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ABSTRACT 

Mobile computing devices have gained popularity in organizations. Various companies, 

government agencies, and academic institutions have seen a dramatic increase in employees’ 

adoption of personal mobile devices. Current research has not provided clear explanations about 

the motivations behind employees’ mobile device adoption behavior and the factors affecting 

these behaviors. This paper proposes using a new perspective, an information-processing based 

view, to better understand this new trend. The newly developed measurement instrument, named 

as Information-Processing Support Index (IPSI), captures an employee’s perceptions about the 

capabilities of mobile devices to support his/her work-related information-processing needs. An 

exploratory model using IPSI and other constructs to explain an employee’s mobile computing 

device adoption intention is also explored. Overall, the IPSI instrument demonstrated acceptable 

levels of reliability, convergent validity, and discriminant validity. Based on empirical data 

collected from faculty and staff members in one large public university in China, after 

controlling for common method variance, this study found some support for four of five 

hypotheses, linking IPSI to an employee’s mobile-computing-device-adoption intentions.  
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CHAPTER I 

INTRODUCTION 
1. Background 

In recent years, mobile computing technology has gone through a period of rapid 

development. Increasing integrated circuit chip density, as predicted by Moore’s Law (Moore, 

1965), makes mobile computing devices (smartphones, tablet computers, etc.) capable of 

performing complex computations, displaying stunning graphics, and connecting to the Internet. 

These devices are becoming an essential part of people’s lives.  

The mobile computing device market is expanding at a staggering rate. Global 

smartphone shipments reached 1 billion units in 2013 (IDC, 2013). The Online Publishers 

Association (OPA) indicates “44% of the U.S. Internet population, ages 8-64, owns a 

smartphone in 2012 (107 million consumers)”, and that number was “expected to reach 57% by 

Q2 2013 (142 million consumers)” (OPA, 2012).  

Similarly, the tablet computer market is also growing rapidly. For example, global tablet 

computer shipments were estimated to reach 100 million by 2012 (Morgan Stanley Research 

Global, 2011). In the meantime, global personal computer (PC) shipments suffered the first 

decline in a decade to 92.7 million in the fourth quarter of 2011 (Ricadela, 2012) and sales 

continued to drop to 76 million in the second quarter of 2013 (King, 2013).  

These studies indicate that people are shifting their computing device preferences from 

PCs to mobile devices. In one study, 68% of smartphone owners reported that they could not live 
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without their smartphones (OPA, 2012). The proliferation of these devices also marks a radical 

change in organizations’ computing environments. Employees are beginning to adopt various 

mobile computing devices not only for personal uses, but also for work-related purposes 

(Holtsnider & Jaffe, 2012). 

Consequently, the role of IT departments is changing from managing organizations’ IT 

resources to providing IT support for employees. For example, according to Intel's Chief 

Information Security Officer (CISO) Malcolm Harkins, “since Jan. 2010, the number of 

employee-owned mobile devices on the job has tripled from 10,000 to 30,000”, and by 2014 “... 

70% of Intel's 80,000 employees will be using their own devices for at least part of their job” 

(Harkins, 2013). This trend of employees using their own mobile devices in the workplace 

presents new challenges and opportunities for organizations in many areas such as information 

security, communication management, operation efficiency, etc. (Hayes, 2012; Holtsnider and 

Jaffe, 2012; Messmer, 2012).  

Studies have approached issues in mobile-computing-device adoption and management 

from different perspectives, e.g., End-User Computing (EUC) (Moore, et al., 2007), 

Consumerization of IT (Harris, et al., 2012; Holtsnider and Jaffe, 2012), and Human-Computer 

Interactions (HCI) (Hayes and Truong, 2013). However, most studies in marketing and 

behavioral sciences were focused on users’ adoption behaviors (Schepman, et al., 2012), users’ 

satisfaction with mobile devices/services (Kuo, et al., 2009), and design-related issues (Morris 

and Aguilera, 2012). These studies viewed mobile computing devices as 1) another high-tech 

consumer product; 2) a medium through which customers are consuming content such as mobile 

apps, news, video and music contents; and 3) a communication tool through which businesses 

can gain operating efficiency. Few scholars have examined why employees want to bring their 
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own mobile devices to work. In the Management Information Systems (MIS) discipline, 

researchers observed similar trends in the 1970s and 1980s, when PCs first became available to 

individual employees (Dickson, et al., 1984). At that time, one big challenge organizations were 

facing was that employees were bringing their PCs to workplaces. As a result, organizations 

began to establish IT departments to manage their IT resources. Several studies focused on 

understanding how organizations could better manage their computing resources (Gurbaxani and 

Whang, 1999; Rockart and Flannery, 1983).  

The current Bring Your Own Device (BYOD) trend is similar to the historic patterns of 

PC adoptions. However, some new characteristics distinguish mobile computing devices from 

PCs. For example, these devices are extremely easy to personalize; they are compact in physical 

size; and their operating systems differ greatly from each other (Pitt, et al., 2011). Therefore, the 

same set of factors that influenced PC adoptions will not be sufficient to address the BYOD trend. 

To date, there is a lack of research in the MIS field to guide companies to deal with this trend 

effectively. Furthermore, there is a lack of consensus among MIS researchers about why an 

employee wants to bring his/her own devices to workplaces, and why they choose to adopt 

different devices for work.  

Researchers in the MIS field have focused narrowly on design features, mobile value-

added services, or cognitive factors when studying mobile-computing-device adoptions (Rahmati 

& Zhong, 2013; Sarker & Wells, 2003). There is a need to systematiclly examine key factors that 

influence an employee’s mobile-computing-device-adoption intentions in organizations.  

2. Problem Statement 

The current study has two underlying goals/contributions. First, this study proposes a new 

construct to capture how well mobile computing devices support an employee’s job required 
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information-processing activities. The new construct, Information-Processing Support Index 

(IPSI), focuses on two types of information-processing activities: content generation and 

consumption. Second, this study develops and validates a conceptual model of an employee’s 

mobile-computing-device-adoption intentions. This study provides some initial insights about the 

research question: “Why and how does an employee choose to adopt different mobile computing 

devices in their work environments?”  

Previous studies are missing one important aspect when explaining why an employee 

wants to adopt mobile computing devices: these devices can help people fulfill their work-related 

information processing needs. As discussed by Daft and Lengel (1986) and Galbraith (1974), one 

major way organizations use information systems (IS) is to help their information processing. 

Information systems can increase organizations’ information processing capabilities or reduce 

their information-processing needs. Similarly, as important information system components, 

mobile computing devices can help an employee with his/her information-processing needs at 

workplaces as well.  

A closer examination reveals two major types of information processing activities at 

workplaces: content generation and consumption. Content generation refers to information-

processing activities that generate content/information for others. For example, writing a report, 

creating an email message, and performing an analysis all generate some content for others.  

Content consumption refers to information-processing activities that consume 

content/information generated by others, for example, reading a report, reading an email, and 

making decisions among alternatives all require an employee to consume content. In 

organizations, people’s jobs often require them to perform both types of information-processing 

activities. Chapter II provides a detailed discussion about these information-processing activities.  
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Since an employee’s job requires him/her to engage in at least one of the two types of 

information-processing activities, mobile computing devices’ capabilities to support these 

activities will greatly affect the employee’s adoption intentions at workplaces. Therefore, the 

first step in this study is to develop a new construct, Information-Processing Support Index (IPSI) 

to capture how well mobile computing devices’ capabilities support job-required information-

processing activities. Once established, researchers can use IPSI to capture the factors driving an 

employee’s technology adoption intentions at workplaces, especially their mobile-computing-

device-adoption intentions.  

In the next section, this chapter discusses definitions about mobile computing devices, 

and two component scores that are used to compute IPSI: Content Generation Score (CGS), and 

Content Consumption Score (CCS).  

3. Mobile Computing Devices, CGS, and CCS 

3.1. Definitions 

In this study, mobile computing devices are devices that provide various computing 

capabilities while remaining small in their physical sizes. Three types of mobile computing 

devices are examined: smartphones, tablet computers, and laptop computers. A smartphone is a 

mobile phone built on a mobile operating system that provides capabilities in computational 

tasks and Internet connections. A tablet computer is a general-purpose mobile computer 

contained in a single unit that is capable of performing several computing tasks such as 

streaming video, browsing the Internet, sending/receiving e-mails. A tablet computer usually has 

a larger display than a smartphone (Ogg, 2010). A laptop computer is a type of personal 

computer that is lightweight and capable of performing a wide range of computing tasks. Other 
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computing devices such as desktop computers, servers, etc. are not considered as mobile 

computing devices due to their lack of mobility. 

When studying why people are adopting these mobile computing devices for work, 

researchers often find different explanations from different perspectives. For example, one 

former study identified familiarity with mobile computing devices and services as one of the 

reasons that people continued using their personal mobile devices at work (Schwarz, et al., 2004). 

However, studies also showed that people were not using their mobile devices for all types of 

tasks (OPA, 2012). Email was frequently cited as an indicator of mobile computing device usage, 

but few people used mobile computing devices for data analysis purposes (Gebauer, 2008). The 

difference between job requirements and devices’ capabilities influences people’s adoption 

intentions. Even when an employee is using more than one device at work (multi-screen users), 

they prefer different devices for different job requirements (OPA, 2012). These studies indicate 

that there is a need for developing a better instrument to capture factors that determine why an 

employee uses mobile devices at work.  

The Morgan Stanley Research Global’s study showed some insights about the differences 

in people’s mobile-computing-device choices. They found that many consumers viewed tablet 

computers as an incremental device: 55% of potential tablet users did not expect a tablet to 

replace another technology product. In addition, their study used content creation and 

consumption to examine different capabilities of tablet computers (Morgan Stanley Research 

Global, 2011). As shown in Figure 1-1 and 1-2 below, people tend to use their tablet computers 

differently than their PCs.  
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Figure 1-1. PCs’ Usage (Morgan Stanley Research Global, 2011) 

 

Figure 1-2. Tablet computer capabilities (Morgan Stanley Research Global, 2011) 
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The Morgan Stanley study focused on comparing consumer usage of traditional PCs 

(desktop and notebook computers) and tablet computers. Their results provided some 

observations about how employees use these devices differently. For example, Figure 1-1 shows 

that even when 75% of total PC usage is related to content consumption, most work-related 

usage is content creation. Figure 1-2 reveals that people frequently use tablet computers to 

consume content, while they use PCs more often to generate content. Therefore, since employees’ 

jobs require them to engage in content generation and consumption differently, they are more 

likely to adopt devices that support their specific information-processing activities.   

The IPSI framework developed in this study uses two aggregated scores to measure the 

degrees to which mobile computing devices can support content generation and consumption 

activities at workplaces: the Content Generation Score and the Content Consumption Score.  

Content Generation Score (CGS) is a composite score used to measure the degree to 

which mobile computing devices’ capabilities support job-required content-generation activities. 

These activities include gathering information, arranging information in different ways, and 

other information editing/generating activities. The CGS has two parts, CGSDevice and CGSJob. 

They measure devices’ capabilities to perform content generation activities and employees’ job 

requirement in terms of content generation.   

Content Consumption Score (CCS) is a composite score used to measure the degree to 

which mobile computing devices’ capabilities support job-required content-consumption 

activities. These activities include not only receiving the information/content from others, but 

also acting on this information/content. Similar to the CGS, the CCS also has two parts: 

CGSDevice and CGSJob, measuring devices’ capability to fulfill content consumption and content 

consumption requirements in an employee’s job.  
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Mobile computing devices have different capabilities to perform job-required content-

generation/consumption activities. Tablet computers and smartphones can offer great capabilities 

to perform content-consumption activities such as reading news, email, and social network posts. 

However, primarily due to their size limits, they only possess limited capabilities to generate 

content. On the other hand, laptop computers have great content-generation capabilities such as 

creating/editing files, creating emails, and so on. However, due to larger sizes and weights, 

sometimes it is inconvenient to use laptops for just content-consumption activities.  

As an example, in the electronic publishing industry, consumers (E-book readers) engage 

more in content consumption while publishers (E-book writers) engage more in content 

generation. In terms of their mobile devices usage, a reader is more likely to use a tablet to 

access E-books, and a writer is more likely to use a laptop to write E-books. The difference in 

their information processing needs leads to different device choices. This difference also exists 

among different levels of employees. For example, in comparison to lower-level employees, 

CEOs and other senior managers are more likely to use tablet computers at workplaces because 

their jobs require more content-consumption activities. 

As discussed earlier, the CGS and CCS are not mutually exclusive. Mobile computing 

devices have both content-generation/consumption capabilities and an employee’s jobs require 

him/her performing both activities as well. Therefore, mobile computing devices capabilities and 

job characteristics differ in the degree of content-generation and consumption 

capabilities/requirements. To account for this overlap, the proposed CGS and CCS are two 

continuous measurements. The next section briefly discusses how to categorize different mobile 

computing devices capabilities and job requirements in content generation and consumption. A 

detailed discussion and development of the IPSI framework and measures follows in Chapter II.  
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3.2. Mobile computing device capabilities:  

Generally, mobile computing devices differ in their display sizes, operating systems, 

processing power, and input methods. Smartphones have the smallest sizes, limited operating 

systems, least processing power, and limited input methods. Laptop computers have the largest 

sizes, complete operating systems, most processing power, and most input methods. Tablet 

computers fall in between the other two. As a result, these devices have different capabilities to 

accomplish tasks related to content generation and consumption. 

For example, in classrooms, students may use different mobile computing devices to help 

them with class-related activities such as taking notes, finding references, and sharing ideas. 

Depending on the specific task they need to perform, they will find these devices accommodate 

their needs differently. It is easy for a student to read assigned articles on his/her tablet computer; 

however, it is hard for the student to type the notes using the same device. As a result, vendors 

develop accessories such as Bluetooth keyboards to help the tablet computers with the content 

generation requirements. Students could attach these keyboards to their tablet computers to 

increase the tablet computers’ capabilities in content generation when they need to fulfill their 

note-taking needs in classrooms. In other words, Bluetooth keyboards increase the CGS of tablet 

computers. In that way, these devices can better perform in tasks that have high CGS.   

The proposed CGS and CCS measurements will capture these differences of mobile 

computing devices capabilities. They indicate how well devices support employees’ information-

processing activities in terms of content generation/consumption. In Chapter II, the IPSI 

framework uses the CGSDevice and CCSDevice to indicate how well these devices can perform in 

content generation/consumption activities.  

 



11 

 

3.3. Job Requirements  

Employees’ job requirements also differ greatly in terms of the degrees to which they 

require a person to generate/consume content. Higher-level managers such as CEOs, CFOs, and 

CIOs need to consume more content than lower-level employees do. Therefore, different 

positions within an organization require employees to deal with different tasks in terms of 

content generation/consumption. As a result, different mobile computing devices will 

accommodate these tasks differently. In Chapter II, the IPSI framework uses the CGSJob and 

CCSJob to indicate how frequently employees’ jobs require them to engage in content 

generation/consumption activities. 

Categorizing mobile computing devices characteristics and job requirements by content 

generation and consumption has two important implications:  

1) It helps researchers understand why people bring these devices to workplaces. Since 

the design of most mobile devices focuses on content consumption, if employees’ jobs require 

high level of information consuming, mobile computing devices rated high in CCS will help 

them with their jobs. For example, most of the CEOs’ jobs require them to read and process 

various information generated by others. In this situation, they will benefit greatly from the use 

of mobile computing devices that have higher CCS. On the other hand, lower-level managers 

may still want to use their devices with a higher score in CGS, since large portion of their jobs 

requires them to generate content.             

2) It helps managers to decide how to satisfy their employees’ mobile computing needs. 

By comparing the CGS and CCS between employees’ job requirements and mobile computing 

devices, managers can easily see how different mobile computing devices help employees in 

difference job situations. Overall, if managers can distinguish different types of mobile 
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computing devices in terms of their content generation and consumption capabilities, they can 

match those with employees’ job requirements and provide employees with devices that support 

job-required information-processing activities better.  

In the next section, a conceptual model is presented to explain how different factors 

influence an employee’s mobile-computing-device-adoption intention at workplaces.  

4. Model Constructs and Propositions 

4.1. Information-Processing Support Index 

As introduced above, the IPSI framework uses the CGS and CCS sub-scores to measure 

employees’ job requirements and different mobile computing devices’ capabilities. By 

comparing these scores, this study develops a direct measure about how well mobile computing 

devices support employees’ job-required information-processing activities. To illustrate, Figure 

1-3 shows the overall concept of the Information-Processing Support Index. 

 

Figure 1-3. Information-Processing Support Index (IPSI) concept 

By adopting the Task-Technology-Fit theory (TTF) of Goodhue and Thompson (1995), 

one of the reasons that employees use mobile computing devices is that they can get their jobs 

done more efficiently. If a mobile computing device’s capability supports an employee’s job-

required information-processing activities, he/she is more likely to adopt that device for work. 

Based primarily on the TTF, the IPSI is defined as an index score measuring the levels to which 

mobile computing devices’ capabilities support employees’ job required information-processing 

activities. Developed in Chapter II, a higher IPSI score means mobile computing devices’ 
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capabilities support job required information-processing activities better. Therefore, the first 

proposition in the conceptual model is: 

Proposition 1: IPSI has a positive relationship with an employee’s mobile-computing-

device-adoption intention. 

4.2. Mobile-computing satisfaction 

Various scholars have studied end-user satisfaction in the MIS field. Earlier works 

include the model of information systems success (DeLone and McLean, 2003), and end-user 

computing satisfaction (Doll and Torkzadeh, 1991). Doll and Torkzadeh (1988) defined end-user 

satisfaction as the positive opinion of a user about a specific computer application that they use. 

This study extends the definition of user satisfaction as the positive opinion of a user about a 

specific mobile computing device that they use. The conceptual model defines the mobile-

computing satisfaction construct as the degree to which a person feels satisfied about his/her 

mobile computing needs.  

DeLone and McLean (1992) stated that user satisfaction is one key measurement of 

information systems success, and user satisfaction with information systems is one critical 

criterion to evaluate systems success. User satisfaction with mobile computing information 

systems in the organizational environment largely depends on how well these systems help users 

with their jobs. Therefore, if capabilities of these devices meet/exceed employees’ job 

requirements, employees will feel more satisfied. In addition, as stated in the TTF (Goodhue and 

Thompson, 1995), information technology is more likely to have a positive impact on individual 

performance and to be used if the capabilities of the IT match the tasks that the user must 

perform. Higher mobile computing satisfaction also leads to higher mobile-computing-device 
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adoption intentions. Therefore, this study proposes a mediation effect of mobile-computing 

satisfaction in the conceptual model: 

Proposition 2: Mobile-computing satisfaction mediates the positive relationship between 

IPSI and an employee’s mobile-computing-device-adoption intention. 

4.3. Mobile-computing dissatisfaction 

Mobile-computing dissatisfaction is another construct in the conceptual model. The 

premise is that mobile-computing satisfaction and dissatisfaction are two independent factors 

regarding employees' perceptions about their mobile computing needs. As indicated by 

Herzberg’s (1968) motivation-hygiene theory, job satisfaction and dissatisfaction act 

independently of each other. To motivate employees, organizations need to increase employees’ 

job satisfaction or decrease their dissatisfaction. The mobile-computing satisfaction and 

dissatisfaction parallel that concept. However, mobile-computing dissatisfaction is not a hygiene 

factor. It acts differently from the mobile-computing satisfaction. 

The expectancy disconfirmation paradigm (Anderson, 1973) in consumer satisfaction and 

dissatisfaction from marketing literature provided some suggestions about how user 

dissatisfaction affects employees’ mobile-computing-device adoptions. For example, when 

people are using these devices, they will have expectations about the devices’ performance. If the 

actual devices’ performance falls below people’s expectations, they will feel dissatisfied. For 

example, an employee may have adopted a tablet computer in the hope that it will help him/her 

to perform most job-related tasks. The tablet may support some tasks while not others. Therefore, 

depending on the initial expectations that an employee has and the actual capabilities of tablet 

computers, employees will have different degrees of dissatisfaction.  
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People also have general expectations about whether their organizations allow them to 

use their mobile computing devices at work. For example, Loose, et al. (2013) have studied 

employees’ expectations and attitudes towards BYOD and found that allowing personal mobile 

device usage in workplaces can be a powerful way to recruit future employees. In their 

conclusions, when people were considering new jobs, they tended to view being able to have 

their own mobile devices as a more attractive offer. Therefore, providing the opportunity to bring 

these devices to work may reduce employees’ dissatisfaction about their mobile computing needs.  

In this study, mobile computing dissatisfaction is the degree to which a person feels 

dissatisfied about his/her mobile computing needs. If a mobile computing device’s capability 

supports a person’s job-required information-processing activities, he/she is less likely to feel 

dissatisfied about his/her mobile computing needs. Therefore, a higher IPSI score will decrease 

mobile computing dissatisfaction at workplaces. The lowered mobile computing dissatisfaction 

will lead to higher device adoption intentions. In the conceptual model, this study proposes a 

mediation effect of mobile computing dissatisfaction:  

Proposition 3: Mobile-computing dissatisfaction mediates the positive relationship 

between IPSI and an employee’s mobile-computing-device-adoption intention. 

4.4. Social influence 

The social environment and influence from others also affect employee’s adoption of 

mobile computing devices. In the unified theory of acceptance and use of technology (UTAUT), 

Venkatesh, et al. (2003) defined social influence as the degree to which an individual perceives 

that important others believe he or she should use the new system. They incorporated three 

dimensions into their model: subjective norm, social factor, and image.  
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They adopted the definition of social factor as the individual’s internalization of the 

reference group’s subjective culture, and specific interpersonal agreements that the individual 

has made with others, in specific social situations (Thompson et al., 1991). The definition of 

image they used was the degree to which use of an innovation is perceived to enhance one’s 

image or status in one’s social system (Moore and Benbasat, 1996). Both dimensions are relevant 

to discussions about mobile-computing-device adoption. For example, one of the mobile 

computing device’s characteristics is that an employee can carry these devices around and others 

will link social status and organization norms to their use. Therefore, perceived norms and image 

that arise from using mobile computing devices will affect an employee’s adoption intention.  

Studies in the impression management area also provided some evidence that the social 

factor affects an employee’s mobile-computing-devices-adoption intention. Impression 

management is concerned with the behavior people direct toward others to create and maintain 

desired perceptions of them (Gardner and Martinko, 1988a; Schneider, 1981). Most studies in the 

field of impression management focus on face-to-face interactions (Gardner and Martinko, 

1988b; Goffman, 1959). However, mobile computing devices also play an important role in 

people’s impression management attempts. For example, by using mobile computing devices, 

people can reply to work-related email messages instantly, creating an impression that they are 

always available and responsive to requests. On the other hand, due to the limited editing 

functionalities of some mobile computing devices, people are less inclined to use these devices 

when they are dealing with important email messages. In such situation, an employee wants to 

send carefully constructed messages to maintain his/her professional impression to others.  

As Caron, et al. (2013) found out, executives exhibit different ways of using email on 

their smartphones than on their office computers. They tend to be more informal regarding the 
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use of email on their smartphones. Mobile computing devices represent new ways through which 

people can interact with others, project their visions, and influence workplaces norms. 

Employees’ needs to manage their impressions also affect their mobile-computing-devices-

adoption intentions.  

As discussed above, this study defines social influence as the influence mobile computing 

devices have at workplaces. It includes three dimensions: perceived norms about using mobile 

computing devices, perceived social status represented by mobile computing devices, and mobile 

computing devices’ capabilities to influence others’ impressions.  

This dissertation focuses on the overall effect social influence has on people’s mobile-

computing-device-adoption intentions. The more social influence mobile computing devices 

have, the more likely an employee will be to adopt them. In the conceptual model, this study 

proposes a positive relationship between social influence and an employee’s device adoption 

intention: 

Proposition 4: Social influence of mobile computing devices has a positive association 

with an employee’s mobile-computing-device-adoption intention. 

4.5. Mobile computing self-efficacy 

Many studies of self-efficacy have their roots in social cognitive theory (SCT), which is a 

widely accepted theory of individual behavior (Bandura, 1977). Bandura (1986) defined self-

efficacy as people’s judgments of their capabilities to organize and execute courses of action 

required to attain designated types of performances. It is concerned not with the skills people 

have but with judgments of what people can do with whatever skills they possess. Based on that, 

Compeau and Higgins (1995) defined Computer Self-Efficacy (CSE) as “an individual judgment 

of one’s capability to use a computer” (p. 192).  
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Various researchers suggested that CSE plays a significant role in an individual’s 

decision to use computers (Compeau, et al., 1999; Marakas, et al., 1998). Discussions about CSE 

also apply to mobile computing devices. Some scholars have tried to define and test the construct 

of mobile computing self-efficacy (MCSE). For example, Wang and Wang (2008) developed a 

45-item instrument for MCSE. Their instrument contained five dimensions: using basic mobile 

computer operations, general use of the Internet, using e-mail, using specific mobile services, 

and accessing/understanding mobile computer knowledge. While they celebrated the validity and 

reliability of their instrument, it focused narrowly on usage of email and the Internet and was too 

long to adopt for this dissertation.  

After examining relevant literature, this study defines the MCSE construct as an 

individual judgment of one's capability to use mobile computing devices. People who have 

higher MCSE will hold the perception that they are more capable of using these devices. As a 

result, they are more likely to adopt these devices for work. In the conceptual model, this study 

proposes a positive relationship between MCSE and people’s mobile-computing-device-adoption 

intentions:  

Proposition 5: An employee’s Mobile Computing Self-Efficacy (MCSE) has a positive 

association with his/her mobile computing-device-adoption-intention. 

5. The Conceptual Model 

Figure 1-4 below illustrates the overall conceptual model developed in this study. The 

solid lines indicate positive relationships while the dashed lines indicate inverse relationships. 

The five major constructs in the model are the Information-Processing Support Index (IPSI), 

mobile computing satisfaction, mobile computing dissatisfaction, social influence, and Mobile 

Computing Self-Efficacy (MCSE). IPSI, social influence, and MCSE positively affect employees’ 
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mobile-computing-device-adoption intentions. Employees’ mobile-computing satisfaction and 

dissatisfaction mediate the positive relationship between IPSI and employees’ adoption 

intentions.  

 

Figure 1-4. Conceptual model of mobile-computing-device-adoption intentions 

6. Proposed Methodology 

This study investigates factors affecting people’s mobile-computing-device-adoption 

intentions at workplaces. The data analysis aims at providing empirical support for the proposed 

conceptual model and propositions. One of the primary contributions of this study is the IPSI 

framework because it can be used to assess how well mobile computing devices support 

employees’ information-processing activities.  

Following Churchill’s (1979) guidelines of scale development and the domain-sampling 

model (Nunnally and Bernstein, 1994; Peter, 1979), this study takes the steps of domain 

specification, sample item generation, and measurement refinement to develop a new multi-item 

instrument for IPSI. Since this is a preliminary study, it limits the type of organizations examined 

to educational institutions. By focusing on only educational institutions, this study achieves the 

following benefits:  
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First, focusing on one type of organization helps to eliminate organizational differences. 

Therefore, there will be less “noise” in assessing the measurement model. Second, educational 

institutions are at the frontier of educating future employees. The massive adoption of mobile 

computing devices in educational settings is an unavoidable trend. Therefore, insights gained 

through this study will help these institutions to manage those devices more effectively. Third, 

although organizations differ from each other, they share the same information-processing 

concept. Therefore, using only educational institutions will have minimal effects on the 

generalizability of findings about the IPSI using CGS and CCS. 

Instrument Generation 

After a review of related literature, the measurement model in Chapter III specifies 

independent variables, dependent variables, and testable hypotheses. In this study, a new 

instrument of IPSI using the CCS and CGS is generated, refined, and validated. Chapter III 

operationalizes all other constructs through adopting well-developed instruments from relevant 

literature. Finally, the validity and reliability of the study’s instruments are tested in the pilot and 

main study.  

Instrument Refinement and Pilot Study 

The newly generated IPSI instrument was refined by a Q-sort test. Then a pilot study was 

conducted to assess reliability, convergent validity, and discriminant validity of the survey 

instruments. The respondents in the pilot study were undergraduate students. Cronbach’s alpha 

coefficients were used to assess the reliability of these instruments and a Confirmatory Factor 

Analysis (CFA) was performed to examine the convergent and discriminant validity. Cross-

loaded items or items that fail to load properly were revised or dropped from the final survey 
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instrument. The pilot study also provided preliminary results about the hypotheses testing in the 

measurement model. After the pilot study, the main study collected data for further analyses.  

Main Study 

The main data collection was conducted at one large public university in the central part 

of China. The main study serves two purposes: validating the measurement model and providing 

empirical results concerning the propositions in the conceptual model. The Chinese university 

launched a program to provide its 1,800+ employees with smartphones of their choice. The 

program provided fourteen types of smartphones, with operating systems ranging from iOS, 

Android, to Windows Phone 7.5/8. This is the university’s recent attempt to manage its 

employee-owned mobile devices at work.  

In this program, all employees were given the opportunity to choose their own mobile 

computing devices (smartphones), and use it for both personal and work purposes. These 

smartphones serve as the primary contact media through which the university notifies its 

employees about work-related issues. Employees cannot change the SIM cards in these 

smartphones. Therefore, they have to use these devices for work. This is a great opportunity to 

study how and why people choose different mobile computing devices at workplaces. Paper 

based survey instruments were distributed to employees at the university.  

CFA and Cronbach’s alpha was used to ensure the validity and reliability of the 

instruments. The measurement model was tested as a whole for its significance and each 

hypothesis was tested individually using multiple regression and structural equation modeling 

(SEM) techniques. Chapter III discusses methodological issues and the data analysis methods in 

more detail.  
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7. Chapter Summary 

Mobile-computing-device adoption and management at workplaces is an emerging issue. 

This study proposes a new way of studying this issue from people’s information-processing 

needs. A new construct, the Information-Processing Support Index using the CGS and CCS 

measurements, developed in this study, captures how well mobile devices’ capabilities support 

employees’ information-processing activities in terms of content generation and consumption. 

This study proposes a conceptual model of mobile computing-device-adoption intentions at 

workplaces including the Information-Processing Support Index (IPSI), mobile computing 

satisfaction, mobile computing dissatisfaction, social influence, and Mobile Computing Self-

Efficacy (MCSE).  

This chapter provided an overall introduction of background information, research 

question, and the conceptual model. Chapter II reviews relevant literature, and develops the 

conceptual model. Chapter III discusses the model operationalization and research methodology 

issues. Chapter IV discusses the instrument refinement and data analysis. Chapter V discusses 

issues in the main study data analysis. Finally, Chapter VI concludes this study and provides 

some discussion about future research directions. 
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CHAPTER II 

LITERATURE REVIEW 

1. Chapter Overview 

This chapter provides a detailed review of literature related to the conceptual model 

developed in this study. The literature reviewed covers consumerization of IT, information-

processing view of firms, task-technology fit theory, end-user satisfaction and dissatisfaction, 

unified theory of acceptance and use of technology, impression management, and mobile-

computing self-efficacy.  

The first section of this chapter focuses on developing the Information-Processing 

Support Index (IPSI) framework. After reviewing current literature about consumerization of IT, 

this chapter identifies gaps about employees' mobile-computing-device adoptions. The IPSI, 

which is developed from information-processing view of firms, provides an index score 

indicating how well employees perceive mobile computing devices can support their job-

required information-processing activities. This is an important first step in explaining an 

employee’s mobile-computing-device-adoption intention from the information-processing 

perspective.  

In the next section, this chapter reviews literature about Task-Technology Fit theory 

(TTF) and end-user satisfaction/dissatisfaction. As the Technology-to-Performance Chain (TPC) 

model (Goodhue and Thompson, 1995) predicts, precursors of utilization such as user's attitudes 

mediate the effect of TTF on utilization of technology (p.217). This study identifies mobile-
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computing satisfaction and dissatisfaction as two independent mediators between the IPSI and 

employees’ mobile-computing-device-adoption intentions.  

Finally, this chapter reviews literature about social influence and Mobile Computing Self-

Efficacy (MCSE). Drawing from the unified theory of acceptance and use of technology 

(UTAUT) and the impression management literature, the social influence construct in this paper 

contains three dimensions: perceived norms about using mobile computing devices at 

workplaces; perceived social status represented by mobile computing devices; and mobile 

computing devices’ capabilities to influence other people’s impressions. The MCSE construct 

has its root in social learning theory and computer self-efficacy.  

2. Information-Processing Support Index 

The following section develops the Information-Processing Support Index (IPSI) 

construct. First, literature in the area of consumerization of IT provides evidence that managing 

the increasing number of mobile computing devices brought to work by employees is an 

important issue. Organizations are just starting to catch up with this massive trend of Bring Your 

Own Devices (BYOD). 

2.1. Consumerization of IT and Mobile Device Management (MDM) 

As introduced in Chapter I, the increasing power of mobile computing devices makes 

them capable of performing a wide range of work-related tasks. Employees are beginning to 

bring their own mobile computing devices to workplaces (Holtsnider and Jaffe, 2012). 

Consequently, organizations face the challenge of shifting their focus from controlling/managing 

their computing resources to providing IT service/support for their employees. Studies have 

shown that organizations were trying to adapt to this new trend by designing mobile device 

management policies at workplaces (Messar, 2012; Steinert-Threlkeld, 2011). Researchers in the 
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MIS discipline refer to the trend that employees want to bring their consumer information 

technology (IT) such as devices, applications, and services into corporate environment as the 

“consumerization of IT” (Niehaves et al., 2013). 

As discussed by Loose, et al. (2013), BYOD is a sub-trend of consumerization of IT that 

focuses on devices, which allows employees to incorporate their own mobile devices into 

organization network infrastructures. Shim, et al. (2013) discussed several potential benefits of 

BYOD, including familiarity and satisfaction of using employee’s choice of devices, and money-

savings on devices and data plans from the organizations' perspectives. Organizations want to 

use BYOD to increase flexibility, convenience, and portability of devices that cater to the 

employee’s workflow, which increases employees’ productivity and morale (Harris, et al., 2012).  

Current research on BYOD has focused on organization-level adoption, performance 

gains, and security issues (Messer, 2012; Niehaves, et al., 2012). Thomson (2012) discussed 

issues about employees using their personal mobile devices at workplaces. He suggested that 

BYOD is an inevitable trend. However, there is a lack of understanding and practice among 

managers about how to manage these devices at workplaces efficiently. Organizations need to 

adapt their mobile devices management practices in this new trend.  

The Mobile Device Management (MDM) concept describes solutions that facilitate the 

remote management of mobile devices (Wong, 2008). In current literature, researchers are just 

beginning to view mobile computing devices (smartphones and tablet computers) as important 

personal information systems. Few researchers have examined mobile-computing-device 

adoption at workplaces from the individual level. Especially, there is a lack of research about 

what types of mobile computing devices an employee needs based on his/her job requirements 
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and how differences in mobile devices affect an employee’s mobile-computing-device adoption 

in an organization’s computing environment.  

Pitt, et al., (2011) proposed a framework to categorize information interactions on 

information system devices with regard to the presence or absence of user input or device output. 

They also used the context for these interactions to provide guidelines about when to use these 

devices (tablet computers) for business applications. Their information interaction framework 

provided some insights about how people’s jobs require them to interact with information 

systems. However, their discussions focused on organization-level adoptions. Therefore, the 

manner in which informational interactions and context affect individual employees’ mobile-

computing-device choices is still unclear.  

Ortbach, et al. (2013) discussed the individualization process with respect to IT 

consumerization. Their study acknowledged the lack of research about antecedents of IT 

consumerization, especially at the individual level. In their framework, individual information 

systems contain personal activity systems and professional activity systems. The expected 

performance improvement and the consumerization behavior of coworkers both have positive 

effects on individual’s consumerization intentions. Although they were able to explore some 

individual-level factors affecting the mobile-computing-device adoption at workplaces, their 

work was unable to explain more fundamental reasons that employees want to adopt these 

devices. To fill this gap, this dissertation looks into the literature of information processing and 

views mobile-computing-device adoption through the lens of information-processing activities.  

2.2. Information processing view of firms 

Current studies about IT consumerization and BYOD take perspectives from human 

computer interaction (Schwarz et al., 2004), work-life balance (Yun, et al., 2012), and innovation 
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diffusion (Ratten, 2010). One important aspect is missing: how mobile computing devices 

support employees with their job-required activities. Gebauer (2008) indicated that employees 

adopting these mobile computing devices were expecting performance gains through better 

connectivity, real-time access to resources, and flexibility of time management. However, his 

study focused only on smartphones and personal digital assistants (PDAs) with limited 

functionality at the time when it took place. He provided some insights about categorizing tasks 

into general business tasks and technology with a focus on managers, which limited the range of 

tasks considered.  

Instead of focusing on particular technology support (e.g., mobile email) or particular 

users (e.g., managers), this study focuses on the more general technology support mobile 

computing devices provide to all employees. Since all employees in an organization will engage 

in information-processing activities, this study proposes that mobile computing devices’ 

capabilities to support information-processing activities influence an employee’s mobile-

computing-device-adoption intention at workplaces. The information processing view of firms 

by Galbraith (1974) provided theoretical foundations for this proposition.  

The information processing view of firms holds that from an organization design 

perspective, all organizations process information in order to function. Gathering, processing, 

and acting on data from the environment is an organization’s main task (Daft and Weick, 1984). 

The amount of information that needs to be processed depends upon the level of uncertainty. 

Following that idea, Daft and Lengel (1986) proposed that uncertainty and equivocality are the 

two factors that determine an organization’s information-processing structure.  

Studies have utilized the information processing view to explain why organizations have 

different structures, communication channels, and norms of IT usage (Mani, et al., 2010; 
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Melville and Ramirez, 2008). This study treats a mobile computing device as a special type of 

individual information system. Although the information processing view is simple and 

important, few study have examined individual-level information processing at workplaces and 

how that leads to different mobile device choices.  

By extending the information processing view of firms, this study proposes that 

employees’ jobs require them to process information. The ability to process information will 

affect employees’ performance. To support that proposition, as indicated by the Information 

Technology Associates' (ITA) dictionary of occupational titles (DOT), every job requires a 

person to function to some degree in relation to data, people, and things. The DOT used a 9-digit 

occupational code to distinguish different job titles. As shown in Table 2-1 below, the middle 

three digits of the code are the worker functions ratings of the tasks performed in the occupation. 

Generally, employee functions involving more complex responsibility and judgment have lower 

numbers while functions that are less complicated have higher numbers in the table (ITA, 1991). 

 

Data (4th Digit) People (5th Digit) Things (6th Digit) 

0 Synthesizing 0 Mentoring 0 Setting up 

1 Coordinating 1 Negotiating 1 Precision Working 

2 Analyzing 2 Instructing 2 Operating-Controlling 

3 Compiling 3 Supervising 3 Driving-Operating 

4 Computing 4 Diverting 4 Manipulating 

5 Copying 5 Persuading 5 Tending 

6 Comparing 6 Speaking-Signaling 6 Feeding-Off Bearing 

7 Serving 7 Serving 7 Handling 

 8 Taking Instruction-Helping  

Source: Dictionary of Occupation Titles (1991) 

 

Table 2-1. Occupational digits expressing a job’s relationship to data, people, and things 

This list demonstrates not only how people’s job requirements differ from each other, but 

also how people’s jobs require them to engage different information-processing activities. For 
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example, employee functions involving more complex responsibility and judgment will require 

an employee to analyze larger amount of information. The data dimension is straightforward:  

synthesizing data requires an employee to process more information than simply serving data. 

Similarly, in the people and things dimensions, mentoring people and setting up tasks require an 

employee to process more information than taking instructions from people and handling tasks. 

Therefore, the information processing view of people’s job requirements predicts that the more 

complex job requirements are the more information processing an employee needs to perform.  

A further analysis of these job requirements and information processing reveals that there 

are two major types of information-processing activities when people are performing their job 

functions: content-generation and consumption. As introduced in Chapter I, all employees need 

to generate and/or consume content at work. Content-generation and consumption capture the 

different information flows at the individual level. The information flows primarily outward 

from the employee in content-generation activities while in content-consumption activities 

information flows primarily inward to that employee.  

Different job requirements, as discussed earlier, will have different demands in terms of 

these two types of information-processing activities. On the other hand, different mobile 

computing devices have different capabilities to perform these information-processing activities 

as well. Therefore, capturing differences between the perceived device capabilities and job 

requirements will help researchers explain why people in different jobs choose to adopt different 

mobile computing devices at workplaces.  

This study develops the Information-Processing Support Index (IPSI) to capture how an 

employee perceives mobile computing devices as being capable of supporting his/her jobs in 

terms of content-generation and consumption. Based on the ideas from the information 
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processing view of firms, the IPSI measures perceived mobile computing device capabilities and 

job required information-processing activities using the Content Generation Score (CGS) and the 

Content Consumption Score (CCS).   

2.3. Content Generation Score and Content Consumption Score 

The content-generation and consumption activities are not mutually exclusive. Mobile 

computing devices can support both activities. The CGS and CCS measurements in the IPSI 

framework are two composite measures varying in the same scale. 

In today's business environment, content-generation activities are essential in people’s 

daily jobs. Employees have to generate content if they want to communicate with others. In this 

study, content-generation activities include not only activities that create new content, but also 

those that communicate content to others. For example, creating a business report, giving a 

training session, and inputting data for performance dashboards all require employees to generate 

content. Therefore, the CGS is an aggregated score to assess first, how well perceived mobile 

computing devices capabilities support content-generation activities; and second, how much 

content-generation an employee’s job requires him/her to perform. 

Another important part of people’s jobs is to receive, analyze, and use content from other 

sources. From newspapers to televisions, from Internet websites to mobile apps, technology is 

shaping the way people consume content every day. In this study, content-consumption activities 

at workplaces refer to receiving and using content from others. For example, reading a business 

report, receiving a training session, and monitoring a performance dashboard all require 

employees to consume content. Similarly, the CCS is an aggregated score to assess one, how 

well perceived mobile computing devices capabilities support employees’ content-consumption 
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activities; and two, how much content-consumption an employee’s job requires him/her to 

perform.  

The difference between perceived device capabilities and job requirements surrounding 

the two information-processing activities provides a fundamental way to explain why people 

choose different mobile computing devices at workplaces. As this study proposes, one of the 

reasons that employees choose to use mobile computing devices at workplaces is that these 

devices help them perform their job functions. Depending on different job requirements, 

different mobile computing devices are preferred when employees think their capabilities can 

better support job-required information-processing activities.  

The following section discusses how the IPSI measures perceived device capabilities and 

job requirements using the CGS and CCS to form a composite measure of individual-level 

information processing at workplace.  

2.4. Information-Processing Support Index 

The IPSI indicates how well employees perceive mobile computing devices can support 

job-required information-processing activities. As discussed above, the IPSI uses two sub-scores, 

CGS and CCS, to capture this information.  
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Figure 2-1. Information-Processing Support Index (IPSI) framework 

As demonstrated in Figure 2-1, the CGSDevice and CCSDevice measure the perceived mobile 

computing device capabilities to perform content-generation and consumption activities. The 

CGSJob and CCSJob measure how frequently employees’ jobs require them to perform these 

activities. By comparing the two sets of CGS and CCS measures on device and job requirement, 

the IPSI framework captures the reason that employees have different perceptions about how 

well mobile devices can support their job. Since both scores vary on the same scale, there are 

several possible combinations when comparing these scores. Figure 2-2 below shows some 

examples of the possible combinations when comparing these scores.  
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Figure 2-2. Examples of CGS/CCS measures 

In Figure 2-2, if the job requirement has a low CGSJob and a high CCSJob, this means that 

the job requires employees to perform content-generation activities less frequently and content-

consumption activities more frequently. Therefore, mobile computing devices support this job 

differently depending on their capabilities to support these activities. The mobile device in 

Figure 2-2a has high scores in both CGSDevice and CCSDevice, meaning that it has high perceived 

capabilities in performing both content-generation and consumption tasks. The device in Figure 

2-2b has a low score in CGSDevice and a high score in CCSDevice, meaning that it has low 

perceived capabilities in performing content-generation tasks and high perceived capabilities in 
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performing content-consumption tasks. The device in Figure 2-2c has low scores in both 

CGSDevice and CCSDevice, meaning that it has low perceived capabilities in performing both 

content-generation and consumption tasks. The device in Figure 2-2d has a high score in 

CGSDevice and a low score in CCSDevice, meaning that it has high perceived capabilities in 

performing content-generation tasks and low perceived capabilities in performing content-

consumption tasks. Therefore, employees perceive mobile devices in Figure 2-2a and 2-2b 

having capabilities to better support the job required information-processing activities than those 

in Figure 2-2c and 2-2d.  

Generally, mobile computing devices are unable to fulfill all of an employee’s 

information-processing needs at workplaces when these devices’ perceived capabilities fall 

below the employee’s job requirements in CGS and/or CCS. In that situation, that employee is 

not likely to use these devices at work. Therefore, the bottom line for an employee to adopt these 

devices at workplaces is that these devices must have capabilities that meet or exceed the 

employee’s job requirements in terms of content-generation and consumption.  

When comparing perceived device capabilities with job requirements using the CGS and 

CCS, there are three scenarios:  

1) Devices fail to support job-required information-processing activities:  

The mobile computing device’s capabilities fall below job requirements in at least one of 

the CGS and CCS. In this case, the mobile computing device fails to support the employee’s job 

requirements in content-generation and/or consumption. The IPSI assigns a score of less than 1 

to denote that the device fails to support relevant information-processing activity(s) at the 

minimum level. 
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2) Devices provide just enough support to fulfill job-required information-processing 

activities:  

The mobile computing device’s capabilities match the job requirements in the CGS and 

CCS. In this case, the mobile computing device is just capable of supporting the employee’s job 

requirements in content-generation and consumption. The IPSI assigns a score of 1 to denote that 

the device is able to support relevant information-processing activity(s) at the required level. 

3) Devices provide support beyond the necessary job-required information-processing 

activities:  

The mobile computing device’s capabilities exceed at least one of the job requirements in 

the CGS and CCS. In this case, the mobile device has capabilities that exceed at least one of job 

requirements in terms of content-generation and consumption. Therefore, the mobile computing 

devices support employees' job better than the devices in other two scenarios. The IPSI assigns a 

score of greater than 1 to denote that the device supports relevant information-processing 

activity(s) exceeding the minimum required level. Chapter III discusses formulas for calculating 

these IPSI framework scores in more detail. 

The IPSI framework presented above provides a powerful way of capturing differences in 

perceived device capabilities and job requirements. Chapter III develops specific instruments for 

the IPSI including the CGS and CCS sub-scores. As indicated in the conceptual model, 

employees tend to adopt mobile computing devices that have higher IPSI scores. In the MIS 

literature, studies of the Task-Technology-Fit theory (TTF) (Goodhue and Thompson, 1995) 

provided additional theoretical support for this proposition.  
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3. Task-Technology-Fit Theory 

In the model of PC utilization, Thompson et al. (1991) suggested that one of the factors 

affecting people’s PC usage intentions is the capability of a PC to enhance an individual’s job 

performance. They defined that as perceived job fit, which measures the extent to which an 

individual believes that using a PC can enhance the performance of his or her job (p. 129). Their 

job-fit construct captured the overall fit of technology regarding employee's tasks. They did not 

distinguish different activities an employee’s job can require him/her to perform.   

Goodhue and Thompson (1995) in their TTF theory suggested that information 

technology is more likely to have a positive impact on individual performance and to be used if 

the capabilities of the IT match the tasks that the user must perform. Focusing on employees' job 

performance and technology utilization, the TTF model examined the fit between task 

characteristics and technology characteristics and the linkage between the fit and technology 

utilization. The TTF theory is one of the most widely-used theories when examining technology 

adoptions in organizations. 

Various researchers have adopted the TTF theory in their studies. Pagani (2006) used the 

TTF in combination with Technology Acceptance Model (TAM) (Davis, 1989) to study adoption 

of high-speed data services in the business market. His study provided support for the TTF 

model and suggested technology adoption depended partially on how well the new technology 

fits the requirements of a particular task (p. 848). His study focused on the context of high-speed 

data service adoption and included specific measures in that context. By surveying a large 

number of companies across the US and five countries in Europe, he found the combined 

TTF/TAM predicts the intention to adopt. However, his study still focused on organization-level 

adoption measures.  
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Liu, et al. (2011) extended the TTF into a three-dimension Task-Individual-Technology 

Fit construct: individual-technology fit, task-individual fit, and task-technology fit. They 

suggested that different dimensions of fit would affect performance directly or indirectly through 

user attitudes. Following these ideas, Parkes (2013) examined how the fit among individual 

difference, technology, and task affected people’s performance and attitude toward technology. 

Her study focused on the decision-making context and divided the performance into two 

dimensions: using the system and using the outputs of the system. Both studies utilized 

controlled lab experiments for their statistical analysis and generally confirmed the linkage 

between fit and performance.  

Most of studies utilizing TTF theory focused on organization-level information systems 

adoptions. Depending on specific task orientations, they usually have specific task contexts. In 

this study, the TTF theory provides theoretical foundations for the IPSI construct. However, this 

study focuses on an individual employee’s mobile-computing-device-adoption intention with 

more general measures about perceived device capabilities and job requirements. By utilizing the 

CGS and CCS, this study captures the perceived level of support mobile computing devices can 

provide to an employee’s job required information-processing activities. This study provides 

some initial insights and measurable constructs about how perceived mobile device capabilities 

and an employee’s job requirements affect his/her device choices. This is the first attempt to 

explain individual-level IS adoption intentions from information-processing perspective.  

In the conceptual model, other factors also influence an employee’s mobile-computing-

device-adoption intensions at workplaces. Previous literature about end-user satisfaction and 

dissatisfaction suggested two important mediators between IPSI and an employee’s mobile-

computing-device-adoption intentions.  
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4. Mobile-Computing Satisfaction and Dissatisfaction 

One of the direct subsequent constructs the TTF suggested is user satisfaction. For 

example, Aiken, et al. (2013) discussed the linkages between TTF and user satisfaction. Higher 

fit between employees' task requirements and mobile technology capabilities often leads to 

higher user satisfaction.  

In the conceptual model developed in this dissertation, mobile-computing satisfaction and 

dissatisfaction are two factors mediating the positive relationship between the IPSI and 

employees' mobile-computing-device-adoption intentions. In this study, satisfaction and 

dissatisfaction are proposed as two independent factors. Mobile-computing satisfaction stems 

from the larger concept of end-user satisfaction in the MIS literature.  

4.1. Mobile-computing satisfaction 

In the MIS literature, Rockart and Flannery (1983) categorized end-users into six 

different types. They discussed the idea of managing end-user computing by providing different 

support. As technology advances, end-users are using more and more computing resources in 

organizations. Their satisfaction will affect their technology adoptions.   

End-User Satisfaction (EUS) may be one of the most-studied IS constructs. Various 

researchers have conducted a host of studies trying to understand the antecedents and 

consequences of EUS. DeLone and McLean (1992) reviewed relevant literature of IS success 

measures. They identified user satisfaction as one of six important IS success measurements. In 

their model of IS success, user satisfaction interacted with systems use. Their study reviewed the 

development of user satisfaction measures with a focus on using it as an information systems 

success indicator. They found 33 studies that used user satisfaction as a measure of IS success.  
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Various researchers have developed different measurements for user satisfaction. For 

example, Bailey and Pearson (1983) presented a 39-item instrument for measuring user 

satisfaction. Doll and Torkzadeh (1988) also provided a 12-item instrument measuring user 

satisfaction focusing on content, accuracy, format, ease of use, and timeliness. Numerous 

researchers have adopted their instruments for measuring user satisfaction.   

However, some studies have suggested that end-user satisfaction measures are not 

cohesive. Bokhari (2005) in his meta-analysis identified three categories of user satisfaction 

measures: user attitudes towards an information system, user satisfaction in terms of information 

quality, and perceived IS effectiveness. Some researchers used a similar construct of customer 

satisfaction in studying mobile-computing satisfaction. In the marketing literature, a dominant 

paradigm in customer satisfaction and dissatisfaction is the expectancy disconfirmation paradigm 

(Anderson, 1973). The idea is that customer satisfaction is a relative measure between people's 

expectation and their perceived performance of a product. The perceived product performance 

can be above, at, or below people’s expectation about the product. Therefore, the positive 

disconfirmation and negative disconfirmation of these expectations can lead to customer 

satisfaction and dissatisfaction (Perkins, 2012).  

In the current study, the conceptual model focuses on the effects of an employee’s 

mobile-computing satisfaction. This study extends user satisfaction into the mobile computing 

context. As introduced in Chapter I, mobile-computing satisfaction concerns an employee’s 

perceptions about how satisfied they are regarding their mobile-computing needs. Mobile 

computing devices that have higher IPSI scores lead to higher mobile-computing satisfaction, 

which in turn leads to higher mobile-computing-device-adoption intentions at workplaces. 

Therefore, mobile-computing satisfaction is the first mediator in the conceptual model.  
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4.2. Mobile-computing dissatisfaction 

In this study, mobile-computing dissatisfaction is another important mediator that affects 

an employee’s mobile-computing-device-adoption intention at workplaces. As discussed in the 

literature, dissatisfaction acts independently of satisfaction. For example, people who have low 

satisfaction do not necessarily have high dissatisfaction. In the past, most researchers viewed 

mobile computing devices as consumer products. They used consumer satisfaction and 

dissatisfaction measures to study people’s post-purchase behaviors or mobile IT service 

purchases (Turel, et al., 2006).  

The disconfirmation paradigm in consumer satisfaction and dissatisfaction from 

marketing literature provided some foundation for the user dissatisfaction construct in the 

conceptual model in the current study. Chow and Zhang (2008) studied how to identify satisfiers 

and dissatisfiers using consumer satisfaction and dissatisfaction intensities. By referring to 

Herzberg’s two-factor theory (Herzberg, 1968), their study identified satisfaction and 

dissatisfaction are two independent factors.  

In the MIS discipline, researchers have incorporated the user dissatisfaction construct less 

frequently. User dissatisfaction is sometimes replaced with user complaints with information 

systems or appears together with the user satisfaction factor. For example, Shirani, et al. (1994) 

used the confirmation/disconfirmation of user expectations to explore user information 

satisfaction in their model of user information satisfaction. They suggested a favorable positive 

disconfirmation yields higher satisfaction while an unfavorable negative disconfirmation yields 

higher dissatisfaction.  

Studies about user resistance to information systems implementation also provided some 

additional insights about the user dissatisfaction measure. User resistance is the user’s adverse 
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attitude or behavior toward new information systems changes. Both user resistance and user 

dissatisfaction concepts involve adverse attitudes toward new information systems. Klaus and 

Blanton (2010) proposed 12 determinants that affect user resistance to enterprise system 

implementations using the psychological contract concept. They categorized these determinants 

into four key areas: individual, system, organizational, and process issues. Their study suggested 

that the perceived unmet promise in these areas leads to user resistance behavior. Following the 

psychological contract concept, Klaus (2011) studied how perceived justice affects users’ 

attitudes toward IT-enabled change in organizations. Both studies analyzed information systems 

at the organization level. Nonetheless, the concept of unmet promises is similar to the 

disconfirmed expectancy paradigm. User dissatisfaction leads to user resistance as well.  

In this dissertation, an employee’s mobile-computing dissatisfaction negatively affects 

his/her mobile-computing-device-adoption intention. Mobile computing devices that have low 

IPSI score are perceived as being unable to support the employee’s information-processing 

activities at workplaces very well. Therefore, lower IPSI score leads to higher mobile-computing 

dissatisfaction, which in turn leads to lower device adoption intentions at workplaces. The 

mobile-computing dissatisfaction construct in the current study is another important mediator 

between the IPSI and an employee’s mobile-computing-device-adoption intention. Chapter III 

develops instruments for both mobile-computing satisfaction and dissatisfaction constructs.  

In previous literature, when researchers studied technology adoption, a dominant 

theoretical framework is the Technology Acceptance Model (TAM) developed by Davis (1989). 

The next section reviews TAM and identifies the connections between TAM and the IPSI 

framework in this study.  
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5. Technology Acceptance Model 

Davis (1989) in the original TAM predicts people's technology adoption using two 

constructs: perceived usefulness (PU) and perceived ease of use (PEU). Based on the Theory of 

Reasoned Action (TRA) by Ajzen and Fishbein (1980), TAM is a dominant model when 

studying technology adoptions. Researchers in the MIS discipline have extensively tested and 

validated TAM and its variants in different studies (Venkatesh, et al., 2012).   

TAM is a simple, powerful model in explaining users’ technology adoption behavior. 

However, as suggested by Gebauer (2008), neither TAM nor TTF are very specific regarding the 

antecedents of PU or PEU. When examining task-related technology adoptions, TTF often 

provides better results. 

TAM is very useful in explaining the technology adoptions behavior once the PU and 

PEU is measured (typically about mature technologies), but not so useful in predicting the 

factors that affect the perceptions about usefulness and ease of use. Therefore, the model itself 

provides limited information about how, in practice, people adopt new technologies at 

workplaces. For example, according to TAM, if employees perceive the mobile computing 

technology is useful and easy to use, they are more likely to adopt it. However, factors that 

determine the PU and PEU constructs in TAM are missing. The “catch-all” and abstract nature of 

TAM makes it difficult to capture the more practical drivers of technology adoption decisions in 

organizations. 

In this study, the IPSI framework focuses on developing a more practical and tangible 

measure of how well mobile computing devices support an employee’s information-processing 

activities. Therefore, the IPSI is able to identify factors that drive an employee’s perceptions 

about usefulness and ease of use in the context of mobile-computing-device adoption decisions.  
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Venkatesh, et al. (2003) extended the original TAM and named it as the Unified Theory 

of Adoption and Use of Technology (UTAUT). In UTAUT, four key constructs (performance 

expectancy, effort expectancy, social influence, and facilitating conditions) were direct 

determinants of usage intention and behavior. That model also proposed that gender, age, 

experience, and voluntariness of use moderate the impact of the four key constructs on usage 

intention and behavior. The social influence construct of UTAUT provided some insights about 

other important factors that affect an employee’s mobile device adoption intention at workplaces.  

6. Social Influence 

In Social Cognitive Theory (SCT) (Bandura, 1988), people learn to adopt technology by 

observing what others do. Therefore, subjective norms, organizational culture, and peer pressure 

all influence an employee’s potential mobile-computing-device-adoption intentions. 

Consequently, to better explain an employee’s mobile-computing-device-adoption intentions at 

workplaces, social influence is identified as another important construct in this dissertation’s 

conceptual model.  

6.1. Unified Theory of Adoption and Use of Technology 

Venkatesh, et al. (2003) defined the social influence construct in UTAUT as the degree to 

which an individual perceives that other important people believe he or she should use the new 

system (p. 451). After comparing existing theories, they have identified three dimensions: 

subjective norm, social factor, and image.  

They adopted the definition of subjective norm from the Theory of Reasoned Action 

(Ajzen 1991; Davis et al., 1989) as a person’s perception that most people who are important to 

him/her think he/she should or should not perform the behavior in question (p.452). The 

definition of social factor adopted from Thompson, et al. (1991) is the individual’s 
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internalization of the reference group’s subjective culture and specific interpersonal agreements 

that the individual has made with others, in specific social situations (p.452). The definition of 

image adopted from Moore and Benbasat (1996) is the degree to which use of an innovation is 

perceived to enhance one's status in one's social system (p.452).  

In this study, mobile computing devices have some unique characteristics that distinguish 

them from other information systems. Using such devices can convey personal information to 

others. For example, if supervisors use certain types of mobile computing devices at work, their 

subordinates may perceive that behavior as either an encouragement or a discouragement of 

similar device usage, depending on the subculture in that department. In another example, an 

employee may want to use the same mobile devices as his/her coworkers, just to conform to the 

subjective norm of the group. Therefore, perceived norms about using these devices at 

workplaces and perceived social status associated with these devices have important impacts on 

an employee’s adoption intention.  

Another unique characteristic of mobile computing devices is their high mobility and 

visibility. The mobility of these devices enables employees to access and reply to important 

information at any time. Visibility enables employees to convey nonverbal communication such 

as personal preferences, styles, and tastes to others. Therefore, these devices have another 

important function: helping employees with their impression management efforts.  

6.2. Impression Management 

Schlenker (1980) defined impression management as behaviors people exhibit to create 

and maintain desired impressions on others. Previous studies in impression management focused 

on verbal or face-to-face interactions. For example, Gardner and Martinko (1988) examined 

impression management behaviors in organizations. They stated that self-presentation was the 
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most prominent means of managing impressions and explored verbal self-presentation and the 

influence of these self-presentations.  

Several studies in impression management have offered some evidence that employees 

use their mobile computing devices in their impression management efforts. For example, 

Scheibe, et al. (2009) studied how the different arrangements of office furniture affect people’s 

impression. They also discussed how technology could act as an impression management tool in 

the office setting. As mentioned above, mobile computing devices have high visibility, which 

can help them to portray their desired impressions.  

Another example of using mobile computing devices to manage impressions is the usage 

of mobile email services. In the modern business environment, the demand for email 

communication is rising rapidly. The omnipresence provided by mobile computing devices 

enables employees to stay connected with others all the time. However, different mobile 

computing devices have different capabilities for generating and viewing content. For example, 

smartphones have limited text-editing capabilities due to their small size. Tablets are larger than 

smartphones, but still provide limited capabilities for editing email messages. Laptop computers 

are most capable of editing email messages, but their mobility is lower than the other two 

devices.  

Therefore, when an employee needs to respond to an email message from someone with 

whom he/she wants to maintain a good impression, he/she might find that a smartphone or a 

tablet cannot fulfill that need. On the other hand, if an employee travels very often and needs to 

respond to email messages in a quick, concise fashion, he/she needs to find a smartphone or a 

tablet that meets his/her requirements. For example, college professors can easily use 

smartphones or tablet computers to respond to students’ office appointment requests. However, 
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they will find it difficult to use such devices to respond to students’ questions that require them 

to type long, detailed explanations in the message. These different impression management needs 

lead to different mobile device adoptions. As a result, mobile computing devices’ capability to 

perform impression management tasks is another important dimension in the social influence 

construct.  

As discussed above, this study defines the social influence construct as the social 

influence mobile computing devices have at workplaces. It includes three dimensions: perceived 

norms about using mobile computing devices at workplaces, perceived social status represented 

by mobile computing devices, and perceived device capabilities in performing impression-

management-related tasks. Chapter III develops measurements for the social influence construct 

in the measurement model.  

When studying mobile device adoptions, employees’ self-judgments about how well they 

can handle these devices also affect their adoption intentions at workplaces. The next section 

reviews literature about Mobile Computing Self-Efficacy (MCSE).  

7. Mobile Computing Self-Efficacy 

People’s knowledge about various information systems grows as technology advances. 

One of the key characteristics about today’s workforce is that younger people are more 

comfortable with new technologies than older generations (Messer, 2012). When studying 

employees’ mobile device adoptions, one of the important factors affecting employees’ adoption 

intentions at workplaces is their level of mastery of these devices.  

In Social Cognitive Theory (SCT), self-efficacy is a person’s belief in his/her capability 

to perform a specific task (Bandura, 1977). Researchers in the MIS discipline have adopted and 

validated SCT in studying technology adoptions.  
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Using SCT, Compeau and Higgins (1995) defined computer self-efficacy (CSE) as “an 

individual judgment of one's capability to use a computer” (p. 192). In their study, the 

performance outcome expectancy, personal outcome expectancy, self-efficacy, affect, and 

anxiety influenced an individual’s technology usage behavior. Researchers suggested that CSE 

plays a significant role in an individual’s decision to use computers (Compeau, et al., 1999).  

Marakas, et al. (1998) in their study about CSE reviewed the root, antecedents, and 

consequences of the CSE construct. They stated that CSE would affect people’s performance 

with computers and categorized CSE into general and specific CSE.  

Discussions about CSE also apply to mobile computing devices. Some researchers have 

tried to define and test the MCSE construct. For example, Wang and Wang (2008) developed a 

45-item scale to measure that construct. Their study focused on five dimensions: basic mobile 

computer operations, the Internet, e-mail, specific mobile services, and mobile computer 

knowledge. However, their study focused on the narrow usage of email and the Internet of these 

devices. In addition, their scale is too lengthy for practical use in the current study.  

In this study, an employee’s mobile computing self-efficacy positively influences his/her 

adoption intentions. Based on the relevant literature, the definition of MCSE is an employee’s 

judgment about his/her capability to use a mobile computing device at workplaces. Chapter III 

develops the measurement for MCSE.  

8. Chapter Summary 

This chapter provided a detailed review of relevant literature and developed the IPSI 

framework. It identified five major constructs in the new conceptual model: IPSI, mobile-

computing satisfaction, mobile-computing dissatisfaction, social influence, and MCSE. Mobile-

computing satisfaction and dissatisfaction mediate the positive relationship between IPSI and an 
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employee’s mobile-computing-device-adoption intentions at workplaces. Chapter III 

operationalizes the conceptual model, develops survey instruments for the constructs, and 

discusses methodology issues. 
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CHAPTER III 

METHODOLOGY 

1. Chapter Overview 

This chapter discusses the operationalization of the conceptual model and research 

methodology issues. Based on the literature discussed in Chapter II, this chapter presents the 

development of the measurement model, operationalizes constructs, and derives hypotheses. 

First, this chapter develops survey instruments for the new construct: the Information-

Processing Support Index (IPSI). By following relevant literature about scale development, this 

study generates, validates, and refines scale items measuring the IPSI components. The 

discussion about relevant literature and the IPSI framework leads to the development of 

candidate items list for refinement. These items are then validated through an instrument 

refinement process and two pilot studies.  

The next section discusses the operationalization of other constructs in the conceptual 

model through adopting well-developed measurement scales from previous literature. These 

survey instrument items are refined and modified to fit the current study context. 

Based on relevant literature, this chapter derives hypotheses among these constructs in 

the measurement model. Finally, this chapter discusses methodology issues related to ensuring 

the convergent validity, discriminant validity, and reliability of the final survey instrument. 
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2. Conceptual Model Development 

Chapter II reviewed relevant literature and identified the need to study mobile-

computing-device adoption in organizations at an individual level from the information 

processing perspective. To answer the research question about why and how people adopt mobile 

computing devices at workplaces, this study identifies five major constructs in the conceptual 

model: the IPSI, mobile-computing satisfaction and dissatisfaction, social influence, and MCSE.  

As introduced in Chapter II, this study uses the IPSI framework to measure how well 

mobile computing devices support an employee’s information processing activities. Two major 

components in the IPSI framework are the Content Generation Score (CGS) and Content 

Consumption Score (CCS). They are used to capture the perceived support of mobile devices for 

the two major types of information processing activities. A higher score in the IPSI indicates that 

a mobile computing device supports an employee’s information processing activities better. In 

the conceptual model, it leads to higher mobile-computing-device-adoption intention at 

workplaces.  

On the other hand, a higher IPSI score also indicates a mobile computing device fits an 

employee’s information-processing tasks better. As predicted by the Task Technology Fit (TTF) 

theory (Goodhue and Thompson, 1995), a better fit between a mobile computing device 

(technology) and an employee’s tasks increases the employee’s mobile-computing satisfaction 

while it decreases his/her mobile-computing dissatisfaction. Literature about user satisfaction 

indicates that mobile-computing satisfaction and dissatisfaction are two independent factors 

(Anderson, 1973; Doll and Torkzadeh, 1991; Hertzberg, 1965). As proposed in the conceptual 

model, mobile-computing satisfaction and dissatisfaction mediate the positive relationship 

between IPSI and an employee’s mobile-computing-device-adoption intention.  
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Studies in innovation diffusion, impression management, and cognitive science have 

suggested that social influence and Mobile-Computer-Self-Efficacy (MCSE) are two constructs 

that also affect an employee’s mobile-computing-device-adoption intention. As discussed in 

Chapter II, social influence (including subjective norms of mobile device use, social status 

associated with these devices, and device capabilities about impression management) and MCSE 

positively influence an employee’s mobile-computing-device-adoption intention. Figure 3-1 

below demonstrates the conceptual model developed in this study.  

 

Figure 3-1. Mobile-computing-device-adoption intention model 

3. Model Operationalization 

The following sections operationalize constructs in the conceptual model. First, this study 

develops a new multi-item scale to measure the Information-Processing Support Index. As 

suggested by various researchers, to ensure the validity and reliability of scales it is important to 

select the initial scale items carefully at the very beginning of scale development (Nunnally, 

1978). Therefore, issues in each step of the IPSI scale development (e.g., conceptual definitions, 

initial item generation, convergent validity, discriminant validity, and reliability) are discussed in 

the following section.  
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3.1. Information-Processing Support Index 

Previous literature used the information processing view of firms to understand why 

organizations have different structures and communication channels (Galbraith, 1974). 

Information systems can help firms' performance at an organization level by eliminating the need 

to process information or increase the capability to process information (Daft and Lengel, 1986). 

On the other hand, studies about technology adoptions such as the Technology Acceptance 

Model (TAM) (Davis, 1989) and Task-Technology Fit (TTF) theory (Goodhue and Thompson, 

1995) have focused on organization level technology adoptions in more mature technologies 

(Gebauer, 2008). The perceived usefulness, perceived ease of use, and the fit between task and 

technology are strong predictors about people’s technology adoptions behaviors. However, there 

is a lack of research on identifying what are the antecedents of these predictors, and how people 

develop their technology adoption intentions.  

The current study tries to fill this gap by adopting the information processing view at the 

individual level to explain employees' mobile-computing-device-adoption intentions at 

workplaces. By examining how employees process information in workplaces, the IPSI score 

indicates how well mobile computing devices support employees' information-processing 

activities. The IPSI uses the CGS and CCS to measure the two types of information-processing 

activities employees perform. This study defines the IPSI as an indicator of the level of 

information processing support mobile devices provide for employees. 

As suggested by Churchill (1979), scale development includes steps of specifying the 

domain of construct, generating a sample of items, collecting data for the pilot study, purifying 

measurements, collecting data for the primary study, assessing reliability and validity, and 

developing norms. This study follows these steps to develop the IPSI scale.  
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Domain specification and survey item generation 

Few studies have examined technology adoption at workplaces from the information-

processing perspective. From the information processing view, employees are information-

processing nodes inside the organizational networks. Each of these employees/nodes has two 

major streams of information/content flows: information/content inflow and outflow. Therefore, 

from an individual employees' perspective, content generation refers to the information/content 

outflow while content consumption refers to the information/content inflow.  

In order to measure the CGS and CCS, this study develops survey items asking 

employees about their perceptions of 1) the capabilities of a mobile device in performing content 

generation/consumption activities, and 2) the degree to which their jobs require them to perform 

these two activities.  

The Morgan Stanley study (2011) used content creation and consumption to distinguish 

these two information-processing activities. Although focused primarily on consumer usage of 

tablet computers, their study revealed several work-related activities in the content creation 

category (communication, and general/specific work-related content creations) and the content 

consumption category (general web browsing, and communication-related content 

consumptions). According to their findings, consumers use their PCs and tablet computers 

mainly for content-consumption activities. However, most of the work-related tasks are in the 

content generation category. People use their mobile computing devices differently at 

workplaces than at home. In order to supplement the need to use their devices for work, 

employees use various accessories such as Bluetooth keyboards, stylus pens, etc. to increase the 

device's capabilities in performing work-related tasks. Based on the discussion above, the current 

study generates a list of content-generation/consumption activities people perform at workplaces 
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and uses that list to assess device capabilities and job requirements in terms of content generation 

and consumption.   

Generally, this study proposes that there are two major categories of people’s information 

processing activities at workplaces: communication-related and work-related activities. In 

Morgan Stanley’s study (2011), they included general and specific work-related content 

creations. Using the specific content creation/consumption activity to understand people’s usage 

of mobile devices at workplaces may be useful. However, since people’s jobs vary greatly, it is 

hard to create a generalizable measurement using a specific content creation/consumption 

activity. As a result, this study uses more general work-related content generation and 

consumption activities to achieve the most generalizablity in the resulting instrument.  

Table 3-1 below shows the list of content-generation and consumption activities used in 

this study to develop candidate items for measuring the CGS and CCS.  

 

Activities at job Content generation Content consumption 

Communication activities 
Creating email messages, and 

IM/social network messages 

Reading email messages, and 

IM/social network messages 

Work-related activities 

Creating work-related 

documents, editing work-

related documents 

Gathering information from 

the Internet, reviewing work-

related documents 

Networking activities 
Creating content on social 

network and other web pages 

Reading content on social 

network and other web pages 

 

Table 3-1. Content generation and consumption activities at workplaces 

By using seven-point Likert-type scales anchored at 1: strongly disagree and 7: strongly 

agree, this study generates five candidate items for each component in the IPSI framework. For 

the CGS, proposed survey items measure the perceived device capabilities to perform content 

generation activities, and the perceived job requirements about content generation activities. For 
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the CCS, the survey items measure perceived device capabilities in performing content 

consumption activities, and the perceived job requirements about content consumption activities. 

As indicated in Figure 3-2, the IPSI framework uses aggregated device-related and job-

related measurements in calculating CGS and CCS. The CGSDevice, CGSJob, CCSDevice, and 

CGSJob are all aggregated scores from survey items. A higher CGSDevice/CGSDevice score indicates 

a device has better capabilities in performing content generation/consumption-related tasks, a 

higher CGSJob score indicates a job requires more content generation/consumption activities.  

Therefore, by comparing the paired CGS and CCS sub scores on device capabilities and 

job requirements, the CGS and CCS captures how well mobile devices support job-required 

content-generation/consumption activities respectively. If a device has scores that match or 

exceed a job's scores, the device is able to support the job-required content generation and/or 

consumption activities. Otherwise, the device is not able to support all the job-required content 

generation and/or consumption activities. 

 

Figure 3-2. Information-Processing Support Index (IPSI) framework 
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The IPSI framework uses the following equations to calculate CGS, CCS, and IPSI 

scores: 

Equation (1):
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Equation (3): ccscgs WCCSWCGSIPSI   

In Equation 1 and 2, the CGS’ and CCS’ scores were computed as the differences 

between device-related and job-related sub scores scaled by their maximum differences. The 

resulting scores are ranging from zero to two, in which a score of one indicates the neutral point 

(the device-related scores equal the job-related scores) and a higher score means better perceived 

device support. The CGS’ and CCS’ are the raw scores. As suggested by the prospect theory 

(Kahneman and Tversky, 1979), when evaluating the value of choices, people discount the losses 

more than they value the gains. Therefore, when the perceived device capability falls below the 

perceived job requirements, the perceived support of mobile device will decrease faster. To 

reflect these effects, when calculating the CGS and CCS, the IPSI framework penalizes the raw 

scores CGS’ and CCS’ less than one by squaring them, reflecting the effect that losses loom 

larger than gains.  

In order to account for the possibility that different jobs focus on content generation 

and/or consumption activities differently, the IPSI framework also uses a weight function. In the 
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survey instrument, employees rate the relevant importance of content generation/consumption 

activities in their jobs on a 1-to-7 scale anchored at 1: extremely unimportant and 7: extremely 

important. In that way, the more important aspect of information processing activities is assigned 

with a higher weight in the final calculation of the IPSI score. Equation 3 shows how to calculate 

the IPSI score with the Wcgs and Wccs functions.  

Instrument refinement 

Instrument refinement is conducted to assess the semantic content of generated items. 

The refining process establishes the content validity of survey items in the instrument. After 

generating the candidate items for the survey instrument, this study will refine/examine these 

items by asking a group of undergraduate students to perform the Q-sort test (Straub, Boudreau, 

and Gefen, 2004). The Q-sort test asks the students to perform two tasks: one, to rank items in 

each construct (CGSDevice, CGSJob, CCSDevice, and CGSJob) in terms of their relevancy to the 

underlying concepts of content generation and consumption; and two, categorize all items into 

the two underlying categories (constructs). If the Q-sort test results converge with the conceptual 

definitions of these constructs, the candidate survey instruments list has demonstrated its content 

validity. After refining the items in the candidate list, a pilot study follows to assess the 

reliability and validity of the survey instrument.  

In the following sections, this study defines and operationalizes the rest of the constructs 

in the conceptual model through adopting well-developed instruments. Therefore, the content 

validity issue is resolved by carefully reviewing relevant literature. After the operationalization 

of all constructs in the conceptual model, this chapter discusses methodology and data analysis 

issues in the pilot and main study.  
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3.2. Mobile-Computing Satisfaction 

Various researchers have studied user satisfaction. Doll and Torkzadeh (1988) defined 

end-user satisfaction as the end user’s positive attitude toward the information system they are 

using. Similarly, in DeLone and McLean’s (1992) model of information system success, they 

listed 33 studies about user satisfaction used either single overall satisfaction ratings or multi-

attribute satisfaction measures.  

Based on the relevant literature, this study defines an employee’s mobile-computing 

satisfaction as his/her opinion regarding whether he/she is satisfied with his/her mobile-

computing needs at work. As suggested by the various studies about user satisfaction 

measurements (Bokhari, 2005; Doll and Torkzadeh, 1988), this study proposes measuring this 

construct from the employees’ overall satisfaction about mobile computing needs, satisfaction 

about organizational support in mobile computing device usage, and satisfaction about mobile 

device performance in job requirements. By focusing on mobile-device-related measures, the 

mobile-computing satisfaction instrument can provide measurements that are more relevant in 

the context. The survey items measuring this construct are presented in Appendix A.  

3.3. Mobile-Computing Dissatisfaction 

Mobile-computing dissatisfaction is identified as another mediator between the IPSI and 

employees' mobile-computing-device-adoption intentions. According to the disconfirmed 

expectancy paradigm in the Marketing literature, when the actual system performance differs 

from the user’s expectation, a positive disconfirmation yields higher satisfaction while a negative 

disconfirmation yields higher dissatisfaction. In the MIS filed, user dissatisfaction is related to 

information systems resistance, which is the adverse attitude a user has toward new information 

system implementation. Klaus and Blanton (2010) found four categories of factors determine a 
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user’s resistance using the psychological contract concept: individual, system, organizational, 

and process issues.  

Based on the discussions above and relevant literature, this study defines an employee’s 

mobile-computing dissatisfaction as an employee's adverse opinion regarding his/her mobile-

computing needs at work. By following the disconfirmed expectancy paradigm and literature in 

user resistance, this study focuses on a user’s perception about unmet expectations about their 

mobile computing needs, the lack of organizational support, and unmet device performance 

expectations. Those measures cover the areas of determinants of user resistance and 

dissatisfaction in organizations as identified in previous literature.  

3.4. Social Influence 

The social environment also influences employees’ mobile device adoption intentions. In 

the technology acceptance literature, Venkatesh, et al. (2003) defined social influence as 

employees’ perceptions about how important others think whether they should use the new 

system. In social cognitive theory, people make their technology adoption decisions by observing 

what others do (Bandura, 1988). If the majority of people around an employee choose to use 

certain technology, that employee is more likely to adopt it. With the ever-increasing power of 

information and communication technology, social influence is another important factor 

affecting an employee’s mobile-computing-device-adoption intention at workplaces. This study 

defines social influence as social factors and interactions that influence an employee’s mobile-

computing-device-adoption intentions. 

The social influence construct contains three dimensions: subjective norms about mobile 

computing device usage at workplaces, social status associated with the usage of mobile 

computing devices, and impression management capabilities of these devices. The subjective 
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norms and social status will determine whether an employee perceives using a mobile device is 

accepted by the social group or is appropriate to the desired social class norms. Impression 

management capability, on the other hand, determines how well the mobile computing device 

can be used to enhance an employee’s impression upon others, and to influence others.  

These dimensions capture the social interactions and influences that are occurring at 

workplaces. This study adopts survey items from relevant literature to measure these dimensions. 

For the impression management dimension, most of the literature focuses on impression 

management behaviors such as face-to-face interactions and other verbal behaviors (Wayne and 

Ferris, 1990). This study uses an item in the survey instrument to indicate the employee’s 

perception about how well mobile computing devices support their impression management 

activities.  

3.5. Mobile Computing Self-Efficacy 

As discussed in social cognitive theory, self-efficacy is a person’s belief in his/her 

capability to perform a specific task (Bandura, 1977). Based on that, Compeau and Higgins 

(1995) defined computer self-efficacy (CSE) as “an individual judgment of one’s capability to 

use computer” (p. 192). Researchers generally agree that higher CSE leads to higher productivity 

using computers. Marakas, et al. (1998) reviewed the development in the CSE construct and 

categorized it into general and specific CSE. Recently, Wang and Wang (2008) developed a 45-

item Mobile Computing Self-Efficacy (MCSE) instrument that included five dimensions with 

both general and specific MCSE.  

As discussed above, the current study defines MCSE as an individual judgment about 

one’s capability to use mobile computing devices in work environments. This definition avoids 

overly detailed specification about how a person perceives his/her ability to perform specific 
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tasks, and focuses on the general judgment people have regarding their mobile computing device 

usage capabilities. By adopting part of the MCSE instruments (Wang and Wang, 2008), this 

study proposes a set of instruments measuring the MCSE construct from the general knowledge 

about mobile computing devices, mobile applications, information gathering, and problem 

solving. Therefore, the MCSE instrument in this study focuses on the general MCSE.  

3.6. Mobile-computing-device-Adoption Intentions 

Finally, this study adopts survey instruments from the technology acceptance literature to 

measure an employee’s mobile-device-adoption intention at workplaces. These instruments were 

well developed and adopted in the literature. Table 3-2 summarizes the model operationalization.  

 

Constructs in 

the model 

Conceptual 

Definition 
Operational Definition References 

Mobile 

computing device 

characteristics 

CGSDevice, CCSDevice 

Aggregated score from survey items 

about perceived mobile computing 

device’s capabilities related to 

content consumption and generation. 

Developed in  

this study. 

Job requirement 

characteristics 
CGSJob, CCSJob 

Aggregated score from survey items 

about content generation and 

consumption related job 

requirements. 

Developed in  

this study. 

CGS and CCS 

Scores indicate how 

well mobile 

computing devices 

support content 

generation and 

consumption 

activities. 

 

 

Developed in  

this study. 

Information-

Processing 

Support Index 

(IPSI) 

An index score 

indicates how well 

mobile computing 

devices support 

employees’ 

information-

processing activities. 

ccscgs WCCSWCGSIPSI   

Wcgs and Wccs are the relative 

importance of job-required content 

generation and consumption 

activities indicated by respondents. 

Developed in  

this study. 

)(
1'

DeviceJob

DeviceJob

CGSCGSMAX

CGSCGS
CGS






)(
1'

DeviceJob

DeviceJob

CCSCCSMAX

CCSCCS
CCS
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Constructs in 

the model 

Conceptual 

Definition 
Operational Definition References 

Mobile-

Computing 

Satisfaction 

An employee’s 

opinion regarding 

whether he/she is 

satisfied with his/her 

mobile-computing 

needs at work. 

Survey items indicate whether an 

employee is satisfied about his/her 

mobile computing need. 

Doll and 

Torkzadeh, 

(1988); DeLone 

and McLean 

(1992, 2003). 

Mobile-

Computing 

Dissatisfaction 

The opinion a person 

has regarding to 

whether he/she is 

dissatisfied with the 

mobile computing 

devices at work. 

Survey items indicate whether an 

employee is dissatisfied about his/her 

mobile computing need. 

Anderson (1973); 

Klaus and 

Blanton, (2010). 

Social Influence 

Social factors and 

interactions that 

influence an 

employee’s mobile-

computing-device-

adoption intentions 

Survey items indicate the perceived 

norms of using mobile devices, status 

associated with these devices, and 

perceived device capabilities in 

performing impression-management-

related tasks. 

Thompson et al. 

(1991); Moore 

and Benbasat, 

(1991); Wayne 

and Ferris, 

(1990). 

Mobile 

Computing 

Self-Efficacy 

(MCSE) 

An individual 

judgment of one's 

capability to use 

mobile computing 

devices. 

Survey items adopted from previous 

research that indicates a person’s 

belief about his/her capability to use 

mobile computing devices. 

Bandura (1986); 

Marakas, et al., 

(1998); 

Wang and Wang, 

(2008). 

Mobile-

computing-

device-adoption 

intention 

The extent to which 

an individual intends 

to adopt mobile 

computing devices 

for work. 

Survey items adopted from previous 

research about technology adoptions 

in organizations. 

Ajzen, (1991); 

Venkatesh, 

(2000) 

 

Table 3-2. Summary of construct operationalizations 

4. Hypotheses 

According to the literature review in Chapter II and discussions above, this study derives 

the following hypotheses in the measurement model:  

H1: The IPSI has a positive association with an employee’s mobile computing device 

adoption intention. 
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H2: Mobile-computing satisfaction mediates the positive relationship between the IPSI 

and an employee’s mobile computing device adoption intention. 

H3: Mobile-computing dissatisfaction mediates the positive relationship between IPSI 

and an employee’s mobile computing device adoption intention. 

H4: Social influence of mobile computing devices has a positive association with an 

employee’s mobile computing device adoption intention. 

H5: An employee’s Mobile Computing Self-Efficacy (MCSE) has a positive association 

with his/her mobile computing device adoption intention. 

5. The Mobile-Computing-Devices-Adoption Intention Model 

Figure 3-3 below shows the measurement model with hypotheses derived from literature.  

 

Figure 3-3. The measurement model with hypotheses 

(Solid line indicates positive relationship and dashed line indicates inverse relationship) 

 

6. Methodology and Data Analysis 

All survey items generated in this study need to be tested for the convergent validity, 

discriminant validity, and reliability before conducting the main data collection.  
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6.1. Validity issues  

The current study develops a new multi-item instrument for the IPSI following the 

domain-sampling model, which assumes that each variable has a domain of content 

corresponding to it (Nunnally and Bernstein, 1994). By following the steps of domain 

specification, and measurement refinement, the survey instrument possesses content validity. 

Content validity ensures an instrument is truly measuring the underlying concept. The proposed 

Q-sort test also provides empirical support for the content validity of the instrument.  

When the survey instrument items are generated and refined, they are ready for a pilot 

study. The pilot study serves as a check for the convergent validity, discriminant validity, and 

reliability issues in the instrument. There are several techniques that can help ensure those issues 

are not harming the hypotheses testing for the measurement model.  

A Confirmatory Factor Analysis (CFA) is conducted to assess the convergent validity, 

which is the degree to which the measurements correlate with each other when measuring the 

same concept; and the discriminant validity, which is the degree to which measurements differ 

from each other when measuring different concepts. The CFA technique form factors based on 

the items’ correlation. Items identified within the same factor correlate to each other higher than 

items that are not in that factor. Therefore, by examining the factor loading results from a CFA, 

high convergent validity requires items measuring the same constructs load on one factor. On the 

other hand, high discriminant validity requires items measuring different constructs load into 

different factors. Items fail to load properly or are cross-loaded on more than one factors need to 

be modified or dropped from the final instrument list.  
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6.2. Reliability issues 

The reliability of the survey instrument refers to “the degree to which measures are free 

from error and therefore yield consistent results” (Peter, 1979 p. 6). One commonly used 

measure of reliability is the internal consistency measure (e.g., Cronbach’s alpha) (Jarvis, 

Mackenzie, & Podsakoff, 2003). In the data analysis of this study, Cronbach’s alpha will be 

calculated to assess the reliability of all survey items. To demonstrate acceptable level of 

reliability in the multi-item instrument, the alpha coefficients should exceed 0.7.  

6.3. Hypotheses testing 

The pilot study validates and refines the survey instruments for the main study. In the 

main study, the revised survey instruments are used to gather empirical data for the hypotheses 

testing purposes. Chapter IV will discuss the hypotheses testing in more detail. Multiple 

regressions and Structural Equation Modeling (SEM) techniques will be used to test the 

significance of each hypothesis and the paths in the structural model. In addition, a power 

analysis is performed to determine the optimal sample size for the main study in order to ensure 

the proposed hypotheses testing possesses adequate statistical power.  

6.4. Common method biases 

Since the primary data-collection method in this study is survey questionnaire, the data 

analysis must pay close attention to the potential biases introduced by the method. Common 

method biases refers to the method variance that is attributable to the measurement method rather 

than to the constructs of interest (Podsakoff, et al., 2003). The common method biases can 

potentially have a confounding effect in the hypotheses testing, which weakens the statistical 

conclusions of the data analysis. Several ways to control this bias are suggested including better-

designed instruments, marker variable techniques, and temporal separations (Podsakoff, 
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Mackenize, & Podsakoff, 2012). In this study, the survey instrument list is not very long, most of 

the items in the instrument do not involve a high level of mental effort to generate the answers, 

and the constructs are well defined. Therefore, the common method bias in the current study is 

not likely to create problems in the data analysis. In the next section, this chapter briefly 

introduces the pilot and main study.  

7. Pilot and Main Study Introduction 

7.1. Instrument refinement 

Before the pilot study, the IPSI framework needs to be refined to ensure its content 

validity. As discussed earlier, business major undergraduate students in a southern public 

university will be recruited for the instrument refinement process for the IPSI construct.  

The students will perform two tasks: ranking and categorizing. The ranking task lists 

survey items measuring the CGS and CCS. Students are asked to rank these item based on their 

relevancy to the concepts of content generation and consumption.   

The categorizing task lists survey items measuring the CGS and CCS. Students are asked 

to categorize these items into two categories: content generation and consumption.  

Each student was given only one task. The results showed how well each item reflects the 

underlying concepts. If the results converge, which means all items are ranked and categorized 

properly according to the concepts they represent, the generated items list has high content 

validity. If not, items that are not properly ranked/categorized will need to be revised or dropped 

from the final items list.  

7.2. Pilot study 

The pilot study recruited undergraduate students from the same university. The refined 

survey questionnaires were distributed to them. In order to provide relative responses in job-
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related measures, the survey instrument utilized a short description to set up the scenario for the 

participants. The students were required to think that their job is to get a college degree; their 

classmates and professors are coworkers and supervisors; their daily classroom activities and 

assignments are job-required activities, and they are using mobile computing devices for these 

activities. By setting up this scenario, the pilot study can show weaknesses in the design of 

survey and potential issues with data collections.  

Their responses are coded and prepared for the assessment of convergent validity, 

discriminant validity, and reliability of the survey instrument. The Cronbach's alpha and CFA are 

performed. Items that are having low coefficient alphas or low factor loadings in the CFA are 

revised or dropped from the final survey instrument.  

7.3. Main Study 

The main study provides empirical support for the hypotheses in the measurement model. 

This study will conduct its main data collection in one large public university in the central part 

of China. It has two purposes: validating the measurement model and providing initial results 

concerning the proposed relationships in the conceptual model. 

In an attempt to manage employee-owned mobile devices at work, the Chinese university 

recently launched a program to provide its 1,800+ employees with smartphones. The program 

provides 14 types of smartphones, with operating systems ranging from iOS to Android to 

Windows Phone 7.5/8. In this program, all employees choose their own mobile computing 

devices (smartphones), and may use it for both personal and work-related purposes. These 

smartphones serve as the primary contact media through which the university notifies its 

employees about work-related issues. While employees cannot change the SIM cards in these 

smartphones, they can choose whether they want to use these devices at workplaces. This is a 
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great opportunity to study how and why people choose different mobile computing devices at 

workplaces. Paper-based surveys questionnaires containing revised instruments are distributed to 

employees at the university.  

8. Chapter Summary 

This chapter discussed issues in conceptual model development, operationalization, 

instrument generation, and methodologies. First, this chapter discussed the development of the 

Information-Processing Support Index, specified the conceptual definitions, and generated a 

candidate list of survey items. Next, conceptual definitions and instruments about the mobile-

computing satisfaction/dissatisfaction, social influence, and MCSE constructs were discussed. 

Third, this chapter discussed the hypotheses derived from the conceptual model and proposed 

methodologies to assess the validity and reliability issues associated with the survey instrument. 

Finally, this chapter provided an overview about the data collections in pilot and main study. 

Chapter IV discusses the instrument refinement process, pilot study, and data analyses results. 
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CHAPTER IV 

DATA ANALYSIS 

1. Chapter Overview 

This chapter discusses the instrument refinement process for the Information-Processing 

Support Index (IPSI) and data analyses of the pilot and main study. First, candidate item list for 

the new measurement scale of IPSI was tested by a Q-sort test involving both categorizing and 

ranking tasks. The next section discusses the pilot study. Reliability, convergent validity, and 

discriminant validity of all measurement items were tested. Multiple regression and mediation 

analyses were conducted to test the hypotheses in the measurement model. Based on the results, 

the survey instruments were modified and the main study was conducted.  

The last section discusses the main study’s data analysis. Survey questionnaires 

containing modified instruments were translated into Chinese via a double translation process 

and distributed to participants. The main study collected survey data to assess the reliability and 

validity of all measurement scales and utilized multiple regression, structural equation modeling 

technique, and bootstrap-based mediation analyses to test proposed hypotheses.  

2. IPSI Instrument Refinement 

As introduced in Chapter III, the initial survey instruments for the IPSI have five items 

measuring each of the following constructs: CGSDevice, CCSDevice, CGSJob, and CCSJob. By asking 

the respondents to indicate their perceptions about device capabilities and job requirements in 

terms of content generation/consumption, these items capture how mobile computing devices 
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vary in their perceived capabilities to support job-required information-processing activities. The 

IPSI score is then calculated using these four constructs. Therefore, the reliability and validity of 

the survey items measuring these sub-scores are essential to the IPSI measure.  

This study included an instrument refinement process to ensure the content validity, 

convergent validity, and discriminant validity of the IPSI instruments. Initially, there were five 

survey items per construct in the instrument list. To assess how well these items represent their 

underlying constructs, the instrument refinement process utilized a Q-sort technique. The 

technique, discussed by various researchers (Segars and Grover, 1998; Storey et al., 2000; Straub, 

et al., 2004), is useful in evaluating both content validity and construct validity. In general, 

participants were asked to group items according to their similarity in a Q-sort test. If items 

representing the same construct were grouped together, they demonstrate high levels of 

convergent validity. On the other hand, if items representing different constructs were grouped 

into different sets, they have high discriminant validities. Overall, if the items were grouped into 

their underlying constructs correctly, they have shown high levels of content validity. 

Since the items measuring perceived device capabilities and job-required information-

processing activities are similar in their wordings, only four items measuring content generation 

and four items measuring content consumption were included in the Q-sort test. The “overall” 

items were excluded since the wordings of these items reveal the underlying constructs.  

The Q-sort test was conducted with 30 undergraduate students from a large southern 

public university in the U.S. Undergraduate students are appropriate participants to perform the 

Q-sort test because most of them are familiar with multiple types of mobile computing devices 

such as smartphones, tablet computers, and laptop computers. The students also have adopted 

these mobile devices in their study-related activities. However, they have limited professional 
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employment experience. Therefore, they cannot entirely represent how employees view their 

job-required content generation/consumption activities without special instructions. Based on 

these factors, the Q-sort test only shows the participants the eight activities that are used to 

construct the survey items. By not revealing the actual survey items, the current study was able 

to avoid potential confusion among the student participants about work-related situations.  

In the Q-sort test, the participants were randomly assigned with either a categorizing task 

or a ranking task. The categorizing task asks participants to categorize the eight activities in the 

candidate items list measuring content-generation and consumption scores into two categories: 

content-generation activities and content-consumption activities. The ranking task asks 

participants to rank the same set of activities according to their relevance to content-generation 

and consumption activities. No definitions of content generation and consumption were given in 

these tasks. Table 4-1 and 4-2 below show the results of the two tasks in the Q-sort test. 

 

Items 
Content-Generation  

(# of responses) 

Content-Consumption   

(# of responses) 

Creating email messages 12 3 

Creating IM/Social network 

messages/posts 
12 3 

Creating work-related documents 12 3 

Editing work-related documents 12 3 

Reading email messages 4 11 

Reading IM/social network 

messages/posts 
6 9 

Browsing web pages 6 9 

Reading/reviewing work-related 

documents 
6 9 

 

Table 4-1. Categorizing task results 
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Content Generation Activities Rank Content Consumption Activities Rank 

Creating work-related documents 1 Reading email messages 1 

Creating email messages 2 Browsing web pages 2 

Creating IM/social network 

messages/posts 
3 

Reading/Reviewing work-related 

documents 
3 

Reading email messages 4 Creating email messages 4 

Reading IM/social network 

messages/posts 
5 

Reading IM/social network 

messages/posts 
5 

Browsing web pages 6 Creating work-related documents 6 

Reading/Reviewing work-related 

documents 
7 Editing work-related documents 7 

Editing work-related documents 8 
Creating IM/social network 

messages/posts 
8 

 

Table 4-2. Ranking task results 

Overall, these results showed that the proposed items had acceptable levels of content 

validity, convergent validity, and discriminant validity. In the categorizing task, most 

participants were able to group items representing content generation and consumption activities 

into appropriate corresponding categories. The ranking task results showed that although most of 

the items were ranked properly according to their underlying concepts, some of them needed 

revision. Figure 4-1 demonstrates how the rankings of these activities change across the two 

underlying concepts.  

 
 

Figure 4-1. Ranking changes among items  

As shown in Figure 4-1, most items representing the two concepts were ranked high in 

terms of their relevancy to their corresponding concepts. Therefore, these items demonstrated 
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high levels of convergent validity and discriminant validity. However, among these items, 

“Editing work-related document” was ranked low in the content generation construct. Given that 

the students had very limited work experience, one possible explanation was that they could not 

relate this item to their own experience. In addition, since the survey item list already had 

“Creating work-related document”, the participants may not be able to distinguish between 

editing and creating documents. As a result, the study combined these two items into “creating or 

editing work-related document”.  

Another potentially problematic item was “Reading IM/social network messages/posts”. 

The rankings were the same across the two categories and were in the middle range. This item 

had some overlap with the items concerning email. It was possible that the students were 

confused between this item and other items such as reading email and browsing web pages. 

Therefore, the current study modified these items and combined items that were measuring 

similar aspects of job-required information processing activities.  

The revised survey item list shown in Table 4-3 had four items per construct, measuring 

the overall content generation/consumption activities as well as specific activities that are related 

to communication (email and other messages), workflow (work related documents), and 

networking (social network and other web pages). A complete survey instrument for the IPSI and 

other constructs is presented in Appendix B. 

Content Generation Items Content Consumption Items 

Creating or Editing email and other messages Reading email and other messages 

Creating or Editing work-related documents Reading work-related documents 

Creating or Editing content on social network 

and other web pages 

Reading content on social network and other 

web pages 

Overall content generation item Overall content consumption item 

 

Table 4-3. Revised CGS/CCS items list 
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The instrument refinement process found that the proposed instruments for the CGS and 

CCS components of the IPSI have acceptable levels of content validity, discriminant validity, 

and convergent validity. After revising the initial candidate item list, a pilot study was conducted.  

3. Pilot Study 

3.1. Introduction 

The purposes of a pilot study are to assess reliability and validity issues in the 

instruments and to gather initial empirical support for the proposed hypotheses in the 

measurement model. As introduced in Chapter III, the current research conducted the main data 

collection in China. Therefore, two pilot studies in both the U.S. and China were performed.  

The pilot study in the U.S. recruited undergraduate students from a large southern public 

university. As discussed above, undergraduate students have adequate skills related to using 

different mobile computing devices. They are also familiar with the usage of such devices for 

their course-related work. To alleviate the potential problem of the lack of working experience, 

the pilot study used the classroom to simulate the students' "work environment". Participants 

were asked to consider their jobs as obtaining their college degree and to view their classroom, 

classmates, and professors as the organization, coworkers, and supervisors respectively. In this 

way, the students can relate the job-required information processing activities to their own study, 

which will provide more accurate and relevant data for the analysis.  

The survey questionnaire was deployed using QualtricsTM. The link to the online survey 

was provided to 283 undergraduate students. All participants were randomly assigned into one of 

the three types of mobile computing devices: smartphone (69 cases), tablet computer (70 cases), 

and laptop computer (68 cases) for CGSDevice and CCSDevice measures. By the survey closing time, 

212 responses were received (207 complete responses), yielding a response rate of 74.91%. 
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Among all participants, there were 90 females (44%) and 115 males (56%). The majority of 

participants, 184 (86.79%), were between 18 and 22 years of age. Overall, the participants’ 

experiences of using each type of mobile device are shown below: 

Time of 

usage 

Less than 

1 month 

1 to 3 

months 

3 to 6 

months 

6 to 12 

months 

12 to 24 

months 

more than 

24 months 

Total 

responses 

Smartphone 12 0 3 7 8 174 202 

Tablet 

Computer 
61 14 10 24 26 66 201 

Laptop 

Computer 
7 1 1 3 9 181 204 

 

Table 4-4. User experiences across mobile computing devices 

The average time of usage with smartphones and laptop computers was around 12 to 24 

months. However, the average time with tablet computers was less than 6 months. This reflects 

the actual marketplace development of these devices: smartphones and laptop computers are 

more widespread than tablet computers. The distribution of participants’ majors were Marketing 

60 (28.99%), Finance 44 (21.16%), Accounting 35 (16.91%), Management 31 (14.98%), 

Insurance and Risk Management 8 (3.86%), MIS 7 (3.38%), Other/Undeclared 20 (9.66%), Did 

not respond 2 (0.97%). 

After removed missing data, the U.S. pilot study sample contained 182 valid responses. 

The commonly accepted guideline for sample size of a multiple regression analysis is that 

researchers should have at least five times as many participants as predictor variables. The 

current study’s model has five predictor variables. Since this study utilizes Confirmatory Factor 

Analysis (CFA) to assess the convergent validity and discriminant validity of all scales, the 

minimum requirement is five cases per scale item. As a result, given there are 33 items, at least 

165 responses were needed for CFA. The U.S. pilot study had a good sample size to perform 

both the multiple regression analysis and CFA.  
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The reliability, convergent validity, and discriminant validity of the measurement scales 

were analyzed using Cronbach’s alpha, CFA, and correlation analysis. For the newly developed 

IPSI measurement scale, the instrument refinement process already demonstrated its content 

validity. The revised scale was analyzed using pilot study data to gain more confidence in the 

resulting multi-item scale.  

3.2 Reliability Analysis 

The reliability of a measurement scale refers to the internal consistency of the 

measurement scale’s items. The current study uses Cronbach’s alpha as an indicator of the 

reliability of the survey instrument. Table 4-5 below provides the summary of Cronbach’s alpha 

coefficients for all measurement scales in the pilot study. 

 Scale 

Name 

Cronbach’s 

Alpha 

With one item 

deleted 

After removing missing 

values, etc. 

With one item 

deleted 

CGSDevice 0.772 0.742 0.783 0.765 

CCSDevice 0.797 0.865 CCSD4 0.812 0.866 CCSD4 

CGSJob 0.732 0.748 CGSJ3 0.757 0.794 CGSJ3 

CCSJob 0.735 0.795 CCSJ3 0.787 0.840 CCSJ3 

MCS 0.841 0.846 MCS2 0.835 0.819 

MCD 0.872 0.877 MCD2 0.831 0.840 MCD2 

SI 0.792 0.865 SI1 0.770 0.848 SI1 

MCSE 0.787 0.839 MCSE4 0.743 0.833 MCSE4 

AI 0.918 0.917 0.908 0.904 

 

Table 4-5. U.S. pilot study reliability assessment  

As the results show, the Cronbach’s alphas of all measurement scales were greater than 

0.70. That indicated the measurement scales have a good level of reliability. The results obtained 

by deleting all possible disturbances such as short survey finish time, short experience using 

mobile computing devices and missing values are also very similar.  

As indicated by these results, the third item in the CGSJob and CCSJob measures was the 

main cause of the lower alphas. This potentially problematic item was about activities related to 
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social network and other web pages. Since most of the participants primarily use social networks 

for entertainment purposes, they might be confused about the use of such networks during work. 

In fact, the participants’ comments clearly showed that most of them thought using mobile 

devices could be a distraction if the user cannot separate personal and work-related usages 

including social networks such as Facebook and twitter. However, depending on the industry, 

generating and consuming content on social networks and other web pages can be an important 

part of professional jobs. 

3.3 Validity Analysis 

The content validity of the IPSI scale is established through the instrument refinement 

process. Other measurement scales were adopted from well-established research, lending the 

measurement scales high levels of content validity. To assess the convergent validity and 

discriminant validity of all scales, a Confirmatory Factor Analysis (CFA) was conducted using 

the SPSS AMOS package. Convergent validity refers to the idea that items measuring the same 

construct should have a high correlation. Discriminant validity refers to the idea that items 

measuring different constructs should have a low correlation.  

In the CFA, the two types of construct validity can be assessed by examining the factor 

loadings. If items measuring the same construct load on the same factor with factor loadings 

greater than 0.50, a high level of convergent validity is achieved. If items measuring different 

constructs do not load on the same factor, a high level of discriminant validity is demonstrated. 

An item that has low loading on its corresponding factor or an item that cross-load on more than 

one factor indicates potential problems with the measurement scale’s convergent validity and 

discriminant validity. Table 4-6 below summarizes the CFA factor loading results.  

 



78 

 

Latent Variable Indicators 
Standardized Loadings  

(33 indicators) 
Standard Errors t Values 

CGSDevice CGSD1 0.799 0.039 20.727 

 CGSD2 0.642 0.052 12.381 

 CGSD3 0.739 0.044 16.655 

 CGSD4 0.629 0.054 11.587 

CCSDevice CCSD1 0.901 0.023 40.118 

 CCSD2 0.800 0.032 25.138 

 CCSD3 0.865 0.026 33.919 

 CCSD4 0.421 0.065 6.489 

CGSJob CGSJ1 0.857 0.029 29.497 

 CGSJ2 0.819 0.032 25.428 

 CGSJ3 0.384 0.068 5.632 

 CGSJ4 0.526 0.059 8.919 

CCSJob CCSJ1 0.892 0.024 36.662 

 CCSJ2 0.855 0.027 31.325 

 CCSJ3 0.358 0.069 5.199 

 CCSJ4 0.580 0.054 10.796 

MCS MCS1 0.839 0.028 29.958 

 MCS2 0.661 0.046 14.297 

 MCS3 0.873 0.025 35.188 

MCD MCD1 0.842 0.027 31.408 

 MCD2 0.719 0.040 18.136 

 MCD3 0.928 0.019 47.964 

SI SI1 0.365 0.069 5.303 

 SI2 0.712 0.042 16.820 

 SI3 0.901 0.028 31.913 

 SI4 0.853 0.031 27.544 

MCSE MCSE1 0.785 0.035 22.254 

 MCSE2 0.811 0.033 24.850 

 MCSE3 0.777 0.036 21.552 

 MCSE4 0.481 0.062 7.723 

AI AI1 0.841 0.025 33.134 

 AI2 0.926 0.017 55.139 

 AI3 0.906 0.019 48.611 

 

Table 4-6. U.S. pilot study CFA loadings (loadings smaller than 0.50 are highlighted) 

 

The cross-loading results indicated that there were a few items cross-loaded on more than 

one constructs. However, the factor loadings of these items on other constructs were all smaller 

than 0.5 and smaller than the loadings on their corresponding constructs. Therefore, the cross 
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loading was not deemed to be a significant problem. The CFA results indicated a few items that 

need revisions. These items are presented in Table 4-7. 

Item Wordings in the survey instrument Factor 

loadings 

CCSD4 The [mobile device] is capable of performing content-consumption-

related tasks at work. 

0.421 

CGSJ3 My job frequently requires me to create/edit content on social 

network and other web pages. 

0.384 

CCSJ3 My job frequently requires me to read content on social network and 

other web pages. 

0.358 

SI1 A large portion of my coworker(s) and my supervisor(s) are using the 

[mobile device]. 

0.365 

MCSE4 I feel confident in fixing problems about the [mobile device]. 0.481 

 

Table 4-7. Items with low factor loadings 

One possible explanation for the low factor loadings of the “overall” items measuring the 

content generation/consumption scores (CCSD4) is the wordings of these items. The initial items 

used terms that were more abstract and passive in nature that may have caused some confusion 

among the student participants. The CGSJ3 and CCSJ3 items had some problems that were 

related to the term “social network”. According to the comments gathered from the participants, 

a large portion of them mentioned, “using mobile devices may cause distractions in the work 

such as getting on social media, always on Facebook, etc.” Therefore, the term social network 

needed to be clarified and restricted to professional social networking.  

The SI1 and MCSE4 items were different comparing to the rest of items in their 

corresponding scales. Therefore, these items were revised/dropped from the final instrument list. 

The modifications to the survey instrument are discussed in the instrument revisions section.  
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  Mean S.D. X1 X2 X3 X4 X5 X6 X7 X8 X9 

CGSD 23.64 3.96 
0.79 

0.49 
0.30 0.06 0.13 0.23 0.21 0.03 0.19 0.13 

CCSD 24.86 3.21 0.54 
0.81 

0.49 
0.08 0.08 0.25 0.15 0.04 0.19 0.17 

CGSJ 22.12 4.14 0.25 0.28 
0.76 

0.49 
0.57 0.08 0.03 0.02 0.09 0.06 

CCSJ 20.27 4.49 0.36 0.28 0.76 
0.78 

0.49 
0.06 0.02 0.01 0.03 0.01 

MCS 5.73 1.04 0.48 0.50 0.29 0.24 
0.79 

0.49 
0.55 0.13 0.38 0.34 

MCD 2.57 1.34 -0.45 -0.39 -0.18 -0.14 -0.74 
0.80 

0.49 
0.11 0.29 0.28 

SI 4.35 1.21 0.17 0.19 0.15 0.09 0.36 -0.34 
0.80 

0.49 
0.15 0.09 

MCSE 5.61 0.93 0.44 0.44 0.30 0.16 0.62 -0.54 0.39 
0.80 

0.49 
0.42 

AI 5.74 1.15 0.37 0.41 0.24 0.12 0.58 -0.53 0.30 0.64 
0.82 

0.49 

 

Table 4-8. U.S. pilot study discriminant analysis, the diagonal shows the composite reliability 

(CR, top) and average variance extracted (AVE, below) 

 

Overall, the initial survey items list exhibited acceptable levels of reliability, content 

validity, convergent validity, and discriminant validity. The next section discusses the U.S. pilot 

study data analysis.  

3.4. U.S. Pilot Study Results 

The newly developed IPSI scale uses four sets of aggregated scores to calculate the final 

index score. The CGSDevice and CCSDevice are measuring perceived device capabilities in content 

generation and consumption, while the CGSJob and CCSJob are measuring perceived job 

requirements in content generation and consumption. These scores were used to calculate the 

content generation score (CGS) and content consumption score (CCS) to indicate how well 

employees perceive a device’s capabilities can support their job-required content generation and 

consumption activities. Then the CGS and CCS were used together with the weights of these 
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activities at work to form the final IPSI score. Table 4-9 shows the IPSI framework statistics in 

the U.S. pilot study data. 

Mean Score CGSDevice CCSDevice CGSJob CCSJob CGS CCS IPSI 

Smartphone (S) 21.754 24.508 19.377 22.016 1.099 1.104 12.550 

Tablet computer 

(T) 
25.705 25.705 21.000 22.230 1.196 1.145 13.824 

Laptop computer 

(L) 
23.450 24.350 20.433 22.100 1.126 1.094 12.797 

All 23.637*** 24.857*** 20.269*** 22.115*** 1.140** 1.114** 13.059 

S-T -3.951*** -1.197** -1.623* -0.213 -0.097*** -0.041 -1.274*** 

S-L -1.696** 0.158 -1.056 -0.084 -0.027 0.010 -0.247 

T-L 2.255*** 1.355** 0.567 0.130 0.070* 0.051 1.027** 

Range CGSDevice CCSDevice CGSJob CCSJob CGS CCS IPSI 

Smartphone 8-28 15-28 6-26 8-28 0.75-1.63 0.63-1.71 7.44-18 

Tablet computer 4-28 16-28 4-28 4-28 0.50-1.83 0.92-1.96 3.79-19.25 

Laptop computer 12-28 7-28 6-28 8-28 0.79-1.92 0.54-1.83 4.73-18 

All 4-28 7-28 4-28 4-28 0.5-1.92 0.54-1.96 3.79-19.25 

 

Table 4-9. IPSI framework statistics of U.S. pilot study (* p<0.10 ** p<0.05 *** p<0.01) 

A comparison of the means of these scores showed that the three types of mobile devices 

differ in their CGSDevice and CCSDevice measures. In terms of the perceived content-generation 

capabilities, the U.S. pilot study data showed that the tablet computer had the highest and the 

smartphone had the lowest mean score. In terms of perceived content-consumption capabilities, 

the tablet computer had the highest and the laptop computer had the lowest mean score. The 

mean scores were significantly different from each other for all three types of mobile devices in 

content generation. In content consumption, the mean score of the tablet computer was 

significantly different from the other two types of devices.  

Overall, the means of CGS and CCS were significantly different from each other, 

indicating that the IPSI measure can distinguish between the two underlying constructs and can 

reflect the different perceived device capabilities and job requirements. However, the tablet 

computer results need a further analysis. As shown in Table 4-9, the mean scores of CGSDevice 
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and CCSDevice are essentially the same for the tablet computers. In other words, on average the 

participants thought tablet computers had similar capabilities to perform both types of activities. 

This result could be influenced by the usage of various accessories such as Bluetooth keyboards, 

stylus pens, and other input devices. The pilot survey instrument did not specify whether these 

accessories were to be considered when answering the questions. Therefore, in the final survey 

instrument, one new item was added to measure the usage of different accessories for all three 

types of mobile devices.  

Next, multiple regression and mediation analyses were performed using the U.S. pilot 

study data in order to test the hypotheses in the measurement model.  

3.4.1. Multiple Regression analysis:  

First, a multiple regression analysis was performed. Model 1 specified the mobile-

computing-device-adoption intentions (AI) as a dependent variable and the IPSI, SI, and MCSE 

as independent variables. Model 2 added the mobile computing satisfaction (MCS) and 

dissatisfaction (MCD) to the independent variable list. The regression results are shown below.  

Model 

# 

Model F Adj. R 

Square 

F Change IPSI SI MCSE MCD MCS 

1 46.050*** 0.427 46.050*** 0.141** 0.061 0.582***   

2 33.031*** 0.469 8.039*** 0.077 0.016 0.432*** 0.200** -0.114 

 

Table 4-10. U.S. pilot study regression analysis summary (** p<0.05; *** p<0.01) 

Both models were significant (p<0.001). In model 1, coefficient analysis showed both 

IPSI and MCSE have significant positive associations with AI. However, SI’s association with 

AI is not significantly different from zero. In model 2, after the two mediators were added, the 

model adjusted R-squared statistics increased from 0.427 to 0.469 and was significant at the 

p<0.001 level. This indicated that the additional variables contributed to explaining significantly 

more total model variance. The MCS has a significant effect in model 2. Coefficient analysis 
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showed some evidences that IPSI's effect on AI is mediated by MCS and MCD. However, since 

MCS and MCD were correlated, there were some multicollinearity issues in model 2. As a result, 

the multiple regression analysis showed some support for Hypotheses 1 and 5 in the model. Due 

to the multicollinearity issues and the nature of Hypotheses 2 and 3, a mediation analysis was 

needed to examine the two proposed mediators together even when there was some evidence in 

model 2 that showed some support for the mediating effects.  

3.4.2 Mediation analysis 

In order to test the two mediation hypotheses in the model, the U.S. pilot study followed 

the procedure suggested by Baron and Kenny (1986). The mediation analysis had three steps: 

first, test the main effect of independent variable IPSI on the dependent variable AI; second, test 

the effect IPSI has on both mediators -- mobile computing satisfaction (MCS) and mobile 

computing dissatisfaction (MCD); third, test the effects the mediators have on the dependent 

variable AI. MCS and MCD are mediating the relationship between the IPSI and AI If steps 1 

and 2 discover that the independent variable IPSI significantly affects AI, MCS, and MCS, and 

step 3 discovers that after including the MCS and MCD, the main effect of IPSI on AI was 

reduced. This study used the PROCESS macro to test the mediations (Hayes, 2013).  

Model R square F IPSI MCS MCD 

1 IPSI MCS 0.1381 28.84*** 0.1447***   

2 IPSI MCD 0.0995 19.88*** -0.1584***   

3 IPSI, MCS, MCD AI 0.3692 34.73*** 0.0412 0.4429*** -0.1706** 

 

Table 4-11. U.S. pilot study mediation analysis results (** p<0.05; *** p<0.01) 

The mediation analysis results showed that IPSI had significant associations with both 

MCS and MCD. Furthermore, the significant association between IPSI and AI was mediated by 

MCS and MCD. The regression coefficient of MCD was negative, which indicated there was a 

negative association between IPSI and MCD and a negative correlation between MCD and AI. 
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Hypotheses 2 and 3 were supported by the mediation analysis. The positive relationship between 

IPSI and AI was mediated by both MCS and MCD.  

Note that although mobile computing satisfaction and dissatisfaction are correlated, they 

exhibited different effects on employees’ adoption intentions. According to the mediation 

analysis, mobile computing satisfaction had a larger effect than dissatisfaction. A complete 

output of SPSS multiple regression analysis and mediation analysis can be found in Appendix C.  

Overall, the pilot study found some preliminary support for four of the five hypotheses 

proposed in the measurement model. Since Hypothesis 4 was about social influence, given the 

participants’ lack of work experience, the result might be expected. In the main study, 

participants were all working adults. Their responses were more relevant in assessing the social 

influence factor on their mobile-computing-device-adoption intentions. Table 4-12 shows a 

summary of the hypotheses testing results and Figure 4-2 illustrates the hypotheses testing results 

in the measurement model.  

Hypotheses  Regression 

coefficient 

Hypotheses 

Testing 

H1: The IPSI has a positive association with an employee’s 

mobile-computing-device-adoption intention. 

0.136** Supported 

H2: Mobile-computing satisfaction mediates the positive 

relationship between the IPSI and an employee’s mobile-

computing-device-adoption intention. 

0.419** Supported 

H3: Mobile-computing dissatisfaction mediates the positive 

relationship between IPSI and an employee’s mobile-computing-

device-adoption intentions. 

-0.186** Supported 

H4: Social influence of mobile computing devices has a positive 

association with an employee’s mobile computing-device-

adoption intention. 

0.063 Not 

supported 

H5: An employee’s Mobile Computing Self-Efficacy (MCSE) 

has a positive association with his/her mobile-computing-device-

adoption intention. 

0.582*** Supported 

 

Table 4-12. Summary of U.S. pilot study hypotheses testing results (** p<0.05; *** p<0.01) 
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Figure 4-2. Measurement model with U.S. pilot study hypothesis testing results 

3.5. Chinese Pilot Study Results 

The current research conducted a second pilot study in China to further assess the 

reliability and validity issues of the measurement scales and to prepare for the main study data 

collection. The same survey questionnaire was translated into Chinese by a double translation 

process, which is discussed later in the main study. 33 MBA students (21 males) from a large 

public Chinese university participated in the Chinese pilot study. Of all the participants, 15 were 

between 23 and 30 years of age, 17 were between 31 and 54 years of age. Most of the 

participants had more than one year of work experience. Since this is a very small sample, 

participants were asked to fill out surveys regarding all three types of mobile computing devices. 

Therefore, the data set contained 99 total responses.  

The IPSI framework statistics for the Chinese pilot study are presented in Table 4-13 

below. Since participants filled out all three devices versions, the device specific comparisons 

between job-related measures are not applicable.  
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Mean Score CGSDevice CCSDevice CGSJob CCSJob CGS CCS IPSI 

Smartphone (S) 18.939 22.455 N/A N/A 0.808 0.939 7.799 

Tablet computer 

(T) 
22.697 24.303 N/A N/A 0.956 1.016 10.112 

Laptop computer 

(L) 
26.697 26.515 N/A N/A 1.131 1.109 13.778 

All 22.78*** 24.42*** 23.55 23.91 0.968** 1.022** 10.563 

S-T -3.758*** -1.848** N/A N/A -0.157*** -0.077 -2.476** 

S-L -7.758*** -4.061*** N/A N/A -0.323*** -0.169*** -5.979*** 

T-L -4.000*** -2.212*** N/A N/A -0.167*** -0.092* -3.666*** 

Range CGSDevice CCSDevice CGSJob CCSJob CGS CCS IPSI 

Smartphone 9-28 11-28 N/A N/A 0.42-1.25 0.33-1.46 2.17-14.28 

Tablet computer 9-28 16-28 N/A N/A 0.50-1.42 0.58-1.58 2.93-17.22 

Laptop computer 20-28 18-28 N/A N/A 0.71-1.42 0.58-1.58 4.20-20.72 

All 9-28 11-28 16-28 14-28 0.42-1.42 0.33-1.58 2.17-20.72 

 

Table 4-13. IPSI framework statistics of Chinese pilot study (* p<0.10 ** p<0.05 *** p<0.01) 

 

Analysis demonstrated that the three types of mobile computing devices differ from each 

other in terms of their perceived capabilities to support work-required content generation and 

consumption activities. The scores for smartphones were lowest while scores for laptop 

computers were highest. These results showed additional support that the IPSI could capture the 

differences between these devices, and distinguish them in terms of their perceived capabilities 

to support employees’ job-related information processing needs.  

Similar to the U.S. pilot study, Cronbach’s alphas were used to assess the reliability of all 

measurement scales. The Cronbach’s alphas were greater than 0.70 for all but the CGSJob scale.  

Scale Name Cronbach’s Alpha With one item deleted 

CGSDevice 0.910 0.906  

CCSDevice 0.852 0.878 CCSD4 

CGSJob 0.639 0.633  

CCSJob 0.752 0.758 CCSJ2 

MCS 0.750 0.744  

MCD 0.760 0.727 

SI 0.727 0.899 SI1 

MCSE 0.881 0.879 MCSE1 

AI 0.871 0.860 

 

Table 4-14. Chinese pilot study reliability analysis 
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The reliability analysis showed that these items had acceptable levels of reliability. Since 

the dataset was too small, CFA was not performed. Overall, these results showed that the survey 

items were measuring their underlying constructs consistently. The language differences were 

not affecting the validity of the results.  

Similarly, multiple regression and mediation analyses were performed to gather empirical 

evidence about hypotheses in the model. Table 4-15 summarizes these results: 

Model # Model F Adjusted R 

Square 

IPSI SI MCSE MCD MCS 

1 8.391*** 0.185 0.253** 0.107 0.245**   

2 3.144** 0.220 0.160 0.101 0.166 0.103 -0.186 

 

Mediation IPSI  IPSI  IPSI MCS MCD 

IPSIMCS 0.134*** IPSIMCD -0.141*** All 0.0475** 0.145 -0.138 

 

Table 4-15. Chinese pilot study results (** p<0.05 *** p<0.01) 

Because of the small sample size, these tests did not have much power. However, the 

results still showed that IPSI and MCSE had strong positive associations with AI.  

3.6. Instrument Revisions 

Based on the analyses above, the following survey items in the IPSI scale were revised. 

Items related to social network: CGSD3, CCSD3, CGSJ3, and CCSJ3 

The CGSJ3 and CCSJ3 had low factor loadings in the CFA. In addition, as indicated by 

the Cronbach’s alpha, they were causing a reduced alpha coefficient. As discussed above, the 

potential problem was the confusion of work-related social networking and social media. 

Therefore, the revised items used “professional social network” instead of just “social network” 

in all items that contain social network.  
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“Overall” items: CGSD4, CCSD4, CGSJ4, and CCSJ4  

These items all had low factor loadings in the CFA. CCSD4 was also causing a reduced 

alpha coefficient for the scale. The potential issue in these items was the abstract and passive 

term content-generation/consumption-related tasks. The revised items used “tasks that 

generate/consume content for/from others” instead of “content-generation/consumption-related 

tasks” to avoid these problems.  

Accessory Usage 

As discussed above, the usage of various types of accessories such as Bluetooth 

keyboards, stylus pens, and others may affect employees’ perceptions about the mobile 

computing devices’ capabilities to support the content generation and consumption activities at 

work. For example, people may use a Bluetooth keyboard to increase the tablet computer’s 

capabilities to perform tasks that require them to generate content. Employees may have the 

perceptions that the mobile computing device could not fulfill their information-processing needs 

because they have to use these accessories to help. On the other hand, they may also have the 

perception that their mobile computing devices can fulfill their information-processing needs 

because they consider the device and accessories together. Therefore, the usage of these 

accessories could influence employees’ CGSDevice and CCSDevice scores. To capture this valuable 

information, an item measuring the participants’ accessory usage was added to the final survey 

instrument.  

Items in other scales  

Although the MCS and MCD items demonstrated acceptable levels of reliability and 

appropriate factor loadings in CFA, a review of these scales found that the second item was 

different from the rest items. In the main study, this could potentially cause inconsistent 
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responses. As a result, the MCS2 and MCD2 items were changed to “The [mobile device] makes 

it easier for me to complete my job.” and “The [mobile device] does not make it easier for me to 

complete my job.”  

In both the Cronbach’s alphas and CFA, SI1 and MCSE4 were causing low alpha 

coefficients and had low factor loadings. A review of those two items showed that they were 

very different from the rest of the items in their corresponding scales. Therefore, in the final 

survey instrument, the SI1 was modified to “Using the [mobile device] is considered normal in 

my organization”, and the MCSE4 was dropped.  

As a result, the revised final survey instrument contained 34 items. Appendix B shows 

the complete survey questionnaire used in the main study. 

4. Main study 

4.1. Introduction 

The main study data collection was conducted at a large public university in the central 

part of China. As introduced earlier, the Chinese university just launched a university-wide 

program to manage its employees’ smartphone adoptions. Therefore, this is a great opportunity 

to examine how the proposed IPSI construct would affect the employees’ mobile-computing-

device-adoption intentions. The final instrument used paper-based survey questionnaires. Before 

distributing these surveys to the main study participants, a double translation process was 

performed to ensure the language barrier does not cause problems in the final data collection.  

4.2. Double translation process 

In the double translation process, the final survey questionnaire was translated into 

Chinese and sent to the Chinese university. One faculty member at the Chinese university 

translated the Chinese version survey questionnaire back to English. The two versions of the 
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survey were then compared and any discrepancies were resolved. During this process, survey 

items related to professional social network websites appeared to be problematic in the Chinese 

context. In China, professional social network websites such as LinkedIn and others are not as 

popular as they are in the U.S. When people see the term social network websites, they tend to 

think about recreational social network sites. Therefore, social networking was not considered as 

one of the job-required activities. In order to assess job-related networking activities, the final 

survey changed all items using the “professional social network websites” to “work-related web 

pages” to capture the most complete and relevant information. After the Chinese version of the 

survey questionnaire was validated, paper-based final survey questionnaires were distributed to 

all faculty and staff members in nine schools of the Chinese university during their weekly staff 

meetings.  

4.3. Main study survey distribution 

In total, 393 survey questionnaires were distributed. By the survey deadline, 335 

responses were received, yielding a response rate of 85.24%. Among all responses, 317 were 

complete. An initial analysis of all responses showed that some of them were problematic. For 

example, mobile computing satisfaction and dissatisfaction were measured using six items. 

These items were all coded the same way. It is very unlikely that a respondent will have exactly 

the same answers in all six items. Obviously, employees cannot be both highly satisfied and 

highly dissatisfied about their mobile computing needs in their organizations. In addition, the 

exact same answers in all six items indicated that the respondent probably was not paying much 

attention while answering the survey.  

These responses were introducing noise into the dataset. Therefore, all problematic 

responses such as the ones that answered all survey questions with the same answers and the 
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ones that answered the six satisfaction and dissatisfaction items with the same answers were 

removed from the final analysis. In this way, the current research was able to obtain the 

maximum number of responses and limit the risk of noisy data. The final data set contained 266 

valid responses.  

4.4. Reliability analysis 

A reliability analysis was conducted using Cronbach’s alpha. Table 4-16 below 

summarizes the alpha coefficients for all constructs in the model.  

Scale CGSDevice CCSDevice CGSJob CCSJob MCS MCD SI MCSE AI 

Cronbach’s 

Alpha 
0.911 0.893 0.881 0.889 0.786 0.809 0.743 0.871 0.906 

Table 4-16. Main study reliability analysis 

As the results show, all the Cronbach’s alphas are above 0.75 except SI (0.743), which 

means all the items have high levels reliability measurements except Social Influence (SI). In the 

following sections, the first item measuring the SI construct was found to have very low factor 

loading. After removing that item, the Cronbach’s alpha for SI increases to 0.844.  

Overall, these results showed that items in the main study survey possess adequate levels 

of reliability. They were measuring their underlying constructs consistently. Next, a confirmatory 

factor analysis (CFA) was performed to assess the discriminant and convergent validity of these 

survey items.  

4.5 Validity analysis 

As discussed above, the content validity of all survey items was initially assessed during 

the instrument development process. Table 4-17 shows the CFA factor loadings.  
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Latent Variable Indicators 
Standardized Loadings  

(32 indicators) 
Standard Errors t Values 

CGSDevice CGSD1 0.889 0.016 55.743 

 CGSD2 0.884 0.016 53.996 

 CGSD3 0.822 0.022 36.719 

 CGSD4 0.800 0.025 32.605 

CCSDevice CCSD1 0.819 0.023 35.330 

 CCSD2 0.864 0.019 45.798 

 CCSD3 0.861 0.019 44.736 

 CCSD4 0.764 0.028 26.999 

CGSJob CGSJ1 0.819 0.024 34.320 

 CGSJ2 0.878 0.019 47.468 

 CGSJ3 0.747 0.030 24.634 

 CGSJ4 0.793 0.026 30.261 

CCSJob CCSJ1 0.805 0.025 32.426 

 CCSJ2 0.853 0.020 41.712 

 CCSJ3 0.836 0.022 37.970 

 CCSJ4 0.780 0.027 28.666 

MCS MCS1 0.614 0.041 14.880 

 MCS2 0.802 0.026 30.398 

 MCS3 0.804 0.026 30.781 

MCD MCD1 0.605 0.044 13.628 

 MCD2 0.790 0.033 23.681 

 MCD3 0.905 0.029 30.875 

SI SI1 0.220 0.062 3.537 

 SI2 0.841 0.027 31.031 

 SI3 0.898 0.025 36.606 

 SI4 0.684 0.038 18.220 

MCSE MCSE1 0.744 0.030 24.531 

 MCSE2 0.855 0.020 42.346 

 MCSE3 0.906 0.016 56.957 

AI AI1 0.841 0.020 41.758 

 AI2 0.917 0.014 66.365 

 AI3 0.869 0.018 48.221 

Table 4-17. Main study CFA loadings (loadings smaller than 0.50 are highlighted) 

The CFA results revealed that most items loaded properly (greater than 0.50) on their 

underlying constructs. However, there were problems in the SI1 and AI1 items. The SI1 item 

failed to load on its own construct (factor loading is 0.220 which is less than 0.50). This 

indicated that SI1 was not measuring the SI construct consistently with the other items. It should 
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be dropped in the data analysis. The Cronbach’s alpha of the SI construct also increased from 

0.743 to 0.844 after dropping that item.  

Item AI1 loaded on both AI and MCSE. The factor loading on MCSE was greater than 

0.50, which indicated the item was measuring the MCSE construct more than the AI construct. 

As a result, the item AI1 was also dropped in the final analysis. The Cronbach’s alpha of AI after 

dropping AI1 decreased a little from 0.906 to 0.902. In addition, the cross loading of AI1 may 

suggest that there were some common method variance issues among these items since they were 

all measured with paper-based surveys. Chapter V discusses the issue of common method 

variance/biases in more detail.  

  Mean S.D. X1 X2 X3 X4 X5 X6 X7 X8 X9 

CGSD 20.63 5.82 
0.91 

0.72 
0.67 0.27 0.27 0.53 0.06 0.11 0.35 0.36 

CCSD 22.26 4.95 0.82 
0.90 

0.69 
0.27 0.35 0.50 0.08 0.12 0.32 0.37 

CGSJ 21.31 5.06 0.52 0.52 
0.88 

0.66 
0.60 0.32 0.01 0.10 0.30 0.29 

CCSJ 23.07 4.32 0.52 0.59 0.77 
0.89 

0.67 
0.32 0.02 0.10 0.28 0.37 

MCS 5.11 1.21 0.73 0.71 0.57 0.57 
0.79 

0.56 
0.11 0.15 0.42 0.45 

MCD 3.59 1.41 -0.25 -0.28 -0.09 -0.12 -0.34 
0.82 

0.60 
0.00 0.04 0.03 

SI 4.34 1.15 0.34 0.35 0.31 0.31 0.39 0.06 
0.78 

0.51 
0.29 0.16 

MCSE 4.93 1.30 0.59 0.57 0.54 0.53 0.65 -0.19 0.54 
0.88 

0.70 
0.61 

AI 5.42 1.28 0.60 0.61 0.54 0.61 0.67 -0.16 0.40 0.78 
0.91 

0.77 

Table 4-18. Main study discriminant analysis, the diagonal shows the composite reliability (CR, 

top) and average variance extracted (AVE, below) 

Item correlations are shown on the lower matrix while squared correlations are shown on 

the upper matrix. Discriminate validity is shown by comparing the average variance extracted 

(AVE) to the squared correlation. If AVE exceeds the squared correlation, discriminant validity 
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is demonstrated (Fornell and Larcker, 1981).The reliability and validity analyses above showed 

that the survey items exhibit adequate levels of reliability and validity and the language 

differences did not appear to influence the validity of the measures.  

4.6. Main study results 

As introduced above, the final data set contained 266 cases. All participants were 

randomly assigned into one of the three versions of mobile computing devices in the survey: 

smartphones (97 cases), tablet computers (84 cases), and laptop computers (85 cases). There 

were 121 females (45.83%) and 143 males (54.17%). The majority of participants, 190 (71.43%) 

were between 31 and 54 years of age. The final dataset was analyzed with SPSS and SAS. Table 

4-19 summarizes the demographics statistics of the main study. 

 Gender Age Device 

 Male Female 18-

22 

23-

30 

31-

54 

55-

64 

>64 Smartphone Tablet 

computer 

Laptop 

computer 

Cases 143 121 2 55 190 14 4 97 84 85 

% 54.2 45.8 0.8 20.7 71.4 5.3 1.5 36.5 31.6 32.0 

Table 4-19. Demographic statistics of main study 

4.6.1. IPSI Framework Analysis 

First, the new scale IPSI was calculated using the two sets of aggregated scores: CGS and 

CCS. As shown in Table 4-20, the IPSI framework captured the differences among three types of 

mobile computing devices in their perceived capabilities to support job-required information 

processing activities. The CGSDevice and CCSDevice captured the differences in employees’ 

perceptions about how different devices are able to perform content generation/consumption 

activities at work. In contrast to the U.S. pilot study results, where the tablet computers had the 

highest CGS and CCS scores, there is an order of smartphone  tablet computer  laptop 

computer when comparing the Chinese respondents’ perceptions about the devices’ capabilities 

in performing these tasks.  
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Mean Scores CGSDevice CCSDevice CGSJob CCSJob CGS CCS IPSI 

Smartphone 

(S)  

18.64 21.33 21.55 22.74 0.7875 0.8785 8.944 

Tablet 

computer (T)  

19.54 21.33 19.58 21.82 0.9511 0.9295 9.844 

Laptop 

computer (L) 

23.99 24.25 22.74 24.68 1.031 0.9539 11.482 

All 20.63 22.26 21.31 23.07 0.9169 0.9187 10.0393 

S-T -0.90 0 1.97* 0.92 -0.1636*** -0.051 -0.900* 

S-L -5.35*** -2.92*** -1.19** -1.94*** -0.2435** -0.0754** -2.538*** 

T-L -4.45*** -2.92*** -3.16*** -2.86*** -0.0799** -0.0244 -1.638*** 

Table 4-20. Main study IPSI framework analysis (* p<0.10 ** p<0.05 *** p<0.01) 

As indicated above, the smartphones’ perceived capabilities to support job-required 

information-processing activities are the lowest, while laptop computers’ perceived capabilities 

are the highest. Given the actual developments of these devices in China and the physical 

limitations of these devices, the IPSI framework results were consistent with the prediction that 

smartphone and tablet computer may support job-required content consumption activities better 

than content generation activities. It was also consistent with the prediction that when compared 

to smartphones, tablet computers have higher capability to support job-required information-

processing activities.  

In addition, as summarized in Table 4-21, the usage of accessories in general increased 

the IPSI scores. Chapter V provides detailed discussions about the IPSI measurements and the 

usage of accessories across different devices.  

 N/A None  Keyboard  Stylus pen Both Other Combined  

Cases 30 108 75 19 19 15 128 

CGSDevice 18.23 19.80 20.97 22.16* 23.79*** 23.80** 21.90*** 

CCSDevice 19.30*** 22.29 22.11 23.89 24.58** 23.80 22.94 

CGS 0.941 0.862 0.963** 0.933 0.944 0.977*** 0.957** 

CCS 0.905 0.906 0.927 0.991 0.929 0.890 0.932 

IPSI 8.385** 9.747 10.278 10.916 11.442** 11.377** 10.674** 

Table 4-21. IPSI analysis with accessories (* p<0.10 ** p<0.05 *** p<0.01) 



96 

 

The next sections discuss hypotheses testing using multiple regression and mediation 

analyses.  

4.6.2. Multiple regression analysis 

In order to test the proposed hypotheses, a multiple regression analysis was performed. 

Mobile-computing-device-adoption intentions (AI) was the dependent variable, while IPSI, 

Social Influence (SI), and Mobile Computing Self-Efficacy (MCSE) were the independent 

variables in Model 1. In Model 2, Mobile Computing Satisfaction (MCS) and Mobile Computing 

Dissatisfaction (MCD) were added to the independent variables to test their mediating effects. 

Table 4-22 presents the summary of the multiple regression analysis results. 

Model 

# 

Model F Adjusted 

R Square 

IPSI SI MCSE MCD MCS 

1 116.024*** 0.566 0.231*** -0.072 0.639***   

2 78.446*** 0.594 0.146*** -0.093** 0.541*** 0.258*** 0.090** 

Table 4-22. Main study multiple regression analysis results (** p<0.05 *** p<0.01) 

These results show that in Model 1, the IPSI and MCSE all have positive associations 

with the AI construct that are statistically significant at p<0.01 level. Therefore, the data 

provided some empirical support for Hypotheses 1 and 5 in the measurement model. In model 

two, the mediations effects of MCS and MCD were tested after controlling for all other 

constructs in the model. As the results show, SI, MCD, and MCS all have significant 

associations with AI. The results also showed that MCS has a positive significant association 

with AI. Although IPSI still has a significant association with AI, its magnitude is reduced as 

revealed in the coefficients.  

However, the signs of the SI and MCD regression coefficients are reversed comparing to 

their zero-order correlations with the AI construct. These results showed that after controlling for 

all other constructs, SI had a negative association with AI, which was statistically significant at 
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p<0.05 level. MCD had a positive association with AI, which was significant at p<0.01 level. 

Both results were contrary to the proposed hypotheses. Therefore, the data showed only limited 

empirical support for Hypothesis 2. It appears that MCS partially mediated the positive 

association between IPSI and AI. Hypotheses 3 and 4 are not supported by the data. These results 

are interesting. Chapter V provides a more detailed discussion about the reversed coefficient 

signs and interpretations. The complete SPSS output is attached in Appendix D.  

The multiple regression analysis provided some empirical support for three of the five 

hypotheses in the measurement model. However, in order to assess the two mediation-related 

hypotheses simultaneously, a mediation analysis using the bootstrap technique was performed.  

4.6.3. Mediation analysis 

A mediation analysis using the SPSS PROCESS macro (Hayes, 2013) was performed to 

analyze the two proposed mediators simultaneously and to test the direct and indirect effects 

among IPSI, MCS, MCD, and AI. As discussed by Hayes (2013), instead of using the terms full 

mediation and/or partial mediation, the term direct and indirect effects are more relevant. In the 

discussions of Baron and Kenny (1986), the traditional causal steps analysis requires that there 

exists a significant effect between the independent variable and dependent variable before we 

can analyze the mediating effects of the third variables. However, as pointed out by Mackinnon, 

et al, (2003), Hayes and Preach, (2013), this is not necessary. Hayes (2013) further argued that 

the usage of mediation should be replaced with conditional process analysis. Therefore, in the 

mediation analysis, this study adopted the newer approach and used the direct and indirect 

effects to assess the proposed mediations of MCS and MCD.  
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Model R square F IPSI MCS MCD 

1 IPSI MCS 0.398 174.596*** 0.236***   

2 IPSI MCD 0.075 21.460*** -0.119***   

3 IPSI, MCS, MCD AI 0.601 78.446*** 0.060*** 0.280*** 0.085** 

Table 4-23. Main study mediation analysis results (** p<0.05 *** p<0.01) 

As the results in Table 4-23 shows, IPSI had significant associations with AI, MCS, and 

MCD. After adding the two mediators, the association between IPSI and AI was still significant 

but the coefficient dropped from 0.236 to 0.060. The total effect was 0.116 and 48.49% of the 

total effect was due to the indirect effects through MCS and MCD. Therefore, these results 

suggested that there were significant mediating effects. In the older terms used to describe these 

types of relationships, MCS partially mediated the positive effect between IPSI and AI. However, 

the MCD construct had a positive relationship with AI after controlling for SI and MCSE. This 

indicated that the MCD construct was an inconsistent mediator. As discussed by Mackinnon, et 

al., (2000), different directions of direct and indirect effects suggested an inconsistent mediator.  

Overall, the mediation analysis suggests that there was some empirical support for 

Hypothesis 2 in the measurement model. The complete mediation analysis output can be found 

in Appendix D.  

4.6.4. Hypotheses testing results 

As discussed above, the multiple regression and mediation analysis showed some 

empirical support for Hypotheses 1, 2, and 5. Social influence construct had a very small effect 

on AI. After controlling for the MCSE and other constructs, its association with the AI became 

significantly negative. The mediation analysis provided some support for Hypothesis 2. However, 

MCD was identified as an inconsistent mediator. It was reducing the total effect of IPSI on AI. 

Chapter V discusses these issues in more detail. The hypotheses testing results are shown below. 
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 Hypotheses  Regression 

coefficient 

Hypotheses 

Testing 

H1: The IPSI has a positive association with an employee’s 

mobile-computing-device-adoption intention. 

0.231*** Supported 

H2: Mobile-computing satisfaction mediates the positive 

relationship between the IPSI and an employee’s mobile-

computing-device-adoption intention. 

0.280*** Supported 

H3: Mobile-computing dissatisfaction mediates the positive 

relationship between IPSI and an employee’s mobile-computing-

device-adoption intentions. 

0.085*** Not 

Supported 

H4: Social influence of mobile computing devices has a positive 

association with an employee’s mobile computing-device-

adoption intentions. 

-0.093** Not 

supported 

H5: An employee’s Mobile Computing Self-Efficacy (MCSE) 

has a positive association with his/her mobile-computing-device-

adoption intentions. 

0.541*** Supported 

Table 4-24. Main study hypotheses testing results (** p<0.05; *** p<0.01) 

 

Figure 4-3. Main study hypotheses testing results 

5. Chapter Summary 

This chapter discussed the IPSI instrument refinement process, the data analysis results of 

pilot study and main study. The new multi-item scale of IPSI was refined and tested. Cronbach’s 

alpha and CFA were performed to assess the reliability, convergent validity, and discriminant 

validity of all scales. The two pilot studies provided support for the reliability and validity 

assessments of these scales. They also gathered initial evidence about the hypotheses testing in 

the measurement model. Finally, the survey instruments were revised and translated into Chinese 
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via a double translation process. The main study data analysis showed that all scales 

demonstrated adequate levels of reliability and validity. The hypotheses testing show that there 

were empirical support for Hypotheses 1, 2, and 5.  

Chapter V provides detailed discussions about the IPSI framework across different 

devices and demographic control variables, the issue about common method variance, and issues 

about the SI and MCD constructs suggested by the main study data analysis. 
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CHAPTER V 

DISCUSION OF RESULTS 

1. Chapter Overview 

This chapter discusses the results of the main study. First, the IPSI framework is 

examined in detail, with an emphasis on the differences of CGS and CCS scores among three 

types of mobile devices. The impact of accessory usage on these scores is also explored. Next, 

potential common method variance (CMV) and bias in the main study are evaluated. This 

chapter assesses the CMV in the data using different techniques and shows the structural 

equation modeling estimations after controlling for the common method variance. Generally, the 

CMV did not significantly influence the results of hypotheses testing.  

Multiple regression and mediation analyses showed some interesting results about social 

influence (SI) and mobile computing dissatisfaction (MCD) in Chapter IV. These results are 

discussed and explored in more detail. Finally, the results of comparing the distributions of all 

constructs across various demographic variables suggest some interesting research directions for 

future studies.  

2. IPSI Framework 

As discussed in previous chapters, the CGSDevice and CCSDevice scores in the IPSI 

framework captured how employees are viewing mobile computing devices’ capabilities 

differently in terms of supporting their job-required information-processing activities. The main 

study data analyses revealed that employees did have different perceptions about different types 
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of mobile devices. Overall, employees’ perceptions about the smartphones’ capabilities to 

support information-processing activities at work were the lowest and the perceptions about 

laptop computers’ capabilities were the highest. In terms of supporting content-generation 

activities, the perceived capabilities of the smartphones, tablet computers, and laptop computers 

are ranging from the lowest to the highest, respectively. In terms of supporting content-

consumption activities, the perceived capabilities of the smartphones and tablet computers were 

at the same level, while the perceived capabilities of the laptop computers were much higher.  

These results are different from the U.S. pilot study data. In the U.S. pilot study, the 

tablet computers had the highest perceived capabilities to support both types of information-

processing activities. In the main study, the survey questionnaires gathered participants’ 

comments about their experiences of using these devices at work. From the comments gathered, 

the difference in infrastructure development was identified as one important contributor to 

different device-related IPSI scores. Several participants mentioned that they hoped the employer 

could build more wireless access points to facilitate their devices usage. Given the fact that the 

Chinese university did not have full Wi-Fi coverage on campus and the significantly slower 

network connection speed, the tablet computers’ performance was limited in the Chinese 

university context. For example, in U.S., tablet computers can perform a much wider range of 

tasks since many applications rely on readily available network connections. Without network 

support, tablet computers only have limited processing power and physical memory. As a result, 

the perceived capabilities of tablet computers were much lower in the main study.  

2.1. The usage of accessories 

As discussed in the pilot study analysis, employees utilized different accessories when 

using their mobile computing devices at work. These accessories can help enhancing the devices’ 
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capabilities to perform work-related information-processing activities. Therefore, accessory 

usage may influence employees’ perceptions about their devices’ information processing support 

capabilities. The main study captured this information by asking the participants to indicate the 

types of accessory they adopt when using their mobile devices at work. Table 5-1, 5-2, 5-3, and 

5-4 below summarize the results.  

 N/A None Keyboard Stylus pen Both Other All Acc. 

Cases 30 108 75 19 19 15 128 

CGSDevice 18.23 19.80 20.97 22.16* 23.79*** 23.80** 21.90*** 

CCSDevice 19.30*** 22.29 22.11 23.89 24.58** 23.80 22.94 

CGS 0.941 0.862 0.963** 0.933 0.944 0.977*** 0.957** 

CCS 0.905 0.906 0.927 0.991 0.929 0.890 0.932 

IPSI 8.385** 9.747 10.278 10.916 11.442** 11.377** 10.674** 

Table 5-1. Overall accessory usage (* p<0.10 ** p<0.05 *** p<0.01) 

 

 N/A None Keyboard Stylus pen Both Other All Acc. 

Cases 10 63 13 6 4 1 24 

CGSDevice 20.20 18.57 15.23** 21.50 22.75 18.00 18.17 

CCSDevice 20.90 21.75 18.23** 24.00 22.75 18.00 20.42 

CGS 0.991** 0.763 0.638 0.938 0.898 0.918 0.768 

CCS 0.847 0.883 0.805 1.071 0.826 0.918 0.880 

IPSI 8.778 9.007 7.148* 11.751** 10.167 8.266 8.849 

Table 5-2. Smartphone accessory usage (* p<0.10 ** p<0.05 *** p<0.01) 

 

 N/A None Keyboard Stylus pen Both Other All Acc. 

Cases 12 28 21 11 7 5 44 

CGSDevice 14.50*** 20.46 17.71* 22.55 23.71 21.60 20.32 

CCSDevice 16.92*** 22.68 19.05** 24.18 25.29 21.20 21.57 

CGS 0.869 1.001 0.942 0.910 0.977 0.962 0.942 

CCS 0.923 0.962 0.890 0.945 1.019 0.772 0.911 

IPSI 6.935*** 11.222 8.511*** 10.605 11.963 10.069 9.760** 

Table 5-3. Tablet computer accessory usage (* p<0.10 ** p<0.05 *** p<0.01) 
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 N/A None Keyboard Stylus pen Both Other All Acc. 

Cases 8 17 41 2 3 9 60 

CGSDevice 21.38 23.24 24.46 22.00 24.38 25.67 24.55 

CCSDevice 20.88 23.35 24.90 22.00 24.88 25.89 24.95 

CGS 0.988 1.002 1.077 1.042 0.939 0.993 1.044 

CCS 0.951 0.902 0.984 1.000 0.902 0.953 0.969 

IPSI 10.069 10.057 12.175** 10.125 11.624 12.449** 12.074*** 

Table 5-4. Laptop computer accessory usage (* p<0.10 ** p<0.05 *** p<0.01) 

These results show that overall, when employees used various accessories with their 

mobile devices, the CGS were higher, which leaded to higher IPSI. More specifically, the usage 

of accessories in general increased employees’ perceptions about devices’ information 

processing support capabilities related to job-required content-generation activities. The 

perceived device capabilities in performing content-consumption activities also increased 

slightly with the usage of accessories. However, as the device breakdown shows, increases in 

these scores were primarily driven by the laptop computer cases. Because the laptop computers 

have built-in keyboards, larger displays, and better processing power, their IPSI scores are the 

highest among all three types of devices.  

In the cases of smartphones and tablet computers, usage of various accessories was 

generally associated with decreases in the perceived information processing support capabilities 

of these devices. One possible explanation is that employees adopted various accessories when 

these devices could not fulfill their needs to perform job-required information-processing 

activities. For example, if an employee wanted to be able to engage in extensive information-

generation activities, such as creating and editing email, documents, and so on, s/he might find 

that using a smartphone or a tablet computer alone is not as convenient as using them with 

Bluetooth keyboards. Therefore, employees might adopt various accessories to aid their uses of 

these devices at work. Consequently, they may have lower perceptions about the devices’ 

inherent capabilities to perform these tasks.  
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The IPSI scores were all perception-based measurements. Besides the devices’ 

capabilities, other factors such as people’s expectations, prior experiences, and levels of 

technical skills could also influence employees’ perceptions about the devices’ information 

processing support capabilities. The IPSI framework proposed in this research did not specify 

what factors influence employees’ perceptions about various devices and how those factors 

might be related to the perceptions. Therefore, the current research only offers a tentative 

explanation about the decrease in perceived device capabilities when people are using various 

accessories with smartphone and tablet computers. A subsequent study is needed to explore these 

additional factors.  

2.2. Usage experiences across different devices 

In Chapter IV, the pilot studies showed that people have different usage experiences with 

the three types of devices. As summarized in Table 5-5, the main study data showed similar 

trends. Overall, the participants were most familiar with laptop computer, with the majority 

having more than two years of usage experience. The next one was the smartphone, which most 

of the participants had used for more than one year. Finally, tablet computers were just gaining 

popularity, with usage experience spreads out from less than one month to more than two years.  

Time of 

usage 

Less than 

1 month 

1 to 3 

months 

3 to 6 

months 

6 to 12 

months 

12 to 24 

months 

More than 

24 months 

Total 

responses 

Smartphone 4 4 10 28 70 127 243 

Tablet 

Computer 
47 18 17 25 47 83 237 

Laptop 

Computer 
4 8 10 9 22 189 242 

Table 5-5. Time of usage across devices 

These results are consistent with current market development of these mobile computing 

devices. Although the infrastructure development in China (the number of wireless access points, 

quality of mobile networks, network connection speed, etc.) is lagging behind the U.S., the 
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results showed that, in terms of the usage experience, device adoption patterns are similar. 

People were more familiar with laptop computers and smartphones, while tablet computers were 

still catching up.  

As introduced in Chapter III, the common method variance (CMV) is a serious threat to 

the results of data analysis, especially when all the variables were captured using the same 

survey questionnaire. The current study conducts several post-hoc tests to mitigate the potential 

problems of CMV in the main study data analyses. The following section discusses these CMV 

related issues.  

3. Common Method Variance Issues 

As discussed by various scholars, one important threat to the validity of empirical results 

of data analysis is the presence of common method variance and biases. Common method 

variance refers to the variations in the data that comes from the method of data collection rather 

than the underlying constructs. TAM research has been criticized heavily for common method 

variances. Since the current study utilized paper-based survey questionnaires, common method 

variance and biases must be controlled. One of the best ways to control common method 

variance and biases is through better research design. However, other factors may constrain the 

available methods. Chapter III provided a brief discussion about the common method variance 

issue in this study. Generally, because this study is exploratory in nature, one of the primary 

goals is to develop and test the new IPSI scale. The Chinese university setting offered a great 

opportunity to gather extensive empirical data about multiple types of devices. However, due to 

the limitations of network access, language, and norms, paper-based survey questionnaires 

offered the most effective way to collect empirical support.  
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In order to assess the extent to which common method variance and biases influenced the 

results, several tests were conducted as suggested by Friedrich, et al. (2009). First, the Harman’s 

Single Factor test was performed. This test involves performing an Exploratory Factor Analysis 

(EFA) using all measurement items and extracting only one factor. If the extracted factor 

accounts for more than half of the total variance, common method variance is present. Table 5-6 

below shows the summary of this test.  

Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 13.755 42.984 42.984 13.755 42.984 42.984 
       

Extraction Method: Principal Component Analysis. 

Table 5-6. Harman’s single factor test 

The results indicate that the extracted factor accounts for 42.98% of the total variance, 

which is less than 50%. However, the results did show that a considerable proportion of the total 

variances were shared among all measurement models. Therefore, a common method latent 

factor analysis was performed to assess the magnitude of common variances. Table 5-7 

summarizes the factor loadings with and without the common method latent variable in the 

structural model.  

Item With CMF Without CMF Difference % Change 

CGSD1 0.538 0.888 0.35 39.41 

CGSD2 0.668 0.884 0.216 24.43 

CGSD3 0.615 0.822 0.207 25.18 

CGSD4 0.465 0.800 0.335 41.88 

CCSD1 0.497 0.819 0.322 39.32 

CCSD2 0.563 0.864 0.301 34.84 

CCSD3 0.611 0.861 0.25 29.04 

CCSD4 0.415 0.764 0.349 45.68 

CGSJ1 0.477 0.820 0.343 41.83 

CGSJ2 0.517 0.879 0.362 41.18 

CGSJ3 0.413 0.747 0.334 44.71 

CGSJ4 0.366 0.791 0.425 53.73 
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CCSJ1 0.375 0.803 0.428 53.30 

CCSJ2 0.416 0.854 0.438 51.29 

CCSJ3 0.418 0.836 0.418 50.00 

CCSJ4 0.351 0.779 0.428 54.94 

MCS1 0.389 0.613 0.224 36.54 

MCS2 0.4 0.803 0.403 50.19 

MCS3 0.402 0.803 0.401 49.94 

MCD1 0.627 0.606 -0.021 -3.47 

MCD2 0.773 0.795 0.022 2.77 

MCD3 0.855 0.899 0.044 4.89 

SI2 0.841 0.839 -0.002 -0.24 

SI3 0.884 0.907 0.023 2.54 

SI4 0.612 0.676 0.064 9.47 

MCSE1 0.357 0.747 0.39 52.21 

MCSE2 0.355 0.857 0.502 58.58 

MCSE3 0.442 0.902 0.46 51.00 

AI2 0.394 0.945 0.551 58.31 

AI3 0.381 0.874 0.493 56.41 

Table 5-7. Common method latent factor analysis 

A structural equations modeling analysis incorporating the common method factor was 

performed to assess the effect of common method biases using SAS.  

SAS 
   

Theory Based Model 

  

Model with CMF 

Paths Modeled: 

 

Parameter 

Coefficient t-value 

  

Parameter 

Coefficient t-value 

IPSI  MCS 

 

0.70** 18.11 

  

0.82** 18.98 

IPSI  MCD 

 

-0.31** -5.07 

  

-0.28** -4.40 

          IPSI  AI 

 

0.02 0.25 

  

-0.19 -1.21 

MCS  AI 

 

0.40** 5.59 

  

0.54** 3.47 

MCD  AI 

 

0.12** 2.60 

  

0.13** 2.54 

SI  AI 

 

-0.14** -2.78 

  

0.18** 3.14 

MCSE  AI 

 

0.67** 12.65 

  

0.69** 10.53 

Overall Fit: 

        χ2 (and d.f.) 

 

320.68 (81) 

   

909.14 (375) 

 CFI 

   

0.90 

   

0.92 

 RMSEA 

  

0.11 

   

0.073 

 
Table 5-8. SAS model estimations (* p<0.10 ** p<0.05 *** p<0.01) 
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Overall, these analyses showed that CMV was present in the data. However, the common 

method biases were not causing significant changes to the hypotheses testing results. After 

controlling for CMV, the data provided essentially the same hypotheses testing results.  

4. Issues in Multiple Regression Analysis 

As discussed in Chapter IV, the multiple regression analysis showed some interesting 

results. First, the IPSI and MCSE constructs both have positive associations with the mobile-

computing-device-adoption intention (AI). Their standardized coefficients in both models 

revealed that although both relationships are statistically significant different from zero (p<0.01), 

MCSE had a much stronger impact on AI than IPSI did. In addition, although the social 

influence (SI) construct had a positive zero-order correlation with AI, its regression coefficient 

was negative. When MCS and MCD were added to the model, the negative regression coefficient 

of SI became statistically significant at p<0.05 level. The change in the statistical significance 

level indicated that there was some suppressing effect exists. When other variables were added 

into the model, they helped account for the variance that was not explained by the original 

regression. Therefore, the inclusion of these variables reduced the error variance, making the 

prior non-significant relationship significant (MacKinnon et al, 2007). However, the reversed 

sign of SI was interesting since it was to the opposite of the hypothesized relationship.  

In order to analyze the reversed regression coefficients of SI, a series of separate 

regression analyses were performed, starting with a simple regression that only involves SI and 

AI. As the results showed, SI alone had a significant positive association with AI at p<0.001 

level. When IPSI and MCS were added to the model, SI still had a significant positive 

association with AI at p<0.01 level. However, when MCD was introduced to the model, the 

positive association became insignificant and when MCSE was added, the regression coefficient 
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of SI reversed and became significant again. The standardized regression coefficient of SI was 

decreasing as more variables were added to the model and was getting closer to zero. Table 5-9 

shows the summary of these regression analyses.  

Model Summary 

Model R 
R 

Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Change Statistics 

R Square 
Change 

F 
Change df1 df2 

Sig. F 
Change 

1 .237a .056 .052 1.2805295 .056 15.670 1 264 .000 
2 .556b .309 .304 1.0977906 .253 96.206 1 263 .000 
3 .557c .310 .302 1.0989918 .001 .425 1 262 .515 
4 .674d .455 .446 .9788376 .145 69.270 1 261 .000 
5 .775e .601 .594 .8385175 .147 95.662 1 260 .000 

 
Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 4.575 .241  19.015 .000 

SI .229 .058 .237 3.959 .000 

2 (Constant) 2.847 .271  10.495 .000 

SI .138 .051 .142 2.731 .007 

IPSI .208 .021 .512 9.808 .000 

3 (Constant) 2.986 .345  8.657 .000 

SI .144 .052 .149 2.803 .005 

IPSI .203 .022 .501 9.131 .000 

MCD -.033 .051 -.035 -.652 .515 

4 (Constant) 1.240 .372  3.334 .001 

SI .051 .047 .053 1.085 .279 

IPSI .090 .024 .222 3.754 .000 

MCD .071 .047 .075 1.503 .134 

MCS .563 .068 .518 8.323 .000 

5 (Constant) .808 .322  2.510 .013 

SI -.090 .043 -.093 -2.105 .036 

IPSI .060 .021 .146 2.855 .005 

MCD .085 .040 .090 2.100 .037 

MCS .280 .065 .258 4.329 .000 

MCSE .546 .056 .541 9.781 .000 

a. Dependent Variable: AI 

Table 5-9. Summary of regression analyses about SI 

According to the results, MCSE had a strong interaction with SI on its association with 

AI. This interaction suggested there might exist a moderating effect of MCSE on the relationship 

between SI and AI. To explore the possible moderation effect, a model was tested in which 
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MCSE acted as a moderator between SI and AI. As shown in Figure 5-1, the model was tested 

using SPSS macro PROCESS.  

 

Figure 5-1. Suspected moderation effect of MCSE on SI  AI 

The moderation analysis results are attached in Appendix D. The interaction term had a 

regression coefficient of 0.074 and is statistically significant at p<0.05 level (p=0.012) 

suggesting there is significant moderation effect of MCSE on the relationship between SI and AI. 

To demonstrate, Figure 5-2 below shows the conditional effect of SI on AI as a function of 

MCSE using Johnson-Neyman technique.  

 

Figure 5-2. The moderation effect of MCSE on SI  AI 
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These results show that when MCSE was controlled for, SI had a negative association 

with AI. The negative effect of SI on AI was strongest when MCSE was at its minimum level. 

As MCSE increases, the negative effect of SI on AI decreases. When MCSE was above 5.4, the 

negative effect of SI on AI became statistically insignificant. In other words, when the 

employees’ mobile computing self-efficacy is low, social influence negatively affects their 

device adoption intentions. When their MCSE is higher than 5.4, social influence will not 

significantly affect their device adoption intentions.  

These results indicate that when people think the mobile computing devices have high 

influence on their social status and impressions, if they are not confident about using these 

devices, they will be less likely to adopt these devices. However, if they are very confident about 

their ability to use these devices, their adoption intentions will be less affected by their ideas 

about the social influences of these devices. Hypothesis 4 was not supported, but the suspected 

moderation model had some empirical support from the data. The relationships between MCSE, 

SI, and AI therefore need to be studied more in the future. The following section discusses the 

MCD construct, which had a similar reversal of sign in its regression coefficient.  

5. Issues in Mediation Analysis 

The two proposed mediators MCS and MCD were analyzed using both multiple 

regression and bootstrap-based mediation analyses. In the multiple regression results, IPSI had a 

significant positive association with AI when the two mediators were added into the model. The 

regression coefficient of IPSI also became smaller. MCS had a significant positive association 

with AI and MCD had an insignificant positive association with AI. These results suggest that 

MCS partially mediated the positive association between IPSI and AI, while MCD was not 

mediating the relationship between IPSI and AI, since MCD was not significantly related to AI. 
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Mediation analysis using the PROCESS macro demonstrated similar results: the indirect effect of 

MCS on AI was positive while the indirect effect of MCD on AI was negative. In these analyses, 

the effects IPSI had on MCD were negative and statistically significant while the effects MCD 

had on AI were positive and insignificant. The different signs of the effects indicated that the 

MCD was an inconsistent mediator. Overall, the data showed that higher IPSI scores did lead to 

lower levels of mobile computing dissatisfaction, but lowered MCD was not increasing 

employees’ mobile-computing-device-adoption intentions.  

These results are interesting. Intuitively, a lower MCD measure should lead to higher 

adoption intentions as predicted by the theory. One possible explanation for this result is that the 

data of AI were skewed toward higher adoption intentions. The mean score for AI is 5.47, which 

is the highest among all measurements. Therefore, the variability of AI is smaller than other 

measures. The mean score of MCD is 3.59, which is the smallest among all measurements. The 

MCD was coded in such a way that a higher score meant higher dissatisfaction. Therefore, these 

results show that overall, people are generally more likely to adopt these devices and less likely 

to be dissatisfied.  

Another reason that MCD has a low mean score may be the delivery method of these 

surveys. The department chairs of each school distributed all survey questionnaires in the regular 

staff meetings. As a result, the participants may be not fully willing to express their 

dissatisfactions even though their responses were kept anonymous. Due to the limitation related 

to the institutional setting, the current study could not control for these influences. Therefore, a 

future study is needed to explore the relationships among IPSI, MCD, and AI.  
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6. Demographics controls 

The current study collected various demographic data to explore the potential impact of 

these variables on the proposed relationships among constructs. Nonparametric independent tests 

were utilized to examine the distributions of the constructs in the model across age, gender, 

tenure, and department. The results showed that all constructs had similar distributions across 

gender and age. However, the distributions of SI were significantly different across different 

tenure groups. As Table 5-10 and Figure 5-3 shows, the mean scores of SI differ in each of the 

six tenure groups.  

Tenure <6m 6m-12m 1y-2y 3y-6y 7y-10y 11y+ 

Cases 10 11 43 70 62 68 

SI mean score 3.7000 4.1818 4.5039** 3.8333 3.9731 3.5882 

Table 5-10. Distribution of SI across tenure (** p<0.05) 

 

 

Figure 5-3. SI mean scores across tenure groups 

These results suggested that the employees who had been in the organization for one to 

two years have the highest SI mean score. Before that point, employees’ average SI score was 

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

<6m 6m-12m 1y-2y 3y-6y 7y-10y 11y+

Distribution of SI across tenure
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increasing and after that, the mean score of SI was decreasing. In other words, on average, 

employees who had been working in the Chinese university for one to two years thought mobile 

devices have the greatest social influence on their social status and impressions. The difference is 

significant at the p<0.05 level. This result is very interesting. It revealed that the mobile 

computing devices could serve as means through which people manage their social influences. 

The differences also indicated that employees in different stages of organization tenure view 

social influence differently. It is interesting that employees who have worked in an organization 

for one to two years have the highest SI mean score. According to the promotion schedule in the 

Chinese university, that period is the time during which employees are most likely to receive 

their first promotions. Therefore, the data suggested an interesting future research direction: how 

do employees in different tenure groups use mobile computing devices as tools to enhance their 

social influences? 

When compared across the nine different departments, the results show that the 

distributions of IPSI, MCS, MCSE, and AI differ significantly. These results provided some 

additional support for the IPSI framework. The focus and expertise of the employees in these 

various departments are different from each other. For example, the school of computer science 

and the center of modern educations have different teaching and researching foci. Therefore, the 

frequency and importance of job-required information-processing activities are also likely to be 

different. The IPSI framework captured these differences, and therefore was different across 

these departments.  
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Figure 5-4. Independent sample tests across departments 

As shown in Figure 5-4, the different IPSI scores will lead to different levels of MCS 

across departments, as predicted by Hypothesis 2. In fact, the distribution of IPSI and MCS are 
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similar across different departments. Since the nine different departments are in different 

disciplines, the levels of MCSE differ based on the various backgrounds of their employees. 

Finally, different IPSI, MCS, and MCSE will lead to different AI across departments as 

suggested by the model in the current study.  

7. Chapter Summary 

This chapter discusses various issues in the main data analysis. Overall, the proposed 

IPSI framework has some empirical support from both the pilot and main study data. Some 

factors that are unique to the Chinese university context influenced the IPSI scores. After a 

careful analysis of common method variance and biases, the hypotheses testing results still hold. 

Further analyses about social influence, mobile computing dissatisfaction, and organization 

tenure are needed. These future directions are discussed in Chapter VI.   

The next Chapter discusses the major contributions and implementation of the current 

study. Several limitations and key assumptions are also discussed. Finally, Chapter VI concludes 

the study after discussing the future research directions. 
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CHAPTER VI 

CONCLUSIONS 

1. Chapter Overview 

This chapter finishes this dissertation by first discussing conclusions from the conceptual 

model in light of the data analyses and hypotheses testing results. Next, the major contributions 

and implications of this study’s findings are highlighted. Finally, after illustrating key 

assumptions and limitations, this chapter provides some future research directions.  

2. Conclusions 

This study examined two major research questions: “Why do employees choose to adopt 

different mobile computing devices at work?” and “What are the factors affecting employees’ 

mobile-computing-device-adoption decisions?” Drawing primarily from the literature on the 

information-processing based view of firms, the dissertation first develops the Information 

Processing Support Index (IPSI) framework. The IPSI framework captures employees’ 

perceptions about device capabilities and job requirements in terms of two types of information 

processing activities: content generation and content consumption.  

This study examined three types of mobile computing devices: smartphones, tablet 

computers, and laptop computers. Based on the literature in scale development and the domain-

sampling model (Nunnally and Bernstein, 1994), the current study conducted a Q-sort test, two 

pilot studies, and a main study in both the U.S. and China to generate, refine, and validate new 
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measurement instruments for the IPSI framework. Overall, these instruments have demonstrated 

adequate levels of reliability, content validity, convergent validity, and discriminant validity. 

Next, a conceptual model of employees’ mobile-computing-device-adoption intentions in 

the workplace was proposed and empirically tested. The model utilizes IPSI, mobile computing 

satisfaction (MCS), mobile computing dissatisfaction (MCD), social influences (SI), and mobile 

computing self-efficacy (MCSE) to explain employees’ mobile-computing-device-adoption 

intentions (AI) at work. Five hypotheses were tested using the empirical data.  

The hypotheses testing results provided some empirical support for three of five proposed 

hypotheses in the mobile-computing-device-adoption intention model. The positive association 

between IPSI and AI (Hypothesis 1), the positive association between MCSE and AI (Hypothesis 

5), and the mediating effect of MCS between IPSI and AI (Hypothesis 2) were empirically 

supported by the data. Table 6-1 summarizes the hypotheses testing results. 

Hypotheses  Supported? 

H1: The IPSI has a positive association with an 

employee’s mobile-computing-device-adoption intention. 

Yes 

H2: Mobile-computing satisfaction mediates the positive 

relationship between the IPSI and an employee’s mobile-

computing-device-adoption intention. 

Yes 

H3: Mobile-computing dissatisfaction mediates the 

positive relationship between IPSI and an employee’s 

mobile-computing-device-adoption intention. 

No 

H4: Social influence of mobile computing devices has a 

positive association with an employee’s mobile 

computing-device-adoption intention. 

No (Yes after 

controlling 

CMV) 

H5: An employee’s Mobile Computing Self-Efficacy 

(MCSE) has a positive association with their mobile-

computing-device-adoption intention. 

Yes 

Table 6-1. Hypotheses testing results 

The data analyses showed that IPSI had a negative association with MCD. However, the 

association between MCD and AI was positive. Therefore, because MCD was identified as an 

inconsistent mediator, the mediating effect of MCD between IPSI and AI (Hypothesis 3) was not 
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supported. In other words, the data revealed that people who had higher IPSI tended to have 

lower MCD. On the other hand, people who had lower MCD generally showed lower AI after 

controlling for other factors in the model. Because these surveys were distributed at the 

employees’ weekly staff meetings, there may exist some minor inconsistences in their responses 

to the MCD construct. The means of AI measurement were also skewed toward the higher end, 

indicating the majority of the participants had high levels of AI. In addition, based on comments 

collected from the participants, the majority of their feelings related to MCD stemmed from the 

infrastructure limitations such as slow wireless network speed, limited Wi-Fi coverage, and 

others. Therefore, the positive effect of MCD on AI could be caused by its interactions with 

these facts.  

The data analyses also revealed that there was a negative association between SI and AI 

after controlling for other factors in the model. Therefore, Hypothesis 4 was not supported. The 

fact that the relationship between SI and AI was contrary to the model prediction is very 

interesting. Further analysis showed that MCSE had a strong interaction with SI. In addition, the 

distribution of SI was different across tenure groups, in which employees who had one to two 

years of tenure rated highest on SI. As a result, the negative associations between SI and AI were 

possibly a result of the suppressing effect of MCSE.  

3. Contributions and Implications 

This study made several theoretical and practical contributions. First, the information 

processing support index (IPSI) provides a new and more relevant perspective to examine 

information systems adoption behavior at the individual employee level. When studying 

information systems adoptions intentions, the technology acceptance model (TAM) is dominant 

in the MIS field. However, as discussed early in this study, although TAM was developed, 
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refined, and validated rigorously over time, it provides relatively limited practical value. The 

perceived usefulness (PU) and perceived ease of use (PEU) constructs are abstract in nature and 

ignore other potentially important factors (Bagozzi, 2007; Benbasat and Barki, 2007). The IPSI 

framework developed in this study suggests that information systems adoption behavior can be 

explored from the basic functions of these systems (information processing) and the job 

requirements of these functions. It also provides a quantifiable measure for two types of 

information processing activities. Although the context of this study is limited to mobile 

computing devices, the IPSI framework can be extended to more general information systems 

adoption behaviors.   

Second, this study develops and validates new measurement instruments for the IPSI 

framework. These instruments provide valid and reliable measures of the IPSI sub-scores. The 

four sub-scores (CGSDevice, CCSDevice, CGSJob, CCSJob) are indicators of employees’ perceptions 

about both device capabilities and job requirements in content generation and consumption 

related tasks. The fact that these measurements are perception-based ensures that they are 

independent of the rapid development of technology.  

Third, from a more practical perspective the IPSI framework provides a starting point to 

develop quantifiable measures to evaluate different device options organizations can offer to 

their employees. This can be useful to help organizations manage these devices at work more 

effectively. It will also contribute to the understanding of the current bring your own device 

(BYOD) trend in industries. One potential reason that employees want to bring their own mobile 

computing devices to work, especially tablet computers, is that they believe these devices can 

help them get their work done more efficiently. In other words, mobile computing devices can 
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better support employees’ perceived information processing needs. This study provided some 

empirical support for that argument. 

Finally, the insights gathered from these information-processing perspectives can guide 

the mobile computing industry to design and develop new technologies that are focused on 

improving the information processing support needed at work. For example, as the 

computational capability of mobile devices increases, employees facing those computational 

intensive information-processing tasks will be more likely to adopt devices that can better 

support those activities.  

4. Assumptions and Limitations 

The current study is exploratory in nature. Therefore, several assumptions about the 

model and limitations need to be highlighted. Readers should keep these limitations and 

assumptions in mind when interpreting the results.  

First, this study focuses on examining employees’ mobile computing device adoptions in 

academic institutions. All of the participants are from higher education. The sample in the main 

study contains faculty and staff member from one public university in China. Although the 

survey instruments were distributed across several departments, this is not a complete 

randomized sample across different organizations or industries. Therefore, the results of 

hypotheses testing have limited generalizability to other industries and situations. However, 

given that the first goal of this study was to develop and validate new measurement instruments, 

this sample was adequate for that purpose. 

Second, the main study utilized paper-based survey instruments to collect all 

measurements in the model, which may cause some common method bias problems. As 

discussed in Chapter V, given the general goals of this study, versus these limitations, the paper-
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based survey were a satisfactory means to collect the main study data. Common latent factor 

analysis and structural equations path analysis revealed that although common method variance 

was present in the data, it only had very small effects on the results. Therefore, the common 

method variance was not a major source of problems in the data analyses.  

Third, the design of this study is cross-sectional. The proposed hypotheses were all 

concerned about the “associations” between independent and dependent variables rather than 

causal relationships. Cross-sectional data have limited ability to infer causality. As a result, the 

directions of the proposed effects can only be established based on previous literature. Some of 

the relationships, such as the negative association between social influence and mobile-

computing-device-adoption intentions need further analysis.  

Finally, all of the participants are from China. They have different cultural backgrounds 

and norms than people in the U.S. In addition, as mentioned earlier, the infrastructure 

development status (wireless connectivity, network speed, etc.) in China is also different from 

other places. Therefore, the results of the current study can only be generalized to a limited 

context. These differences may have influenced the results in this study. 

5. Future Research Directions 

Based on the discussions above, several future research directions are suggested. First, 

the information processing support index (IPSI) framework developed in this study needs to be 

cross-validated with data from other industries. In the current study, only the usage of mobile 

computing devices in higher education was examined. In order to establish the generalizablity of 

the IPSI framework, future studies need to apply it to a wider range of different industries such 

as healthcare, sales, financial services, etc. Different industries may require different levels of 

job-related information processing activities. The IPSI framework will capture these differences 
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in its job-related measures. Therefore, a cross industry comparison about job-required 

information processing can be made to improve our understanding about mobile computing 

device adoption behaviors in different areas.  

Second, as discussed in earlier sections, this dissertation focused on using IPSI to 

examine individual-level mobile computing device adoptions. Future research should extend the 

context to more general types of information systems and different levels. Since information 

processing is the most basic functions of information systems, the IPSI framework can be used to 

explore more general information system adoptions, including adoption intentions related to 

multiple device users and different user groups.  

Third, since the main study participants in this study were from one large public 

university in China, studies are needed to collect more information in the U.S. and compare the 

differences. The comparison can reveal important factors affecting mobile computing device 

adoption behaviors across different cultures. For example, social influences may have different 

effects on employees’ mobile device adoption intentions due to cultural differences.  

Finally, as discussed in Chapter V, this new model of employees’ mobile-computing-

device-adoption intentions is exploratory. Therefore, it is very important for future studies to 

advance the model by incorporating additional factors and potential moderators. For example, 

social influence and mobile computing self-efficacy in the current study showed some interesting 

effects that need to be further examined. In theory development, the moderators are important 

since they specify the boundary conditions of proposed effects. As a result, more studies are 

needed to develop the model further.  

Mobile computing device adoptions are growing rapidly. This study provides an 

important and useful perspective to examine systematically why and how employees choose to 
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adopt different mobile computing devices at work. Based on an information processing 

perspective, the newly developed Information Processing Support Index framework and mobile-

computing-device-adoption intentions model provide some useful insights about this new 

development in mobile computing and in general information system adoption behaviors.  
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Please indicate the degree to which you agree with the following statements: 

 

 

CGSDevice: 

   Strongly   

Disagree 

  1  2  3  4  5 

Strongly 

Agree 

 6       7 

CGSD1  The [mobile device]1 is capable of 

performing tasks related to 

creating/editing email and other 

messages. 

 ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSD2  The [mobile device] is capable of 

performing tasks related to 

creating/editing work-related documents.  

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSD3  The [mobile device] is capable of 

performing tasks related to 

creating/editing content on social 

network and other web pages. 

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSD4  The [mobile device] is capable of 

performing content-generation-related 

tasks at work.  

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

 

 

 

 

CCSDevice: 

 

 

  Strongly 

Disagree 

      1 2 3 4 5 

Strongly 

Agree 

 6       7 

CCSD1  The [mobile device] is capable of performing 

tasks related to reading email and other 

messages. 

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSD2  The [mobile device] is capable of performing 

tasks related to reading work-related 

documents.  

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSD3  The [mobile device] is capable of performing 

tasks related to reading content on social 

network and other web pages. 

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSD4  The [mobile device] is capable of performing 

content-consumption-related tasks at work.  
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

 

                                                
1 In this study, there are three types of mobile computing devices: smartphones, tablet computers, and laptop 

computers. In the actual survey questionnaire, the term mobile device will be replaced using one of the three 

devices. 
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CGSJob: 

   Strongly 

Disagree 

      1 2 3 4  5 

Strongly 

Agree 

 6      7 

CGSJ1  My job frequently requires me to create/edit 

email and other messages.  
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSJ2  My job frequently requires me to create/edit 

work-related documents. 
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSJ3  My job frequently requires me to create/edit 

content on social network and other web 

pages.  

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSJ4  My job frequently requires me to engage in 

content-generation-related tasks.  
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

CCSJob: 

   Strongly 

Disagree 

    1 2 3 4  5 

Strongly 

Agree 

 6      7 

CCSJ1  My job frequently requires me to read 

email and other messages. 
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSJ2  My job frequently requires me to read 

work-related documents. 
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSJ3  My job frequently requires me to read 

content on social network and other web 

pages. 

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSJ4  My job frequently requires me to engage in 

content-consumption-related tasks. 
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

 

Weights of CGS and CCS: 

Please indicate the relevant importance of the following tasks in your job: 

   Extremely 

Unimportant 

      1 2 3  4  5 

Extremely 

Important 

 6      7 

W1  Content-generation-related tasks (e.g., 

creating/editing email and other 

messages, work-related documents, 

and content on social network and 

other web pages) 

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

W2  Content-consumption-related tasks 

(e.g., reading email and other 

messages, work-related documents, 

and content on social network and 

other web pages) 

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 
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Mobile-Computing Satisfaction:  

   Strongly 

Disagree 

      1 2 3 4 

 

5 

Strongly 

Agree 

 6      7 

MCS1  Overall, I feel satisfied with my mobile-

computing needs in my organization. 
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

MCS2  My organization supports the usage of the 

[mobile device].  
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

MCS3  I feel satisfied with using the [mobile 

device] for performing my job. 
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

 

Mobile-Computing Dissatisfaction: 

   Strongly 

Disagree 

   1 2 3  4  5 

Strongly 

Agree 

 6       7 

MCD1  Overall, I feel dissatisfied with using 

mobile computing devices in my 

organization.  

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

MCD2  My organization does not support the 

usage of the [mobile device].  
  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

MCD3  I feel dissatisfied with using the 

[mobile device] for performing my 

job. 

  ☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

 

Social Influence: 

   Strongly 

Disagree 

1  2  3  4  5  6 

Strongly 

Agree 

 7 

SI1  A large portion of my coworker(s) 

and my supervisor(s) are using the 

[mobile device].  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

SI2  Using the [mobile device] is a status 

symbol in my organization. 
☐ ☐ ☐ ☐ ☐ ☐ ☐ 

SI3  People will have a better impression 

of me if I am using the [mobile 

device]. 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

SI4  The [mobile device] is able to help 

me managing my impressions upon 

others.  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

 

 

 

 

 



138 

 

Mobile Computing Self-Efficacy: 

   Strongly 

Disagree 

1  2  3  4  5  6 

Strongly 

Agree 

 7 

MCSE1  I feel confident about using the 

[mobile device] in my job. 
☐ ☐ ☐ ☐ ☐ ☐ ☐ 

MCSE2  I feel confident about using most 

of the applications on the [mobile 

device].  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

MCSE3  I feel confident about using the 

[mobile device) to get 

information I need. 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

MCSE4  I feel confident in fixing 

problems about the [mobile 

device]. 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Mobile-Computing-Device-Adoption Intentions 

   Strongly 

Disagree 

1  2  3  4  5  6 

Strongly 

Agree 

 7 

MCDAI1  I am willing to bring the 

[mobile device] to, and use it 

for, work.  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

MCDAI2  Assume I am allowed to use the 

[mobile device], I intend to use 

it for work.  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

MCDAI3  Given that I am allowed to use 

the [mobile device], I intend to 

use it for work.  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

 

Demographic Information: 

Please indicate the experience you have with the following mobile devices: 
   Less than 1 month  1 to 3 months  3 to 6months  6 to 12 months  12 to 24 months 

Smartphone   ☐  ☐  ☐  ☐  ☐  

Tablet computer  ☐  ☐  ☐  ☐  ☐  

Laptop computer  ☐  ☐  ☐  ☐  ☐  

 

Gender:  ☐Male  ☐Female  

 

Age:   ☐18-22 years old 

  ☐23-30 years old 

  ☐31-54 years old 

  ☐55-64 years old 

  ☐65 years or older 

 

Major:  What is your major?  
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Please indicate the degree to which you agree with the following statements: 

 

 

CGSDevice: 

   Strongly   

Disagree 

  1 2 3 4 5 

Strongly 

Agree 

 6     7 

CGSD1  Without any accessories, the [mobile 

device]2 is capable of performing tasks 

related to creating/editing email and other 

messages. 

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSD2  Without any accessories, the [mobile 

device] is capable of performing tasks 

related to creating/editing work-related 

documents.  

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSD3  Without any accessories, the [mobile 

device] is capable of performing tasks 

related to creating/editing content on 

professional social network and other web 

sites. 

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSD4  Without any accessories, the [mobile 

device] is capable of performing tasks that 

generate content for others at work.  

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

 

CCSDevice: 

   Strongly 

Disagree 

      1 2 3 4 5 

Strongly 

Agree 

 6     7 

CCSD1  Without any accessories, the [mobile device] is 

capable of performing tasks related to reading 

email and other messages. 

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSD2  Without any accessories, the [mobile device] is 

capable of performing tasks related to reading 

work-related documents.  

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSD3  Without any accessories, the [mobile device] 

is capable of performing tasks related to 

reading content on professional social 

network and other web pages. 

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSD4  Without any accessories, the [mobile device] 

is capable of performing tasks that require 

consuming content from others at work.  

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

                                                
2 In this study, there are three types of mobile computing devices: smartphones, tablet computers, and laptop 

computers. In the actual survey, the term mobile device will be replaced using one of the three devices. 
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CGSJob: 

   Strongly 

Disagree 

      1 2 3 4  5 

Strongly 

Agree 

 6     7 

CGSJ1  My job frequently requires me to create/edit 

email and other messages.  
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSJ2  My job frequently requires me to create/edit 

work-related documents. 
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSJ3  My job frequently requires me to create/edit 

content on social network and other web 

pages. 

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CGSJ4  My job frequently requires me to engage in 

tasks that generate content for others.  
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

CCSJob: 

   Strongly 

Disagree 

    1 2 3 4  5 

Strongly 

Agree 

 6     7 

CCSJ1  My job frequently requires me to read 

email and other messages. 
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSJ2  My job frequently requires me to read 

work-related documents. 
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSJ3  My job frequently requires me to read 

content on social network and other web 

pages. 

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

CCSJ4  My job frequently requires me to engage in 

tasks that consume content from others. 
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

 

 

Weights of CGS and CCS: 

Please indicate the relevant importance of the following tasks in your job: 

   Extremely 

Unimportant 

1 2 3 4  5 

Extremely 

Important 

 6      7 

Wcgs  Content-generation-related tasks (e.g., 

creating/editing email and other 

messages, work-related documents, 

and content on professional social 

network and other web pages) 

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

Wccs  Content-consumption-related tasks 

(e.g., reading email and other 

messages, work-related documents, 

and content on professional social 

network and other web pages)  

☐ ☐ ☐ ☐ ☐ ☐  ☐ 
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Mobile-Computing Satisfaction:  

   Strongly 

Disagree 

1 2 3 4 

 

5 

Strongly 

Agree 

 6      7 

MCS1  Overall, I feel satisfied with my mobile-

computing needs in my organization. 
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

MCS2  The [mobile device] makes it easier for me 

to complete my job.  
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

MCS3  I feel satisfied with using the [mobile 

device] for performing my job. 
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

Mobile-Computing Dissatisfaction: 

   Strongly 

Disagree 

1 2 3  4  5 

Strongly 

Agree 

 6       7 

MCD1  Overall, I feel dissatisfied with using 

mobile computing devices in my 

organization.  

☐ ☐ ☐ ☐ ☐ ☐  ☐ 

MCD2  The [mobile device] does not make it 

easier for me to complete my job.  
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

MCD3  I feel dissatisfied with using the 

[mobile device] for performing my job. 
☐ ☐ ☐ ☐ ☐ ☐  ☐ 

Social Influence: 

   Strongly 

Disagree 

1 2 3 4 5 6 

Strongly 

Agree 

 7 

SI1  Using the [mobile device] is a status 

symbol in my organization. 
☐ ☐ ☐ ☐ ☐ ☐ ☐ 

SI2  People will have a better impression 

of me if I am using the [mobile 

device]. 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

SI3  The [mobile device] is able to help 

me managing my impressions upon 

others.  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Mobile Computing Self-Efficacy: 

   Strongly 

Disagree 

1 2 3 4 5 6 

Strongly 

Agree 

 7 

MCSE1  I feel confident about using the 

[mobile device] in my job. 
☐ ☐ ☐ ☐ ☐ ☐ ☐ 

MCSE2  I feel confident about using most 

of the applications on the [mobile 

device].  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

MCSE3  I feel confident about using the 

[mobile device) to get 

information I need. 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

 



143 

 

Mobile-Computing-Device-Adoption Intentions 

   Strongly 

Disagree 

1 2 3 4 5 6 

Strongly 

Agree 

 7 

MCDAI1  I am willing to bring the 

[mobile device] to, and use it 

for, work.  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

MCDAI2  Assume I am allowed to use the 

[mobile device], I intend to use 

it for work.  

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

MCDAI3  Given that I am allowed to use 

the [mobile device], I intend to 

use it for work. 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

 

Demographic Information: 

 

Gender: ☐Male  ☐Female  

 

Age:  ☐18-24 years old 

  ☐25-34 years old 

  ☐35-44 years old 

  ☐45-54 years old 

  ☐55-64 years old 

  ☐65 years or older 

 

Organization Tenure:  

  ☐Less than 6 months 

  ☐6 to 12 months 

  ☐1 to 2 years 

  ☐3 to 6 years 

  ☐7 to 10 years 

  ☐11 years or more 

Education: 

What is the highest level of education you have completed? 

☐High school diploma or equivalent 

  ☐Associate degree or certificate 

  ☐Bachelor's degree 

  ☐Master's degree 

  ☐Doctoral degree  

☐Professional degree (MD, JD, Etc.) 
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APPENDIX C. PILOT STUDY SPSS OUTPUT 
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1, Multiple regression analysis: 

Descriptive Statistics 

 Mean 

Std. 

Deviation N 

AI 5.7363 1.14779 182 

IPSI 13.0587 2.67119 182 

SI 4.3489 1.20621 182 

MCSE 5.6085 .93222 182 

MCS 5.7344 1.04046 182 

MCD 2.5696 1.34150 182 

Correlations 

 AI IPSI SI MCSE MCS MCD 

Pearson Correlation AI 1.000 .308 .303 .644 .585 -.527 

IPSI .308 1.000 .122 .274 .372 -.315 

SI .303 .122 1.000 .385 .360 -.335 

MCSE .644 .274 .385 1.000 .615 -.543 

MCS .585 .372 .360 .615 1.000 -.740 

MCD -.527 -.315 -.335 -.543 -.740 1.000 

Sig. (1-tailed) AI . .000 .000 .000 .000 .000 

IPSI .000 . .051 .000 .000 .000 

SI .000 .051 . .000 .000 .000 

MCSE .000 .000 .000 . .000 .000 

MCS .000 .000 .000 .000 . .000 

MCD .000 .000 .000 .000 .000 . 

N AI 182 182 182 182 182 182 

IPSI 182 182 182 182 182 182 

SI 182 182 182 182 182 182 

MCSE 182 182 182 182 182 182 

MCS 182 182 182 182 182 182 

MCD 182 182 182 182 182 182 

Variables Entered/Removeda 

Model Variables Entered Variables Removed Method 

1 MCSE, IPSI, SIb . Enter 

2 MCD, MCSb . Enter 

a. Dependent Variable: AI 

b. All requested variables entered. 



146 

 

Model Summaryc 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

Durbin-

Watson 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .661a .437 .427 .86847 .437 46.050 3 178 .000  

2 .696b .484 .469 .83603 .047 8.039 2 176 .000 .760 

a. Predictors: (Constant), MCSE, IPSI, SI 

b. Predictors: (Constant), MCSE, IPSI, SI, MCD, MCS 

c. Dependent Variable: AI 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 104.198 3 34.733 46.050 .000b 

Residual 134.253 178 .754   

Total 238.452 181    

2 Regression 115.436 5 23.087 33.031 .000c 

Residual 123.016 176 .699   

Total 238.452 181    

a. Dependent Variable: AI 

b. Predictors: (Constant), MCSE, IPSI, SI 

c. Predictors: (Constant), MCSE, IPSI, SI, MCD, MCS 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) .673 .458  1.470 .143   

IPSI .060 .025 .141 2.406 .017 .924 1.082 

SI .058 .058 .061 1.003 .317 .851 1.175 

MCSE .717 .077 .582 9.254 .000 .799 1.251 

2 (Constant) 1.240 .760  1.632 .104   

IPSI .033 .025 .077 1.316 .190 .855 1.170 

SI .016 .057 .016 .274 .784 .821 1.217 

MCSE .532 .088 .432 6.058 .000 .577 1.734 

MCS .221 .098 .200 2.253 .025 .372 2.688 

MCD -.098 .070 -.114 -1.395 .165 .436 2.293 

a. Dependent Variable: AI 

CollinearityDiagnosticsa 

Model Dimension Eigenvalue Condition Variance Proportions 
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Index (Constant) IPSI SI MCSE MCS MCD 

1 1 3.912 1.000 .00 .00 .00 .00   

2 .052 8.660 .02 .19 .78 .00   

3 .023 13.129 .12 .74 .20 .31   

4 .013 17.414 .86 .06 .01 .69   

2 1 5.650 1.000 .00 .00 .00 .00 .00 .00 

2 .258 4.679 .00 .00 .01 .00 .00 .29 

3 .051 10.477 .00 .16 .79 .00 .01 .01 

4 .025 15.101 .01 .76 .19 .13 .06 .00 

5 .011 23.144 .03 .05 .00 .81 .43 .00 

6 .005 33.491 .96 .03 .01 .06 .50 .69 

a. Dependent Variable: AI 

 

2, Mediation analysis using PROCESS Procedure by Hayes (2013): 

Mediation Analysis: 

Process by Andrew Hayes 

Run MATRIX procedure: 

 

***************** PROCESS Procedure for SPSS Release 2.10 **************** 

 

          Written by Andrew F. Hayes, Ph.D.       www.afhayes.com 

    Documentation available in Hayes (2013). www.guilford.com/p/hayes3 

 

************************************************************************** 

Model = 4 

    Y = AI 

    X = IPSI 

   M1 = MCS 

   M2 = MCD 

 

Sample size 

        182 

************************************************************************** 

Outcome: MCS 

 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .3716      .1381    28.8411     1.0000   180.0000      .0000 

 

Model 

    coeff         se          t          p       LLCI       ULCI 

constant     3.8442      .3592    10.7015      .0000     3.1354     4.5530 

IPSI           .1447      .0270     5.3704      .0000      .0916      .1979 

 

************************************************************************** 

Outcome: MCD 

 

Model Summary 
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          R       R-sq          F        df1        df2          p 

      .3154      .0995    19.8822     1.0000   180.0000      .0000 

 

Model 

    coeff         se          t          p       LLCI       ULCI 

constant     4.6380      .4734     9.7967      .0000     3.7038     5.5721 

IPSI          -.1584      .0355    -4.4590      .0000     -.2285     -.0883 

 

************************************************************************** 

Outcome: AI 

 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .6076      .3692    34.7282     3.0000   178.0000      .0000 

 

Model 

    coeff         se          t          p       LLCI       ULCI 

constant     3.0972      .7609     4.0705      .0001     1.5956     4.5987 

MCS           .4429      .1000     4.4296      .0000      .2456      .6402 

MCD          -.1706      .0759    -2.2484      .0258     -.3203     -.0209 

IPSI           .0412      .0276     1.4913      .1377     -.0133      .0957 

 

******************** DIRECT AND INDIRECT EFFECTS ************************* 

 

Effect         SE          t          p       LLCI       ULCI 

      .0412      .0276     1.4913      .1377     -.0133      .0957 

 

Indirect effect of X on Y 

  Effect    Boot SE   BootLLCI   BootULCI 

TOTAL      .0911      .0204      .0560      .1364 

MCS        .0641      .0212      .0271      .1105 

MCD        .0270      .0154      .0063      .0675 

 

******************** ANALYSIS NOTES AND WARNINGS ************************* 

 

Number of bootstrap samples for bias corrected bootstrap confidence intervals: 

     1000 

 

Level of confidence for all confidence intervals in output: 

    95.00 

 

------ END MATRIX ----- 

 

Direct effect: .0412 

Indirect effect: .0911 

The ratio of indirect to direct effect (.0911/.0412 = 2.21) and the proportion of the total effect 

due to the indirect effect (.0911/.1323=.6886) 

 
 

Run MATRIX procedure: 

 

***************** PROCESS Procedure for SPSS Release 2.10 **************** 
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          Written by Andrew F. Hayes, Ph.D.       www.afhayes.com 

    Documentation available in Hayes (2013). www.guilford.com/p/hayes3 

 

************************************************************************** 

Model = 4 

    Y = AI 

    X = IPSI 

   M1 = MCS 

   M2 = MCD 

 

Sample size 

        182 

 

************************************************************************** 

Outcome: MCS 

 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .3716      .1381    28.8411     1.0000   180.0000      .0000 

 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     3.8442      .3592    10.7015      .0000     3.1354     4.5530 

IPSI          .1447      .0270     5.3704      .0000      .0916      .1979 

 

************************************************************************** 

Outcome: MCD 

 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .3154      .0995    19.8822     1.0000   180.0000      .0000 

 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     4.6380      .4734     9.7967      .0000     3.7038     5.5721 

IPSI         -.1584      .0355    -4.4590      .0000     -.2285     -.0883 

 

************************************************************************** 

Outcome: AI 

 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .6076      .3692    34.7282     3.0000   178.0000      .0000 

 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     3.0972      .7609     4.0705      .0001     1.5956     4.5987 

MCS           .4429      .1000     4.4296      .0000      .2456      .6402 

MCD          -.1706      .0759    -2.2484      .0258     -.3203     -.0209 

IPSI          .0412      .0276     1.4913      .1377     -.0133      .0957 

 

******************** DIRECT AND INDIRECT EFFECTS ************************* 

 

Direct effect of X on Y 

     Effect         SE          t          p       LLCI       ULCI 

      .0412      .0276     1.4913      .1377     -.0133      .0957 
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Indirect effect of X on Y 

          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL      .0911      .0200      .0573      .1360 

MCS        .0641      .0203      .0289      .1103 

MCD        .0270      .0155      .0056      .0679 

 

Partially standardized indirect effect of X on Y 

          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL      .0794      .0150      .0526      .1105 

MCS        .0559      .0167      .0253      .0911 

MCD        .0235      .0131      .0049      .0563 

 

Completely standardized indirect effect of X on Y 

          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL      .2121      .0428      .1347      .3024 

MCS        .1492      .0463      .0673      .2513 

MCD        .0629      .0350      .0126      .1514 

 

Ratio of indirect to total effect of X on Y 

          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL      .6888      .2197      .4331     1.2852 

MCS        .4846      .1793      .2282      .9571 

MCD        .2042      .1439      .0376      .6230 

 

Ratio of indirect to direct effect of X on Y 

          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL     2.2132    88.1543    -3.1700    81.4636 

MCS       1.5570    61.8771    -1.2351    55.6463 

MCD        .6562    33.3592    -1.2792    25.7859 

 

Normal theory tests for specific indirect effects 

        Effect         se          Z          p 

MCS      .0641      .0190     3.3824      .0007 

MCD      .0270      .0137     1.9686      .0490 

 

******************** ANALYSIS NOTES AND WARNINGS ************************* 

 

Number of bootstrap samples for bias corrected bootstrap confidence intervals: 

     5000 

 

Level of confidence for all confidence intervals in output: 

    95.00 

 

------ END MATRIX ----- 
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APPENDIX D. MAIN STUDY SPSS OUTPUT 
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1. Multiple regression analysis: 

Regression 
Descriptive Statistics 

 Mean Std. Deviation N 

AI 5.475564 1.3154971 266 
IPSI 10.039269 3.2378563 266 
SI 3.924812 1.3574032 266 
MCSE 4.926065 1.3027810 266 
MCS 5.107769 1.2097084 266 
MCD 3.587719 1.4061976 266 

 
Correlations 

 AI IPSI SI MCSE MCS MCD 

Pearson Correlation AI 1.000 .538 .237 .725 .646 -.154 

IPSI .538 1.000 .184 .500 .631 -.274 

SI .237 .184 1.000 .416 .257 .128 

MCSE .725 .500 .416 1.000 .648 -.194 

MCS .646 .631 .257 .648 1.000 -.338 

MCD -.154 -.274 .128 -.194 -.338 1.000 

Sig. (1-tailed) AI . .000 .000 .000 .000 .006 

IPSI .000 . .001 .000 .000 .000 

SI .000 .001 . .000 .000 .019 

MCSE .000 .000 .000 . .000 .001 

MCS .000 .000 .000 .000 . .000 

MCD .006 .000 .019 .001 .000 . 

N AI 266 266 266 266 266 266 

IPSI 266 266 266 266 266 266 

SI 266 266 266 266 266 266 

MCSE 266 266 266 266 266 266 

MCS 266 266 266 266 266 266 

MCD 266 266 266 266 266 266 

Variables Entered/Removeda 

Model Variables Entered Variables Removed Method 

1 MCSE, SI, IPSIb . Enter 
2 MCD, MCSb . Enter 

a. Dependent Variable: AI 
b. All requested variables entered. 

Model Summary 

Model R 
R 

Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Change Statistics 

R Square 
Change 

F 
Change df1 df2 

Sig. F 
Change 

1 .755a .571 .566 .8670056 .571 116.024 3 262 .000 
2 .775b .601 .594 .8385174 .031 10.053 2 260 .000 

a. Predictors: (Constant), MCSE, SI, IPSI 
b. Predictors: (Constant), MCSE, SI, IPSI, MCD, MCS 

 
ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 261.646 3 87.215 116.024 .000b 

Residual 196.945 262 .752   
Total 458.591 265    

2 Regression 275.782 5 55.156 78.446 .000c 

Residual 182.809 260 .703   
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Total 458.591 265    
a. Dependent Variable: AI 
b. Predictors: (Constant), MCSE, SI, IPSI 
c. Predictors: (Constant), MCSE, SI, IPSI, MCD, MCS 

 
Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Correlations 
Collinearity 
Statistics 

B 
Std. 
Error Beta 

Zero-
order Partial Part Tolerance VIF 

1 (Constant) 1.627 .235  6.924 .000      
IPSI .094 .019 .231 4.943 .000 .538 .292 .200 .749 1.335 

SI -.070 .043 -.072 -1.614 .108 .237 -.099 -.065 .826 1.211 

MCSE .645 .051 .639 12.635 .000 .725 .615 .512 .641 1.560 

2 (Constant) .808 .322  2.510 .013      
IPSI .060 .021 .146 2.855 .005 .538 .174 .112 .583 1.716 

SI -.090 .043 -.093 -2.105 .036 .237 -.129 -.082 .779 1.283 

MCSE .546 .056 .541 9.781 .000 .725 .519 .383 .501 1.996 

MCS .280 .065 .258 4.328 .000 .646 .259 .169 .433 2.311 

MCD .085 .040 .090 2.100 .037 -.154 .129 .082 .828 1.208 

a. Dependent Variable: AI 
Excluded Variablesa 

Model Beta In t Sig. 
Partial 

Correlation 

Collinearity Statistics 

Tolerance VIF 
Minimum 
Tolerance 

1 MCS .230b 3.936 .000 .237 .455 2.198 .455 

MCD .049b 1.132 .259 .070 .871 1.148 .626 

a. Dependent Variable: AI 
b. Predictors in the Model: (Constant), MCSE, SI, IPSI 

Collinearity Diagnosticsa 

Model Dimension Eigenvalue 
Condition 

Index 

Variance Proportions 

(Constant) IPSI SI MCSE MCS MCD 

1 1 3.845 1.000 .00 .00 .01 .00   
2 .083 6.819 .00 .34 .63 .00   
3 .041 9.680 .73 .46 .29 .01   
4 .031 11.157 .27 .20 .08 .98   

2 1 5.667 1.000 .00 .00 .00 .00 .00 .00 

2 .178 5.636 .00 .05 .00 .01 .01 .43 

3 .078 8.520 .01 .09 .80 .00 .01 .09 

4 .037 12.373 .05 .76 .15 .22 .05 .04 

5 .024 15.398 .44 .03 .05 .61 .06 .24 

6 .015 19.258 .49 .07 .00 .16 .88 .21 

a. Dependent Variable: AI 

2. Mediation Analysis using PROCESS 
 

***************** PROCESS Procedure for SPSS Release 2.10 **************** 

 

          Written by Andrew F. Hayes, Ph.D.       www.afhayes.com 

    Documentation available in Hayes (2013). www.guilford.com/p/hayes3 

 

************************************************************************** 
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Model = 4 

    Y = AI 

    X = IPSI 

   M1 = MCS 

   M2 = MCD 

Sample size 

        266 

************************************************************************** 

Outcome: MCS 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .6309      .3981   174.5956     1.0000   264.0000      .0000 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     2.7413      .1882    14.5695      .0000     2.3708     3.1117 

IPSI          .2357      .0178    13.2135      .0000      .2006      .2709 

************************************************************************** 

Outcome: MCD 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .2742      .0752    21.4596     1.0000   264.0000      .0000 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     4.7832      .2711    17.6435      .0000     4.2494     5.3170 

IPSI         -.1191      .0257    -4.6324      .0000     -.1697     -.0685 

************************************************************************** 

Outcome: AI 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .6725      .4522    72.1035     3.0000   262.0000      .0000 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     1.2955      .3685     3.5152      .0005      .5698     2.0212 

MCS           .5802      .0657     8.8283      .0000      .4508      .7096 

MCD           .0828      .0456     1.8150      .0707     -.0070      .1726 

IPSI          .0916      .0240     3.8123      .0002      .0443      .1389 

************************** TOTAL EFFECT MODEL **************************** 

Outcome: AI 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .5378      .2892   107.4381     1.0000   264.0000      .0000 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     3.2819      .2223    14.7612      .0000     2.8441     3.7197 

IPSI          .2185      .0211    10.3652      .0000      .1770      .2600 

 

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ******************** 

 

Total effect of X on Y 

     Effect         SE          t          p       LLCI       ULCI 

      .2185      .0211    10.3652      .0000      .1770      .2600 

 

Direct effect of X on Y 

     Effect         SE          t          p       LLCI       ULCI 

      .0916      .0240     3.8123      .0002      .0443      .1389 

 

Indirect effect of X on Y 
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          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL      .1269      .0258      .0800      .1805 

MCS        .1368      .0249      .0914      .1895 

MCD       -.0099      .0056     -.0243     -.0011 

(C1)       .1466      .0253      .1012      .2003 

 

Partially standardized indirect effect of X on Y 

          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL      .0965      .0186      .0609      .1347 

MCS        .1040      .0180      .0713      .1415 

MCD       -.0075      .0044     -.0186     -.0008 

 

Completely standardized indirect effect of X on Y 

          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL      .3124      .0565      .2065      .4293 

MCS        .3366      .0546      .2376      .4515 

MCD       -.0243      .0143     -.0617     -.0025 

 

Ratio of indirect to total effect of X on Y 

          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL      .5808      .1260      .3628      .8571 

MCS        .6259      .1276      .4098      .9136 

MCD       -.0451      .0281     -.1212     -.0047 

 

Ratio of indirect to direct effect of X on Y 

          Effect    Boot SE   BootLLCI   BootULCI 

TOTAL     1.3854    15.3268      .5627     5.8290 

MCS       1.4930    16.5790      .6378     6.2657 

MCD       -.1076     1.2739     -.4746     -.0075 

 

Normal theory tests for specific indirect effects 

         Effect         se          Z          p 

MCS       .1368      .0187     7.3262      .0000 

MCD      -.0099      .0059    -1.6568      .0976 

 

Specific indirect effect contrast definitions 

(C1)   MCS        minus      MCD 

 

******************** ANALYSIS NOTES AND WARNINGS ************************* 

 

Number of bootstrap samples for bias corrected bootstrap confidence intervals: 

     5000 

 

Level of confidence for all confidence intervals in output: 

    95.00 

 

------ END MATRIX ----- 
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3. Moderation Analysis:  

 

 

 

 

 

Results: 

***************** PROCESS Procedure for SPSS Release 2.10 **************** 

 

          Written by Andrew F. Hayes, Ph.D.       www.afhayes.com 

    Documentation available in Hayes (2013). www.guilford.com/p/hayes3 

 

************************************************************************** 

Model = 1 

    Y = AI 

    X = SI 

    M = MCSE 

Sample size 

        266 

************************************************************************** 

Outcome: AI 

Model Summary 

          R       R-sq          F        df1        df2          p 

      .7359      .5416   103.1822     3.0000   262.0000      .0000 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     5.4215      .0590    91.9329      .0000     5.3053     5.5376 

MCSE          .8040      .0490    16.4180      .0000      .7076      .9005 

SI           -.1249      .0486    -2.5701      .0107     -.2205     -.0292 

int_1         .0738      .0293     2.5196      .0123      .0161      .1315 

 

Interactions: 

 int_1    SI          X     MCSE 

R-square increase due to interaction(s): 

         R2-chng          F        df1        df2          p 

int_1      .0111     6.3485     1.0000   262.0000      .0123 

************************************************************************* 

Conditional effect of X on Y at values of the moderator(s): 

       MCSE     Effect         se          t          p       LLCI       ULCI 

    -1.9261     -.2670      .0879    -3.0386      .0026     -.4400     -.0940 

     -.9261     -.1932      .0644    -3.0015      .0029     -.3200     -.0665 

      .4073     -.0948      .0452    -2.0982      .0368     -.1838     -.0058 

     1.0739     -.0456      .0462     -.9875      .3243     -.1366      .0454 

     1.7406      .0036      .0547      .0651      .9481     -.1041      .1112 

 

Values for quantitative moderators are 10th, 25th, 50th, 75th, and 90th 

percentiles. 

********************* JOHNSON-NEYMAN TECHNIQUE ************************** 

Moderator value(s) defining Johnson-Neyman significance region(s): 

Social 

influence 

Mobile computing 

self-efficacy 

Mobile-computing-

device-adoption intention 
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      Value    % below    % above 

     5.4218    61.2782    38.7218 

 

Conditional effect of X on Y at values of the moderator (M) 

       MCSE     Effect         se          t          p       LLCI       ULCI 

     1.0000     -.4146      .1415    -2.9299      .0037     -.6932     -.1360 

     1.3000     -.3924      .1332    -2.9465      .0035     -.6547     -.1302 

     1.6000     -.3703      .1249    -2.9638      .0033     -.6163     -.1243 

     1.9000     -.3482      .1168    -2.9814      .0031     -.5781     -.1182 

     2.2000     -.3260      .1087    -2.9991      .0030     -.5401     -.1120 

     2.5000     -.3039      .1008    -3.0160      .0028     -.5023     -.1055 

     2.8000     -.2818      .0930    -3.0308      .0027     -.4648     -.0987 

     3.1000     -.2596      .0854    -3.0415      .0026     -.4277     -.0915 

     3.4000     -.2375      .0780    -3.0446      .0026     -.3911     -.0839 

     3.7000     -.2153      .0710    -3.0343      .0027     -.3551     -.0756 

     4.0000     -.1932      .0644    -3.0015      .0029     -.3200     -.0665 

     4.3000     -.1711      .0584    -2.9317      .0037     -.2860     -.0562 

     4.6000     -.1489      .0531    -2.8043      .0054     -.2535     -.0444 

     4.9000     -.1268      .0489    -2.5933      .0100     -.2231     -.0305 

     5.2000     -.1047      .0460    -2.2757      .0237     -.1952     -.0141 

     5.4218     -.0883      .0448    -1.9691      .0500     -.1766      .0000 

     5.5000     -.0825      .0447    -1.8481      .0657     -.1705      .0054 

     5.8000     -.0604      .0450    -1.3412      .1810     -.1490      .0283 

     6.1000     -.0383      .0471     -.8128      .4171     -.1309      .0544 

     6.4000     -.0161      .0506     -.3187      .7502     -.1157      .0834 

     6.7000      .0060      .0553      .1090      .9133     -.1028      .1148 

     7.0000      .0282      .0609      .4627      .6440     -.0917      .1480 

 

******************** ANALYSIS NOTES AND WARNINGS ************************* 

 

Level of confidence for all confidence intervals in output: 

    95.00 

------ END MATRIX ----- 
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