Diethylbenzene is an undesirable product, not only because it consumes some of the 

desired ethylbenzene that has been produced, but also because even small amounts of 

diethylbenzene can lead to processing problems in the downstream styrene plant. For 

these reasons, one of our main objectives in optimizing the design was to suppress the 

diethylbenzene reaction and keep the concentration of diethylbenzene in the product 

below 2 ppm. However, any diethylbenzene that is produced can also be reacted with 

benzene to form ethylbenzene, in reaction 3: 

                C6H4(C2H5)2 + C6H6 → 2 C6H5C2H5           (3) 

diethylbenzene + benzene → ethylbenzene 

Finally, because the benzene feed contains a toluene impurity, the toluene can also react 

with ethylene to form ethylbenzene and propylene, in reaction 4: 

   C6H5CH3 + 2 C2H4 → C6H5C2H5 + C3H6                      (4) 

toluene + ethylene → ethylbenzene + propylene 

  

 

New Catalyst Analysis 

Table 1 shows the differences between the two catalysts. Even though the new 

catalyst is significantly more expensive, it has a longer lifespan, and its effect on the 

process could have a sizeable impact on the net present value of the project. Additionally, 
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we noted that both catalysts had a maximum operating temperature of 500°C, an 

important consideration in designing the process. 

 

Table 1: Comparison of old and new catalyst. 

  Old Catalyst New Catalyst 

Price ($/kg) 5 8 

Lifespan (yr) 3 4 

Density (kg/m3) 1,200 1,250 

Void fraction 0.4 0.4 

Max Operating Temp (°C) 500 500 
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Table 2 shows the differences between the reaction kinetics for the old catalyst 

and the new catalyst. This table shows that although there is no difference in activation 

energy between the two catalysts, the pre-exponential factors are different for the main 

reaction between benzene and ethylene to produce ethylbenzene and for the side reaction 

of ethylbenzene with ethylene to produce diethylbenzene. With the new catalyst, the 

reaction producing ethylbenzene would have a much faster reaction rate, while the side 

reaction producing diethylbenzene would be much slower, so the new catalyst could 

significantly improve the selectivity of ethylbenzene over diethylbenzene. 
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Table 2: Comparison of reaction kinetics for old and new catalyst. 

Reaction Old Catalyst New Catalyst  

  Activation 

Energy 

(kcal/kmol) 

k (pre-

exponential 

factor) 

Activation 

Energy 

(kcal/kmol) 

k (pre-

exponential 

factor) 

1 22,500 1.00×106 22,500 1.50×106 

2 22,500 6.00×105 22,500 6.00×103 

3 25,000 7.80×106 25,000 7.80×106 

4 20,000 3.80×108 20,000 3.80×108 

 

New Feed Analysis 

Table 3 shows a comparison of the two possible benzene feeds. The purities 

shown in this table indicate the percentage of benzene in the feed, with the remainder 

toluene impurity. By calculating an average molecular weight for each of the feeds based 

on their composition of benzene and toluene, we were able to calculate an approximate 

molar price for each stream, which gave us the cost of the feed per kmol benzene.  

 

Table 3: Comparison of original benzene feed with lower grade benzene feed. 

  Original Feed New Feed 

Purity (% benzene) 97 90 

Price ($/kg) 1.04 0.85 

Average Molecular Weight (kg/kmol) 78.42 79.40 

Molar Price ($/kmol benzene) 79.11 60.74 
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From this information, we decided to use the lower purity feed. For the same 

molar flow rate of benzene for each feed, the lower purity feed would have a much lower 

cost than the high purity feed and would have a positive effect on the project’s net present 

value. 
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Optimization 

Reactor Train 

After choosing to use both the new catalyst and the less expensive benzene feed, 

we began to optimize our design. We started with optimizing the reactors by choosing the 

temperature, pressure, and stoichiometric ratio that would maximize conversion and 

selectivity. To do this, we used the case study function in PRO/II to vary each of these 

three parameters and to calculate both conversion and selectivity at each point within a 

defined range. 

         We first used a case study to determine the optimal reaction temperature for the 

reaction with the new catalyst. We varied the reactor inlet temperature between 200°C 

and 400°C, because we would need special materials for a temperature above 400°C. The 

single-pass conversion of benzene in the reactor train over this temperature range can be 

seen in Figure 5, while the selectivity of ethylbenzene over diethylbenzene is shown in 

Figure 6. 
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Figure 5: Case study results for the effect of temperature on conversion of benzene, using 

the new catalyst. 

 

 

 

 
Figure 6: Case study results for the effect of temperature on selectivity of ethylbenzene 

over diethylbenzene, using the new catalyst. 
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The results of these analyses convinced us that the optimal reactor temperature 

was 400°C because it would maximize both conversion and selectivity. However, 

because the reaction is exothermic, we had to be careful that the effluent temperatures did 

not exceed 500°C, a temperature specified by the manufacturers of the new catalyst.  

         We also wanted to optimize the pressure of the reactor feed to maximize 

conversion and selectivity. We once again used a case study to vary the pressure from 

200 kPa to 2,000 kPa, calculating conversion and selectivity at each point. We chose a 

maximum pressure of 2,000 kPa to avoid needing more expensive materials and higher 

pressure ratings on the reactors. Figure 7 and Figure 8 show the effect of varying the 

pressure on conversion and selectivity, respectively. These two figures clearly show that 

over the examined pressure range, the maximum conversion and selectivity occur at 

2,000 kPa, although the conversion appears to level off after 1400 kPa. 

 

 
Figure 7: Case study results showing the effect of pressure on conversion of benzene, 

using the new catalyst. 
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Figure 8: Case study results showing the effect of pressure on selectivity of ethylbenzene 

over diethylbenzene, using the new catalyst. 
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of the reactors. According to the base case, the ratio of benzene to ethylene in the stream 
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diethylbenzene and ethylene that would yield tri- and higher ethylbenzenes. We 
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1 to 20. Figure 9 and Figure 10 show the effect of this ratio on conversion and selectivity. 

We realized that increasing this ratio beyond 8:1 would not have much of an effect on our 

process, since it did not affect conversion and only slightly affected selectivity. The graph 

of conversion shows that the highest conversion is theoretically achieved when the 
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Figure 9: Case study results showing the effect of the ratio of benzene to ethylene in the 

first reactor feed on conversion of benzene. 

 

 

 
Figure 10: Case study results showing the effect of the ratio of benzene to ethylene in the 

first reactor feed on selectivity. 
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While we previously proved that using 400°C as the inlet temperature for our 

reactors would give us the maximum conversion and selectivity, we also wanted to justify 

that we would actually need a temperature of 400°C to achieve the 2 ppm diethylbenzene 

specification for our product. We did this with another case study, this time plotting the 

flow rate of diethylbenzene leaving the reactor train versus the inlet temperature. In 

Figure 11, the dashed line represents the flow rate of diethylbenzene that would result in 

a 2 ppm diethylbenzene product, which was 0.000181 kmol/hr, while the solid line 

represents the diethylbenzene leaving the reactor train. The rate of diethylbenzene 

produced only falls below the 2 ppm limit when the temperature is below 225°C or above 

400°C, and since we had already found that the highest conversion and selectivity occur 

at higher temperatures, we concluded that we would in fact need to operate at 400°C to 

achieve the required product composition of diethylbenzene. 

 
Figure 11: Close-up graph of the rate of diethylbenzene leaving the reactor train 

(kmol/hr) as a function of temperature. The dashed line shows the required flow rate of 

diethylbenzene to achieve a 2 ppm diethylbenzene product. 
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We performed the same analysis on the reactor pressure, to prove that we would 

need a pressure of 2000 kPa to achieve a 2 ppm diethylbenzene product. The results of 

this case study are in Figure 12. Once again, we were able to prove that we would need 

inlet pressures of 2000 kPa to achieve the correct product purity. 

 

 
Figure 12: Close-up graph of the rate of diethylbenzene leaving the reactor train 

(kmol/hr) as a function of pressure. The dashed line shows the required flow rate of 

diethylbenzene to achieve a 2 ppm diethylbenzene product. 
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         Although we had already determined that the ratio of benzene to ethylene in the 

feed to the first reactor should be 8:1 and used this ratio in a controller to set the 

specification for the first splitter on Stream 2, we needed to determine the best 

specification for the second splitter, which determines the flow rate of ethylene feed 

entering the second reactor. We added a second controller to the process to control the 

second splitter specification by setting the ratio of benzene to ethylene in the feed to the 

second reactor at 4:1. We found this value through trial and error, focusing on keeping 

the outlet temperature of the reactors below 500°C, while still achieving the desired 

product. Because the reactions are exothermic, as more material is converted, more heat 

is released, and the high ratios set by these two controllers suppress the conversion and 

control the exiting temperatures from the reactors. This allowed us to use a ratio of just 

under 1.5:1 for our third reactor, giving us maximum conversion without overheating the 

catalyst and without producing too much diethylbenzene. We were able to increase our 

overall conversion of benzene from 91.67% in the base case to 97.75% in our optimized 

design and therefore save a significant amount of money on raw materials. 

 

Separation Section 

In the base case, a control valve decreased the pressure of the process stream 

exiting the reactor train from 1,840 kPa to 110 kPa before entering the separation section. 

We considered replacing this valve with a turbine in order to produce additional energy to 

be consumed in our process, but we found that a turbine at this location would only 

produce 19.4 kW of shaft work, which would only generate approximately $6,000 per 

year as credit for the cost of utilities. The least expensive turbine we could purchase 
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would be $379,000. Therefore, there would be no profit over the length of the project 

from switching to the turbine, since the utility credit generated from its use would be 

unable to offset its initial capital cost, so we decided to leave the valve in our optimized 

design. 

 We then realized that the fuel gas exiting the process contained 1.88 kmol/hr 

benzene and 1.09 kmol/hr ethylbenzene, which meant that we were losing a substantial 

amount of both raw material and product in the fuel gas. For this reason, we decided to 

adjust the pressure of the flash tank to minimize these lost materials. We used a case 

study on the adiabatic flash tank and its inlet and outlet streams to observe the 

composition of the fuel gas as we varied the pressure from 100 to 1000 kPa. The results 

of this case study are in Figure 13, where the y-axis shows the rate of the major 

components of the fuel gas in kmol/hr. 

 
Figure 13: Individual component flow rates for fuel gas (Stream 15), as determined by 

the pressure entering the flash tank. 
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From this graph, we realized that we could increase the pressure in the flash tank 

to keep the majority of the benzene and ethylbenzene in the liquid, but doing so would 

also keep more of the light gases (propylene and ethane) in the liquid, causing them to 

build up in the process. We found that increasing the pressure entering the flash tank to 

just 200 kPa actually increased the amount of benzene in the fuel gas above 2 kmol/hr, 

due to the additional benzene being recycled to the beginning of the process. Increased 

flow rates of benzene and the light gases would also require larger equipment and higher 

duties for the entire process, so for these reasons we decided to keep the flash drum’s 

inlet pressure at its original 110 kPa. 

We also explored the option of increasing the pressure drop across the flash drum 

to lower the amount of benzene and ethylbenzene leaving as fuel gas. However, a case 

study on the effect of pressure drop on the flow rates of these two components leaving the 

flash drum showed that increasing the pressure drop only increased the amount of 

benzene and ethylbenzene we were losing. The results of this case study are in Figure 14. 

As shown in the graph, our losses were minimized at a pressure drop of 0 kPa. Because 

the flash drum is adiabatic and there are no heuristics available for the flash drum, we 

kept this pressure drop value. 
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Figure 14: Case study results showing the effect of varying the pressure drop across the 

flash drum on the flow rates of benzene and ethylbenzene in the fuel gas leaving the 

process. 
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column and found that for our desired separation, we would theoretically need at least 11 

trays. To decide on the feed tray location, we used PRO/II to perform a case study to find 

the feed location that would minimize the utility costs for the column, which consisted of 

the cost of low pressure steam for the reboiler and the cost of cooling water for the 

condenser. From Figure 15, we found that feeding to the condenser minimized the utility 

costs for the column. However, the column does not converge until fed at tray 6. Based 

on the results from the graph, the difference in utility costs is small between these two 

locations, so we concluded that this feed tray location would be beneficial to the process. 

 
Figure 15: Case study results showing the effect of feed tray location on the net duty of 

the distillation column. 
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temperature would otherwise be lower than the minimum temperature of utilities 

available to the plant. In order to send the distillate back to the beginning of the process 

as the benzene recycle, we had to add a compressor with an after-cooler to the distillate 

that condensed it to a liquid while cooling it to a temperature above the 40°C temperature 

limit for cooling water. To minimize the work needed for the compressor, we ran a case 

study in PRO/II to determine the lowest outlet pressure that would produce a pure liquid 

recycle and found that 220 kPa was the best option. Figure 16 shows the results of this 

case study. 

 
Figure 16: Case study results showing the fraction of liquid in the recycle stream as a 

function of the outlet pressure of the compressor. 
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investment. However, since equipment costs have such a small effect on NPV, we 

decided this was the best option for keeping the temperatures below 500°C. We also 

decreased the inlet temperature of the third reactor to 315°C since most of our conversion 

occurs in this reactor, due to its approximately 1.5:1 benzene to ethylene ratio, and it 

causes the highest temperature increase of the three reactors. 

Our last optimization was to minimize the flow of raw materials. One of the 

advantages of the new catalyst was that improving the reaction kinetics allowed us to 

reduce the flow rate of raw materials fed to the plant. Because we also have a cheaper 

feed cost by using the lower grade benzene, we were able to significantly impact our cost 

of raw materials. We reduced the feed of benzene from 99.8 kmol/hr in the base case to 

94 kmol/hr, and even though we had to raise the feed of ethylene from 100.8 kmol/hr to 

107 kmol/hr, the lower price of benzene still resulted in an overall decrease for the price 

of raw materials. Our purchase cost of raw materials was lowered from $84.7 million/yr 

in the base case to $70.9 million/yr, which, as seen in the sensitivity analysis presented in 

Figure 3, greatly improves the net present value of the project. Reducing the raw 

materials consequently reduces the flow of the process stream through the fired heater, 

which in turn reduces the duty on the heater. Our cost of utilities decreased from $1.95 

million/yr to a credit of $0.46 million/yr. 

Figure 17 is the process flow diagram of the final optimized design for the 

ethylbenzene plant. 
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Figure 17: Process flow diagram for the final optimized design. 
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Conclusions and Recommendations 

         On the basis of our economic analysis of each process and the process feasibility, 

we recommend using both the new catalyst and the lower purity benzene feed to improve 

the ethylbenzene plant. Together, these changes raise the net present value of the project 

from a loss of $10.7 million to a profit of $50.9 million. The cost of the raw materials 

required for the process is reduced from $84.7 million/yr to $70.9 million/yr. Eliminating 

several pieces of equipment, including the second distillation column, the second recycle 

stream, and the fourth reactor, significantly reduces the utilities cost, from $1.95 

million/yr to a credit of $0.46 million/yr. Overall, we estimate that our recommended 

changes would improve the value of the base case design by over $60 million, but 

because the nature of our analysis produces results that are ±25% of the actual net present 

value, we recommend further analysis before taking any action on our design.
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