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ABSTRACT 

The resource constrained project scheduling problem (RCPSP) is one of the most 

intractable problems in operations research; it is NP-hard in the strong sense. Due to the hardness 

of the problem, exact solution methods can only tackle instances of relatively small size. For 

larger instances commonly found in real applications heuristic solution methods are necessary to 

find near-optimal solutions within acceptable computation time limits. 

In this study algorithms based on the relaxation adaptive memory programming (RAMP) 

method (Rego, 2005) are developed for the purpose of solving the RCPSP. The RAMP 

algorithms developed here combine mathematical relaxation, including Lagrangian relaxation 

and surrogate constraint relaxation, with tabu search and genetic algorithms. Computational tests 

are performed on an extensive set of benchmark instances. The results demonstrate the capability 

of the proposed approaches to the solution of RCPSPs of different sizes and characteristics and 

provide meaningful insights to the potential application of these approaches to other more 

complex resource-constrained scheduling problems.
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1 INTRODUCTION 

This study investigates the application of the relaxation adaptive memory programming 

(RAMP) method (Rego, 2005) to the resource constrained project scheduling problem (RCPSP). 

The objective is to test the method on a difficult scheduling problem of significant theoretical 

and practical relevance. 

1.1 Project Scheduling 

Projects are extremely prolific in almost all aspects of society, including business, 

government, and other non-profit organizations. Preparing for an event, developing a new 

product, constructing a building, conducting a geological survey, starting up a new plant, 

shutting down an existing plant, and information technology projects such as rolling out the 

latest version of software across an enterprise are just a few examples of various projects. 

Projects have a distinct beginning and end and consist of various activities or tasks that 

must be completed. Activities that compose a project are usually interrelated in some way. The 

most common relationship is a simple precedence relation where one activity cannot start until 

one or more other activities are completed. Other relationships are also possible. For instance, an 

activity may be required to start within a certain amount of time before or after another activity 

starts or finishes (i.e. maximum and/or minimum time lags), or perhaps an activity must be 

performed during a specified time interval (i.e. time windows). 

Often the objective is to complete a project in the shortest amount of time possible. Other 

possible objectives include completing a project by a set deadline, within a certain budget, for 

the minimum cost, or to maximize the project’s net present value. In order to achieve any of 
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these objectives, a schedule that indicates when the various activities are planned to start and/or 

finish is necessary. For projects that must only consider simple precedence relations, a shortest 

duration, or minimum makespan, schedule can be generated elementarily by the critical path 

method (CPM) (Kelley & Walker, 1959). However, most projects require various types of 

resources, such as materials, equipment, and skilled workers. Usually the availability of these 

resources is limited. If the amount of resources available is not sufficient to satisfy the resource 

requirements of the CPM schedule, then the project is said to be resource constrained. The 

resulting resource constrained project scheduling problem (RCPSP) is the focus of this study. 

As a generalization of the well-known job shop scheduling problem the RCPSP is 

strongly NP-hard (Blazewicz, Lenstra, & Kan, 1983). Due to the hardness of the problem, exact 

solution methods can only tackle instances of relatively small size. For larger instances 

commonly found in real applications heuristic solution methods are necessary to find near-

optimal solutions within acceptable computation time limits. 

A comprehensive discussion and computational analysis of heuristic methods for the 

RCPSP originates in two successive surveys by Hartmann and Kolisch (2000) and Kolisch and 

Hartmann (2006). State-of-the-art heuristics include metaheuristics, such as genetic algorithms, 

scatter search and path-relinking, simulated annealing, and tabu search, which are typically used 

in combination with some classical constructive methods and priority rules, and Lagrangian 

heuristics based on decomposition and optimization. 

In addition to its immediate application to real-world projects, the RCPSP is often used as 

the fundamental building block for modeling more complex real-world projects. Many different 

extensions to the RCPSP have been proposed. Several of these extensions have been motivated 

by various real-world situations. Typically, these extensions modify or generalize the constraints 
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of the RCPSP. In some cases the heuristics designed for the RCPSP can be applied to the 

extended problem with little modification. In other cases, heuristics designed for the RCPSP 

provide a starting point for other types of resource constrained project scheduling problems. 

1.2 Relaxation Adaptive Memory Programming 

In this research the combination of fundamental principles of mathematical relaxation 

with fundamentals of adaptive memory programming as prescribed in the RAMP method is 

explored. There are two forms of RAMP—the basic RAMP and the primal-dual RAMP (PD-

RAMP). The basic RAMP combines surrogate and Lagrangian relaxations with tabu search and 

path-relinking. The PD-RAMP extends the basic RAMP approach with scatter search and other 

evolutionary methods. The fundamental premise of the RAMP approach is that information 

gained solving a dual problem resulting from the mathematical relaxation of the original, or 

primal, problem can offer relevant insight for appropriate adaptive memory structures that cannot 

be obtained by considering the primal problem alone. 

The basic RAMP approach is primarily concerned with exploring the solution space of 

the dual problem. The dual problem is usually obtained by applying a relaxation to the original 

problem. The solution to the dual problem may not be feasible for the original primal problem. 

Whenever the dual solution is not primal-feasible, it must be projected onto the primal-feasible 

solution space. An attempt is made to improve the primal-feasible solution in the primal solution 

space. A simple tabu search can be used, or other improvement methods may be used. The 

projection and improvement methods may also be combined into a single method. The results 

from the primal improvement method are used to generate a new relaxation problem (e.g. 

updating surrogate weights and Lagrangian multipliers). 
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The PD-RAMP approach extends the basic RAMP by including a significant primal local 

search method. In the basic RAMP the improvement method is characteristically a very basic 

method; however, in the PD-RAMP the primal-dual relationships are more thoroughly evaluated. 

This can be achieved by integrating scatter search, path-relinking, and other evolutionary 

methods. 

1.3 Organization of the Dissertation 

The dissertation is organized as follows. Chapter 2 provides background information and 

considerations for implementing heuristics for the RCSPSP. Chapter 3 discusses the 

methodology by which methods for solving the RCPSP are presently evaluated in the literature 

and provides results for several existing methodologies. Chapter 4 briefly reviews the existing 

literature that is immediately relevant to this study. Chapter 5 discusses some of the relevant 

issues in applying tabu search to the RCSP, describes the tabu search algorithms, and provides 

computational analysis. Chapter 6 describes the RAMP and PD-RAMP algorithms developed in 

this study for the RCPSP and provides computational analysis. Finally, Chapter 7 discusses 

conclusions and prospects. 
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2 CONSIDERATIONS FOR IMPLEMENTING HEURISTICS FOR THE RCPSP 

When developing a method to solve the RCPSP a design decision must be made as to 

whether the method will work directly with a schedule or some indirect schedule representation. 

Relatively few heuristic methods work directly with a schedule. A likely explanation for this is 

the complexity of non-trivially modifying a schedule in such a way that the modified schedule is 

feasible. An infeasible schedule can be repaired; however, various repair methods often resort to 

a mechanism that either uses, or is equivalent to using, an indirect schedule representation. 

Utilization of an indirect schedule representation can avoid some of the complexities involved in 

manipulating a schedule directly. Several different representations have been proposed, but the 

representations most widely used in the literature seem to be based on either a priority vector or a 

priority list. 

For any particular RCPSP instance, if at least one feasible schedule exists, then an infinite 

number of feasible schedules exist; though, the vast majority of these schedules are trivial. Given 

any feasible schedule, infinite trivial schedules can be created by merely incrementing the start 

time of the activity with the latest completion time. If the solution space of interest is limited to 

only schedules where there are no delays between activities on the critical path(s), several 

“equivalent alternate schedules” can be constructed by adjusting the start times of non-critical 

activities using the available slack time. Consider all schedules that yield the same objective 

function value to be “equivalent schedules.” Several equivalent schedules may also exist for any 

given value of the objective function that are not just equivalent alternate schedules that vary 

only in the start times of the non-critical activities. 
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Equivalent schedules and equivalent alternate schedules pose a particular problem to 

local search techniques. Local search techniques generally search some neighborhood of 

solutions, that are “nearby” or “close” in some sense, in the hope of eventually finding a better 

solution. Some local search techniques suffer from the inability to escape from local optima. The 

RCPSP, in particular, poses a significant challenge to such local search techniques due to the fact 

that a locally optimal schedule may be surrounded by very similar schedules with the same 

makespan (i.e. equivalent schedules). This can be true whether a schedule or an indirect schedule 

representation is used to define the search space. 

2.1 Schedule Representations and Schedule Generation 

Indirect schedule representations generally take the form of some listing or other means 

of ordering the activities. A schedule generation scheme (SGS) uses this listing or ordering to 

prioritize activities for scheduling. As such, many SGS are list scheduling methods. 

2.1.1 Schedule Generation 

When an indirect schedule representation is used, some SGS is required to obtain an 

actual schedule. Kolisch (1996b) and Kolisch and Hartmann (1998) describe both serial SGS and 

parallel SGS. In the serial SGS activities are considered one at a time for scheduling. An activity 

is chosen from among the available activities, activities for which all predecessors have already 

been scheduled, and is scheduled at the earliest time possible that satisfies both precedence and 

resource constraints. The serial SGS generates active schedules where no activity can be started 

earlier without delaying another activity (Kolisch, 1996b).  

In the parallel SGS, available activities are chosen to be scheduled at the current 

scheduling time until no other activities can be scheduled without exceeding available resources. 

Then the current schedule time is incremented to the smallest finish time of the currently active 
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activities. The process continues until all activities are scheduled. The parallel SGS generates 

non-delay schedules where no activity can be started earlier, even if preemption is allowed, 

without delaying another activity (Kolisch, 1996b). 

Both the SGS and parallel SGS generate only feasible schedules, assuming that a 

precedence feasible schedule exists. It is known that the set of active schedules, generated by the 

serial SGS, will contain an optimal schedule when a regular performance measure, such as 

makespan minimization, is used (Sprecher, Kolisch, & Drexl, 1995). It is also known that the 

subset of active schedules generated by the parallel SGS, the non-delay schedules, may not 

necessarily contain an optimal schedule (Kolisch, 1996b). 

2.1.2 Schedule Representations 

Both the serial SGS and parallel SGS contain a decision step where an activity is chosen 

to be scheduled next. Indirect schedule representations provide the answer to that decision by 

indicating which activity should be chosen next. In the case of the parallel SGS, it is also 

possible to use a decision rule where a subset of the available activities are chosen together rather 

than choosing only one activity at a time. In this regard, almost all of the various schedule 

representations from the literature are different forms of activity prioritization. 

When a SGS is applied to a schedule representation either the representation must specify 

only one activity each time an activity is to be chosen (i.e. no two activities can be assigned 

equal priority) or the SGS must include a tie-break decision rule to decide which activity to 

schedule next. In the former case an explicit tie-break rule may be applied to the schedule 

representation before applying the SGS. Alternatively, the operations applied to a schedule 

representation (e.g. neighborhood moves) may handle any tie-break decisions. Furthermore, it is 

possible to eliminate the possibility of assigning equal priorities to multiple activities as with, for 
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example, the priority list representation described below.  A tie-break decision rule incorporated 

into a SGS can utilize information from the schedule generated up to that point. This information 

is not available to tie-break decisions which are applied directly to the schedule representation 

before a SGS is applied. It should be noted that a random or pseudorandom decision rule in a 

SGS is generally undesirable since, in that case, a single indirect schedule representation could 

potentially generate multiple different schedules. 

2.1.2.1 Priority List 

A priority list is simply an ordering of the activities. Often the activities are labeled by 

the set of integers {0, … ,𝑛, 𝑛 + 1}, hence the typical priority list is some permutation of those 

integer labels. When choosing the next activity to schedule, the SGS chooses the first activity in 

the list that is available for scheduling (i.e. all predecessors have already been scheduled). The 

SGS is responsible for ensuring precedence and resource feasibility as the schedule is generated. 

Noting that activities 0 and 𝑛 + 1 are artificial project start and end activities, respectively, for 

any particular RCPSP instance there are 𝑛! possible priority lists. Although the two artificial 

activities could be allowed to appear anywhere in the priority list, the same schedule would result 

as when the artificial start and end activities are fixed to the beginning and end of the list, 

respectively.  

The number of priority lists that are actually of interest can be reduced by considering the 

precedence constraints for a particular instance. Consider an activity 𝑖 with 𝑥 predecessors and 𝑦 

successors. Activity 𝑖 should not be positioned any earlier in the list than 𝑥 + 1 or any later in the 

list than 𝑛 − 𝑦 since at least the 𝑥 predecessors should appear earlier in the list and the 𝑦 

successors should appear later in the list than activity 𝑖. Of course activity 𝑖 can appear anywhere 

in the priority list and the SGS will create a feasible schedule; however, if activity 𝑖 is not 
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positioned in the range defined, a priority list will exist where activity 𝑖 is within this range for 

which the SGS will generate the same schedule. 

It should be noted, however, that sometimes it is desirable to allow any activity to occupy 

any position in the list. This may be desirable, for example, in a method such as tabu search 

where moves are applied to the priority list in order to obtain other priority lists. The method 

may arrive at an improved solution with a fewer number of moves if activities may occupy any 

position in the list. 

Multiple priority lists may map to the same schedule, but each priority list maps to 

exactly one schedule. The priority list provides an absolute ranking; no tie-break rules are 

necessary. 

2.1.2.2 Activity List 

An activity list is a priority list which is also precedence feasible—no activity can appear 

earlier in the list than any of its predecessors. A special case of the serial SGS can be used for 

activity lists where the decision step to choose the next activity to schedule simply chooses the 

next activity in the list. The SGS for activity lists does not check for precedence feasibility. 

Instead, any operation on an activity list must result in a precedence feasible ordering of the 

activities; otherwise, an activity list representation is not actually being used. 

The activity list, by definition, is a topological ordering of the activities. The number of 

possible topological orderings of the activities decreases as the number of precedence constraints 

increases; however, it is impractical to simply generate all of the topological orderings and apply 

the SGS for activity lists. 
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As a special case priority list, multiple activity lists may map to the same schedule, but 

each activity list maps to exactly one schedule. The activity list also provides an absolute 

ranking; no tie-break rules are necessary. 

2.1.2.3 Priority Vector 

A priority vector simply assigns some priority value, either integer or real-valued, to each 

activity; however, there are several possible variations. The priority values are generally 

interpreted as ordinal rankings by a SGS; although, the priority values may be interpreted as 

interval or ratio measures when the priority vector is manipulated (e.g. by a neighborhood 

move), depending on how the schedule representation is defined. A parallel SGS that selects a 

set of activities to schedule at a decision point, rather than one activity at a time, may also 

interpret the priority values as interval or ratio measures. 

One of the key properties of a specific priority vector implementation is whether 

activities may have equal priority values or whether activities must have unique priority values.  

If activities are allowed to have equal priority, the SGS used must include some type of tie-break 

rule when choosing which activity to schedule next. A potential benefit of allowing the SGS to 

break ties is that the tie-break decision rule can potentially utilize information from the schedule 

generated up to that point; this type of tie-break decision rule will be referred to as a “scheduling 

tie-break decision rule.” 

In general, a priority vector representation is not dependent on any parameter of the 

RCPSP instance aside from the number of activities. A SGS can be used to generate a feasible 

schedule from any priority vector. This property may be desirable when designing heuristics 

since a priority vector can be manipulated in any imaginable way that assigns a real or integer 

priority value to each activity. Unfortunately this property also means that every active schedule 
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can be represented by an infinite number of priority vectors. If all tie-break rules in the SGS are 

deterministic, each priority vector generates only one active schedule. This many-to-one 

relationship is not unique to the priority vector representation; the priority list and activity list 

representations described above both have this many-to-one relationship. A particular active 

schedule can be represented by a finite number of different priority lists, but the same schedule 

can be represented by an infinite number of priority vectors. 

For all practical purposes, it does not matter whether the smallest or greatest priority 

value is considered to have a highest priority. The distinction must be made clear for 

implementation purposes, though. Unless stated otherwise, the smallest priority value will be 

considered to have the highest or most urgent priority. 

2.2 Solution Representation and Neighborhood Structures 

2.2.1 Moves for the Priority List Representation 

For a list of integers where position is important, such as the priority list schedule 

representation, there is really only one fundamental move—eject an integer from its current 

position and insert it into another position and shift the other integers, preserving the existing 

ordering, to make room. This is the basic eject/insert move. 

Define the move 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑥,𝑦) which ejects the activity in position 𝑥 and inserts 

it into position 𝑦. Let the positions in the list be numbered 0,1, … , 𝑛,𝑛 + 1. If 𝑥 < 𝑦 then each 

activity in positions 𝑥 + 1 through 𝑦 is shifted one position to the left in order to allow the 

activity originally in position 𝑥 to be inserted into position 𝑦. Similarly, if 𝑥 > 𝑦 then each 

activity in positions 𝑦 through 𝑥 − 1 is shifted one position to the right. If the eject and insert 

positions are consecutive, then the moves 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑥, 𝑦) and 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑦, 𝑥) will 

result in the same priority list. In the example below, the moves 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(1,2) and 
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𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(2,1) are shown to produce the same priority list. However, when the eject and 

insert positions are not consecutive the moves 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑥,𝑦) and 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑦, 𝑥) 

will produce different priority lists. In the example below, the moves 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(1,3) and 

𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(3,1) are shown to produce different priority lists. Keeping the artificial start 

and end activities fixed at positions 0 and 𝑛 + 1, there are (𝑛 − 1)2 possible eject/insert moves 

that may be applied to a priority list. 

Priority List  𝑃𝐿  Priority List  𝑃𝐿 after  
𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(1,2) or 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(2,1) 

Activity 0 2 3 4 1 6 5 7  Activity 0 3 2 4 1 6 5 7 
Index/Position 0 1 2 3 4 5 6 7  Index/Position 0 1 2 3 4 5 6 7 
                   

Priority List  𝑃𝐿 after  
𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(1,3) 

 Priority List  𝑃𝐿 after  
𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(3,1) 

Activity 0 3 4 2 1 6 5 7  Activity 0 4 2 3 1 6 5 7 
Index/Position 0 1 2 3 4 5 6 7  Index/Position 0 1 2 3 4 5 6 7 
 

In addition to basing moves on positions in the list, moves can also be based on activities. 

Define the move 𝑃𝐿𝐸𝑗𝐴𝑐𝑡𝐼𝑛𝑠𝐵𝑒𝑓𝑜𝑟𝑒𝐴𝑐𝑡(𝑖, 𝑗) which ejects activity 𝑖 and inserts it before 

activity 𝑗. This move can be viewed as a variation on the move 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑥,𝑦) where 𝑥 is 

the position of activity 𝑖 and 𝑦 is the position immediately before the position of activity 𝑗. The 

move 𝑃𝐿𝐸𝑗𝐴𝑐𝑡𝐼𝑛𝑠𝐴𝑓𝑡𝑒𝑟𝐴𝑐𝑡(𝑖, 𝑗) can be similarly defined. By allowing the artificial start 

activity 0 to serve as a possible 𝑖 in insert after moves and the artificial end activity 𝑛 + 1 to 

serve as a possible 𝑗 in insert before moves, both the move 𝑃𝐿𝐸𝑗𝐴𝑐𝑡𝐼𝑛𝑠𝐵𝑒𝑓𝑜𝑟𝑒𝐴𝑐𝑡(𝑖, 𝑗) and the 

move 𝑃𝐿𝐸𝑗𝐴𝑐𝑡𝐼𝑛𝑠𝐴𝑓𝑡𝑒𝑟𝐴𝑐𝑡(𝑖, 𝑗) generate the same set of resulting priority lists. 

For the sake of completeness the following moves may also be defined: 

𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝐵𝑒𝑓𝑜𝑟𝑒𝐴𝑐𝑡(𝑥, 𝑗), 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝐴𝑓𝑡𝑒𝑟𝐴𝑐𝑡(𝑥, 𝑗), and 𝑃𝐿𝐸𝑗𝐴𝑐𝑡𝐼𝑛𝑠𝑃𝑜𝑠(𝑖,𝑦). It should 

be noted that if all possible combinations are considered for each of the moves, they all generate 

the same set of priority lists. The utility of defining the moves as shown here comes with the 
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addition of candidate lists and other strategies where only a subset of the move neighborhood is 

explored. 

Another basic move for a list of integers is the swap move where two integers are 

selected and their positions are swapped. The swap move can be decomposed into two 

eject/insert moves; however, the swap move is usually considered to be a separate move since 

only a specific subset of all possible moves resulting from two subsequent eject/insert moves are 

actually swaps. Keeping the artificial start and end activities fixed at positions 0 and 𝑛 + 1, there 

are 𝑛(𝑛 − 1)/2 possible swap moves. 

Define the move 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑥,𝑦) where the activities in positions 𝑥 and 𝑦 are 

swapped. Note that the move 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑎, 𝑏) results in the same priority list as the move 

𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑏,𝑎), thus a common convention is to specify 𝑥 < 𝑦. 

Also define the move 𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗) where the positions of activities 𝑖 and 𝑗 are 

swapped. As with 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑥,𝑦), the move 𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑎, 𝑏) results in the same priority 

list as the move 𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑏,𝑎). Thus a common convention is to specify that activity 𝑖 

appears earlier in the priority list than activity 𝑗. For every possible move 𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗) there 

is an equivalent move 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑥,𝑦). In the example below, 𝑃𝐿𝐴𝑐𝑡𝑆𝑤𝑎𝑝(4,6) is equivalent 

to 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(3,5). The neighborhoods defined by 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑥, 𝑦) and 𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗) 

will generate the same set of schedules. 

Priority List  𝑃𝐿  Priority List  𝑃𝐿 after  
𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(4,6) or 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(3,5) 

Activity 0 2 3 4 1 6 5 7  Activity 0 2 3 6 1 4 5 7 
Index/Position 0 1 2 3 4 5 6 7  Index/Position 0 1 2 3 4 5 6 7 
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2.2.2 Moves for the Activity List Representation 

An activity list is a precedence feasible priority list. As with priority lists, eject/insert and 

swap moves are the basic types of moves available for activity lists; however, by definition all 

activity lists must be precedence feasible. 

There are two basic strategies to ensure that move operations on activity lists result in 

precedence feasible activity lists. The first strategy is an “elimination strategy.” When using an 

elimination strategy, the same moves that are applied to priority lists are also applied to activity 

lists; however, any list resulting from a move operation that is not precedence feasible is 

eliminated from consideration or ignored. The second strategy is a “shift strategy” where move 

operations are defined that produce only precedence feasible activity lists. Typically, for a 

𝑚𝑜𝑣𝑒(𝑥,𝑦) the shift strategy shifts predecessor and successor activities of 𝑥 and 𝑦, preserving 

their original relative order, as necessary in order to maintain precedence feasibility. 

2.2.3 Moves for the Priority Vector Representation 

Basic move operations on a priority vector include swapping priority values, increasing 

(or decreasing) a priority value by some amount, and setting a priority value to just below or just 

above some other priority value. 

2.2.4 The Priority Vector Representation vs. the Priority List Representation 

Using the priority vector representation is often equivalent to using the priority list 

representation. There are two notable cases where properties unique to the priority vector 

representation make it a preferable choice. A priority vector representation is used when it is 

desirable to have a scheduling tie-break decision rule used in the SGS. This type of rule cannot 

be used with priority lists since, by definition, a priority list cannot assign equal priority to 

multiple activities. A priority vector representation is also used when the property that all priority 
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vectors generate feasible schedules regardless of how the priority vector is manipulated is 

deemed beneficial. For example, this property can be useful in scatter search implementations. 

This section discusses how the use of the priority vector representation is equivalent to 

the priority list representation in the absence of a scheduling tie-break decision rule and when not 

utilizing the property that all priority vectors generate feasible schedules regardless of how the 

priority vector is manipulated. The following discussion assumes that these two cases do not 

apply. 

A unique priority list can be generated from a priority vector by listing the activities in 

order of decreasing priority (i.e. increasing priority values). In the case of a tie, simply apply a 

tie-break rule. Since both representations give the same ordering or prioritization of the activity, 

then the same schedule will be generated if the same SGS is applied. In the following consider a 

priority vector 𝑃𝑉 and a corresponding priority list 𝑃𝐿 shown below. 

Priority Vector 𝑃𝑉  Priority List  𝑃𝐿 
Priority Value 0 6 2 3 4 8 7 10  Activity 0 2 3 4 1 6 5 7 
Index/Activity 0 1 2 3 4 5 6 7  Index/Position 0 1 2 3 4 5 6 7 
                   

Swapping the priority values of two activities in a priority vector is equivalent to 

swapping the positions of the same two activities in a priority list. Define the move 

𝑃𝑉𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗) where the priority values of activities 𝑖 and 𝑗 are swapped. Also define the 

move 𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗) where the positions of activities 𝑖 and 𝑗 are swapped. Without loss of 

generality, assume that activity 𝑖 has a smaller priority value (higher priority) in 𝑃𝑉 than activity 

𝑗. Thus, activity 𝑖 also appears earlier in 𝑃𝐿 than activity 𝑗. Both of these moves can be 

motivated by a desire to increase the priority of activity 𝑗 relative to activity 𝑖. For example, the 

result of applying the moves 𝑃𝑉𝐴𝑐𝑡𝑆𝑤𝑎𝑝(4,6) and 𝑃𝐿𝐴𝑐𝑡𝑆𝑤𝑎𝑝(4,6) is shown below.  
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Priority Vector 𝑃𝑉 after 𝑃𝑉𝑆𝑤𝑎𝑝𝐴𝑐𝑡(4,6)  Priority List  𝑃𝐿 after 𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(4,6) 
Priority Value 0 6 2 3 7 8 4 10  Activity 0 2 3 6 1 4 5 7 
Index/Activity 0 1 2 3 4 5 6 7  Index/Position 0 1 2 3 4 5 6 7 
                   

The neighborhoods defined by these swap moves will generate the same set of schedules. 

It should be noted that the implementation of 𝑃𝑉𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗) is simpler than that of 

𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗). For the move 𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗) the locations of activities 𝑖 and 𝑗 must first be 

determined before they can be swapped. When a priority vector is used the SGS must find the 

activity with the highest priority from among the available activities; however, when a priority 

list is used the SGS must determine the next unscheduled available activity in the list. 

Consider the move 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑥,𝑦) where the activities in positions 𝑥 and 𝑦 are 

swapped with 𝑥 < 𝑦. This move can be motivated by a desire to increase the priority of the 

activity in position 𝑦 relative to the activity in position 𝑥. For every possible move 

𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗) there is an equivalent move 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑥,𝑦). In the example, 

𝑃𝐿𝐴𝑐𝑡𝑆𝑤𝑎𝑝(4,6) is equivalent to 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(3,5). The neighborhood defined by 

𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑥,𝑦) will generate the same set of schedules generated by 𝑃𝐿𝑆𝑤𝑎𝑝𝐴𝑐𝑡(𝑖, 𝑗) and 

𝑃𝑉𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑖, 𝑗). 

A move equivalent to 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑥, 𝑦) could be defined for priority vectors that 

swapped the 𝑥th highest priority value with the 𝑦th highest priority value. Such a move would 

require knowing the relative order of the rankings. One way to accomplish this is to sort the 

priority values, find the values in the 𝑥th and 𝑦th positions, find those values in the priority 

vectors, and swap those two positions. Another way to accomplish this is to sort the activities by 

decreasing priority (increasing priority values), identify the activities in the 𝑥th and 𝑦th 

positions, and swap the priority values of those two activities in the priority vector. Note that 

when the activities are sorted by decreasing priority, the priority list corresponding to the priority 
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vector is created. In this case it should be clear that an implementation of the priority vector 

move would require more computational effort than an implementation of the priority list move 

𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑥,𝑦). 
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3 EVALUATION OF SOLUTION METHODS FOR THE RCPSP 

3.1 RCPSP Test Problems 

Kolisch and Sprecher (1996) and Kolisch, Schwindt, and Sprecher (1999) describe the 

PSPLIB library of project scheduling benchmark problems. These problems serve as the current 

standard test problems in the literature used to evaluate algorithms for solving the RCPSP. The 

problem instances in the library were generated by the project generator ProGen which is 

described in detail in Kolisch, Sprecher, and Drexl (1995). The instances were created by 

varying three parameters in a systematic fashion. The first parameter is the “network 

complexity” (NC) which describes the average number of direct successors for an activity. The 

second parameter is the “resource factor” (RF) which reflects the average number of resource 

types required by an activity. The third parameter is the “resource strength” (RS) which is a 

scaling factor related to the scarcity of the resources. If RS = 0 then the resource availability of 

each resource is specified to be the smallest amount that allows resource feasibility. If RS = 1 

then resource availability of each resource is specified to be the maximum peak per-period usage 

of that resource in the CPM early start schedule. Thus, for instances where RS = 1, the optimal 

minimum makespan will be equal to the critical path lower bound; however, makespan 

minimization is not always the desired objective. 

The library currently contains RCPSP instance sets with 30, 60, 90, and 120 activities 

commonly referred to as the j30, j60, j90, and j120 instances, respectively. The j30, j60, and j90 

instance sets include 480 instances that represent 10 instances for every combination of the 

parameters NC = 1.50, 1.80, and 2.10; RF = 0.25, 0.50, 0.75, and 1.00; and RS = 0.20, 0.50, 
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0.70, and 1.00 (Kolisch et al., 1999; Kolisch & Sprecher, 1996). The j120 instance set includes 

600 instances that represent 10 instances for every combination of the parameters NC = 1.50, 

1.80, and 2.10; RF = 0.25, 0.50, 0.75, and 1.00; and RS = 0.1, 0.20, 0.3, 0.4, and 0.50 (Kolisch et 

al., 1999). 

For the makespan minimization objective, the optimal solution is known for each 

instance in the j30 instance set. For the other instance sets, the best known lower and upper 

bounds are available as part of the library. 

Prior to the development of the PSPLIB instances, popular instances sets were those of 

Patterson (1984), Alvarez-Valdes and Tamarit (1989), and Boctor (1993). The Patterson (1984) 

set is composed of 110 instances that represent all of the readily available multi-resource 

problems that existed in the literature at that time. Kolisch et al. (1995) present arguments 

against continued use of the Patterson (1984) set of problems. 

3.2 Evaluation and Comparison Methodology 

In the literature, results are typically reported as averages across all instances in a 

particular PSPLIB instance set as opposed to reporting results for each individual instance. The 

ideal benchmark is the average percent deviation from the known optimal makespan. Since the 

optimal makespan is not known for all instances in the j60, j90, and j120 PSPLIB instance sets, 

some authors prefer to report the average percent deviation from the current best known upper 

bounds. However, since the best known upper bounds are improved upon from time-to-time it 

becomes difficult to compare results since different papers use different benchmarks. In the 

absence of another benchmark this may be acceptable; however, in the case of the RCPSP the 

critical path lower bound is a preferable benchmark. The critical path lower bound is a well-

defined lower bound that can be calculated easily for any precedence-feasible RCPSP and is not 



20 
 

subject to changing over time. The optimal makespan will only equal the critical path lower 

bound when the project is not resource constrained (i.e. RS = 1). Thus the average percent 

deviation from the critical path lower bound can only approach zero for these RCPSP instances. 

When comparing methods, a lower average deviation from the critical path lower bound 

indicates better results. 

Hartmann and Kolisch (2000) presents an experimental evaluation of heuristics for the 

RCPSP that is later updated by Kolisch and Hartmann (2006). Much of the literature since these 

surveys follows the same experimental design and present results in the same format. The 

PSPLIB j30, j60, and j120 instance sets are used. The objective is makespan minimization. 

Algorithms are compared on the basis of the average percent deviation from a specified 

benchmark. For the j30 PSPLIB instance set, the benchmark is the known optimal makespan. For 

the j60 and j120 instances, the benchmark is the critical path lower bound. In Hartmann and 

Kolisch (2000) the lowest makespan found by any of the tested heuristic was also used as a 

second benchmark; however, this benchmark was not included in Kolisch and Hartmann (2006). 

In order to form a basis for comparison, stopping criteria is defined that limits the number 

of schedules generated or partially generated. Stopping criteria is defined as limits of 1,000 and 

5,000 generated schedules in Hartmann and Kolisch (2000). In addition Kolisch and Hartmann 

(2006) present results for 50,000 generated schedules. It is assumed that the computational effort 

required for constructing a schedule is similar across different heuristics and algorithms. If this 

assumption is accepted, then results can be readily compared even if they are obtained on 

different computer architectures and operating systems. Kolisch and Hartmann (2006) points out 

that this test method is also independent of compilers and implementation skills therefore 
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heuristic concepts are evaluated rather than program codes. However, it is noted in both surveys 

that the stopping criteria cannot be easily applied to all heuristics. 

3.3 Results from the Extant Literature 

Kolisch and Hartmann (2006) and Gonçalves, Resende, and Mendes (2011) provide 

summary results of competitive heuristics for the RCPSP. Table 3.1 through Table 3.3 below 

include the union of the results summarized from these two sources. The experimental design for 

obtaining results and the format of the results follow Hartmann and Kolisch (2000) and Kolisch 

and Hartmann (2006). Results from other selected references are also included. Where 

appropriate, original source references to working papers and technical reports that have been 

since published in peer-reviewed journals have been updated to cite the peer-reviewed journal. 

The source references listed in the tables below are primarily references for the methods. 

Some of the results  in the tables below do not come directly from its source reference but rather 

from appropriate additional results provided by the authors of the source references for inclusion 

in Hartmann and Kolisch (2000) and Kolisch and Hartmann (2006). 

The sorting of the results in the tables below follows the criteria of Kolisch and Hartmann 

(2006).  Methods are sorted based upon the results for 50,000 generated schedules. Ties are 

broken by the results for 5,000 generated schedules. 

For the j30 PSPLIB instances, results are listed as the average percent deviation from the 

known optimal makespans. For the j60 and j120 PSPLIB instances, results are listed as the 

average percent deviation from the well-known critical path lower bounds. 
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Table 3.1 – Results from the extant literature – PSPLIB j30 instances – average percent 
deviations from optimal makespan 

Source Reference Schedule Limits 
1,000 5,000 50,000 100,000 500,000 

Kochetov and Stolyar (2003) 0.10 0.04 0.00 - - 
Mendes, Gonçalves, and Resende (2009) 0.06 0.02 0.01 0.01 0.01 
Gonçalves et al. (2011) 0.32 0.02 0.01 0.01 0.01 
Debels, De Reyck, Leus, and Vanhoucke 
(2006) 0.27 0.11 0.01 0.01 0.01 

Debels and Vanhoucke (2007) 0.15 0.04 0.02 - - 
Valls, Ballestı́n, and Quintanilla (2008) 0.27 0.06 0.02 - - 
Valls, Ballestı́n, and Quintanilla (2005) 
(GA) 0.34 0.20 0.02 - - 

Alcaraz, Maroto, and Ruiz (2004) 0.25 0.06 0.03 - - 
Alcaraz and Maroto (2001) 0.33 0.12 - - - 
Tormos and Lova (2003b) 0.25 0.13 0.05 - - 
Nonobe and Ibaraki (2002) 0.46 0.16 0.05 - - 
Tormos and Lova (2001) 0.30 0.16 0.07 - - 
Hartmann (2002) 0.38 0.22 0.08 - - 
Hartmann (1998) (GA activity list) 0.54 0.25 0.08 - - 
Tormos and Lova (2003a) 0.30 0.17 0.09 - - 
Klein (2000) 0.42 0.17 - - - 
Valls et al. (2005) (Sampling) 0.46 0.28 0.11 - - 
Bouleimen and Lecocq (2003) 0.38 0.23 - - - 
Coelho and Tavares (2003) (GA) 0.74 0.33 0.16 - - 
Schirmer (2000) 0.65 0.44 - - - 
Baar, Brucker, and Knust (1998) 0.86 0.44 - - - 
Kolisch and Drexl (1996) 0.74 0.52 - - - 
Hartmann (1998) (GA random key) 1.03 0.56 0.23 - - 
Kolisch (1996b) (Sampling LFT, serial 
SGS) 0.83 0.53 0.27 - - 

Coelho and Tavares (2003) (Sampling) 0.81 0.54 0.28 - - 
Kolisch (1995) (Sampling random, serial 
SGS) 1.44 1.00 0.51 - - 

Hartmann (1998) (GA priority rule) 1.38 1.12 0.88 - - 
Kolisch (1996a, 1996b) (Sampling WCS) 1.40 1.28 - - - 
Kolisch (1996b) (Sampling LFT, parallel 
SGS) 1.40 1.29 1.13 - - 

Kolisch (1995) (Sampling random, 
parallel SGS) 1.77 1.48 1.22 - - 

Leon and Balakrishnan (1995) 2.08 1.59 - - - 
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Table 3.2 – Results from the extant literature – PSPLIB j60 instances – average percent 
deviations from critical path lower bound 

Source Reference Schedule Limits 
1,000 5,000 50,000 100,000 500,000 

Gonçalves et al. (2011) - 11.56 10.57 10.51 10.49 
Mendes et al. (2009) 11.72 11.04 10.67 10.67 10.67 
Debels and Vanhoucke (2005) 11.45 10.95 10.68 - - 
Debels et al. (2006) 11.73 11.10 10.71 - 10.53 
Valls et al. (2008) 11.56 11.10 10.73 - - 
Kochetov and Stolyar (2003) 11.71 11.17 10.74 - - 
Valls et al. (2005) (GA) 12.21 11.27 10.74 - - 
Alcaraz et al. (2004) 11.89 11.19 10.84 - - 
Hartmann (2002) 12.21 11.70 11.21 - - 
Hartmann (1998) (GA activity list) 12.68 11.89 11.23 - - 
Tormos and Lova (2003) 11.88 11.62 11.36 - - 
Tormos and Lova (2003a) 12.14 11.82 11.47 - - 
Alcaraz and Maroto (2001) 12.57 11.86 - - - 
Tormos and Lova (2001) 12.18 11.87 11.54 - - 
Bouleimen and Lecocq (2003) 12.75 11.90 - - - 
Klein (2000) 12.77 12.03 - - - 
Nonobe and Ibaraki (2002) 12.97 12.18 11.58 - - 
Valls et al. (2005) (Sampling) 12.73 12.35 11.94 - - 
Schirmer (2000) 12.94 12.58 - - - 
Coelho and Tavares (2003) (GA) 13.28 12.63 11.94 - - 
Hartmann (1998) (GA random key) 14.68 13.32 12.25 - - 
Hartmann (1998) (GA priority rule) 13.30 12.74 12.26 - - 
Kolisch and Drexl (1996) 13.51 13.06 - - - 
Kolisch (1996a, 1996b) (Sampling WCS) 13.66 13.21 - - - 
Coelho and Tavares (2003) (Sampling) 13.80 13.31 12.83 - - 
Kolisch (1996b) (Sampling LFT, parallel 
SGS) 13.59 13.23 12.85 - - 

Baar et al. (1998) 13.80 13.48 - - - 
Leon and Balakrishnan (1995) 14.33 13.49 - - - 
Kolisch (1996b) (Sampling LFT, serial 
SGS) 13.96 13.53 12.97 - - 

Kolisch (1995) (Sampling random, 
parallel SGS) 14.89 14.30 13.66 - - 

Kolisch (1995) (Sampling random, serial 
SGS) 15.94 15.17 14.22 - - 
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Table 3.3 – Results from the extant literature – PSPLIB j120 instances – average percent 
deviations from critical path lower bound 

Source Reference Schedule Limits 
1,000 5,000 50,000 100,000 500,000 

Debels and Vanhoucke (2005) 34.19 32.34 30.82 - - 
Valls et al. (2008) 34.07 32.54 31.24 - - 
Mendes et al. (2009) 35.87 33.03 31.44 31.32 31.2 
Gonçalves et al. (2011) - 35.94 32.76 31.63 30.08 
Alcaraz et al. (2004) 36.53 33.91 31.49 - - 
Debels et al. (2006) 35.22 33.10 31.57 - 30.48 
Valls et al. (2005) (GA) 35.39 33.24 31.58 - - 
Kochetov and Stolyar (2003) 34.74 33.36 32.06 - - 
Valls et al. (2005) (Population based) 35.18 34.02 32.81 - - 
Hartmann (2002) 37.19 35.39 33.21 - - 
Tormos and Lova (2003b) 35.01 34.41 33.71 - - 
Merkle, Middendorf, and Schmeck (2002) - 35.43 - - - 
Hartmann (1998) (GA activity list) 39.37 36.74 34.03 - - 
Tormos and Lova (2003a) 36.24 35.56 34.77 - - 
Tormos and Lova (2001) 36.49 35.81 35.01 - - 
Alcaraz and Maroto (2001) 39.36 36.57 - - - 
Nonobe and Ibaraki (2002) 40.86 37.88 35.85 - - 
Coelho and Tavares (2003) (GA) 39.97 38.41 36.44 - - 
Valls et al. (2005) (Sampling) 38.21 37.47 36.46 - - 
Bouleimen and Lecocq (2003) 42.81 37.68 - - - 
Hartmann (1998) (GA priority rule) 39.93 38.49 36.51 - - 
Schirmer (2000) 39.85 38.70 - - - 
Kolisch (1996b) (Sampling LFT, parallel 
SGS) 39.60 38.75 37.74 - - 

Kolisch (1996a, 1996b) (Sampling WCS) 39.65 38.77 - - - 
Hartmann (1998) (GA random key) 45.82 42.25 38.83 - - 
Kolisch and Drexl (1996) 41.37 40.45 - - - 
Coelho and Tavares (2003) (Sampling) 41.36 40.46 39.41 - - 
Leon and Balakrishnan (1995) 42.91 40.69 - - - 
Kolisch (1996b) (Sampling LFT, serial 
SGS) 42.84 41.84 40.63 - - 

Kolisch (1995) (Sampling random, 
parallel SGS) 44.46 43.05 41.44 - - 

Kolisch (1995) (Sampling random, serial 
SGS) 49.25 47.61 45.60 - - 
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4 RELATED LITRATURE 

The resource constrained scheduling literature is vast. Only literature that has served as a 

basis or source of inspiration for this study is included. 

4.1 Relaxation Methods 

A relaxation method modifies or eliminates constraints of a combinatorial optimization 

problem in order to create a less constrained problem that is easier to solve. Lagrangian 

relaxation and surrogate constraint relaxation are two examples of relaxation methods. In 

Lagrangian relaxation a subset of the constraints are relaxed by replacing them with a penalty 

term in the objective function that reflects the degree of violation of the relaxed constraints. In 

surrogate constraint relaxation, a surrogate constraint is a non-negative linear combination of a 

subset of the constraints that replaces those constraints. 

Christofides, Alvarez-Valdes, and Tamarit (1987) examine four different lower bounds 

for the RCPSP. One of these bounds is the Lagrangian relaxation of the resource constraints in a 

time-indexed integer programming formulation of the RCPSP. It is pointed out that the 

Lagrangian relaxation problem can be viewed as a generalization of a longest path computation 

where both the completion time and the costs of starting an activity at a particular time (i.e. start-

time dependent costs) must both be minimized. These costs correspond to the coefficients of the 

time-indexed variables due to the Lagrangian multipliers in the objective function. 

Möhring, Schulz, Stork, and Uetz (1999, 2003) describe a method of solving the project 

scheduling problem with start-time dependent costs by transforming it into a minimum cut 

problem (cf. Goldberg & Tarjan, 1988). The objective of the project scheduling problem with 
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start-time dependent costs is to minimize the sum of the start-time dependent costs. Resource 

constraints are not considered in this particular project scheduling problem. The transformation 

is based upon a time-indexed integer programming formulation (Christofides et al., 1987; 

Pritsker, Watters, & Wolfe, 1969). There is a time-indexed variable for each possible start time 

of an activity associated with a predetermined maximum time horizon upper bound. Each time-

indexed variable is represented by a directed arc, referred to as an assignment arc, with a 

capacity equal to the start-time dependent cost represented by the time-indexed variables. The 

temporal constraints are incorporated as infinite capacity directed temporal arcs. Once the 

transformation to a minimum cut problem is complete, a maximum flow/minimum cut algorithm 

can be applied to determine a schedule that minimizes the sum of the start-time dependent costs. 

Möhring et al. (1999, 2003) also demonstrate how lower bounds for the RCPSP can be 

obtained by transforming it to a minimum cut problem. Lagrangian relaxation is used to relax the 

resource constraints of the RCPSP (Christofides et al., 1987), and suitable weights are introduced 

that take the place of the start-time dependent costs. Note that the resulting minimum cut 

problem does not solve the RCPSP directly but a relaxation of the RCPSP; however, the optimal 

solution obtained for the minimum cut problem is a valid lower bound for the RCPSP. 

4.2 Tabu Search 

Tabu search (Glover, 1989, 1990) is a metaheuristic technique that attempts to guide a 

local search beyond a local optimum while preventing a return to that same local optimum. Tabu 

search modifies a current working solution by applying moves that manipulates attributes of the 

solution. As the search progresses tabu restrictions are imposed that classify certain moves as 

forbidden or tabu. The short term memory component typically consists of a tabu list and a tabu 

tenure but may also include aspiration criteria and candidate lists (Glover & Laguna, 1997). The 
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tabu tenure, or tabu list size, indicates how long a move, or a particular attribute of a move, will 

remain tabu. The tabu list is composed attributes of moves that are currently tabu. Aspiration 

criteria can be used to allow a tabu move to be accepted under certain circumstances. A common 

aspiration criterion is accepting a tabu move if it results in a solution that is better than any 

solution previously found. Sometimes it is impractical to evaluate every possible move. In these 

cases a candidate list of moves can be created that consists of only a subset of the possible 

moves. Either general strategies or strategies based on the context of the problem can be utilized 

to create candidate lists (Glover & Laguna, 1997). Long-term memory can also be utilized in 

order to diversify the search by maintaining frequency-based information for solutions 

previously visited and guiding the search into previously unexplored regions (Glover, 1989). 

Both Icmeli and Erenguc (1994) and Thomas and Salhi (1998) apply tabu search to the 

RCPSP by directly modifying schedules. Icmeli and Erenguc (1994) actually consider an 

extension of the RCPSP—the resource constrained project scheduling problem with discounted 

cash flows (RCPSPDC) where the objective is to maximize the net present value of the cash 

flows associated with each activity while satisfying the resource and precedence restrictions. 

Although the RCPSPDC is an extension of the RCPSP, their tabu search methodology is 

applicable to the RCPSP. Rather than viewing the RCPSPDC as an extension of the RCPSP, the 

RCPSPDC can instead be considered as a RCPSP with a specific objective function instead of 

the most common objective of makespan minimization. Icmeli and Erenguc (1994) modify a 

schedule by either incrementing or decrementing an activity’s current completion time. This type 

of modification may result in an infeasible schedule. Infeasibility is dealt with by imposing a 

penalty term to the objective function and allowing the search to continue. The penalty term is 
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sufficiently large to allow any feasible schedule to be favored over an infeasible schedule. An 

infeasible schedule is only selected when no non-tabu move results in a feasible schedule. 

Thomas and Salhi (1998) employ a candidate list of moves that maintains a schedule’s 

precedence feasibility but may violate resource constraints. They use the SHIFT heuristic 

(Thomas & Salhi, 1995) to repair schedules for resource feasibility before allowing the search to 

continue. As described in Thomas and Salhi (1998) the SHIFT heuristic creates a time window at 

an infeasible point by shifting parts of the schedule forward. Activities involved in resource 

overutilization are shifted into the window, but these activities may also be shifted earlier in the 

schedule as long precedence and resource constraints are satisfied. However, the method still 

allows “small” infeasibilities within the time windows. Thus the “repaired” schedule may still be 

infeasible. In addition the authors note that the SHIFT heuristic can result in a substantial 

restructuring of the schedule. Continuing the search with such a substantially restructured 

schedule (compared to the infeasible schedule that resulted from the move operation) might be 

better considered as a restart rather than selecting the best “neighborhood” schedule as the next 

working schedule. 

Icmeli and Erenguc (1994) presents two tabu search procedures for solving the RCPSP 

with discounted cash flows (RCPSPDC). The first procedure, TABU-S, utilizes only short term 

memory. The second procedure, TABU-L, modifies TABU-S by incorporating long term 

memory. A parallel SGS is used to obtain an initial solution. The tabu search TABU-S operates 

directly on the current working schedule. A move is defined as completing an activity either one 

time unit earlier or one time unit later than in the current working schedule. This provides a 

neighborhood size of 2𝑛, where 𝑛 is the number of activities in the project. Since these moves 

may result in an infeasible solution, an evaluation function is calculated for each move that 
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includes the objective function, the net present value of the cash flows, plus a penalty term. The 

penalty term for a particular candidate solution is the total units of violation of the precedence 

and resource constraints multiplied by a sufficiently large negative constant, where the 

constraints are represented by linear equations from a time-indexed integer program. No penalty 

is associated with a feasible solution. The non-tabu move with the largest evaluation function 

value is selected as the best move. The evaluation function value of the best move is recorded in 

the tabu list, which is of size 10. Any move that results in an evaluation function value currently 

on the tabu list is a tabu move. The second procedure, TABU-L, includes four stages, or multi-

starts, of 100 iterations each. A second tabu list, L-list, is added that records the starting solution 

values of each stage in order to prevent revisiting a previous stage’s starting solution. The first 

parallel SGS used in TABU-S provides the starting solution for the first stage of TABU-L. In 

subsequent stages, the feasible solution found in the previous stage that is “most distant” from 

the best solution found in that stage is used as the starting solution for the next stage. Distance 

between two solutions is calculated as the Euclidian distance between the vectors of activity 

completion times. The evaluation function value of the best solution at each stage is recorded 

permanently in the original tabu list. These values cause the length of original tabu list to be 

extended by one each iteration. Both TABU-S and TABU-L are limited to a maximum of 400 

iterations. 

Pinson, Prins, and Rullier (1994) presents one of the earliest applications of tabu search 

to the RCPSP. Five tabu search variations are provided, all of which utilize precedence feasible 

activity lists as an indirect schedule representation. Carlier’s strict order algorithm, which is a 

serial SGS, (Carlier, Moukrim, & Xu, 2010) is used to construct precedence and resource 

feasible schedules. Three neighborhoods are defined:  V1, V2, and V3. Neighborhood V1 



30 
 

consists of the 𝑛 − 1 lists obtained by swapping two adjacent activities in the current working 

activity list 𝐿. Neighborhood V2 consists of the 𝑛(𝑛 − 1)/2 lists possible from swaps of any two 

activities in 𝐿.  The paper states that neighborhood V3 consists of the 𝑛(𝑛 − 1)/2 possible lists 

obtained from moving any activity to a different position in 𝐿, but the neighborhood described 

should have (𝑛 − 1)2 possible moves. Activity lists that violate precedence constraints are 

immediately discarded. The tabu list stores, for the past 15 moves, the pairs of swapped 

activities, or the single activity in V3, along with their positions before the move. Any move that 

restores one of these configurations is considered tabu. The aspiration criteria of improving the 

best solution found overrides tabu status. The move that provides the schedule with the smallest 

makespan is chosen. In the case of ties either the move closest to the end of 𝐿 or the move closest 

to the beginning of 𝐿 is chosen. Five different tabu search procedures are designated as TABU1 

to TABU5. These tabu searches differ in neighborhood choice and choice of tiebreaking rule; 

only TABU4 breaks ties by choosing the move closest to the beginning of L. TABU1 and 

TABU2 use neighborhoods V1 and V2, respectively. TABU3 first applies TABU1 and then 

switches to TABU2 starting with the best solution from TABU1. TABU4 is the same as TABU3 

except for the tiebreaking rule. TABU5 first applies TABU1 and then switches neighborhoods to 

V3 starting with the best solution from TABU1. It is noted that using only neighborhood V3 

gives poor results. Each different neighborhood is allowed 100 iterations. So TABU1 and 

TABU2 perform 100 iterations, and TABU3, TABU4, and TABU5 perform 200 iterations. 

Lee and Kim (1996) develop a tabu search procedure which utilizes a priority list as an 

indirect schedule representation. Schedules are generated with a parallel SGS. The starting 

priority values are generated randomly from a [0,1] uniform distribution. The procedure requires 

that the activities in the project network to be labeled, assigning a numerical index to each 
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activity, such that an ordering of activities by increasing index number is a topological ordering. 

A swap, or “interchange,” move is defined whereby two activities are selected and their priority 

values are swapped. The first activity is selected randomly. The second activity is selected 

randomly from activities whose indices are between 𝑖1 − 4𝑚 and 𝑖1 + 4𝑚, where 𝑖1 is the index 

of the first activity and 𝑚 is the maximum number of predecessors or successors among all of the 

activities. The authors point out that, due to the manner in which the activities are indexed, 

activities with large difference in indices are unlikely to compete for resources. The swap move 

neighborhood size is 𝑛! (𝑛 − 2)!⁄ . Neighborhood reduction is employed; only 2𝑛 neighbors are 

randomly generated each iteration. A move swapping the priorities of activities 𝑖 and 𝑗 is tabu if 𝑖 

and 𝑗 have been swapped recently. A static tabu list of size six is used. This tabu search 

procedure also utilizes long-term frequency-based memory. Every time a swap of activities 𝑖 and 

𝑗 occurs, 𝑓𝑖𝑗 is incremented. Each iteration a non-tabu move is selected with the smallest value of 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 + 𝛽𝑓𝑖𝑗, where 𝛽 = 10 if 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 is worse than the current working solution’s 

makespan and 𝛽 = 0 otherwise. However, the aspiration criteria of improving the best solution 

found so far overrides tabu status. This procedure does not include diversification or 

intensification phases. This study included a simulated annealing procedure, a tabu search 

procedure, and a genetic algorithm procedure. Parameter values were selected experimentally 

first for the simulated annealing procedure. Parameter values for the tabu search and genetic 

algorithm procedures were selected experimentally to provide the best results with computation 

times comparable to the simulated annealing procedure for problems of the same size. 

Two different tabu search algorithms are presented by Baar et al. (1998). Both algorithms 

utilize dynamic tabu list sizes, invoke an immediate selection procedure, utilize two restarts, and 

initially start from the best solution found by applying several different priority rules to a serial 
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SGS. The first algorithm is based on so-called critical arcs and utilizes a precedence feasible 

activity list solution representation from which an active schedule is obtained by applying a 

serial SGS. A directed graph is created from the current working solution where each activity is 

represented by a single node and an arc from one node/activity to another exists only if the 

second activity starts immediately after the first activity finishes (i.e. no delay). A critical path in 

this graph is defined as a simple path from the artificial start node to the artificial end node. An 

arc (𝑖, 𝑗) on the critical path is a critical arc if (𝑖, 𝑗) is not in the set of precedence constraints, 

which includes the precedence constraints prescribed by the problem instance and additional 

precedence constraints induced by transitivity and immediate selection. Three different move 

operators are used: a shift-operator, a backshift-operator, and a frontshift-operator. The shift-

operator is defined for a critical arc (𝑖, 𝑗) where 𝑖 appears before 𝑗 in 𝐿. This operator moves 𝑖 

and all successors of 𝑖 appearing in 𝐿 before 𝑗 to immediately after 𝐿. The backshift-operator is 

defined for a critical arc (𝑖, 𝑗) where 𝑗 appears before 𝑖 in 𝐿. The first activity in 𝐿 appearing after 

𝑖, that is not a successor of 𝑖, is moved to the position immediately before 𝑖. Symmetrically, the 

frontshift-operator is defined for a critical arc (𝑖, 𝑗) where 𝑗 appears before 𝑖 in 𝐿. The last 

activity in 𝐿 appearing before 𝑗, that is not a predecessor of 𝑗, is moved to the position 

immediately after 𝑗. The motivation for the backshift- and frontshift-operators is that the distance 

between 𝑖 and 𝑗 is increased. 

The second tabu search algorithm presented by Baar et al. (1998) is based on parallelity 

and utilizes schedule schemes (Brucker, Knust, Schoo, & Thiele, 1998). This algorithm is also 

described in Brucker and Knust (1999). A schedule scheme (C,D,N,F) is composed of four 

disjoint relations C, D, N, and F that represent conjunctions, disjunctions, parallelity relations, 

and flexibility relations, respectively. A schedule scheme (C,D,N,F) represents the set 
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S(C,D,N,F) of schedules. A schedule scheme may represent both feasible and infeasible 

schedules due to the resource constraints. The heuristic used to construct a feasible schedule 

from a schedule scheme does not necessarily construct active schedules. The authors define a 

parallel critical path as a sequence of activities  𝑖𝑜 , 𝑖1, … , 𝑖𝑙 , with 𝑖𝑜 representing the artificial 

start activity and 𝑖𝑙 representing the artificial end activity, where for  𝑖𝑣, 𝑖𝑣+1 either 𝑖𝑣+1 starts 

when 𝑖𝑣 ends or 𝑖𝑣 starts before 𝑖𝑣+1 and both activities are processed in parallel for at least one 

time unit. Four different types of operators are introduced that operate on a schedule scheme; the 

first three of these operators are restricted to activities on a parallel critical path. 

Several candidate list strategies are suggested by Rangaswamy, Jain, and Glover (1998); 

however, only one of the strategies is implemented. A precedence feasible activity list is 

employed as an indirect solution representation. It appears that a serial SGS is used to obtain 

schedules. A lexicographical ordering of the activities, which happens to also be a topological 

ordering for the problem instances considered, is used to obtain the starting solution. Simple 

(𝑒𝑗𝑒𝑐𝑡 𝑖, 𝑖𝑛𝑠𝑒𝑟𝑡 𝑗) moves are used where activity 𝑖 is ejected from its current position and 

inserted after activity 𝑗. A successive filtration strategy is proposed, which is the strategy that is 

actually implemented, as a bi-level candidate list where the top level of the list is all delayed 

activities on all critical paths of the current working schedule. A bottom level list is created for 

each activity in the top level list. The list for each activity in the top level list includes all 

activities that appear earlier in the working activity list and are in progress just before the current 

start time of the top level activity. Also, moves that insert each activity of the top level list as 

early as possible in the current working activity list are considered. A static tabu list of size 8 is 

used. In addition, various alternative implementations of a bi-level candidate list are suggested. 

One such suggestion is a pause and project strategy for the bottom level list, which becomes a 
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type of sequential fan strategy. A separate aspiration plus strategy is suggested where moves are 

considered until some aspiration criteria is met and continues for some specified number of 

moves. Also, a minimum and maximum number of moves to consider are specified. An example 

is shown where the aspiration criteria is the first move that either produces a better makespan, 

creates a positive influence on the search trajectory (e.g. reduces the maximum delay in a partial 

schedule), or improves a secondary objective subject to the constraints. 

Thomas and Salhi (1998) introduces a tabu search that operates directly on schedules. 

Three different types of moves are used: swap, type 1 insertion, and type 2 insertion. All three 

moves involve two activities 𝑖 and 𝑗 where 𝑗 is not a predecessor of 𝑖. If the current working 

schedule does not start both activities at the same time, then the swap move swaps their start 

times. Again if the activities are not currently scheduled to start at the same time, a type 1 

insertion (𝑖, 𝑗) will set the start time of 𝑖 to the current start time of j. If the current working 

schedule starts both activities at the same time, a type 2 insertion (𝑖, 𝑗) will set the start time of 𝑖 

to the finish current finish time of 𝑗. The moves are constructed such that precedence feasibility 

is maintained; however, the schedules resulting from these moves may be infeasible with regards 

to the resource constraints. A SHIFT heuristic routine developed by Thomas and Salhi (1995) is 

used to repair schedules for resource feasibility. 

Tsai and D. Gemmill (1998) present a tabu search for the RCPSP that is also applied to 

the RCPSP with stochastic activity durations. A precedence feasible activity list is used as an 

indirect schedule representation, and a serial SGS is used to generate schedules. Swap, or 

interchange, moves are utilized. Two tabu lists, TabuListC and TabuListNC, that consist of 

critical and non-critical activities respectively, where an activity is considered critical if it is on a 

critical path of the schedule generated by CPM/PERT when resource constraints are disregarded, 
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are utilized. The tabu tenure for both lists is √𝑛 2⁄ . The aspiration criteria of improving the best 

makespan found overrides tabu status.  A candidate list of moves is created by selecting two 

activities randomly and swapping their positions in the activity list. If the generated sequence is 

not (precedence) feasible, the move is discarded. Moves are added to the list until √𝑛 moves are 

on the candidate list. The moves on the candidate list are evaluated and the best admissible 

move, a non-tabu move or a move which satisfies the aspiration criteria, is accepted. However, 

based on the algorithm description and the variable NotFindAdmissible, the candidate list may 

not contain an admissible move in which case it appears that a new candidate list is created. This 

tabu search is also applied to the RCPSP with stochastic activity durations. Expected activity 

durations are calculated according to PERT assuming that activity durations are 𝛽 distributed. 

For a particular candidate activity list an activity duration is randomly drawn from the 𝛽 

distribution for each activity and the resulting schedule is generated. This is repeated, for each 

candidate activity list, 100 times in order to determine the average project duration resulting 

from the candidate activity list. This expected project duration is used in the determination of the 

best admissible move. Two stopping criteria are used. The first is based on the number of 

candidate lists created since the best schedule found so far. The second is based on the number of 

candidate lists created since an admissible move was found. Several values for the maximum 

numbers of candidate lists created, MaxTryOnBetter and MaxTryonAdmissible respectively, are 

considered. However, MaxTryOnAdmissible is always 10 times larger than MaxTryOnBetter in 

the results presented. 

Brucker and Knust (1999) represents the tabu search based on parallelity from Baar et al. 

(1998). Minor tuning is apparent from the slightly improved results. 
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Klein (2000) presents a reactive tabu search for the generalized resource constrained 

project scheduling problem or GRCPSP. The GRCPSP allows resource availabilities to vary over 

time, non-negative minimum time lags, and activity specific release and due dates. A precedence 

feasible activity list is used as an indirect schedule representation, and a serial SGS is used to 

obtain schedules. However, a schedule created by this SGS may violate release and due dates. 

When such a time window is violated, a penalty equal to the sum of all job durations is added to 

the schedule makespan for the purpose of evaluating moves. Swap moves 𝑠𝑤𝑎𝑝(ℎ, 𝑗) are used 

where the positions of ℎ and 𝑗 are interchanged, successors of ℎ appearing in the list before 𝑗 are 

inserted immediately after h preserving their relative sequence, and predecessors of 𝑗 appearing 

in the list after ℎ are similarly inserted immediately before 𝑗 preserving their relative sequence. A 

candidate list of moves is created by first considering all possible swap moves. Swaps of 

activities that have the same start time in the current working schedule are removed from the 

candidate list. Also, swaps of activities (ℎ, 𝑗) where ℎ is positioned in front of 𝑗 and 𝑗 is 

scheduled to start before ℎ in the current working schedule are removed from the candidate list. 

Only a subset of the candidate list is evaluated. Moves from the candidate list are randomly 

selected with equal probability. If the last move accepted was not a deteriorating move then 2𝑛 

moves are evaluated; otherwise, 𝑛 moves are evaluated. A hash value is calculated for each 

schedule. The tabu list is based on these hash values. A move that results in a schedule with a 

hash value that has been visited recently is tabu. The tabu tenure is reactive to the search state. 

When a solution is revisited the tabu tenure is increased. However, when the number of iterations 

since the solution was revisited is greater than the moving average of cycle lengths the tabu 

tenure is decreased. When three solutions have been visited twice, the tabu search is restarted 

with a different initial feasible solution and resetting the tabu tenure to one. 
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Franck, Neumann, and Schwindt (2001) present a tabu search heuristic for the RCPSP 

with both minimal and maximal time lags. A precedence feasible activity list is used as an 

indirect schedule representation, and schedules are generated by a serial SGS adapted to also 

handle maximal time lags. However, here the heuristic is described only in terms of how it is 

applied to the standard RCPSP (i.e. minimal time lags only). A preprocessing phase introduces 

additional temporal constraints to resolve resource conflicts due to two-element forbidden sets. 

Four different move operators are used in the heuristic. Each operates on an activity pair (𝑖, 𝑗). 

The shift operator removes activity 𝑖 and inserts it behind activity 𝑗. Any successors of 𝑖 

appearing in the list before 𝑗 in the list are positioned immediately after 𝑖, preserving their 

relative order. The swap operator swaps the positions of 𝑖 and 𝑗. Any successors of 𝑖 appearing in 

the list before 𝑗 in the list are positioned immediately after 𝑖, preserving their relative order. 

Similarly, any predecessors of 𝑗 appearing in the list before 𝑖 in the list are positioned 

immediately before 𝑗, preserving their relative order. The back-shift operator places the next non-

successor of activity 𝑖 immediately before 𝑖. The front-shift operator places the previous non-

predecessor of activity 𝑗 immediately after 𝑗. Three different tabu lists are utilized. The first tabu 

list is simply a list of the activity lists selected in the last several iterations. The second tabu list 

is for shift and swap moves, and the third tabu list is for front-shift and back-shift moves. 

Depending on the type of move chosen, each iteration the activity pairs (𝑖, 𝑗) and (𝑗, 𝑖) are added 

to the appropriate list and the oldest two entries are removed from that list. Each iteration, the 

oldest activity list is removed from the first tabu list and the current activity list is added. A 

candidate list of activity pairs (𝑖, 𝑗) is constructed as follows. Activities 𝑗 are selected that are 

currently scheduled later than the latest finish time of their predecessors in the current schedule. 

Activities 𝑖 are determined for each activity 𝑗 that have a finish time equal to the start time of 𝑗 in 
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the current schedule. If 𝑖 appears in the list before 𝑗 then the shift or swap operator is applied; 

otherwise, the back-shift or front-shift operator is applied. After a certain number of non-

improving iterations diversification is employed such that activities 𝑖 are determined for each 

activity 𝑗 that have a finish time less than or equal to the start time of 𝑗. If this extended 

neighborhood fails to improve the project duration the schedule is diversified further. This is 

accomplished by the generation of a certain number of activity lists that are created by randomly 

applying the shift or swap operators to the current activity list. The list that results in the best 

schedule is selected as the next working schedule. After a certain number of iterations or a 

certain number of schedules have been created an intensification phase is used. The tabu lists are 

erased, and three iterations of the tabu search are applied to the best schedule found. The tabu 

search algorithm terminates after the intensification phase. 

Nonobe and Ibaraki (2002) develop a tabu search based heuristic for an extended multi-

mode RCPSP. Specifically, they allow for time variant renewable resource availability, non-

renewable resources, minimum and maximum time lags, and immediate precedence 

requirements (i.e. zero time lag between activities). In addition, soft constraints, constraints that 

can be violated with an objective function penalty, can be specified. Precedence constraints are 

considered to be hard constraints that cannot be violated. Renewable resource constraints can be 

specified as either soft or hard. Additional soft constraints may also be specified. A weighted 

penalty measure is associated with each soft constraint. A precedence feasible activity list is used 

as an indirect solution representation. This activity list is designated b 𝜋 where activity 𝑗 = 𝜋(𝑖) 

where 𝑖 is the position in the list. A SGS referred to as CONSTRUCT, is specified which 

constructs a schedule that observes all hard constraints and immediate precedence constraints. In 

general, the CONSTRUCT algorithm does not necessarily create active schedules. However, 
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here the heuristic is described only in terms of how it is applied to the standard RCPSP (i.e. 

single-mode, only renewable resources with fixed quantities, constant activity resource 

requirements, and only minimal time lag constraints) with makespan minimization as the 

objective. In this case, the CONSTRUCT algorithm does not backtrack and creates active 

schedules. Three different moves are defined. The first move, change_mod, is only applicable to 

the multi-mode RCPSP. The move 𝑠ℎ𝑖𝑓𝑡_𝑎𝑓𝑡(𝑗1, 𝑗2), where activity 𝑗1 appears earlier in the 

activity list than 𝑗2 and 𝑗1 is not a predecessor of 𝑗2, activity 𝑗1 and all of its successors appearing 

in the list before 𝑗2 are positioned immediately after 𝑗2, preserving their relative positions. The 

move 𝑠ℎ𝑖𝑓𝑡_𝑏𝑒𝑓(𝑗1, 𝑗2), where activity 𝑗1 appears earlier in the activity list than 𝑗2 and 𝑗1 is not a 

predecessor of 𝑗2, activity 𝑗2 and all of its predecessors appearing in the list after 𝑗1 are 

positioned immediately before 𝑗1, preserving their relative positions.  Only the move 

𝑠ℎ𝑖𝑓𝑡_𝑏𝑒𝑓(𝑗1, 𝑗2) is utilized by the heuristic when solving a standard RCPSP. The full 

neighborhood defined by these moves is not explored; instead the neighborhood is reduced as 

follows. A graph 𝐺�𝐽,𝐴(𝜋)� in constructed where 𝐽 is the node set of all activities and 𝐴(𝜋) is an 

arc set based on the current activity list 𝜋. (Note that it appears that the activity list may be 

reordered after CONSTRUCT. The activity list used in CONSTRUCT is a listing of the activities 

in the order that CONSTRUCT should consider them. However, the bottom of page 568 and the 

top of page 570 might imply that the activity list is reordered after CONSTRUCT such that all 

activities are listed in order of non-decreasing start times.) An arc (𝑗1, 𝑗2) is in 𝐴(𝜋) if 𝑗1 is an 

obstacle to 𝑗2 starting earlier either because 𝑗1 is an immediate predecessor of 𝑗2 (immediate in 

the normal sense that 𝑗1 must be completed before 𝑗2 begins) or because 𝑗1 was using resources 

also needed by 𝑗2 at a time 𝑗2 could have otherwise been scheduled earlier. It seems that only 

either the former or the latter situation would apply to a given activity 𝑗2; however, there could 
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be multiple activities 𝑗1 that imposes the situation that applies. The maximal simple directed path 

from the artificial start activity to the artificial end activity in graph 𝐺�𝐽,𝐴(𝜋)� is determined 

where any ties are broken arbitrarily. The move 𝑠ℎ𝑖𝑓𝑡_𝑏𝑒𝑓(𝑗1, 𝑗2) is a candidate move if (𝑗1, 𝑗2) 

is an arc in the maximal path, 𝑗1 appears earlier in the activity list than 𝑗2, and 𝑗1 is not a 

predecessor of 𝑗2. However, the reduced neighborhood defined by these moves may still be 

considered too large and the neighborhood may be further reduced by randomly choosing a 

subset of these moves. It does not seem clear whether such random reductions were made when 

applying the heuristic to the standard RCPSP. For the tabu list, the attribute for the move 

𝑠ℎ𝑖𝑓𝑡_𝑏𝑒𝑓(𝑗1, 𝑗2) is (𝑠ℎ𝑖𝑓𝑡, 𝑗2). The attribute for the move 𝑠ℎ𝑖𝑓𝑡_𝑎𝑓𝑡(𝑗1, 𝑗2), which is not a 

move that is actually used when solving a standard RCPSP, is (𝑠ℎ𝑖𝑓𝑡, 𝑗1). However, the 

heuristics prohibits all moves that possess an attribute in the tabu list. So it appears that if an 

activity 𝑥 is serves as in the role of 𝑗2 in 𝑠ℎ𝑖𝑓𝑡_𝑏𝑒𝑓(𝑗1, 𝑗2) in one iteration, then activity 𝑥 is 

prevented from serving the in role of either  𝑗1 or  𝑗2 until the tabu tenure for (𝑠ℎ𝑖𝑓𝑡, 𝑥) has 

expired. The tabu tenure is controlled adaptively using the method the authors introduced in 

Nonobe and Ibaraki (1998); although, some of the details of how the method applies to this 

heuristic may not be immediately clear. For instance, aspiration criteria is not specified in this 

heuristic, but the cited tabu tenure control method does specify aspiration criteria. The heuristic 

is allowed to run for 5,000 iterations; no early termination conditions are specified. 

Gagnon, Boctor, and d'Avignon (2004) present a tabu search algorithm which uses a 

precedence feasible activity list indirect solution representation. Schedules are generated using a 

“priority list scheduling procedure where the priority of activity j corresponds to its position” in 

the precedence feasible activity list. It is not stated whether a serial or parallel SGS is used. An 

insert move is used where an activity is selected for insertion to a new position between the 
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maximum position of all the activity’s predecessors, 𝐿(𝑥, 𝑗), and the minimum position of all of 

its successors, 𝐻(𝑥, 𝑗). Thus the precedence feasibility of the activity list is maintained. Only a 

subset of the neighborhood is evaluated; only √𝑛 moves are evaluated. An activity in the 

working activity list is randomly selected for insertion to a random position in the interval, 

(𝐿(𝑥, 𝑗), H(𝑥, 𝑗)). Activities are shifted to the left or right depending on whether the activity 

selected for insertion is inserted to the right or left, respectively, of its current position. Moves 

that result in duplicate activity lists are discarded without replacement, resulting in neighborhood 

samples of variable sized. If the activity selected for insertion has the same starting time of 

adjacent activities to its new position, then the activity “is not selected.” It is tabu to select an 

activity to generate a move if it has been selected for insertion as the best move in the last √𝑛 

iterations, resulting in a static tabu list of size √𝑛 . Since a move will not be generated based on a 

tabu activity, aspiration is not possible. The search is terminated if a schedule with a makespan 

equal to the critical path lower bound is found or a maximum number of activity lists are 

evaluated. Results for both a maximum of 1,000 and 5,000 are presented. The initial working 

solution is obtained using a serial SGS the minimum latest finish time priority rule. Various 

strategies to decrease the overall computation time are employed when evaluating moves. 

4.3 Evolutionary Methods 

Many studies have applied evolutionary, or population based, methods such as scatter 

search and genetic algorithms to the RCPSP. Some of the notable studies include Alcaraz and 

Maroto (2001); Alcaraz et al. (2004); Coelho and Tavares (2003); Debels et al. (2006); Debels 

and Vanhoucke (2007); Gonçalves et al. (2011); Hartmann (1998, 2002); Kochetov and Stolyar 

(2003); Leon and Balakrishnan (1995); Mendes et al. (2009); Tseng and Chen (2006); Valls, 

Ballestín, and Quintanilla (2004); Valls et al. (2005, 2008). 
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Hartmann (1998) presents several genetic algorithms for the RCPSP. The most 

competitive genetic algorithm presented is the permutation based, or activity list based, genetic 

algorithm with a two-point crossover operator. The two-point crossover operator used takes 

precedence relations into account in order to ensure precedence feasibility of the activity lists 

generated. 

Valls et al. (2005) demonstrates how the activity list based genetic algorithm of 

Hartmann (1998) with the two-point crossover operator can be improved by simply adding 

double justification. Double justification is applied to an existing schedule by first right 

justifying the schedule by increasing the start time of each activity, in order of non-increasing 

finish, times to be as large as possible without increasing the project makespan. Then the right 

justified schedule is left justified by decreasing the start time of each activity, in order of non-

decreasing start times, to be as early as possible. Double justification is applied to each solution 

in the initial population and to each offspring generated after possible mutation. 

Valls et al. (2008) present a hybrid genetic algorithm (HGA) for the RCPSP. Their HGA 

uses a peak crossover operator to identify and combine good parts of solutions, which they 

identify by periods of relatively high resource utilization. A two-phase methodology is 

employed. The initial phase is a general search; however, in the second phase, a new population 

is generated by using biased random sampling of the neighborhood of the best solution found in 

the initial phase. As in Valls et al. (2005) double justification is applied to each solution in the 

initial population and to each offspring generated after possible mutation. 
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5 TABU SEARCH FOR THE RCPSP 

5.1 Considerations for Applying Tabu Search to the RCPSP 

The solution to a RCPSP, or any scheduling problem, requires a schedule. In many cases 

the schedule is considered to be the solution. However, using a schedule as the working solution 

of a neighborhood-based search procedure can be quite problematic. The largest issue is the size 

of the solution space, which will also be the search space. In general, the solution space for a 

general scheduling problem is infinite. This can be shown trivially by simply considering that 

parts of a schedule (for example the last job or activity) can be delayed indefinitely. By imposing 

a maximum makespan constraint (an upper bound, planning horizon, or due date) the solution 

space can be made finite, but still quite large. Further, defining a move can be problematic. Shall 

a move allow the schedule to become infeasible? If so how will the infeasibility be dealt with? If 

infeasible solutions are projected into the feasible solution space, or repaired to be feasible, then 

the repair mechanism might have more impact on the schedules obtained than the actual search 

procedure. 

The majority of previous applications of tabu search to the RCPSP seem to utilize a 

precedence feasible activity list as an indirect solution representation. With indirect solution 

representations, the search space and solution space are not identical. The solution space is the 

set of schedules and the search space, in this case, is the set of precedence feasible activity lists, 

which is also the set of topological orderings of the project’s precedence network. When using an 

activity list indirect solution representation, a choice must be made to either only allow simple 

moves and eliminate moves that result in infeasible lists or to use complex moves that modify the 
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resulting activity list to be precedence feasible, typically by shifting other activities to allow the 

move to be made while maintaining precedence feasibility. In the latter case a move can modify 

the current working activity list to a great extent. Furthermore, it is difficult to predict the affect 

of such a move on the activity list until after the move is actually made. It is also difficult to 

determine the reverse move. 

Consider an activity list AL1, shown below, where activity 𝑖 appears earlier in the list 

than activity 𝑗. Let a move be applied to AL1 that swaps the positions of 𝑖 and 𝑗 that requires the 

positions of other activities in the list to be shifted in order to maintain precedence feasibility. To 

be more precise, let some successors of 𝑖, labeled 𝑆𝑖 in AL1 below, appear in the list before the 

position of activity 𝑗 and assume no predecessors of activity 𝑗 appears between 𝑖 and 𝑗. Then, in 

order for precedence feasibility to be maintained, the successors of  𝑖 that appear before 𝑗 in the 

list must be shifted as well. This move results in an activity list AL2. Note that due to the 

required shifting to maintain precedence feasibility, it is not possible for activity 𝑖 to occupy the 

position previously occupied by activity 𝑗. Let the typical “reverse” move be applied that again 

swaps activities 𝑖 and 𝑗. It would normally be expected that the immediate application of the 

reverse move to AL2 would result in AL1; however, this will not be the case in this example 

because swapping activities 𝑖 and 𝑗 in AL2 does not necessarily require the previously shifted 

successors of 𝑖 to be shifted. Even if it is required to shift them, perhaps because successors of 𝑗 

must now be shifted, it is in no case reasonable to assume that these activities will be shifted to 

the positions they held in AL1, thus some other activity list AL3 is obtained. As evident from 

this example, defining what constitutes a move reversal, that prevents the same activity list from 

being revisited, is not straightforward. 
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Activity List AL1  
Activity List AL2 

resulting from swapping 
positions of 𝑖 and 𝑗 in AL1 

Activity 0 x i Si Si y j 7  Activity 0 x j y i Si Si 7 
Index/Position 0 1 2 3 4 5 6 7  Index/Position 0 1 2 3 4 5 6 7 
                   

Activity List AL3 
resulting from swapping 

positions of 𝑖 and 𝑗 in AL2 
  

Activity 0 x j y i Si Si 7           
Index/Position 0 1 2 3 4 5 6 7           
                   

In the context of tabu search, even though a reverse move cannot be defined easily, it is 

possible to prohibit an activity from returning to its prior position by checking each position 

possibly affected by a move against a list of activities that cannot occupy the position. In the 

example above, positions 2 through 6 in AL2 would have to be checked for the initial swap move 

and positions 1 through 4 in AL3 would have to be checked in the subsequent swap move. 

Alternatively, instead of preventing an activity from returning to its prior position due to any 

move, an activity can instead be prohibited to be returned to its prior position by a move that 

involves the activity directly. In this case, only the two positions identified by the move would 

require a tabu check. 

Consider a priority list indirect schedule representation for the RCPSP and the use of a 

serial SGS which will produce only active solutions. Further assume that all priorities assigned 

must be unique among the activities so that no two activities may be assigned the same priority. 

Without loss of generality, priority values may be required to be integer. Further, since the 

priority list is simply a ranking, then the possible priority values may be restricted to the set of 

{0,1, … ,𝑛,𝑛 + 1} where 𝑛 is the number of activities, excluding artificial project start and end 

activities 0 and 𝑛 + 1, respectively. Further assume that the artificial start activities 0 and 𝑛 + 1 

will have fixed priorities of 0 and 𝑛 + 1, respectively. This allows the priority list to be 
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represented by a list of the activity labels where the positions of the activities indicate their 

relative priorities. The solution space is the set of active schedules, but the search space is the set 

of all possible permutations of the set of integers {1, … ,𝑛}. There are, of course, 𝑛! possible such 

permutations; however, the set of possible priority lists is finite, and the size of the search space 

is known. With such a priority list representation, moves can be defined that can be reversed in a 

straightforward manner. Further, all possible priority lists are feasible, so no move that maintains 

the nature of the priority list representation described will result in an infeasible schedule. Each 

priority list will generate exactly one schedule. The most significant drawback of using this 

representation is the fact that multiple priority lists may generate the same schedule; however, 

this drawback is also shared by the activity list representation. 

The search space defined by the priority list representation described above is all possible 

permutations of the set of integers {1, … ,𝑛}. This particular search space is not unique and for 

example, shared by the single machine scheduling problem. Thus, it is reasonable to consider 

applications of tabu search to the single machine scheduling problem when developing a tabu 

search method for the RCPSP. In fact, when using an indirect solution representation, the 

problem of solving the RCPSP can be viewed as having certain similarities to solving a single 

machine scheduling problem. The SGS can be viewed as a “machine” or rather “processor” 

which processes each activity in a specified order or priority. Although, the objective function is 

defined somewhat differently. 

5.2 Tabu Search Algorithms for the RCPSP  

Let 𝑆 be a schedule of start times for each activity. Let 𝑃𝐿 be a priority list of the 

activities. Let 𝑆𝐺𝑆(𝑃𝐿) be some schedule generation scheme, either serial or parallel, for priority 

lists that generates a schedule 𝑆 satisfying all temporal (e.g. precedence) and resource 
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constraints. Let 𝑓(𝑆) be an evaluation function defined as 𝑓(𝑆) ≝ 𝑠𝑛+1 where 𝑠𝑛+1 is the start 

time of the artificial project end activity. Recall that the artificial project start and end activities 

have zero duration, so the start time of the artificial project end activity is the same as its finish 

time and thus the completion time of the project. Hence min 𝑓(𝑆) is equivalent to min 𝑠𝑛+1 

which is the usual makespan minimization objective. Thus min 𝑠𝑛+1 = min 𝑓(𝑆) =

min𝑓�𝑆𝐺𝑆(𝑃𝐿)�. 𝑓�𝑆𝐺𝑆(𝑃𝐿)� may be used as the evaluation function for a tabu search. The 

problem that will be solved by the tabu search can be described as follows. 

minimize 𝑓�𝑆𝐺𝑆(𝑃𝐿)� = min 𝑓(𝑆) = min 𝑠𝑛+1  (1) 
subject to    
 PL is a permutation of the integers {0,1, … ,𝑛,𝑛 + 1}  (2) 
    

Laguna, Barnes, and Glover (1991) present several tabu search strategies for a single 

machine scheduling problem. The problem solved can be described as follows.  

minimize 𝐹(Π)  (3) 
subject to    
 Π is a permutation of the integers {0,1, … ,𝑛,𝑛 + 1}  (4) 
    

In this problem 𝐹(Π) is an evaluation function that determines the sum of the set-up costs 

and linear delay penalties. The permutation of integers Π is the schedule, or order, that 𝑁 jobs 

will be processed on the single machine. 

The only difference between these two problems is the evaluation function; however, this 

difference has an important implication. For the single machine scheduling problem Laguna et 

al. (1991) can calculate a move value for each possible swap or insert move based on the current 

schedule and store it in a matrix. Once calculated, these move values can be easily scanned to 

determine the best move. Further, only one swap move and two insert moves necessitate a 

recalculation of the entire move value matrix. All other moves only require a partial recalculation 

of the move value matrix, and the components that require an update are easily identified. 
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Unfortunately, a move value cannot be easily calculated for the RCPSP. However, since the 

search space is identical, and the same types of moves are available, then the same tabu attributes 

and restrictions can be employed. 

Laguna et al. (1991) list possible attributes and tabu restrictions for a move that swaps the 

positions of two jobs. This swap move is the same as 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑖, 𝑗) described in section 2.2.1 

with the condition 𝑖 < 𝑗. Let 𝜋(𝑖) indicate the activity label of the activity in position 𝑖 of a 

priority list. Table 5.1 lists the attributes and tabu restrictions described in Laguna et al. (1991). 

Restriction R0 has been added to represent no tabu restrictions. Laguna et al. (1991) also point 

out that restrictions similar to R3 through R6 can also be created for 𝜋(𝑗); these have been added 

as restrictions R8 through R11. In the case of R3 through R6, the intention is to prevent an 

activity that has been placed later in the list from returning to earlier positions in the list. In the 

case of R8 through R11, the intention is to prevent an activity that has been placed earlier in the 

list, and thus given a higher priority, from returning to later positions in the list. These same 

attributes can also be applied to the move 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑖, 𝑗) described in section 2.2.1. 

Table 5.1 – Tabu restrictions and attributes 
 Attribute Tabu restriction 
R0 not applicable No tabu restriction 
R1 (𝜋(𝑖),𝜋(𝑗), 𝑖, 𝑗) Prevent any move that will result in a priority list where activity  

𝜋(𝑖) occupies position 𝑖 and activity 𝜋(𝑗) occupies position  𝑗 
R2 (𝜋(𝑖),𝜋(𝑗), 𝑖, 𝑗) Prevent any move that will result in a priority list where activity  

𝜋(𝑖) occupies position 𝑖 or activity 𝜋(𝑗) occupies position  𝑗 
R3 (𝜋(𝑖), 𝑖) Prevent activity 𝜋(𝑖) from returning to position 𝑖 
R4 (𝜋(𝑖), 𝑖) Prevent activity 𝜋(𝑖) from moving to position 𝑘 where 𝑘 ≤ 𝑖 
R5 (𝜋(𝑖), 𝑗) Prevent activity 𝜋(𝑖) from moving to position 𝑘 where 𝑘 ≤ 𝑗, i.e. 

keep activity  𝜋(𝑖) from moving any earlier than its current position 
R6 𝜋(𝑖) Prevent activity 𝜋(𝑖) from moving at all 
R7 �𝜋(𝑖),𝜋(𝑗)� Prevent activity 𝜋(𝑖) and activity 𝜋(𝑗) from moving at all. 
R8 (𝜋(𝑗), 𝑗) Prevent activity 𝜋(𝑗) from returning to position 𝑗 
R9 (𝜋(𝑗), 𝑗) Prevent activity 𝜋(𝑗) from moving to position 𝑘 where 𝑘 ≥ 𝑗 
R10 (𝜋(𝑗), 𝑖) Prevent activity 𝜋(𝑗) from moving to position 𝑘 where 𝑘 ≥ 𝑖 
R11 𝜋(𝑗) Prevent activity 𝜋(𝑗) from moving at all. 
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Klein (2000) employs a different tabu strategy. Instead of basing tabu status on move 

attributes, a hash value (Carlton & Barnes, 1996; Woodruff & Zemel, 1993) is computed for 

each schedule generated using the following hash function (Klein, 2000). 

𝜑(𝑆) = ��𝑧𝑗

𝑛

𝑗=1

∙ 𝑆𝑗�𝑚𝑜𝑑Φ  (5) 

   
𝑆𝑗 is the start time of activity 𝑗. 𝑧𝑗 are pseudo-random integers drawn from [0,𝑍]. Φ is a large 

prime number. Moves are designated tabu if they generate a schedule with the same hash value 

as a previously visited schedule. Klein (2000) varies the associated tabu tenure in a reactive 

manner (Battiti & Tecchiolli, 1994). The initial tabu tenure is 𝑣 = 1, but each time a solution is 

revisited the tabu tenure is recalculated as follows (Klein, 2000). 

𝑣 = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑣 + 1, ⌊1.2𝑣⌋}, 2𝑛} 𝑖𝑟 − 𝑙𝑣 > 𝑚𝑎 (6) 
𝑣 = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝑣 − 1, ⌈0.8𝑣⌉}, 1} 𝑖𝑟 − 𝑙𝑣 ≤ 𝑚𝑎 (7) 

   
In the formulas above, 𝑖𝑟 is the current iteration, 𝑙𝑣 is the last iteration the solution was visited, 

and 𝑚𝑎 is a moving average of cycle lengths calculated as follows (Klein, 2000). 

𝑚𝑎 = 0.9𝑚𝑎 + 0.1(𝑖𝑟 − 𝑙𝑣)  (8) 
   

5.2.1 Tabu Search Algorithms for the RCPSP Evaluating All Possible Moves 

The tabu search algorithms described in this section evaluate all possible moves. In order 

to avoid duplicate moves, the condition 𝑖 < 𝑗 is imposed on move 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑖, 𝑗). Similarly, 

since move 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑖, 𝑖 + 1) and move 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑖 + 1, 𝑖) result in the same 

priority list, any move 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑖, 𝑗) where 𝑖 − 𝑗 = 1 is omitted in order to avoid 

duplicate moves. 

The different algorithms are designated as TS0 move R# where move is either PLSwap or 

PLEjIns indicating the moves 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑖, 𝑗) and 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑖, 𝑗), respectively. R# 

represents a tabu restriction from Table 5.1. A priority list is used as an indirect schedule 
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representation, and a serial SGS is used to generate schedules. For an initial priority list, the 

activities are listed in order of increasing activity label. 

In these tabu search algorithms short-term adaptive memory is composed of a tabu list 

created in accordance with the different tabu restrictions in Table 5.1 and a simple aspiration 

criterion that overrides tabu status if a move results in the best schedule found. The tabu strategy 

of Klein (2000) is not used in these algorithms.  

Moves are evaluated by computing all possible values of 𝑗 for each 𝑖. For example, the 

move (𝑖, 𝑗) = (1,10) will always be evaluated before the move (12,18) since 𝑗 is incremented 

before 𝑖. In the case of multiple neighborhood schedules with the best neighborhood makespan, 

the first move that results in a schedule with the best neighborhood makespan is chosen. This 

means that moves with a smaller value of 𝑖 will be preferred over moves with a larger value of 𝑖.  

Table 5.2 shows the number of schedules generated each iteration for every move type 

and problem size combination. Table 5.2 also shows the maximum possible number of iterations 

before reaching a schedule limit. Note that for the j60 and j120 instance sets the 1,000 schedules 

generated limit is reached before the first iteration is completed. For the j120 instance set, the 

5,000 schedules generated limit is reached before the first iteration is completed. Thus, the 

results for j60 and j120 instance sets are likely extremely sensitive to the initial priority list. 

For a particular move type, moves are evaluated in the same order and start from the 

same starting priority list. The same best neighborhood move will be selected at the end of the 

first iteration regardless of the tabu restriction employed because no moves are tabu in the first 

iteration. Thus, for a particular move type, the results will be the same across tabu restriction 

types for j60 instances at 1,000 schedules generated, for j120 instances at 1,000 schedules 
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generated, and j120 instances at 5,000 schedules generated since these limits are reached before 

the first iteration is completed. 

Table 5.2 – Number of neighborhood moves and maximum iterations before reaching 
schedule limits 

Move 
Type 

Instance 
Set 

# Neighborhood 
Moves or Schedules 

Generated 
Each Iteration 

Maximum Iterations Before Schedule Limit 
1,000 5,000 50,000 100,000 500,000 

Swap 
j30 435 2.30 11.49 114.94 229.89 1,149.43 
j60 1,770 0.56 2.82 28.25 56.50 282.49 
j120 7,140 0.14 0.70 7.00 14.01 70.03 

        

Eject/Insert 
j30 841 1.19 5.95 59.45 118.91 594.53 
j60 3,481 0.29 1.44 14.36 28.73 143.64 
j120 14,161 0.07 0.35 3.53 7.06 35.31 

        
Considering that these tabu search algorithms for the RCPSP might be sensitive to the 

starting solution, the tabu search algorithms are also tested by starting them from a schedule 

obtained as follows. A serial SGS is used to generate the schedule for the priority list where all 

activities are listed in order of increasing activity label. The following priority rules are also used 

with a parallel SGS to obtain additional schedules:  smallest activity label first, smallest 

processing time first, largest processing time first, latest finish time first, latest start time first, 

minimum slack time first. A priority list for the schedule with the smallest makespan was used as 

the initial priority list for the tabu search algorithms. The tabu search algorithms that employ this 

method to obtain an improved starting solution are designated as TS0 IS move R#. 

5.2.2 Tabu Search Algorithms for the RCPSP Employing Candidate Lists of Moves 

As shown in Table 5.2, a large number of schedules are generated in just a few iterations. 

Recognizing that in order to obtain competitive results fewer schedules must be generated in 

each iteration in order to allow an increased number of iterations to be performed, several 
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candidate list strategies are considered. A candidate list strategy specifies a subset of all possible 

moves to consider. 

The first candidate list strategies considered are very simple random candidate lists. For 

both the 𝑃𝐿𝐸𝑗𝑃𝑜𝑠𝐼𝑛𝑠𝑃𝑜𝑠(𝑖, 𝑗) and the 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑖, 𝑗) moves, 𝑖 and 𝑗 are chosen randomly. 

For the 𝑃𝐿𝑆𝑤𝑎𝑝𝑃𝑜𝑠(𝑖, 𝑗) move, 𝑖 and 𝑗 are swapped if 𝑖 > 𝑗. Following the algorithm 

designations introduced in section 5.2.1, tabu search TS1-X move R# randomly constructs a 

candidate list of X unique moves each iteration. There is no restriction on allowing the same 

move appearing in the candidate list in consecutive iterations. This candidate list is tested with X 

set to 10 and 100. The tradeoff is that a very limited portion of the neighborhood space is 

searched while allowing a larger number of moves/iterations to be performed before reaching the 

limits on the number of schedules generated. By allowing more iterations to be performed, it is 

more likely that a larger portion of the solution space will be searched. This candidate list 

strategy is not expected to perform particularly well in a standalone tabu search; however, this 

strategy may be beneficial when included as an improvement method in the RAMP algorithms 

presented in later. 

Rangaswamy et al. (1998) propose several different tabu search candidate list strategies 

for the RCPSP. One such strategy is the use of bi-level candidate lists. In terms of 𝑃𝐿𝐸𝑗𝐼𝑛𝑠(𝑖, 𝑗) 

and 𝑃𝐿𝑆𝑤𝑎𝑝(𝑖, 𝑗) moves, a bi-level candidate list strategy picks a value for either 𝑖 or 𝑗 and then 

chooses a value for the other move attribute based on the value of the first. The specific bi-level 

candidate list implemented by Rangaswamy et al. (1998) is described in section 4.2. 

Several bi-level candidate list strategies are considered here. Similar to Rangaswamy et 

al. (1998), the higher level candidate list is composed of delayed activities or delayed critical 

activities. A delayed activity is any activity that is started later than its CPM early start time in 
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the current working schedule. A delayed critical activity is a delayed activity that is on a critical 

path of the current working schedule. 

The concept of a resource competitor is used in some of the candidate list strategies. Two 

activities are resource competitors if they both require some amount of the same resource and 

cannot be processed simultaneously due to a precedence or temporal relationship between the 

two activities. 

Some of the candidate list strategies utilize the per time period resource utilization ratio 

(RUR) which is a measure of the proportion of resources used in each time period and can be 

calculated as follows (Valls et al., 2008). 

𝑅𝑈𝑅(𝑡) =  
1
𝐾
� �

𝑟𝑗,𝑘

𝑅𝑘

𝐾

𝑘=1𝑗 ∈𝐴𝑡

  (9) 

   
𝐾 is the number of renewable resources. 𝑅𝑘 is the capacity of resource 𝑘. 𝑟𝑗,𝑘 is the amount of 

resource 𝑘 required by activity 𝑗 each time period. 𝐴𝑡 is the set of activities active, or in process, 

at time 𝑡. 

The following candidate list strategies all exclude moves that involve two activities that 

are scheduled to start at the same time in the current working schedule. Moves where activity 𝑖 

appears earlier in the current working priority list than activity 𝑗 but activity 𝑖 is scheduled to 

start later than activity 𝑗 in the current working schedule are also excluded. 

The tabu search algorithm TS2 PLEjIns R# uses the move 𝑃𝐿𝐸𝑗𝐴𝑐𝑡𝐼𝑛𝑠𝑃𝑜𝑠(𝑖,𝑦). The 

higher level candidate list is composed of delayed critical activities. The corresponding lower 

level list for activity 𝑖 in the higher level list is composed of the positions 𝑥 + 1 to 𝑧 − 1. The 

position 𝑥 is the position of the direct predecessor of 𝑖 that appear latest in the current working 
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priority list. Similarly, the position 𝑧 is the position of the direct successor of 𝑖 that appears 

earliest in the current working list. 

The tabu search algorithm TS3 PLEjIns R# is the same as TS2 PLEjIns R# with the 

exception that the higher level candidate list is composed of all delayed activities instead of only 

delayed critical activities. 

The tabu search algorithm TS4 PLEjIns R# uses the move 𝑃𝐿𝐸𝑗𝐴𝑐𝑡𝐼𝑛𝑠𝐴𝑓𝑡𝑒𝑟𝐴𝑐𝑡(𝑗, 𝑖). 

The higher level candidate list is composed of delayed critical activities that are not active during 

a period of high resource utilization. The threshold for high resource utilization is set to 

max {0.1, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/10}. Activities that are in process at any 

time 𝑡 where 𝑅𝑈𝑅(𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are designated as active during a period of high resource 

utilization. As the number of non-improving iterations increases more activities will be included 

in the higher level candidate list. After 10 non-improving iterations, all delayed critical activities 

will be included in the higher level list. By adaptively modifying the threshold in this way, the 

recent history of the search is taken into account. The corresponding lower level list for activity 𝑖 

in the higher level list is composed of activities 𝑗 that are resource competitors of 𝑖 that appear 

earlier in the list than activity 𝑖. After 10 non-improving iterations the resource competitor 

requirement is relaxed until the next improving iteration. As in Rangaswamy et al. (1998), one 

additional move is added to the candidate list for each activity in the higher level list—the move 

that ejects the higher level list activity and inserts it immediately after its direct predecessor that 

appears latest in the list 

The tabu search algorithm TS5 PLEjIns R# is the same as TS4 PLEjIns R# with the 

exception that the higher level candidate list is composed of delayed activities that are not active 
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during a period of high resource utilization (i.e. activities are not required to be on a critical 

path). 

The tabu search algorithm TS6 PLEjIns R# is the same as TS5 PLEjIns R# with the 

exception that the higher level candidate list is composed of all delayed activities without any 

consideration of the RUR. 

In these tabu search algorithms short-term adaptive memory is composed of a tabu list 

created in accordance with the different tabu restrictions in Table 5.1, a tabu list created in 

accordance with the tabu strategy of Klein (2000), and a simple aspiration criterion that overrides 

tabu status if a move results in the best schedule found. In addition some of the candidate list 

strategies (TS4 – TS6) are reactive to the recent history of the search.. 

5.3 Computational Analysis 

All of the tabu search algorithms for the RCPSP were implemented using the C++ 

programming language. The PSPLIB RCPSP instances with 𝑛 = 30, 60, and 120 activities were 

used to evaluate the performance of the tabu search algorithms. The C++ code was compiled for 

64-bit machines and all tests were conducted on machines with Intel Core i7 870 2.93 GHz 

CPUs and 8GB RAM running a 64-bit operating system. 

Unless specified otherwise, the following parameters and conditions apply. The tabu 

tenure was set to 𝑛 4⁄ . An aspiration criterion was defined whereby a tabu move would be 

accepted if it resulted in a schedule with a makespan smaller than the search had already 

encountered. The tabu search was terminated after  𝑛 2⁄  non-improving iterations or after 

500,000 schedules were generated. 
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For the j30 instances, the average percent deviation from the known optimal makespan is 

given as the primary result. For the j60 and j120 instances, the average percent deviation from 

the critical path lower bound is given as the primary result. 

Table 5.3 shows the results of applying the tabu search algorithms without candidate lists 

to the PSPLIB j30, j60, and j120 RCPSP instance sets. Note that the tabu strategy of Klein 

(2000) is not used in these algorithms. The maximum number of schedules generated in any 

single j30 instance was 28,595 schedules. The maximum number of schedules generated in any 

single j60 instance was 257,595. The 50,000, 100,000, and 500,000 schedules generated columns 

for the j30 instances are identical for this reason. It may be interesting to note that, for the j30 

instances, if the best makespan found is exactly one time unit greater than the known optimal 

makespan, then the average percent deviation would be 1.78%. 

Table 5.3 – Tabu search algorithms without candidate lists 

Tabu Search Schedule Limits Avg # S Avg # S 
to Best 1,000 5,000 50,000 100,000 500,000 

j30 Instances* 

TS0 PLSwap R7 1.69 1.15 1.10 1.10 1.10 5,135.81 602.89 
TS0 PLEjIns R7 2.99 1.82 1.68 1.68 1.68 10,583.60 945.11 

TS0 IS PLSwap R7 1.06 0.90 0.86 0.86 0.86 2,269.91 354.38 
TS0 IS PLEjIns R6 1.52 1.16 1.07 1.07 1.07 4,471.31 563.69 

j60 Instances 

TS0 PLSwap R7 16.98 14.63 13.73 13.66 13.66 49,007.9 5,238.08 
TS0 PLEjIns R7 17.81 16.00 14.50 14.37 14.35 94,981.5 7,615.32 

TS0 IS PLSwap R5 14.28 13.29 12.90 12.87 12.87 26,704.5 3,485.90 
TS0 IS PLEjIns R7 14.70 13.90 13.32 13.21 13.21 53,563.6 5,725.31 

j120 Instances 

TS0 PLSwap R5 50.06 48.31 41.71 41.49 40.78 422,296 85,986.0 
TS0 PLEjIns R6 51.22 49.34 43.96 42.85 42.37 469,627 77,872.6 

TS0 IS PLSwap R5 41.38 40.42 38.13 38.01 37.51 390,791 75,230.0 
TS0 IS PLEjIns R7 41.69 40.92 39.00 38.76 38.40 441,099 71,500.1 

        
* Average percent deviations from optimal makespan 
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The results for the tabu search algorithms using swap moves clearly dominate the results 

for the tabu search algorithms using eject/insert moves. The tabu search algorithms using 

eject/insert moves generate almost twice as many schedules each iteration than the tabu search 

algorithms using swap moves; however, comparing the eject/insert move results at 100,000 

schedules generated with the swap move results at 50,000 schedules generated, the swap move 

tabu search algorithms still dominate the eject/insert move tabu searches. 

The most restrictive tabu restrictions, R6 and R7, produce the best results most often. 

Restriction R6 prevents activity 𝜋(𝑖) from moving at all. Restriction R7 prevents activity 𝜋(𝑖) 

and activity 𝜋(𝑗) from moving at all. As shown above, these restrictions restrict a greater 

percentage of the neighborhood than any of the other tabu restrictions. The first non-tabu move 

that provides a schedule with the neighborhood best makespan is chosen, whether it is an 

improving or non-improving move. A tabu move will only be chosen over a non-tabu move if 

the tabu move results in a schedule with a makespan that is strictly less than the smallest 

makespan found so far across all iterations performed. Since these restrictions designate more of 

the neighborhood search space as tabu, these restrictions may be promoting increased 

diversification in the working priority list by encouraging moves involving activities other than 

those involved in a recent move. 

The tabu search algorithms without candidate lists started from an improved starting 

solution yielded better results. Results from this point forward in this section are from algorithms 

that incorporated the method to obtain an improved starting solution described in section 5.2.1. 

Table 5.4 shows the results of applying the tabu search algorithms with candidate lists to 

the PSPLIB j30, j60, and j120 RCPSP instance sets. These tabu search algorithms were limited 

to generating only 50,000 schedules. In addition to using the tabu restrictions of Laguna et al. 
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(1991) the tabu search algorithms with candidate lists also use the tabu strategy of Klein (2000) 

with the parameter values 𝑍 = 215 and Φ = 99991, which are the same values used by Klein 

(2000). Although nine different candidate list strategies and 12 different tabu restrictions were 

tested, the results presented below only include the best performing tabu restriction for each 

candidate list strategy. 

The TS1-10 tabu search algorithms did not perform very well; however, the TS1-100 

algorithms performed particularly well compared to the all of the other tabu search algorithms 

considered. Candidate lists TS5 and TS6 performed best for the j30 and j60 instances. The best 

performing tabu restrictions are most often R6, R7, and R11 which are the most restrictive 

restrictions. Note that although R0 does not impose any tabu restrictions based on move 

attributes, the hash function tabu strategy is applied. 
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Table 5.4 – Tabu search algorithms with candidate lists 

Tabu Search 
Algorithm Used 

Schedule Limits Avg. # of 
Schedules 

Avg. # of 
Schedules 

to Best 1,000 5,000 50,000 

j30 Instances* 

TS1-10 PLEjIns R8 1.43 1.43 1.43 80.97 25.28 
TS1-10 PLSwap R0 1.25 1.25 1.25 75.79 25.05 
TS1-100 PLEjIns R3 0.78 0.65 0.65 540.78 196.87 

TS1-100 PLSwap R11 0.74 0.57 0.57 476.32 191.86 
TS2 PLEjIns R6 1.09 0.93 0.93 532.78 177.88 
TS3 PLEjIns R6 1.21 0.95 0.95 871.79 289.88 
TS4 PLEjIns R4 0.93 0.86 0.86 475.84 132.47 
TS5 PLEjIns R7 0.93 0.53 0.52 1,125.54 391.95 
TS6 PLEjIns R7 0.93 0.53 0.52 1,125.54 391.95 

j60 Instances 

TS1-10 PLEjIns R1 14.04 14.04 14.04 164.38 40.45 
TS1-10 PLSwap R2 13.90 13.90 13.90 157.63 44.89 
TS1-100 PLEjIns R1 13.20 12.46 12.42 1,598.18 655.38 
TS1-100 PLSwap R0 13.12 12.45 12.40 1,578.92 665.89 

TS2 PLEjIns R6 14.10 13.22 12.42 6,937.19 3,007.22 
TS3 PLEjIns R6 14.24 13.36 12.40 9,374.03 3,936.53 
TS4 PLEjIns R11 13.46 13.00 12.59 8,905.15 2,368.43 
TS5 PLEjIns R11 14.07 13.13 12.20 14,524.90 5,584.80 
TS6 PLEjIns R11 14.07 13.13 12.20 14,524.90 5,584.80 

j120 Instances 

TS1-10 PLEjIns R3 40.49 40.48 40.48 610.28 94.03 
TS1-10 PLSwap R0 40.49 40.49 40.49 584.54 83.41 
TS1-100 PLEjIns R0 39.26 37.44 36.76 7,992.59 3,455.83 
TS1-100 PLSwap R1 39.23 37.57 36.94 7,664.93 3,210.71 

TS2 PLEjIns R7 41.53 39.91 37.78 42,288.00 19,976.90 
TS3 PLEjIns R7 41.62 40.11 38.07 43,040.70 18,934.40 
TS4 PLEjIns R11 39.78 38.85 37.98 39,660.10 9,127.59 
TS5 PLEjIns R7 41.24 40.00 37.95 40,593.00 16,380.40 
TS6 PLEjIns R7 41.24 40.00 37.95 40,710.60 14,857.60 

      
* Average percent deviations from optimal makespan 

      
Table 5.5 shows the results obtained by tabu search algorithms from the literature where 

results based upon the number of schedules generated are reported. Klein (2000) implements a 

candidate list; however, only a subset of the candidate list is randomly evaluated. Nonobe and 
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Ibaraki (2002) implement neighborhood reduction, the results of which can be viewed as a 

candidate list; however, the reduced neighborhood may still be considered too large and the 

neighborhood may be further reduced by randomly choosing a subset of these moves. 

Table 5.5 – Tabu search results from external references 

Reference Schedule Limits 
1,000 5,000 50,000 

j30 Instances* 

Baar et al. (1998) 0.86 0.44 - 
Klein (2000) 0.42 0.17 - 

Nonobe and Ibaraki (2002) 0.46 0.16 0.05 

j60 Instances 

Klein (2000) 12.77 12.03 - 
Nonobe and Ibaraki (2002) 12.97 12.18 11.58 

j120 Instances 

Nonobe and Ibaraki (2002) 40.86 37.88 35.85 
    

* Average percent deviations from optimal makespan 
    

The results obtained from the tabu search algorithms of this section are not competitive 

with the current best performing methods for solving the RCPSP. Even among other 

implementations of tabu search these results are not competitive. The exceptions are TS1-100 

and TS4 when limited to 1,000 schedules for the j120 instances and TS-100 when limited to the 

5,000 schedules for the j120 instances. However, the aim here is not to necessarily develop a best 

performing stand-alone tabu search for the RCPSP but to develop an understanding of how the 

application of tabu search principles interact with the RCPSP in order to identify aspects that will 

lead to the development of an efficient tabu search procedure to be used as a component for 

RAMP and PD-RAMP algorithms for the RCPSP. 
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6 RAMP FOR THE RCPSP 

The RAMP algorithms developed in this study combine mathematical relaxation, tabu 

search, and evolutionary solution methods. The mathematical relaxations are based on a 0-1 

integer programming formulation for the RCPSP due to Pritsker et al. (1969) and Christofides et 

al. (1987). The tabu search components are those discussed in 5.2.2. The evolutionary method 

components are based on the hybrid genetic algorithm for the RCPSP of Valls et al. (2008). 

6.1 Integer Programming Definition of the RCPSP 

The RCPSP is a combinatorial optimization problem where the objective is to minimize 

the project completion time (makespan) subject to both temporal (precedence) and resource 

constraints. Precedence constraints are typically associated with some technological requirement 

and specify a fixed processing order between pairs of activities. Resource constraints model the 

resource demand of activities in a scheduling environment with scarce resource supply. Let 

𝐽 = {0, … ,𝑛,𝑛 + 1} be a set of activities with integral, non-negative processing times 𝑝𝑗 , 𝑗 ∈ 𝐽. 

Jobs 0 and 𝑛 + 1 are defined as artificial activities, with zero processing times, that indicate 

project start and project completion, respectively. In the RCPSP activities may not be interrupted 

while in progress (i.e. no preemption is allowed). A schedule 𝑆 = {𝑆0, 𝑆1, …𝑆𝑛+1} is an 

assignment of start times for all activities. Let 𝐿 ⊆ 𝐽 ×  𝐽 be the set of all given precedence 

constraints (𝑖, 𝑗) where activity 𝑖 is required to finish before activity 𝑗 is allowed to start. Without 

loss of generality, it is assumed that the temporal constraints always refer to the start times of the 

jobs and that 𝑇 is some given upper bound on the project makespan. Any time feasible schedule 

𝑆 must satisfy 𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖 for all (𝑖, 𝑗) ∈ 𝐿. In addition to temporal requirements, an activity 𝑗 
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requires an amount 𝑟𝑗𝑘 of one or several renewable resources 𝑘 ∈ 𝑅, where 𝑅 denotes the set of 

all renewable resources. A renewable resource 𝑘 is available in the constant amount of  𝑅𝑘 

during each time period. While an activity is in process, the required resource units are 

exclusively assigned to it and are not available for other jobs. 

The RCPSP can be formulated as a time-indexed integer linear program as follows 

(Pritsker et al., 1969): 

minimize �𝑡𝑥(𝑛+1)𝑡
𝑡

  (10) 

subject to    
 �𝑥𝑗𝑡 = 1

𝑡

 𝑗 ∈ 𝐽 (11) 

 
�𝑡�𝑥𝑗𝑡 − 𝑥𝑖𝑡�
𝑡

≥ 𝑝𝑖 (𝑖, 𝑗) ∈ 𝐿 (12) 

 
�𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

≤ 𝑅𝑘  𝑘 ∈ 𝑅, 𝑡 = 0, … ,𝑇 (13) 

    
 𝑥𝑗𝑡 ≥ 0 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (14) 
 𝑥𝑗𝑡 integer 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (15) 
    

where 𝑥𝑗𝑡 = 1 if activity 𝑗 starts at time 𝑡 and 𝑥𝑗𝑡 = 0 otherwise. Constraints (11) ensure each job 

is started exactly once. Inequalities (12) represent the temporal constraints imposed by the 

precedence constraints 𝐿. Inequalities (13) represent the resource requirements of each job. 

Christofides et al. (1987) propose temporal constraints (16) that together with constraints 

(11) imply the inequalities (12) even if the time-indexed variables are allowed to be fractional. 

The RCPSP can thus also be formulated as a time-indexed 0-1 integer linear program as follows 

(Christofides et al., 1987; Pritsker et al., 1969). 
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minimize �𝑡𝑥(𝑛+1)𝑡
𝑡

  (10) 

subject to    
 �𝑥𝑗𝑡 = 1

𝑡

 𝑗 ∈ 𝐽 (11) 

 
�𝑥𝑖𝑠

𝑇

𝑠=𝑡

+ � 𝑥𝑗𝑠

𝑡+𝑝𝑖−1

𝑠=0

≤ 1 (𝑖, 𝑗) ∈ 𝐿, 𝑡 = 0, … ,𝑇 (16) 
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𝑡
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�
𝑗

≤ 𝑅𝑘  𝑘 ∈ 𝑅, 𝑡 = 0, … ,𝑇 (13) 

    
 𝑥𝑗𝑡 ≥ 0 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (14) 
 𝑥𝑗𝑡 integer 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (15) 
    

Christofides et al. (1987) also propose strengthened resource constraints (17) to prevent 

the artificial project end activity from being scheduled before all of the other activities are 

completed. 

minimize �𝑡𝑥(𝑛+1)𝑡
𝑡

  (10) 
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(𝑖, 𝑗) ∈ 𝐿 
 𝑡 = 0, … ,𝑇 (16) 

 
� 𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗≠𝑛+1

≤ 𝑅𝑘 �1 −�𝑥(𝑛+1)𝑠

𝑡

𝑠=0

�  𝑘 ∈ 𝑅, 𝑡 = 0, … ,𝑇 (17) 

    
 𝑥𝑗𝑡 ≥ 0 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (14) 
 𝑥𝑗𝑡 integer 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (15) 
    

6.2 Evolutionary Methodology 

The evolutionary methods used in the RAMP and PD-RAMP algorithms are based on the 

hybrid genetic algorithm (HGA) of Valls et al. (2008). Their HGA is composed of two phases. In 

the first phase they generate an initial population using the regret based biased random sampling 
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method (Drexl, 1991). In the second phase they generate a so-called neighbor’s population by 

applying the 𝛽-biased random sampling method (Valls et al., 2008; Valls, Quintanilla, & 

Ballestı́n, 2003) to the activity list representation of the best schedule found during the first 

phase. The peak crossover operator (Valls et al., 2008) is used to combine the best solution 

currently in the population with another random member of the population in order to create two 

new combined solutions. A mutation operator swaps two consecutive activities in the activity list 

with probability 𝑝 if there is not a precedence relationship between the two activities. Double 

justification (Valls et al., 2005) is applied to each schedule generated. The reader is referred to 

Valls et al. (2008) for further details. 

In the evolutionary method the population is the primary adaptive memory structure. In 

the RAMP algorithms the initial population for the first evolutionary phase (EP1) is composed of 

solutions generated by earlier stages of the RAMP methodology. The details of generating the 

initial population and maintaining the population are given in section 6.3.5 where the various 

RAMP algorithms are described. The second evolutionary phase (EP2) in the RAMP algorithms 

creates a neighbor’s population using the 𝛽-biased random sampling method for the activity list 

representation of the best schedule found so far by any component of the RAMP algorithm. 

6.3 RAMP Model and Algorithms for the RCPSP – Lagrangian Relaxation 

The RAMP algorithms developed in this section combine Lagrangian relaxation, tabu 

search, and evolutionary solution methods. The Lagrangian relaxation is based on a 0-1 integer 

programming formulation for the RCPSP due to Pritsker et al. (1969) and Christofides et al. 

(1987).  
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6.3.1 Adaptive Memory Relaxation Method 

Christofides et al. (1987) dualizes the resource constraints (13) and introduces non-

negative Lagrangian multipliers 𝜆𝑡𝑘, 𝑡 ∈ {0, … ,𝑇}, 𝑘 ∈ 𝑅 to obtain the following Lagrangian 

relaxation problem. 

minimize 
�𝑡𝑥(𝑛+1)𝑡
𝑡

+ ��𝜆𝑡𝑘 ��𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

− 𝑅𝑘�
𝑘𝑡

  (18) 

subject 
to 

   

 �𝑥𝑗𝑡 = 1
𝑡

 𝑗 ∈ 𝐽 (11) 

 
�𝑡�𝑥𝑗𝑡 − 𝑥𝑖𝑡�
𝑡

≥ 𝑝𝑖 (𝑖, 𝑗) ∈ 𝐿 (12) 

    
 𝑥𝑗𝑡 ≥ 0 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (14) 
 𝑥𝑗𝑡 integer 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (15) 
    

They solve this Lagrangian relaxation problem using a branch and bound procedure. It is notable 

that they do not incorporate the strengthened temporal constraints (16) or the strengthened 

resource constraints (17) they introduce. Christofides et al. (1987) conclude “the computational 

results that we have obtained seem to indicate that the Lagrangian relaxation is not a useful 

technique for this problem.” 

Möhring et al. (2003) includes the strengthened constraints (16) and (17). They dualize 

the resource constraints (17) and also introduce non-negative Lagrangian multipliers 𝜆𝑡𝑘, 

𝑡 ∈ {0, … ,𝑇}, 𝑘 ∈ 𝑅 to obtain the following Lagrangian relaxation problem. 
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minimize �𝑡𝑥(𝑛+1)𝑡
𝑡

+ 

  ��𝜆𝑡𝑘 ��𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

− 𝑅𝑘 �1 −�𝑥(𝑛+1)𝑠

𝑡

𝑠=0

��
𝑘𝑡

 

 
 (19) 

subject 
to 

   

 �𝑥𝑗𝑡 = 1
𝑡

 𝑗 ∈ 𝐽 (11) 

 
�𝑥𝑖𝑠

𝑇

𝑠=𝑡

+ � 𝑥𝑗𝑠

𝑡+𝑝𝑖−1

𝑠=0

≤ 1 
(𝑖, 𝑗) ∈ 𝐿 
 𝑡 = 0, … ,𝑇 (16) 

    
 𝑥𝑗𝑡 ≥ 0 𝑗 ∈ 𝐽 

𝑡 = 0, … ,𝑇 (14) 

 𝑥𝑗𝑡 integer 𝑗 ∈ 𝐽 
𝑡 = 0, … ,𝑇 (15) 

    
Möhring et al. (2003) introduce the non-negative weights 

 

𝑤𝑗𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧
�𝑟𝑗𝑘 � � 𝜆𝑠𝑘

𝑡+𝑝𝑗−1

𝑠=𝑡

�         𝑖𝑓 𝑗 ≠ 𝑛 + 1
𝑘∈𝑅

𝑡 + ��𝜆𝑠𝑘𝑅𝑘
𝑘∈𝑅

𝑇

𝑠=𝑡

             𝑖𝑓 𝑗 = 𝑛 + 1

� (20) 

   
and the Lagrangian problem is rewritten as follows. 

minimize ��𝑤𝑗𝑡𝑥𝑗𝑡
𝑡𝑗

−��𝜆𝑡𝑘𝑅𝑘
𝑘∈𝑅𝑡

  (21) 

subject 
to 

   

 �𝑥𝑗𝑡 = 1
𝑡

 𝑗 ∈ 𝐽 (11) 

 
�𝑥𝑖𝑠

𝑇

𝑠=𝑡

+ � 𝑥𝑗𝑠

𝑡+𝑝𝑖−1

𝑠=0

≤ 1 
(𝑖, 𝑗) ∈ 𝐿 
 𝑡 = 0, … ,𝑇 (16) 

    
 𝑥𝑗𝑡 ≥ 0 𝑗 ∈ 𝐽 

𝑡 = 0, … ,𝑇 (14) 

 𝑥𝑗𝑡 integer 𝑗 ∈ 𝐽 
𝑡 = 0, … ,𝑇 (15) 
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Christofides et al. (1987) and Möhring et al. (1999, 2003) point out that this is a project 

scheduling problem with start-time dependent costs if the constant term in the objective function 

is neglected. 

For any non-negative vector of Lagrangian multipliers 𝜆, the optimal solution value of 

the Lagrangian problem is a lower bound on the optimal value of the original RCPSP due to 

weak Lagrangian duality (Geoffrion, 1971). If the solution of the Lagrangian subproblem for a 

fixed vector of Lagrangian Multipliers 𝜆 is feasible for the RCPSP and if the corresponding 

objective function values of both problems coincide, the solution is also optimal for the RCPSP 

due to strong Lagrangian duality (Geoffrion, 1971).  

6.3.2 Solving the Lagrangian Relaxation Integer Programming Problem 

The Lagrangian relaxation problem can be solved by any method capable of solving an 

integer programming problem. Several commercial solvers are available. However, here the 

techniques of Möhring et al. (1999, 2003) are used in order to solve the Lagrangian relaxation 

problem. 

Möhring et al. (1999, 2003) describe a method of solving the project scheduling problem 

with start-time dependent costs by transforming it into a minimum cut/maximum flow problem 

in a directed graph and solved using a maximum flow/minimum cut algorithm (Goldberg & 

Tarjan, 1988). The Möhring et al. (1999, 2003) transformation is obtained by constructing a flow 

network as follows. A node 𝑣𝑗𝑡 is created for each activity’s possible start time and for the time 

following each activity’s latest start time. In addition a source and sink nodes, 𝑎 and 𝑏, 

respectively, are created for the flow network. Note that the source and sink nodes 𝑎 and 𝑏 do 

not represent and are not related to the artificial project start and project end activities. The latest 

start time is determined based upon a pre-determined maximum time horizon upper bound 𝑇. 
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Each time-indexed variable 𝑥𝑗𝑡  is represented by a directed assignment arc �𝑣𝑗𝑡 , 𝑣𝑗,𝑡+1� with a 

capacity equal to its coefficient in (10). Let 𝐸𝑆(𝑖) represent the earliest feasible start time and let 

𝐿𝑆(𝑖) ≤ 𝑇 − 𝑝𝑖 represent the latest feasible start time for activity 𝑖. The precedence constraints 

(𝑖, 𝑗) ∈ 𝐿 are represented by directed temporal arcs �𝑣𝑖𝑡 , 𝑣𝑗,𝑡+𝑑𝑖� for all 𝑡 satisfying both 𝐸𝑆(𝑖) ≤

𝑡 ≤ 𝐿𝑆(𝑖) and 𝐸𝑆(𝑗) ≤ 𝑡 + 𝑝𝑖 ≤ 𝐿𝑆(𝑗). In addition there are infinite capacity auxiliary arcs 

�𝑎, 𝑣𝑖,𝐸𝑆(𝑖)� and �𝑣𝑖,𝐿𝑆(𝑖)+1, 𝑏�, for each activity 𝑖, connecting the source node 𝑎 and sink node 𝑏 

to the rest of the graph. The reader is referred to Möhring et al. (1999, 2003) for further details 

and proofs related to their transformation. 

The resulting flow network is solved using Goldberg’s maximum flow algorithm 

(Goldberg & Tarjan, 1988). A finite minimum cut will only contain assignment arcs, and a 

minimum cut that contains exactly one assignment arc for each activity is referred to as an n-cut 

(Möhring et al., 2003). The assignment arcs in an n-cut specify a single start time for each 

activity, thus a schedule is obtained. Although, this schedule will be feasible for the Lagrangian 

relaxation problem, it will not necessarily be feasible for the primal RCPSP. 

6.3.3 Adaptive Weighting Update Method 

Following Möhring et al. (2003) the subgradient method (Polyak, 1969) with a modified 

gradient step direction proposed by Camerini, Fratta, and Maffioli (1975) is used to generate the 

vector of Lagrangian multipliers. For a set of constraints (17) that have been relaxed, a gradient 

vector is computed as follows. 

gtki = �𝑟𝑗𝑘 � � 𝑥𝑗𝑠𝑖
𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

− 𝑅𝑘 �1 −�𝑥(𝑛+1)𝑠
𝑖

𝑡

𝑠=0

� 𝑘 ∈ 𝑅, 𝑡 = 0, … ,𝑇 (22) 
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The step size 𝛿𝑖 is given by 

𝛿i = 𝜋 �𝑈𝐵𝜆 − 𝐿𝐵𝜆� ����𝑔tki �
2

𝑡𝑘

��   (23) 

   
where 𝑈𝐵𝜆 is the upper bound for the optimal value of the Lagrangian dual (which in the 

algorithm corresponds to the best primal feasible solution found), 𝐿𝐵𝜆 is the current lower bound 

(associated with the solution of the previous Lagrangian relaxation problem), and  𝜋 is a user-

defined (step size) parameter initialized at a certain value (e.g. 2) and reduced when a certain 

number of successive iterations of the subgradient search does not improve the lower-bound. 

Hence, if at iteration 𝑖 the vector of Lagrangian multipliers 𝜆𝑖  is used, the vector for the next 

iteration (𝑖 + 1) is determined as 

𝜆𝑡𝑘
(𝑖+1) = �𝜆𝑡𝑘𝑖 + 𝛿𝑖�gtki + βgtki−1��

+
 𝑘 ∈ 𝑅, 𝑡 = 0, … ,𝑇 (24) 

   
where [. ]+ denotes the non-negative part of the vector. The scalar 𝛽 is computed as proposed in 

Camerini et al. (1975) to modify the gradient step direction. 

6.3.4 Adaptive Memory Projection Method 

Since solutions for a relaxation problem are usually not feasible for the corresponding 

original problem, a projection method is necessary to transform a relaxation dual solution into a 

primal feasible solution. In the RAMP method, the objective of projecting dual solutions onto the 

primal feasible space serves two main purposes: (1) seeking for an improved feasible solution for 

the original problem and (2) guiding the search process by providing new starting points for 

primal and dual searches. In general, a feasible solution obtained by a projection method is 

subjected to local search for possible improvement. On the other hand, the new projected and 

eventually improved solution may be chosen to replace the upper bound in the subgradient 

search, which is one component in the creation of the new relaxation problem. 
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Although the schedule obtained from the minimum cut problem will not necessarily be 

resource feasible, it will be precedence feasible. This precedence feasible schedule can be used to 

generate precedence feasible activity lists. Möhring et al. (2003) describe a method of generating 

several different precedence feasible activity lists from a precedence feasible schedule 𝑆 using 

so-called 𝛼-completion times defined as 𝐶𝑗(𝛼) ≔ 𝑆𝑗 + 𝛼𝑝𝑗 where 0 ≤ 𝛼 ≤ 1. A serial SGS, a 

parallel SGS, and a serial SGS with limited look ahead are applied to each unique activity list. 

The serial SGS with limited look ahead is implemented as described by Möhring et al. (2003) 

where, given a look ahead parameter 𝑙, the activity with the earliest possible start time among the 

next 𝑙 available activities is chosen to be scheduled at each decision step in the serial SGS. 

6.3.5 The RAMP Algorithms 

Several RAMP and PD-RAMP algorithm variations are described in this section. The 

basic RAMP algorithms combine the Lagrangian relaxation methodology described above with 

one of the tabu searches described in section 5.2.2. The tabu search is used to improve the best 

solution obtained from the adaptive memory projection method. After the tabu search is 

completed, the best makespan so far is used as 𝑈𝐵𝜆 in the adaptive weighting update method. 

PD-RAMP algorithms designated PD-RAMP–TS–EP1–EP2 incorporate the evolutionary 

methodology described in section 6.2. In these algorithms, the initial population for EP1of the 

evolutionary method is composed of all solutions generated in the adaptive memory projection 

method and all neighborhood best solutions from the tabu search. After EP1 completes the EP1 

population is composed of the EP1POPsize best solutions. The population for EP2 of the 

evolutionary method is generated using the best solution found so far. After completion of EP2, 

the solutions in the EP1 population are replaced by the EP1POPsize best solutions from the 

current EP1 and EP2 populations. In subsequent iterations, the solutions generated in the 



71 
 

adaptive memory projection method and the neighborhood best solutions from the tabu search 

are added to the current EP1 population in order to introduce more diversity into the population. 

PD-RAMP algorithms designated PD-RAMP–EP1–TS–EP2 apply the tabu search 

algorithm to the best solution found during EP1 of the evolutionary method. In these algorithms, 

the initial population for EP1 is composed of all solutions generated in the adaptive memory 

projection method. After EP1 completes the EP1 population is composed of the EP1POPsize best 

solutions. The tabu search algorithm is applied to the best solution in the EP1 population. The 

population for EP2 of the evolutionary method is generated using the best solution found so far. 

After completion of EP2, the solutions in the EP1 population are replaced by the EP1POPsize 

best solutions from the current EP1 and EP2 populations. In subsequent iterations, the solutions 

generated in the adaptive memory projection method are added to the current EP1 population in 

order to introduce more diversity into the population. 

PD-RAMP algorithms designated PD-RAMP–EP1–EP2–TS apply the tabu search 

algorithm to the best solution found after EP2 of the evolutionary method. In these algorithms, 

the initial population for EP1of the evolutionary method is composed of all solutions generated 

in the adaptive memory projection method.  After EP1 completes the population for EP2 of the 

evolutionary method is generated using the best solution found so far. After completion of EP2, 

the solutions in the EP1 population are replaced by the EP1POPsize best solutions from the 

current EP1 and EP2 populations. The tabu search algorithm is started from the best solution 

found so far. The neighborhood best solutions found by the tabu search are added to the current 

EP1 population. In subsequent iterations, the solutions generated in the adaptive memory 

projection method are also added to the current EP1 population. 
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6.4 RAMP Model and Algorithms for the RCPSP – Cross-Parametric Relaxations 

In this section RAMP algorithms using cross-parametric relaxations (Rego, 2005) that 

combine Lagrangian and surrogate constraint relaxation are considered. As in the Lagrangian 

relaxation discussed in section 6.3, the surrogate and Lagrangian relaxations are based on a 0-1 

integer programming formulation for the RCPSP due to Pritsker et al. (1969) and Christofides et 

al. (1987). 

6.5 Adaptive Memory Relaxation Methods 

Three obvious surrogate relaxations of the resource constraints (13) or (17) include 

creating a surrogate resource constraint to take the place of all resource constraints, creating a 

surrogate resource constraint for each resource type, and creating a surrogate resource constraint 

for each time period. 

Relaxing all of the resource constraints (13) into a single surrogate resource constraint 

and introducing the non-negative surrogate weights 𝜐 = 𝜐𝑡𝑘, 𝑡 ∈ {0, … ,𝑇}, 𝑘 ∈ 𝑅 yields the 

following constraint. 

 
��𝜐𝑡𝑘 ��𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

�
𝑘∈𝑅𝑡

≤��𝜐𝑡𝑘𝑅𝑘
𝑘∈𝑅𝑡

  (25) 

    
Creating a surrogate resource constraint for each resource type 𝑘 ∈ 𝑅 yields the following set of 

constraints. 

 
�𝜐𝑡𝑘 ��𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

�
𝑡

≤�𝜐𝑡𝑘𝑅𝑘
𝑡

 𝑘 ∈ 𝑅 (26) 

    
In one respect, these relaxations transform the renewable resource type into non-renewable 

resources with a total availability equal to the right-hand-side of the constraints. Due to the 

interaction of the surrogate weights with the activity resource demand on the left-hand-side, the 
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resource demands can be viewed as time-dependent. In both surrogate relaxations (25) and (26) 

the right-hand-side term can be very large relative to the left-hand-side unless per-time-period 

resource utilization is consistently high compared to resource availability. Since the test 

problems in the PSPLIB are designed to encompass a wide variety of problems, such 

consistently high per-time-period resource utilization is not typical among all problem instances. 

Preliminary testing indicated that these relaxations are not particularly promising. 

 Creating a surrogate resource constraint for each time period yields the following set of 

constraints. 

 
�𝜐𝑡𝑘 ��𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

�
𝑘∈𝑅

≤ �𝜐𝑡𝑘𝑅𝑘
𝑘∈𝑅

 𝑡 ∈ {0, … ,𝑇} (27) 

    
This relaxation essentially transforms the different renewable resource types into a single type of 

renewable resource. Relaxing the stronger resource constraints (17), the surrogate problem is 

obtained as follows. 

minimize �𝑡𝑥(𝑛+1)𝑡
𝑡

  (10) 

subject to    
 �𝑥𝑗𝑡 = 1

𝑡

 𝑗 ∈ 𝐽 (11) 

 
�𝑥𝑖𝑠

𝑇

𝑠=𝑡

+ � 𝑥𝑗𝑠

𝑡+𝑝𝑖−1

𝑠=0

≤ 1 
(𝑖, 𝑗) ∈ 𝐿 
 𝑡 = 0, … ,𝑇 (16) 

 
�𝜐𝑡𝑘 � � 𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗≠𝑛+1

− 𝑅𝑘 �1 −�𝑥(𝑛+1)𝑠

𝑡

𝑠=0

��
𝑘∈𝑅

≤ 0 𝑡 = 0, … ,𝑇 (28) 

    
 𝑥𝑗𝑡 ≥ 0 𝑗 ∈ 𝐽 

𝑡 = 0, … ,𝑇 (14) 

 𝑥𝑗𝑡 integer 𝑗 ∈ 𝐽 
𝑡 = 0, … ,𝑇 (15) 
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For any vector of non-negative surrogate multipliers 𝜐, the optimal solution value of the 

surrogate subproblem is a lower bound on the optimal solution value of the original RCPSP due 

to surrogate duality (Glover, 1975). If the optimal solution for a fixed vector of multipliers 𝜔 is 

feasible for the original RCPSP, the solution is also optimal for the original RCPSP due to 

surrogate duality (Glover, 1975). 

The associated cross-parametric relaxation is obtained by dualizing the surrogate 

constraint (28) using a non-negative vector of Lagrangian multipliers 𝜆𝑡. The cross-parametric 

relaxation is then obtained as follows. 

minimize �𝑡𝑥(𝑛+1)𝑡
𝑡

+ 

  �𝜆𝑡
𝑡

�𝜐𝑡𝑘
𝑘∈𝑅

��𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

− 𝑅𝑘 �1 −�𝑥(𝑛+1)𝑠

𝑡

𝑠=0

�� 
 (29) 

subject 
to 

   

 �𝑥𝑗𝑡 = 1
𝑡

 𝑗 ∈ 𝐽 (11) 

 
�𝑥𝑖𝑠

𝑇

𝑠=𝑡

+ � 𝑥𝑗𝑠

𝑡+𝑝𝑖−1

𝑠=0

≤ 1 
(𝑖, 𝑗) ∈ 𝐿 
𝑡 = 0, … ,𝑇 (16) 

    
 𝑥𝑗𝑡 ≥ 0 𝑗 ∈ 𝐽 

𝑡 = 0, … ,𝑇 (14) 

 𝑥𝑗𝑡 integer 𝑗 ∈ 𝐽 
𝑡 = 0, … ,𝑇 (15) 

    
Introducing the weights 

 

𝑤𝑗𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧
�𝑟𝑗𝑘 � � 𝜆𝑠𝜐𝑠𝑘

𝑡+𝑝𝑗−1

𝑠=𝑡

�         𝑖𝑓 𝑗 ≠ 𝑛 + 1
𝑘∈𝑅

𝑡 + �𝜆𝑠�𝜐𝑠𝑘𝑅𝑘
𝑘∈𝑅

𝑇

𝑠=𝑡

             𝑖𝑓 𝑗 = 𝑛 + 1

� (30) 

   
the Lagrangian subproblem can be written as follows. 
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minimize ��𝑤𝑗𝑡𝑥𝑗𝑡
𝑡𝑗

−�𝜆𝑡�𝜐𝑡𝑘𝑅𝑘
𝑘∈𝑅𝑡

  (31) 

subject 
to 

   

 �𝑥𝑗𝑡 = 1
𝑡

 𝑗 ∈ 𝐽 (11) 

 
�𝑥𝑖𝑠

𝑇

𝑠=𝑡

+ � 𝑥𝑗𝑠

𝑡+𝑝𝑖−1

𝑠=0

≤ 1 
(𝑖, 𝑗) ∈ 𝐿 
 𝑡 = 0, … ,𝑇 (16) 

    
 𝑥𝑗𝑡 ≥ 0 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (14) 
 𝑥𝑗𝑡 integer 𝑗 ∈ 𝐽, 𝑡 = 0, … ,𝑇 (15) 
    

For any non-negative vector of Lagrangian multipliers 𝜆𝑡, the optimal solution value of 

the Lagrangian subproblem is a lower bound on the optimal value of the surrogate problem due 

to weak Lagrangian duality (Geoffrion, 1971). If the solution of the Lagrangian subproblem for a 

fixed 𝜆 is feasible for the surrogate problem and if the corresponding objective function values of 

both problems coincide, the solution is also optimal for the surrogate problem due to strong 

Lagrangian duality (Geoffrion, 1971). 

6.5.1 Solving the Cross-Parametric Relaxation Integer Programming Problem 

The cross-parametric relaxation integer programming problem can be solved in the same manner 

as the Lagrangian relaxation integer programming problem as discussed in section 6.3.2. 

6.5.2 Adaptive Weighting Update Method 

A fundamental feature of the cross-parametric relaxation is the ability to generate 

parametric subgradients, as defined in Glover (1975). In this implementation parametric 

subgradients are conceived by using the subgradient method (Polyak, 1969). The subgradient 

method is used to generate the vector of surrogate multipliers for the relaxed constraints of the 

primal RCPSP to create the corresponding surrogate problem. For a set of constraints (17) that 

have been relaxed, a gradient vector is computed as follows. 
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𝐺𝑘𝑡 = �𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

− 𝑅𝑘 �1 −�𝑥(𝑛+1)𝑠

𝑡

𝑠=0

� 𝑘 ∈ 𝑅, 𝑡 = 0, … ,𝑇 (32) 

   
The step size 𝛿𝜐 is given by 

𝛿𝜐 = 𝜋𝜐 (𝑈𝐵𝜐 − 𝐿𝐵𝜐) ���𝐺𝑘𝑡2

𝑡𝑘

��   (33) 

   
where 𝑈𝐵𝜐 is the upper bound for the optimal value of the surrogate dual (which in the algorithm 

corresponds to the best primal feasible solution found), 𝐿𝐵𝜐  is the current lower bound 

(associated with the solution of the previous surrogate relaxation problem), and  𝜋𝜐 is a user-

defined (step size) parameter initialized at a certain value (e.g. 2) and reduced when a certain 

number of successive iterations of the subgradient search do not improve the lower-bound. 

Hence, if at iteration 𝑖, the vector of surrogate weights 𝜐𝑖  is used, the vector for the next iteration 

(𝑖 + 1) is determined as 

𝜐𝑘𝑡
(𝑖+1) = �𝜐𝑘𝑡𝑖 + 𝛿𝜐𝐺𝑘𝑡�

+
 𝑘 ∈ 𝑅, 𝑡 = 0, … ,𝑇 (34) 

   
where [. ]+ denotes the non-negative part of the vector. This new vector is then used to create the 

corresponding surrogate problem. Because the surrogate problem can be difficult to solve, the 

problem is relaxed again by dualizing the surrogate constraint using Lagrangian relaxation. As a 

result, a parametric subgradient is created by using the current surrogate vector as a parameter in 

a subgradient search carried out on the Lagrangian relaxation of the surrogate problem aimed at 

determining a surrogate dual solution. As for surrogate dual solutions, cross-parametric dual 

solutions are obtained by subgradient optimization. The subgradient is computed as follows. 

𝐺𝑡 = �𝜐𝑡𝑘
𝑘∈𝑅

��𝑟𝑗𝑘 � � 𝑥𝑗𝑠

𝑡

𝑠=𝑡−𝑝𝑗+1

�
𝑗

− 𝑅𝑘 �1 −�𝑥(𝑛+1)𝑠

𝑡

𝑠=0

�� 𝑡 = 0, … ,𝑇 (35) 

   
Similarly, a step size  𝛿𝜆 is given by 
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𝛿𝜆 = 𝜋𝜆 �𝑈𝐵𝜆 − 𝐿𝐵𝜆� �𝐺𝑡2
𝑡

�   
(36) 

   
where 𝑈𝐵𝜆 is the upper bound for the optimal value of the surrogate problem (which 

corresponds to the best surrogate feasible solution found) and 𝐿𝐵𝜆  is the lower bound given by 

an associated Lagrangian dual solution. As above, the computation of a Lagrangian multiplier 

(scalar) for a new subgradient iteration is given as follows. 

𝜆t
(𝑖+1) = �𝜆t𝑖 + 𝛿𝜆𝐺𝑡�

+
 

 (37) 

   
6.5.3 Adaptive Memory Projection Method 

The adaptive memory projection method used here is the same as described in section 

6.3.4. 

6.5.4 The RAMP Algorithms 

Aside from the relaxation method used, the RAMP algorithms for the cross-parametric 

relaxation are identical to the RAMP algorithms described in section 6.3.5. 

6.6 Computational Analysis 

The RAMP algorithms developed for the RCPSP were implemented using the C++ 

programming language. The code was compiled for 64-bit machines and all tests were conducted 

on machines with Intel Core i7 870 2.93 GHz CPUs and 8GB RAM running a 64-bit operating 

system. The PSPLIB RCPSP instances with 𝑁 = 30, 60, and 120 activities were used to test the 

performance of the RAMP algorithms. An initial upper bound, or planning time horizon, for the 

RCPSP was obtained by taking the best makespan obtained after applying a parallel SGS using 

six different priority rules (e.g. smallest duration first, largest duration first, minimum slack, 

etc.). The RAMP algorithms were terminated early if a schedule equal to a known optimal value 

was found. 
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The adaptive memory projection method was used to generate up to 55 schedules. Up to 

eleven precedence feasible activity lists were generated using 𝛼-completion times where the 

parameter 𝛼 was set from 0.0 to 1.0 in 0.1 increments. Duplicate activity lists were discarded. 

The serial SGS with limited look-ahead was used with parameter 𝑙 = 2, 4, and 8. Thus, for each 

unique activity list, three schedules were generated with the serial SGS with limited look-ahead, 

one schedule with the parallel SGS, and one schedule with the usual serial SGS, which results in 

five schedules generated for each unique activity list. All schedules generated by the adaptive 

memory projection method were added to the EP1 population; duplicate schedules were not 

discarded. 

The tabu search components in each RAMP algorithm were limited to generating no 

more than 5,000 schedules each time they were invoked. The other parameters and termination 

criteria for the tabu search components were set to the same values as used in section 5.3. The 

results presented in this section only include the best performing tabu restriction for each 

candidate list strategy. 

The evolutionary components were limited to no more than 5,000 schedules generated for 

both phases, EP1 and EP2, combined with an approximately equal number of schedules allocated 

to each phase. Following Valls et al. (2008) the probability of mutation was set to 0.05 and the 

lower and upper thresholds for the peak crossover operator was set to 0.75 and 0.95, 

respectively. The values for the parameters EP1POPsize and 𝜋 were also set as in Valls et al. 

(2008) and are summarized in Table 6.1. The population size for EP2 was set to EP1POPsize/2. 

Each generation 𝜋 × 𝑃𝑂𝑃𝑠𝑖𝑧𝑒/2 couples are selected. 
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Table 6.1 – Parameter values for POPsize and π 
 EP1POPsize 𝜋 

j30 100 0.8 
j60 50 0.7 
j120 50 0.4 

   
6.6.1 Lagrangian RAMP Algorithms 

Noting that the Lagrangian adaptive memory relaxation method, the adaptive weighting 

update method, and the adaptive memory projection method without any of tabu search or 

evolutionary method components implement the Möhring et al. (2003) Lagrangian-based 

heuristic, their results are shown below in Table 6.2 for comparison purposes. As usual, the 

average percent deviation from the critical path lower bound is given for the PSPLIB j60 and 

j120 instances. Results for the PSPLIB j30 instances are not available for the Möhring et al. 

(2003) Lagrangian-based heuristic. 

Table 6.2 – Results from the Möhring et al.(2003) Lagrangian-based heuristic 
      Avg. % Dev. 

from CPLB 
     

 j60 15.60  
 j120 36.00  
    

The Lagrangian RAMP algorithms were terminated when the objective function values 

for the RCPSP and the Lagrangian relaxation problem were equal or when the lower bound for 

the RCPSP did not improve after 10 iterations. 

Results for the basic RAMP algorithms are presented in Table 6.3. Comparing these 

results to the results presented in Table 5.4 for the tabu search algorithms with candidate lists 

(which are the tabu search algorithms incorporated in the RAMP algorithms), the RAMP 

algorithms obtain better results when limited to only 5,000 schedules generated than the tabu 

search algorithms alone when allowed a maximum of 50,000 schedules. When the RAMP 

algorithms and tabu search algorithms are allowed to generate up to 50,000 schedules, the 
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RAMP algorithms clearly dominate the tabu search algorithms. Comparing the tabu search 

algorithms and RAMP algorithms by candidate list strategy (i.e. row by row), the RAMP 

algorithm performs better than its tabu search counterpart in all cases. 

For the j60 and j120 PSPLIB instances, even when limited to only 1,000 schedules 

generated, the RAMP algorithms clearly obtain better results than the Lagrangian-based heuristic 

of Möhring et al. (2003) alone. Together, these observations indicate that the performance of the 

RAMP algorithm cannot be attributed to either the tabu search component or the Lagrangian 

relaxation component alone. This suggests that the RAMP methodology is allowing useful 

information obtained from the dual to be exploited by the primal and vice versa. Comparing 

these RAMP results to other tabu search algorithms for the RCPSP (see Table 5.5), the RAMP 

algorithms obtain better results for the larger j120 instances. For the smaller j60 instances, only 

some of the RAMP algorithms perform as well or better than existing tabu search algorithms. 
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Table 6.3 – RAMP results 

Tabu Search 
Algorithm Used 

Schedule Limits Avg. # of 
Schedules 

Avg. # of 
Schedules 

to Best 1,000 5,000 50,000 

j30 Instances* 

TS1-10 PLEjIns R3 0.60 0.32 0.09 4,034.07 1,967.28 
TS1-10 PLSwap R0 0.57 0.29 0.09 4,132.83 2,097.56 
TS1-100 PLEjIns R8 0.74 0.25 0.04 3,379.67 2,337.00 
TS1-100 PLSwap R0 0.61 0.23 0.04 3,085.70 2,108.66 

TS2 PLEjIns R6 0.70 0.32 0.05 4,022.62 2,968.26 
TS3 PLEjIns R7 0.79 0.45 0.08 4,851.91 3,025.05 
TS4 PLEjIns R11 0.77 0.34 0.09 4,301.42 2,473.79 
TS5 PLEjIns R6 0.78 0.36 0.08 4,012.65 2,262.42 
TS6 PLEjIns R6 0.78 0.36 0.08 4,012.65 2,262.42 

j60 Instances 

TS1-10 PLEjIns R8 12.68 12.15 11.65 12,453.0 4,245.45 
TS1-10 PLSwap R4 12.72 12.18 11.64 12,380.7 4,903.09 
TS1-100 PLEjIns R2 12.67 12.12 11.39 12,473.6 5,388.06 
TS1-100 PLSwap R3 12.66 12.11 11.38 12,136.8 5,382.90 

TS2 PLEjIns R7 12.82 12.41 11.65 13,181.6 5,408.65 
TS3 PLEjIns R7 12.90 12.51 11.72 13,293.6 5,534.26 
TS4 PLEjIns R11 12.82 12.56 11.76 13,310.9 5,183.91 
TS5 PLEjIns R4 12.92 12.56 11.72 13,135.0 5,780.26 
TS6 PLEjIns R4 12.92 12.56 11.72 13,135.0 5,780.26 

j120 Instances 

TS1-10 PLEjIns R7 37.06 36.08 34.90 33,801.1 11,213.4 
TS1-10 PLSwap R3 37.07 36.07 34.95 33,747.3 10,956.3 
TS1-100 PLEjIns R3 36.84 36.06 34.61 34,178.2 13,868.2 
TS1-100 PLSwap R0 36.89 36.18 34.63 34,012.3 15,079.2 

TS2 PLEjIns R0 37.27 36.77 35.27 34,748.5 14,059.0 
TS3 PLEjIns R0 37.32 36.84 35.33 34,818.6 14,147.3 
TS4 PLEjIns R11 37.19 36.86 35.28 34,628.2 13,934.9 
TS5 PLEjIns R0 37.31 36.94 35.40 34,394.8 13,910.4 
TS6 PLEjIns R0 37.31 36.94 35.40 34,394.8 13,910.4 

      
* Average percent deviations from optimal makespan 

      
Results for the PD-RAMP–TS–EP1–EP2 algorithms are presented in Table 6.4. The PD-

RAMP–TS–EP1–EP2 algorithms outperform the basic RAMP algorithms at 50,000 schedules 

generated, and these results are obtained with a lower average number of schedules generated. In 
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addition, for the j30 and j60 instances, the best schedules obtained by the PD-RAMP–TS–EP1–

EP2 algorithms are found with fewer schedules generated. 

Table 6.4 – PD-RAMP–TS–EP1–EP2 results 

Tabu Search 
Algorithm Used 

Schedule Limits Avg. # of 
Schedules 

Avg. # of 
Schedules 

to Best 1,000 5,000 50,000 

j30 Instances* 

TS1-10 PLEjIns R7 0.55 0.13 0.02 2,099.17 1,459.67 
TS1-10 PLSwap R3 0.52 0.17 0.02 2,318.61 1,330.15 

TS1-100 PLEjIns R11 0.69 0.15 0.01 2,068.43 1,652.12 
TS1-100 PLSwap R5 0.53 0.15 0.02 2,008.78 1,417.06 

TS2 PLEjIns R2 0.76 0.26 0.02 2,499.04 1,886.00 
TS3 PLEjIns R7 0.79 0.24 0.03 2,605.76 1,780.68 
TS4 PLEjIns R3 0.74 0.18 0.02 2,144.61 1,567.94 
TS5 PLEjIns R11 0.82 0.38 0.02 2,461.73 1,889.23 
TS6 PLEjIns R1 0.84 0.47 0.03 2,898.54 2,243.8 

j60 Instances 

TS1-10 PLEjIns R8 12.04 11.28 10.89 10,506.5 3,413.76 
TS1-10 PLSwap R5 12.09 11.27 10.88 11,037.3 3,692.70 
TS1-100 PLEjIns R5 12.72 11.91 10.91 11,458.1 4,180.09 
TS1-100 PLSwap R7 12.63 11.72 10.91 11,878.7 4,897.00 

TS2 PLEjIns R10 12.83 12.52 10.93 12,147.9 5,080.46 
TS3 PLEjIns R7 12.90 12.51 10.93 12,114.6 5,338.54 
TS4 PLEjIns R2 12.89 12.71 10.90 11,510.8 4,993.45 
TS5 PLEjIns R0 12.94 12.62 10.95 12,172.6 4,866.10 
TS6 PLEjIns R7 12.94 12.56 10.93 11,822.2 4,710.47 

j120 Instances 

TS1-10 PLEjIns R0 35.97 33.15 31.96 31,474.5 10,946.5 
TS1-10 PLSwap R5 36.05 33.09 31.91 31,779.7 11,128.9 
TS1-100 PLEjIns R7 36.90 36.41 32.04 32,101.3 14,431.0 
TS1-100 PLSwap R2 36.87 36.14 31.99 32,129.6 14,384.9 

TS2 PLEjIns R0 37.27 36.77 31.95 32,144.0 14,139.7 
TS3 PLEjIns R7 37.32 36.84 31.93 32,125.9 14,327.2 
TS4 PLEjIns R8 37.20 36.92 31.98 32,114.0 14,336.9 
TS5 PLEjIns R0 37.31 36.96 31.96 31,882.3 13,296.2 
TS6 PLEjIns R0 37.31 36.96 31.94 32,222.8 14,517.0 

      
* Average percent deviations from optimal makespan 
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Results for the PD-RAMP–EP1–TS–EP2 algorithms are presented in Table 6.5. The PD-

RAMP–EP1–TS–EP2 algorithms outperform the basic RAMP algorithms for the j60 and j120 

instances at all schedule limits and for the j30 instances at 50,000 schedules generated, and these 

results are obtained with a lower average number of schedules generated. In addition, for the j30 

and j60 instances, the best schedules obtained by the PD-RAMP–EP1–TS–EP2 algorithms are 

found with fewer schedules generated. When limited to 1,000 or 5,000 generated, the PD-

RAMP–EP1–TS–EP2 algorithms typically provide better results than the PD-RAMP–TS–EP1–

EP2 algorithms for the j60 and j120 instances. However, the PD-RAMP–TS–EP1–EP2 

algorithms typically provide better results at 50,000 generated schedules. 
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Table 6.5 – PD-RAMP–EP1–TS–EP2 results 

Tabu Search 
Algorithm Used 

Schedule Limits Avg. # of 
Schedules 

Avg. # of 
Schedules 

to Best 1,000 5,000 50,000 

j30 Instances* 

TS1-10 PLEjIns R5 0.86 0.14 0.02 2,207.30 1,575.95 
TS1-10 PLSwap R11 0.82 0.16 0.02 2,315.57 1,660.55 
TS1-100 PLEjIns R8 0.83 0.14 0.02 2,213.71 1,388.01 

TS1-100 PLSwap R11 0.87 0.14 0.02 2,395.30 1,660.42 
TS2 PLEjIns R2 0.85 0.18 0.03 2,260.05 1,436.37 
TS3 PLEjIns R11 0.87 0.25 0.02 2,621.88 1,792.95 
TS4 PLEjIns R8 0.86 0.19 0.02 2,574.61 1,847.82 
TS5 PLEjIns R7 0.84 0.38 0.02 2,697.93 2,165.13 
TS6 PLEjIns R8 0.81 0.43 0.03 2,789.74 2,093.47 

j60 Instances 

TS1-10 PLEjIns R4 12.18 11.29 10.92 11,588.8 4,304.20 
TS1-10 PLSwap R6 12.20 11.30 10.91 11,324.0 3,486.18 
TS1-100 PLEjIns R3 12.16 11.64 10.91 11,544.1 4,705.05 

TS1-100 PLSwap R11 12.20 11.63 10.89 11,467.8 4,765.18 
TS2 PLEjIns R6 12.18 11.65 10.94 11,629.3 4,373.07 
TS3 PLEjIns R9 12.19 11.67 10.98 11,999.4 5,207.65 
TS4 PLEjIns R8 12.20 11.68 10.96 11,835.5 5,042.10 
TS5 PLEjIns R5 12.51 11.71 10.95 11,573.2 5,328.39 
TS6 PLEjIns R4 12.18 11.66 10.96 11,851.9 5,011.27 

j120 Instances 

TS1-10 PLEjIns R5 35.01 33.10 31.91 32,817.0 12,097.8 
TS1-10 PLSwap R8 35.06 33.06 31.85 32,402.1 11,688.2 
TS1-100 PLEjIns R8 35.03 33.67 32.04 32,988.6 14,023.5 
TS1-100 PLSwap R3 35.03 33.73 32.04 32,909.7 14,108.6 

TS2 PLEjIns R8 35.01 33.76 32.06 33,256.2 14,445.5 
TS3 PLEjIns R2 35.01 33.68 32.09 33,162.4 13,758.3 
TS4 PLEjIns R7 35.00 33.72 32.10 33,036.3 13,685.5 
TS5 PLEjIns R5 35.01 33.78 32.09 33,227.4 14,346.8 
TS6 PLEjIns R8 35.05 33.77 32.04 33,002.3 14,522.1 

      
* Average percent deviations from optimal makespan 

      
Results for the PD-RAMP–EP1–EP2–TS algorithms are presented Table 6.6. The PD-

RAMP–EP1–EP2–TS algorithms outperform the basic RAMP algorithms at all schedules limits 

except for the j30 instances with only 1,000 generated schedules. The best schedules found by 
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the PD-RAMP–EP1–EP2–TS algorithms are obtained in a lower number of average schedules 

compared the basic RAMP algorithms. The results for the PD-RAMP–EP1–EP2–TS and PD-

RAMP–EP1–TS–EP2 algorithms are comparable. Neither strategy seems to consistently obtain 

better results than the other. When limited to 1,000 or 5,000 generated, the PD-RAMP–EP1–

EP2–TS algorithms typically provide better results than the PD-RAMP–TS–EP1–EP2 algorithms 

for the j60 and j120 instances. However, the PD-RAMP–TS–EP1–EP2 algorithms typically 

provide better results at 50,000 generated schedules. 
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Table 6.6 – PDRAMP–EP1–EP2–TS results 

Tabu Search 
Algorithm Used 

Schedule Limits Avg. # of 
Schedules 

Avg. # of 
Schedules 

to Best 1,000 5,000 50,000 

j30 Instances* 

TS1-10 PLEjIns R7 0.81 0.16 0.02 2,353.66 1,837.32 
TS1-10 PLSwap R5 0.85 0.14 0.03 2,180.36 1256.24 
TS1-100 PLEjIns R4 0.84 0.15 0.02 2,224.48 1,643.19 
TS1-100 PLSwap R1 0.83 0.12 0.02 1,872.49 1,149.91 

TS2 PLEjIns R6 0.85 0.15 0.03 2,187.88 1,183.80 
TS3 PLEjIns R5 0.85 0.15 0.04 2,605.04 1,454.42 
TS4 PLEjIns R5 0.86 0.15 0.02 2,246.10 1,533.71 
TS5 PLEjIns R8 0.85 0.14 0.03 2,251.19 1,356.61 
TS6 PLEjIns R6 0.87 0.18 0.03 2,351.18 1,651.53 

j60 Instances 

TS1-10 PLEjIns R9 12.18 11.36 10.91 11,837.0 4,088.35 
TS1-10 PLSwap R5 12.18 11.33 10.91 11,653.4 3,688.04 

TS1-100 PLEjIns R10 12.20 11.38 10.91 11,018.7 3,878.32 
TS1-100 PLSwap R8 12.21 11.34 10.90 11,080.7 3,685.57 

TS2 PLEjIns R11 12.19 11.37 10.96 11,777.6 4,347.80 
TS3 PLEjIns R7 12.17 11.34 10.97 11,680.2 4,243.52 
TS4 PLEjIns R8 12.18 11.38 10.93 12,028.9 4,394.68 
TS5 PLEjIns R9 12.13 11.31 10.97 11,783.0 3,780.27 
TS6 PLEjIns R4 12.17 11.26 10.96 11,140.7 4,060.47 

j120 Instances 

TS1-10 PLEjIns R1 35.00 33.06 31.86 32,077.7 11,661.3 
TS1-10 PLSwap R6 35.07 33.08 31.90 32,218.6 11,653.0 
TS1-100 PLEjIns R1 35.03 32.97 32.03 32,358.3 11,788.1 
TS1-100 PLSwap R8 34.99 33.03 32.02 32,704.7 13,119.9 

TS2 PLEjIns R6 35.01 32.99 32.08 32,610.7 12,211.7 
TS3 PLEjIns R5 35.01 33.09 32.08 32,461.7 12,463.0 
TS4 PLEjIns R1 34.99 33.09 32.07 32,761.0 11,738.1 
TS5 PLEjIns R2 35.01 33.06 32.07 32,737.4 13,054.9 
TS6 PLEjIns R7 35.08 33.01 32.06 32,661.2 12,626.2 

      
* Average percent deviations from optimal makespan 

      
None of the various RAMP and PD-RAMP algorithms perform better than the currently 

best performing heuristics for the RCPSP (see Table 3.1 through Table 3.3). However, the results 

for the PD-RAMP algorithms are competitive with the best performing heuristics for the larger 
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j60 and j120 PSPLIB instances. All of the RAMP and PD-RAMP algorithms outperform the 

only other relaxation based heuristic that is typically cited when comparing results of heuristics 

for the RCPSP.  It is evident that the RAMP and PD-RAMP methodologies are capable of 

exploiting primal-dual relationships even in hard scheduling problems such as the RCPSP. 

The maximum percent deviations obtained by the various RAMP algorithms are shown in 

Table 6.7 through Table 6.10. The optimal minimum makespan is known for all of the j30 

instances, thus the maximum percent deviations are deviations from the optimal value. For the 

j60 and j120 instances the maximum percent deviation from the critical path lower bound is 

provided. The percent of instances where the optimal makespan was found by each algorithm is 

shown in Table 6.11 through Table 6.14. Note that the optimal value is known for 89.8 % of the 

j60 instances and 48.2% of the j120 instances. 

Care must be taken when evaluating the maximum percent deviation from the critical 

path lower bound. The maximum deviation is not related to solution quality. For example, the 

maximum percentage deviation of the optimal value from the critical path lower bound among 

the j30 instances is 120.83%. These maximum deviations are only useful in comparing 

algorithms to each other. The RAMP algorithms that use tabu search to improve the best 

schedule obtained from the adaptive memory projection method result in smaller maximum 

deviations in the first 1,000 schedules. For 50,000 generated schedules, the PD-RAMP 

algorithms typically result in smaller maximum percent deviations than the basic RAMP 

algorithms. Similarly, the PD-RAMP algorithms typically find more optimal solutions than the 

basic RAMP algorithms. 

  



88 
 

Table 6.7 – RAMP maximum percent deviations 
Tabu Search 

Algorithm Used 
Schedule Limits 

1,000 5,000 50,000 

j30 Instances 

TS1-10 PLEjIns R3 8.62 5.17 3.45 
TS1-10 PLSwap R0 6.90 5.17 3.45 
TS1-100 PLEjIns R8 7.89 5.26 2.17 
TS1-100 PLSwap R0 8.54 4.84 2.94 

TS2 PLEjIns R6 8.06 6.90 3.45 
TS3 PLEjIns R7 8.49 7.22 3.09 
TS4 PLEjIns R11 10.34 5.26 2.99 
TS5 PLEjIns R6 7.89 6.90 3.45 
TS6 PLEjIns R6 7.89 6.90 3.45 

j160 Instances 

TS1-10 PLEjIns R8 119.48 114.29 110.39 
TS1-10 PLSwap R4 116.88 115.58 112.99 
TS1-100 PLEjIns R2 115.58 114.29 109.09 
TS1-100 PLSwap R3 119.48 110.39 107.79 

TS2 PLEjIns R7 120.78 112.99 110.39 
TS3 PLEjIns R7 120.78 114.29 109.09 
TS4 PLEjIns R11 120.78 120.78 110.39 
TS5 PLEjIns R4 119.48 114.29 111.69 
TS6 PLEjIns R4 119.48 114.29 111.69 

j120 Instances 

TS1-10 PLEjIns R7 222.22 217.17 212.12 
TS1-10 PLSwap R3 225.25 218.18 215.51 
TS1-100 PLEjIns R3 220.20 216.16 210.10 
TS1-100 PLSwap R0 225.25 215.15 209.09 

TS2 PLEjIns R0 224.24 220.20 211.11 
TS3 PLEjIns R0 224.24 220.20 211.11 
TS4 PLEjIns R11 223.23 220.20 213.13 
TS5 PLEjIns R0 224.24 222.22 215.15 
TS6 PLEjIns R0 224.24 222.22 215.15 
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Table 6.8 – PDRAMP–TS–EP1–EP2 maximum percent deviations 
Tabu Search 

Algorithm Used 
Schedule Limits 

1,000 5,000 50,000 

j30 Instances 

TS1-10 PLEjIns R7 10.34 5.17 2.06 
TS1-10 PLSwap R3 9.21 5.26 2.06 

TS1-100 PLEjIns R11 9.18 4.88 2.06 
TS1-100 PLSwap R5 6.90 4.41 2.06 

TS2 PLEjIns R2 9.72 6.90 2.06 
TS3 PLEjIns R7 8.49 5.26 2.44 
TS4 PLEjIns R3 8.47 4.88 2.94 
TS5 PLEjIns R11 10.45 7.35 2.06 
TS6 PLEjIns R1 10.45 8.49 2.94 

j160 Instances 

TS1-10 PLEjIns R8 115.58 107.79 105.20 
TS1-10 PLSwap R5 114.29 107.79 103.90 
TS1-100 PLEjIns R5 116.88 112.99 105.20 
TS1-100 PLSwap R7 116.88 112.99 106.49 

TS2 PLEjIns R10 120.78 114.29 106.49 
TS3 PLEjIns R7 120.78 114.29 103.90 
TS4 PLEjIns R2 118.18 118.18 106.49 
TS5 PLEjIns R0 119.48 115.58 105.20 
TS6 PLEjIns R7 119.48 115.58 105.20 

j120 Instances 

TS1-10 PLEjIns R0 217.17 206.06 201.01 
TS1-10 PLSwap R5 219.19 206.06 201.01 
TS1-100 PLEjIns R7 222.22 220.20 200.99 
TS1-100 PLSwap R2 221.21 216.16 202.02 

TS2 PLEjIns R0 224.24 220.20 202.02 
TS3 PLEjIns R7 224.24 220.20 200.00 
TS4 PLEjIns R8 223.23 216.16 200.00 
TS5 PLEjIns R0 224.24 222.22 205.05 
TS6 PLEjIns R0 224.24 222.22 198.99 
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Table 6.9 – PDRAMP–EP1–TS–EP2 maximum percent deviations 
Tabu Search 

Algorithm Used 
Schedule Limits 

1,000 5,000 50,000 

j30 Instances 

TS1-10 PLEjIns R5 13.16 6.58 2.44 
TS1-10 PLSwap R11 13.16 5.26 2.06 
TS1-100 PLEjIns R8 13.16 3.45 2.06 

TS1-100 PLSwap R11 13.16 5.17 2.44 
TS2 PLEjIns R2 13.16 3.90 2.44 
TS3 PLEjIns R11 13.16 5.19 1.72 
TS4 PLEjIns R8 13.16 5.17 2.35 
TS5 PLEjIns R7 13.16 6.52 2.94 
TS6 PLEjIns R8 13.16 6.90 3.64 

j160 Instances 

TS1-10 PLEjIns R4 116.88 105.20 103.90 
TS1-10 PLSwap R6 118.18 106.49 105.20 
TS1-100 PLEjIns R3 112.99 111.69 102.60 

TS1-100 PLSwap R11 116.88 112.99 103.90 
TS2 PLEjIns R6 115.58 115.58 105.20 
TS3 PLEjIns R9 118.18 115.58 106.49 
TS4 PLEjIns R8 118.18 116.88 106.49 
TS5 PLEjIns R5 115.58 115.58 103.90 
TS6 PLEjIns R4 118.18 114.29 106.49 

j120 Instances 

TS1-10 PLEjIns R5 216.16 207.07 202.02 
TS1-10 PLSwap R8 211.88 205.94 200.00 
TS1-100 PLEjIns R8 216.16 206.93 201.01 
TS1-100 PLSwap R3 213.13 207.07 201.98 

TS2 PLEjIns R8 218.18 209.90 200.99 
TS3 PLEjIns R2 216.16 207.07 203.03 
TS4 PLEjIns R7 213.13 207.07 203.03 
TS5 PLEjIns R5 214.85 210.10 201.01 
TS6 PLEjIns R8 214.14 209.09 201.01 
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Table 6.10 – PDRAMP–EP1–EP2–TS maximum percent deviations 
Tabu Search 

Algorithm Used 
Schedule Limits 

1,000 5,000 50,000 

j30 Instances 

TS1-10 PLEjIns R7 13.16 6.58 2.06 
TS1-10 PLSwap R5 13.16 3.95 2.35 
TS1-100 PLEjIns R4 13.16 3.45 2.06 
TS1-100 PLSwap R1 13.16 5.26 2.06 

TS2 PLEjIns R6 13.16 5.97 2.06 
TS3 PLEjIns R5 13.16 6.58 2.94 
TS4 PLEjIns R5 13.16 5.17 2.17 
TS5 PLEjIns R8 13.16 5.26 3.45 
TS6 PLEjIns R6 13.16 5.45 3.45 

j160 Instances 

TS1-10 PLEjIns R9 116.88 109.09 107.79 
TS1-10 PLSwap R5 118.18 110.39 107.79 

TS1-100 PLEjIns R10 118.18 109.09 107.79 
TS1-100 PLSwap R8 118.18 106.49 106.49 

TS2 PLEjIns R11 118.18 107.79 105.20 
TS3 PLEjIns R7 116.88 106.49 102.60 
TS4 PLEjIns R8 116.88 106.49 106.49 
TS5 PLEjIns R9 116.88 106.49 105.20 
TS6 PLEjIns R4 116.88 110.39 106.49 

j120 Instances 

TS1-10 PLEjIns R1 215.15 207.07 202.02 
TS1-10 PLSwap R6 215.15 206.06 200.00 
TS1-100 PLEjIns R1 215.15 203.96 198.99 
TS1-100 PLSwap R8 217.17 204.04 201.01 

TS2 PLEjIns R6 214.14 207.92 201.01 
TS3 PLEjIns R5 213.13 207.92 199.01 
TS4 PLEjIns R1 214.14 202.97 200.99 
TS5 PLEjIns R2 217.17 206.06 199.01 
TS6 PLEjIns R7 215.15 205.05 203.03 
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Table 6.11 – RAMP percent optimal 
Tabu Search 

Algorithm Used 
Schedule Limits 

1,000 5,000 50,000 

j30 Instances 

TS1-10 PLEjIns R3 79.8 86.9 94.8 
TS1-10 PLSwap R0 80.4 87.1 94.8 
TS1-100 PLEjIns R8 76.9 88.3 97.5 
TS1-100 PLSwap R0 79.6 89.2 97.7 

TS2 PLEjIns R6 78.1 86.9 96.9 
TS3 PLEjIns R7 77.1 83.5 94.8 
TS4 PLEjIns R11 76.0 86.5 94.8 
TS5 PLEjIns R6 77.3 87.1 95.6 
TS6 PLEjIns R6 77.3 87.1 95.6 

j160 Instances 

TS1-10 PLEjIns R8 70.6 73.1 76.5 
TS1-10 PLSwap R4 71.0 74.0 76.5 
TS1-100 PLEjIns R2 69.6 72.1 77.3 
TS1-100 PLSwap R3 70.0 73.1 77.5 

TS2 PLEjIns R7 68.8 70.2 75.2 
TS3 PLEjIns R7 68.8 69.8 75.2 
TS4 PLEjIns R11 68.8 69.6 75.0  
TS5 PLEjIns R4 69.0 69.6 76.0 
TS6 PLEjIns R4 69.0 69.6 76.0 

j120 Instances 

TS1-10 PLEjIns R7 28.3 30.7 33.5 
TS1-10 PLSwap R3 28.8 31.0 33.8 
TS1-100 PLEjIns R3 28.2 29.2 33.5 
TS1-100 PLSwap R0 28.3 29.2 33.7 

TS2 PLEjIns R0 27.7 28.2 32.5 
TS3 PLEjIns R0 27.3 28.2 32.5 
TS4 PLEjIns R11 28.0 28.2 32.5 
TS5 PLEjIns R0 28.0 28.7 32.7 
TS6 PLEjIns R0 28.0 28.7 32.7 
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Table 6.12 – PDRAMP–TS–EP1–EP2 percent optimal 
Tabu Search 

Algorithm Used 
Schedule Limits 

1,000 5,000 50,000 

j30 Instances 

TS1-10 PLEjIns R7 82.5 93.3 98.3 
TS1-10 PLSwap R3 82.1 92.3 98.5 

TS1-100 PLEjIns R11 78.8 93.1 99.0 
TS1-100 PLSwap R5 80.8 91.7 98.8 

TS2 PLEjIns R2 77.9 90.0 98.5 
TS3 PLEjIns R7 76.9 90.6 98.1 
TS4 PLEjIns R3 75.8 90.8 98.5 
TS5 PLEjIns R11 77.1 86.5 98.5 
TS6 PLEjIns R1 76.3 86.0 98.5 

j160 Instances 

TS1-10 PLEjIns R8 72.5 75.8 81.0 
TS1-10 PLSwap R5 72.3 75.4 80.0 
TS1-100 PLEjIns R5 70.4 74.2 79.8 
TS1-100 PLSwap R7 70.0 74.4 80.0 

TS2 PLEjIns R10 68.8 70.2 79.8 
TS3 PLEjIns R7 68.8 70.0 79.8 
TS4 PLEjIns R2 69.4 70.2 80.6 
TS5 PLEjIns R0 69.0 70.0 79.2 
TS6 PLEjIns R7 69.0 69.8 79.8 

j120 Instances 

TS1-10 PLEjIns R0 31.0 36.2 38.5 
TS1-10 PLSwap R5 30.3 35.8 37.5 
TS1-100 PLEjIns R7 28.3 28.5 38.0 
TS1-100 PLSwap R2 28.5 29.5 37.3 

TS2 PLEjIns R0 27.7 28.2 38.3 
TS3 PLEjIns R7 27.3 28.2 38.0 
TS4 PLEjIns R8 27.8 28.2 37.8 
TS5 PLEjIns R0 28.0 28.8 38.5 
TS6 PLEjIns R0 28.0 28.8 37.7 
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Table 6.13 – PDRAMP–EP1–TS–EP2 percent optimal 
Tabu Search 

Algorithm Used 
Schedule Limits 

1,000 5,000 50,000 

j30 Instances 

TS1-10 PLEjIns R5 76.3 92.9 98.5 
TS1-10 PLSwap R11 77.1 92.1 98.5 
TS1-100 PLEjIns R8 76.9 91.9 98.1 

TS1-100 PLSwap R11 75.2 92.1 98.3 
TS2 PLEjIns R2 76.5 91.7 98.1 
TS3 PLEjIns R11 76.5 88.8 98.1 
TS4 PLEjIns R8 75.6 91.0 98.3 
TS5 PLEjIns R7 76.5 85.4 98.5 
TS6 PLEjIns R8 76.5 84.8 98.3 

j160 Instances 

TS1-10 PLEjIns R4 70.2 75.2 80.0 
TS1-10 PLSwap R6 71.0 76.5 80.4 
TS1-100 PLEjIns R3 70.8 73.8 80.0 

TS1-100 PLSwap R11 70.8 74.4 79.8 
TS2 PLEjIns R6 70.4 74.2 80.4 
TS3 PLEjIns R9 70.8 73.5 79.8 
TS4 PLEjIns R8 70.4 72.7 79.6 
TS5 PLEjIns R5 71.0 74.2 80.4 
TS6 PLEjIns R4 71.5 73.8 80.2 

j120 Instances 

TS1-10 PLEjIns R5 31.7 36.2 38.0 
TS1-10 PLSwap R8 31.3 35.0 38.0 
TS1-100 PLEjIns R8 30.7 34.0 38.3 
TS1-100 PLSwap R3 31.8 34.8 38.2 

TS2 PLEjIns R8 31.8 33.8 37.7 
TS3 PLEjIns R2 32.0 33.8 37.7 
TS4 PLEjIns R7 31.2 33.0 37.8 
TS5 PLEjIns R5 31.2 34.0 37.5 
TS6 PLEjIns R8 31.5 34.2 38.0 

    
 

  



95 
 

Table 6.14 – PDRAMP–EP1–EP2–TS percent optimal 
Tabu Search 

Algorithm Used 
Schedule Limits 

1,000 5,000 50,000 

j30 Instances 

TS1-10 PLEjIns R7 76.5 92.1 98.5 
TS1-10 PLSwap R5 76.7 92.3 98.1 
TS1-100 PLEjIns R4 76.9 92.5 98.5 
TS1-100 PLSwap R1 76.9 94.0 98.3 

TS2 PLEjIns R6 76.5 92.3 97.9 
TS3 PLEjIns R5 76.9 92.5 97.5 
TS4 PLEjIns R5 76.3 92.1 98.3 
TS5 PLEjIns R8 76.3 92.7 98.1 
TS6 PLEjIns R6 76.0 81 98.5 

j160 Instances 

TS1-10 PLEjIns R9 71.5 74.8 79.8 
TS1-10 PLSwap R5 71.3 75.8 80.0 

TS1-100 PLEjIns R10 70.8 76.5 79.4 
TS1-100 PLSwap R8 71.3 75.4 80.6 

TS2 PLEjIns R11 70.6 74.6 80.0 
TS3 PLEjIns R7 70.6 75.6 80.0 
TS4 PLEjIns R8 71.3 74.2 78.8 
TS5 PLEjIns R9 70.8 75.4 79.6 
TS6 PLEjIns R4 71.3 76.9 80.2 

j120 Instances 

TS1-10 PLEjIns R1 31.7 35.7 38.7 
TS1-10 PLSwap R6 31.5 35.7 38.5 
TS1-100 PLEjIns R1 31.5 36.2 38.3 
TS1-100 PLSwap R8 32.0 35.3 38.0 

TS2 PLEjIns R6 31.7 35.2 37.8 
TS3 PLEjIns R5 31.8 35.8 38.3 
TS4 PLEjIns R1 31.3 35.2 37.8 
TS5 PLEjIns R2 31.7 35.0 37.8 
TS6 PLEjIns R7 31.3 35.3 37.5 

    
6.6.2 Cross-Parametric RAMP Algorithms 

In the cross-parametric RAMP algorithms the inner Lagrangian relaxation loop was 

terminated when the optimal objective function values for the surrogate and Lagrangian 

relaxations were equal or when the lower bound for the surrogate relaxation did not improve 



96 
 

after 10 iterations. The outer surrogate relaxation loop was terminated when the upper bound for 

the RCPSP did not improve after 10 iterations. 

Results for the basic RAMP algorithms are presented in Table 6.15. Comparing these 

results to the results presented in Table 5.4 for the tabu search algorithms with candidate lists 

(which are the tabu search algorithms incorporated in the RAMP algorithms), the RAMP 

algorithms obtain better results in all but two cases (TS5 and TS6 for the j60 instances). For the 

j30 and j120 instances, the RAMP algorithms obtain better results when limited to only 5,000 

schedules generated than the tabu search algorithms alone when allowed a maximum of 50,000 

schedules. 

For the j60 instances, the RAMP algorithms obtain better schedules within 1,000 

generated schedules than the Lagrangian-based heuristic of Möhring et al. (2003). The results 

obtained from the Lagrangian basic RAMP shown in Table 6.3 clearly dominate the results from 

the cross-parametric RAMP. The Lagrangian basic RAMP generates about four times as many 

schedules as the cross-parametric basic RAMP. 
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Table 6.15 – RAMP results 

Tabu Search 
Algorithm Used 

Schedule Limits Avg. # of 
Schedules 

Avg. # of 
Schedules 

to Best 1,000 5,000 50,000 

j30 Instances* 

TS1-10 PLEjIns R9 0.91 0.87 0.87 745.80 139.79 
TS1-10 PLSwap R8 0.82 0.79 0.79 732.01 148.65 

TS1-100 PLEjIns R10 0.77 0.43 0.41 1,079.00 398.79 
TS1-100 PLSwap R1 0.71 0.40 0.36 1,054.45 424.62 

TS2 PLEjIns R6 0.81 0.51 0.48 1,267.73 388.87 
TS3 PLEjIns R6 0.90 0.57 0.49 1,568.64 512.46 
TS4 PLEjIns R2 0.82 0.62 0.60 1,214.46 339.18 
TS5 PLEjIns R6 0.87 0.51 0.40 1,806.99 739.37 
TS6 PLEjIns R6 0.87 0.51 0.40 1,806.99 739.37 

j60 Instances 

TS1-10 PLEjIns R1 13.10 12.93 12.93 1,032.84 211.06 
TS1-10 PLSwap R2 13.11 12.86 12.86 1,027.97 239.10 
TS1-100 PLEjIns R5 12.93 12.24 12.03 2,922.78 1,088.91 
TS1-100 PLSwap R8 12.86 12.18 11.98 2,844.61 1,016.66 

TS2 PLEjIns R6 13.15 12.60 12.34 3,464.30 1,153.56 
TS3 PLEjIns R6 13.22 12.66 12.37 3,520.07 1,259.71 
TS4 PLEjIns R11 13.13 12.71 12.42 3,520.13 1,173.23 
TS5 PLEjIns R7 13.23 12.68 12.40 3,478.57 1,185.16 
TS6 PLEjIns R7 13.23 12.68 12.40 3,478.57 1,185.16 

j120 Instances 

TS1-10 PLEjIns R0 37.67 37.33 37.33 2,602.22 390.38 
TS1-10 PLSwap R3 37.70 37.36 37.36 2,582.10 376.25 
TS1-100 PLEjIns R4 37.29 36.32 35.85 8,047.97 2,573.74 
TS1-100 PLSwap R0 37.31 36.36 35.92 8,025.86 2,548.65 

TS2 PLEjIns R2 37.75 37.18 36.74 8,102.65 2,202.93 
TS3 PLEjIns R6 37.78 37.24 36.80 8,122.11 2,290.15 
TS4 PLEjIns R7 37.60 37.07 36.65 8,103.18 2,105.03 
TS5 PLEjIns R7 37.73 37.32 36.89 8,130.62 2,074.24 
TS6 PLEjIns R7 37.73 37.32 36.89 8,130.62 2,074.24 

      
* Average percent deviations from optimal makespan 

      
Results for the PD-RAMP–TS–EP1–EP2 algorithms are presented in Table 6.16. The 

PD-RAMP–TS–EP1–EP2 algorithms outperform the basic RAMP algorithms at 50,000 

schedules generated. Compared to the Lagrangian PD-RAMP–TS–EP1–EP2 algorithms, the 
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cross-parametric PD-RAMP–TS–EP1–EP2 algorithms generally generate more schedules yet 

obtain slightly inferior results. 

Table 6.16 – PDRAMP–TS–EP1–EP2 results 

Tabu Search 
Algorithm Used 

Schedule Limits Avg. # of 
Schedules 

Avg. # of 
Schedules 

to Best 1,000 5,000 50,000 

j30 Instances* 

TS1-10 PLEjIns R2 0.50 0.18 0.04 2,636.62 1,541.55 
TS1-10 PLSwap R6 0.59 0.14 0.03 2,426.94 1,504.44 
TS1-100 PLEjIns R1 0.80 0.18 0.03 2,580.03 1,595.20 
TS1-100 PLSwap R7 0.67 0.15 0.02 2,344.96 1,619.74 

TS2 PLEjIns R9 0.84 027 0.04 3,186.57 2,359.40 
TS3 PLEjIns R4 0.92 0.33 0.04 3,397.92 2,413.70 
TS4 PLEjIns R10 0.86 0.18 0.03 2,776.84 1,914.05 
TS5 PLEjIns R5 0.89 0.49 0.02 3,069.12 2,401.14 
TS6 PLEjIns R7 0.87 0.37 0.03 2,974.05 2,075.76 

j60 Instances 

TS1-10 PLEjIns R8 12.28 11.30 10.93 11,852.3 3,933.99 
TS1-10 PLSwap R10 12.23 11.27 10.90 11,799.3 4,606.57 
TS1-100 PLEjIns R5 12.94 12.02 10.92 11,789.4 4,817.37 
TS1-100 PLSwap R6 12.90 11.83 10.90 11,738.1 4,839.58 

TS2 PLEjIns R7 13.15 12.54 10.92 12,233.9 5,219.41 
TS3 PLEjIns R9 13.22 12.77 10.97 12,850.0 4,967.51 
TS4 PLEjIns R4 13.14 12.73 10.88 11,965.4 4,953.26 
TS5 PLEjIns R6 13.23 12.70 10.93 11,923.0 5,134.70 
TS6 PLEjIns R7 13.23 12.68 10.93 11,990.1 5,582.63 

j120 Instances 

TS1-10 PLEjIns R2 36.38 33.17 31.95 33,010.5 11,376.8 
TS1-10 PLSwap R2 36.41 33.03 31.90 32,922.6 11,094.2 
TS1-100 PLEjIns R6 37.31 36.55 32.11 32,984.4 14,849.6 
TS1-100 PLSwap R7 37.27 36.73 32.05 32,780.7 14,648.7 

TS2 PLEjIns R10 37.75 37.18 32.05 33,618.2 15,096.9 
TS3 PLEjIns R7 37.78 37.24 32.05 33,576.2 15,062.2 
TS4 PLEjIns R1 37.61 37.21 32.07 33,138.7 13,764.9 
TS5 PLEjIns R6 37.73 37.32 32.03 33,291.3 14,703.7 
TS6 PLEjIns R9 37.73 37.32 31.98 33,161.9 15,079.4 

      
* Average percent deviations from optimal makespan 
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Results for the PD-RAMP–EP1–TS–EP2 algorithms are presented in Table 6.17. The 

PD-RAMP–EP1–TS–EP2 algorithms outperform the basic RAMP algorithms in all cases except 

the j30 instances at only 1,000 schedules generated. For the j60 and j120 instances at 1,000 and 

5,000 schedules generated, the PD-RAMP–EP1–TS–EP2 algorithms perform better than the PD-

RAMP–TS–EP1–EP2 algorithms. 
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Table 6.17 – PDRAMP–EP1–TS–EP2 results 

Tabu Search 
Algorithm Used 

Schedule Limits Avg. # of 
Schedules 

Avg. # of 
Schedules 

to Best 1,000 5,000 50,000 

j30 Instances* 

TS1-10 PLEjIns R2 0.87 0.19 0.03 2,723.73 1,732.36 
TS1-10 PLSwap R11 0.87 0.19 0.04 2,576.20 1,871.14 
TS1-100 PLEjIns R9 0.85 0.19 0.02 2,516.38 1,799.18 
TS1-100 PLSwap R6 0.87 0.13 0.02 2,093.46 1,386.87 

TS2 PLEjIns R0 0.83 0.25 0.04 3,233.09 2,457.85 
TS3 PLEjIns R9 0.90 0.32 0.04 3,089.23 1,894.38 
TS4 PLEjIns R8 0.91 0.22 0.02 2,998.86 2,529.50 
TS5 PLEjIns R5 0.88 0.41 0.04 3,098.05 2,246.86 
TS6 PLEjIns R7 0.87 0.35 0.04 3,282.11 2,454.73 

j60 Instances 

TS1-10 PLEjIns R9 12.35 11.34 10.92 12,230.7 4,043.11 
TS1-10 PLSwap R1 12.34 11.36 10.91 12,124.9 3,937.48 

TS1-100 PLEjIns R10 12.31 11.57 10.89 10,930.4 4,794.96 
TS1-100 PLSwap R1 12.35 11.53 10.91 11,459.5 4,684.08 

TS2 PLEjIns R10 12.39 11.68 10.96 12,781.7 5,786.40 
TS3 PLEjIns R4 12.39 11.73 10.97 13,009.6 4,805.20 
TS4 PLEjIns R11 12.39 11.69 10.94 12,355.1 4,788.77 
TS5 PLEjIns R1 12.33 11.65 10.95 12,236.6 5,629.56 
TS6 PLEjIns R2 12.33 11.65 10.96 12,449.0 5,021.37 

j120 Instances 

TS1-10 PLEjIns R8 35.28 33.12 31.97 33,357.2 11,375.5 
TS1-10 PLSwap R0 35.24 33.06 31.95 33,410.5 12,126.7 
TS1-100 PLEjIns R4 35.28 33.69 32.10 33,871.9 14,626.6 
TS1-100 PLSwap R9 35.24 33.74 32.10 34,031.1 14,296.5 

TS2 PLEjIns R5 35.22 33.78 32.14 34,452.0 13,765.8 
TS3 PLEjIns R11 35.26 33.80 32.14 34,319.7 13,763.9 
TS4 PLEjIns R9 35.25 33.85 32.14 34,159.1 14,458.1 
TS5 PLEjIns R7 35.27 33.82 32.13 34,137.0 13,280.2 
TS6 PLEjIns R5 35.28 33.86 32.11 34,017.5 14,464.5 

      
* Average percent deviations from optimal makespan 

      
Results for the PD-RAMP–EP1–EP2–TS algorithms are presented in Table 6.18. The 

PD-RAMP–EP1–EP2–TS algorithms outperform the basic RAMP algorithms in all cases except 

the j30 instances at only 1,000 schedules generated. For the j60 and j120 instances at 1,000 and 
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5,000 schedules generated, the PD-RAMP–EP1–EP2–TS algorithms perform better than the PD-

RAMP–TS–EP1–EP2 algorithms. 

Table 6.18 – PDRAMP–EP1–EP2–TS results 

Tabu Search 
Algorithm Used 

Schedule Limits Avg. # of 
Schedules 

Avg. # of 
Schedules 

to Best 1,000 5,000 50,000 

j30 Instances* 

TS1-10 PLEjIns R11 0.86 0.19 0.03 2,693.71 1,760.46 
TS1-10 PLSwap R1 0.87 0.20 0.04 2,840.07 1,789.81 
TS1-100 PLEjIns R0 0.85 0.19 0.03 2,694.36 1,944.63 
TS1-100 PLSwap R8 0.88 0.16 0.03 2,476.75 1,670.65 

TS2 PLEjIns R11 0.88 0.16 0.03 2,389.80 1,527.98 
TS3 PLEjIns R6 0.89 0.22 0.04 2,848.80 1,862.60 
TS4 PLEjIns R0 0.87 0.15 0.03 2,497.34 1,591.62 
TS5 PLEjIns R11 0.89 0.18 0.04 2,705.60 1632.90 
TS6 PLEjIns R4 0.85 0.22 0.04 3,075.04 2,048.93 

j60 Instances 

TS1-10 PLEjIns R10 12.29 11.36 10.90 11,832.6 4,075.98 
TS1-10 PLSwap R10 12.31 11.38 10.89 11,693.2 4,255.53 
TS1-100 PLEjIns R1 12.34 11.33 10.89 11,495.1 4,271.89 
TS1-100 PLSwap R8 12.35 11.34 10.90 11,382.7 3,822.13 

TS2 PLEjIns R6 12.31 11.31 10.94 12,126.8 4,034.06 
TS3 PLEjIns R7 12.35 11.35 10.98 12,359.6 4,458.78 
TS4 PLEjIns R3 12.28 11.39 10.98 12,365.9 4,484.31 
TS5 PLEjIns R1 12.35 11.35 10.94 11,952.4 4,328.46 
TS6 PLEjIns R3 12.32 11.38 10.95 12,323.3 4,591.55 

j120 Instances 

TS1-10 PLEjIns R2 35.21 33.14 31.93 33,210.4 11,120.8 
TS1-10 PLSwap R2 35.28 33.05 31.92 33,075.3 10,663.6 
TS1-100 PLEjIns R4 35.25 33.14 32.03 33,452.0 12,896.3 
TS1-100 PLSwap R3 35.22 33.07 32.09 33,421.1 11,994.7 

TS2 PLEjIns R2 35.22 33.11 32.16 33,869.2 12,564.1 
TS3 PLEjIns R3 35.30 33.09 32.11 33,695.9 13,303.2 
TS4 PLEjIns R8 35.26 33.07 32.06 33,601.8 12,966.5 
TS5 PLEjIns R3 35.22 33.07 32.12 33,565.9 12,432.3 
TS6 PLEjIns R7 35.20 33.03 32.07 33,735.2 12,314.8 

      
* Average percent deviations from optimal makespan 
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The Lagrangian RAMP algorithms generally outperform the cross-parametric algorithms 

in almost all cases. In the few cases where the cross-parametric RAMP algorithms perform better 

at 50,000 schedules generated, they do so by no more than 0.03%. 
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7 CONCLUSIONS 

The resource constrained project scheduling problem (RCPSP) is one of the most 

intractable problems in combinatorial optimization; it is NP-hard in the strong sense. In this work 

new algorithms that make effective use of the RAMP and Primal-Dual RAMP methodologies 

introduced by Rego (2005) were developed for the RCPSP. 

All of the tabu search and RAMP algorithms were tested using several different tabu 

restriction strategies. Figure 7.1 shows the frequency each tabu restriction yielded the best results 

for an algorithm. Restriction R7 provided the best results for 17% of the algorithms. Restriction 

R7 is the most restrictive among the restrictions considered (see Table 5.1). Even though 

restriction R7 yielded the best results most often it does not do so often enough to disregard the 

other tabu restrictions in favor of R7.  

 

Figure 7.1 – Frequency tabu restrictions yielded best results - all algorithms 
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Figure 7.2 shows the frequency each tabu restriction yielded the best results for 

algorithms that did not include an evolutionary method (i.e. algorithms from Table 5.4, Table 

6.3, and Table 6.15). The three most restrictive tabu restrictions, R6, R7, and R11, provided the 

best results for 51% of the algorithms without an evolutionary component. The restriction R0 

provided the best results for 14% of the algorithms without an evolutionary component. In the 

algorithms where restriction R0 provided the best results, the hash-based tabu strategy due to 

Klein (2000) was also used. This suggests that the hash-based tabu strategy was a useful addition 

to the algorithms. The results from section 6.6, Figure 7.1, and Figure 7.2 suggest that the 

evolutionary method component of the PD-RAMP algorithms have a larger impact on the results 

than the specific tabu strategy of the tabu search component. 

 

Figure 7.2 – Frequency tabu restrictions yielded best results - algorithms without evolutionary 
method component 
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PD-RAMP algorithms. As a group, the TS1 candidate lists that were composed of entirely 

random moves provided the best results for any particular PD-RAMP configuration in all but two 

cases. This suggests that the other candidate lists may be too restrictive and do not allow the tabu 

search to sufficiently search the local neighborhoods. Some of the candidate list strategies 

proposed here reacted to the state of the search to allow more of the local neighborhood to be 

explored, for example by dropping the resource competitor requirement, as the number of 

consecutive non-improving moves increased. Perhaps a better strategy would be to change to a 

completely different candidate list strategy after a certain number of non-improving moves. 

Considering the results obtained here and results from the extant literature, tabu search 

metaheuristics do not seem to perform well for the RCPSP compared to population-based 

methods. Population-based methods such as genetic algorithms and scatter search heuristics 

currently dominate the best performing heuristics for solving the RCPSP. Considering the 

general success of evolutionary methods for the RCPSP, it is not surprising that the evolutionary 

components of the PD-RAMP algorithms had a large impact on the overall results. 

The stand-alone tabu search algorithms using the candidate list strategies did not produce 

competitive results; however, the utility of the dual information provided by the RAMP approach 

was demonstrated by the basic RAMP algorithms based on both Lagrangian relaxation and 

cross-parametric relaxation. These basic RAMP algorithms outperformed the stand-alone tabu 

search algorithms in almost all variants. 

Although the RAMP and PD-RAMP algorithms developed in this study did not 

outperform the current best performing heuristics for the RCPSP, they are the only relaxation 

based heuristics that achieve currently competitive results for the j60 and j120 PSPLIB RCPSP 

instances. 
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Improvement of the tabu search method is one area for future development. There are 

many possibilities for candidate list strategies that remain unexplored. One prospect that could be 

especially interesting is the creation of candidate lists that concentrate on the activities that 

violated resource constraints in the schedule obtained from the minimum cut. Another possibility 

is employing a tabu search strategy that combines or changes candidate list strategies based on 

the current state of the search. 

Further work could also include improving the management of the population used by the 

evolutionary method. Maintaining the EP1 population as two subpopulations of best solutions 

and diverse solutions, as customary in scatter search, is one possibility. In addition, incorporation 

of other evolutionary methods in place of or in addition to the current evolutionary method is 

another possibility. 

The current relaxations are based on a specific time-indexed formulation for the RCPSP. 

Investigating the use of other mathematical formulations for the RCPSP is another area for future 

work. 

There are many variants and extensions to the RCPSP, and other problems exist that can 

be cast as a RCPSP. Further investigation of extending the RAMP approach presented here to 

these variants and extensions could be an especially promising area for future research.
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