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ABSTRACT

We present a new way to model general integer programming (IP) problems with in-

equality and equality constraints using XQX. We begin with the definition of IP problems

followed by their practical applications, and then present the existing XQX based models to

handle such problems. We then present our XQX model for general IP problems (including

binary IP) with equality and inequality constraints, and also show how this model can be

applied to problems with just inequality constraints. We then present the local optima based

solution procedure for our XQX model. We also present new theorems and their proofs for

our XQX model. Next, we present a detailed literature survey on the 0-1 multidimensional

knapsack problem (MDKP) and apply our XQX model using our simple heuristic procedure

to solve benchmark problems. The 0-1 MDKP is a binary IP problem with inequality con-

straints and variables with binary values. We apply our XQX model using a heuristics we

developed on 0-1 MDKP problems of various sizes and found that our model can handle

any problem sizes and can provide reasonable quality results in reasonable time. Finally, we

apply our XQX model developed for general integer programming problems on the general

multi-dimensional knapsack problems. The general MDKP is a general IP problem with

inequality constraints where the variables are positive integers. We apply our XQX model

on GMDKP problems of various sizes and find that it can provide reasonable quality results

in reasonable time. We also find that it can handle problems of any size and provide fea-

sible and good quality solutions irrespective of the starting solutions. We conclude with a

discussion of some issues related with our XQX model.
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CHAPTER 1

INTRODUCTION

The objective of this work is to present a new way to model general integer programming

(IP) problems, which contains both inequality and equality constraints using XQX. Our new

model allows any general IP which contains only inequality constraints, or a combination

of inequality and equality constraints to be modeled using XQX. The XQX method or the

unconstrained quadratic programming method allows re-casting a problem and this method

has been in existence since 1968 (Kochenberger & Glover, 2006). The re-casting method is

similar to a Quadratic Lagrangian relaxation method where the constraints are combined

with the objective function value to create a single function and this function is used to

solve for optimality.

Many real life applications such as train scheduling, airline crew scheduling, production

planning, electricity generation planning, telecommunication networks, and many others can

be modeled as IP problems. The fundamental procedure (Wolsey, 1998) to model an IP is

first to define the necessary variables, then use these variables to define a set of feasible

constraints, and finally use these variables to define the objective function. If needed, addi-

tional variables or constraints are defined if difficulties arise. To solve difficult problems, the

literature has considered additional modeling techniques such as linear relaxations, combi-

natorial relaxations, Lagrangian relaxations, duality, and XQX to increase the efficiency of

the solution procedures. To solve IP models, the solutions procedures available in literature

can be broadly classified in to two groups namely exact procedures and heuristic procedures.

Methods such as brach & bound, dynamic programming, and cutting plane are some of the
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exact solution methods, and these methods have been used effectively to solve small IP prob-

lems with a limited number of variables. The branch & bound procedure to solve problems

with a large number of variables n creates an exponential growth of 2n subproblems (Bosch

& Trick, 2005), hence making it unsuitable for such problem types. To handle problems

with a large number of variables, exact solution procedures are coupled with heuristics such

as Annealing, tabu search, genetic algorithm and others to effectively solve large problems

within a reasonable amount of time. Readers are referred to Jünger et al. (2008), Wolsey

(1998), and Chen et al. (2011) for details of the above modeling and solution methods since

their review is out of our scope.

The XQX based modeling for general IP problems, which forms the basis of this thesis,

has been applied to solve many IP problems with binary variables (xi ∈ {0, 1}) and equality

constraints, and a very limited number of binary variables with inequality constraints were

also considered in the literature (Kochenberger et al., 2004).

In our extensive literature search, the XQX based modeling for IP problems with in-

equality and equality constraints, or problems with just inequality constraints, does not

exist. The current literature on XQX only considers problems with binary variables and

equality constraints. Also, the XQX method we propose to model IP problems with bi-

nary variables and inequality constraints (binary IP problems) is different from the existing

methods available.

1.1 Problem Statement

Our contribution to the existing literature with this work is as follows:

• Model a general IP problem and binary IP problem using XQX. The model developed

is very general, which allows inequality, equality, or a combination of both.

• Local optima based solution procedures for the XQX model for general and binary IP

problems.
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• To apply our XQX model for binary IP problems, we solve benchmark instances of the

0-1 multidimensional knapsack problem using a simple heuristics developed based on

XQX model. The variables in this knapsack problem are boolean (xi ∈ {0, 1}), and

the constraints can be equalities or inequalities.

• To apply our XQX model for general IP problems, we solve benchmark instances of

general multidimensional knapsack problem using a simple heuristics developed based

on XQX model. The variables in this knapsack problem are integers (xi ∈ Z+), and

the constraints can be equalities or inequalities.

1.2 Overview of the Remainder of Thesis
In Chapter 2, we begin with the definition of the IP problem, provide real world appli-

cations of IP problems, and then present the existing XQX based modeling approach for

IP problems. We then present our detailed derivations of our XQX model for general and

binary IP problems with equality and inequality constraints. Finally, we present our local

optima based solution procedures for general and binary IP problems based on the XQX

model obtained.

In Chapter 3, we begin with the definition of the 0-1 multidimensional knapsack problem,

describe the real life applications for this problem, and provide a detailed literature review

on the state of the art algorithms. We then apply our XQX model for binary IP to solve

benchmark instances using a basic heuristics developed based on our model, and finally

present the results from solving benchmark problems.

In Chapter 4, we define and provide a detailed literature survey for the general multidi-

mensional knapsack problem, including its application in real life. We then apply our XQX

model for general IP to solve benchmark instances using a basic heuristics developed based

on our model, and finally present the results from solving benchmark problems.

Finally in Chapter 5, we present our conclusions from this work and identify possible

extensions.
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CHAPTER 2

XQX MODELING FOR IP PROBLEMS

In this chapter, we begin with an overview of IP problems and provide few examples

of their application in various industries. We then describe the XQX and neural network

method currently available in literature to model IP problems. Detailed derivations of our

XQX model for the general and binary IP problems are presented next. Finally we present

the solution procedures for the general and binary IP problems.

2.1 Integer Program

The IP problems are a class of constrained optimization problem where the variables

or unknowns are required to be integers. The IP problems are among the most important

combinatorial optimization models in management science and have many real life applica-

tions such as design and implementations of supply chain management. The IP problems

are also much harder to solve when compared with a linear program where the unknowns

are real instead of integer values. Following are some of the successful integer programming

applications in various industries (Chen et al., 2011):

• Airline

IP model to determine least-cost crew.

IP algorithm to build flight crew schedules.

Network optimization model to help reduce delays caused in air traffic.

IP based system to generate optimal crew recovery solutions.
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• Railway

IP based algorithm for distributing empty cars and planning locomotive use.

IP model to develop alternative set of scheduling routes.

• Telephone

IP based optimization tool to improve productivity.

IP based decision support to design robust fiber optic networks.

• Automobile

IP model to shorten planning process and establish global procedures.

Create network tools to reduce logistics cost.

• Energy

IP and network managing tools to manage a system of reservoirs.

IP based algorithm to reduce fuel costs for power generation.

One can see that IP problems arise in various walks of life, and also provide several

millions of dollars savings when they are modeled and solved. We now proceed to formally

define an IP problem and then present the XQX based modeling currently available in

literature.

2.2 Definition of IP

The following definition of the IP problem is stated from Wolsey (1998):

“Suppose we have a linear program (a maximization problem)

max{dx : Ax ≤ b, x ≥ 0}, (2.1)
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where A is an m by n matrix, d an n-dimensional row vector, b an m-dimensional column

vector, and x an n-dimensional column vector of variables or unknowns. If all the variables

are integers, written as

max dx

subject to Ax ≤ b

x ≥ 0 and integer,

(2.2)

then the above form (otherwise known as canonical form) is called an (Linear) Integer

Program. If the variables in (2.2) are restricted to 0 or 1, then it is known as the Binary

Integer Program.” A standard form of the above IP problem is obtained by adding slack

variables, which converts the inequality constraints to equality constraints.

2.3 Existing XQX Based Modeling Methods

The existing XQX based models only consider binary variables with equality constraints.

A few inequality constrained IP problems with binary variables have been modeled using

penalties, which is different from what we propose. Also, the neural network based model

(same as XQX) only considers binary variables with equality constraints, and in some cases

the binary variables are treated as continuous between 0 and 1.

The XQX based modeling, also known as the unconstrained quadratic program, refers

to the following model after the problem has been transformed (Kochenberger et al., 2004):

UQP: min f(x) = xQx. (2.3)

Here Q is an n x n matrix of constants and x is an n-vector of binary variables. The

following example from Kochenberger et al. (2004) shows how a transformation is performed:

6



min x0 = xQx

subject to Ax = b

x ∈ {0, 1},

(2.4)

where the the objective function is recasted as a diagonal Q matrix; x2j equals xj when

xj is binary. The constraint is then written as:

P (Ax− b)>(Ax− b), (2.5)

where P is a large positive number for the penalty. The term in equation (2.5) is added

to the objective function from (2.4), and the following is obtained:

x0 = xQx+ P (Ax− b)>(Ax− b)

= xQX + xDx+ c

= xQ̂x+ c,

(2.6)

where the D matrix and the constant c result from the matrix multiplication in (2.5).

Additional equality constraints in a problem are handled similarly as shown in (2.5) and

are added to the objective function. Note that, if the problem is a maximization problem,

then the constraints are subtracted from the objective function instead of being added.

The tutorial presented by Kochenberger & Glover (2006) considers equality constrained

IP problems with binary variables and special cases of inequalities with binary variables.

To handle inequalities the authors propose penalty functions, shown in Table 2.1, where

each inequality constraint is converted to the equivalent penalty and then added to the

objective function (Alidaee et al., 2008). A recent Ph.D. thesis by Wang (2014) presented

metaheuristics for unconstrained binary quadratic problems. One problem considered in

their work is the maximum clique problem, which is a problem with inequality constraints

and binary variables. To obtain XQX transformation, penalty based methods shown in Table

7



2.1 were applied. Note that the penalty based method only works when the coefficients of

variables in the constraints are equal to 1. In other cases, the penalty based transformation

does not work. A very recent survey on XQX by Kochenberger et al. (2014) suggests the

same penalty based transformations given in Table 2.1.

Classical Constraint Equivalent Penalty

x+ y ≤ 1 P (xy)

x+ y ≥ 1 P (1− x− y + xy)

Table 2.1: Penalties for inequality constraints.

2.3.1 Neural Network Based Models

The neural network based method to re-cast the problem is exactly the same as the XQX

method (an example problem shown by Smith (1999) is exactly the same when compared

to the transformation shown in (2.6)), and the final term in (2.6) is referred to as energy

function in neural network terminology. The application of neural networks to provide so-

lutions to NP-hard problems was proposed by Hopfield & Tank (1985) and is known as the

discrete Hopfield neural network method. The authors showed that combinatorial optimiza-

tion problems such as travelling sales man (TSP) can be solved using neural networks, and

the lowest value of the energy function corresponds to the best path found for the TSP

problem. The review done by Smith (1999) notes that equality constrained IP problems

with binary variables have been successfully modeled using the neural network method, and

the case of inequalities with binary variables was handled using the continuous (by treat-

ing binary variables as real values between 0 and 1) neural network approach. In neural

network based procedures, the main method used to convert a constrained problem to an

unconstrained problem is the exterior penalty function as stated by Monfared & Etemadi

(2006) and Wen et al. (2009). A term is added to the objective function to penalize the

violation of constraints in the exterior penalty method. The original contribution from Abe
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et al. (1992) describes a method to handle inequality constraints for Hopfield neural net-

work. The proposed method handles inequality constraints by multiplying the right hand

side value by a variable after which the energy function is calculated. By using Eigen values

and an algorithm to determine proper weights for the energy function, the authors solve

a small instance of knapsack problem. The work done by Yamamoto et al. (1995) shows

an asymmetric neural network to solve inequality constrained optimization problems. This

method adds one neutron (variable) to each of the already existing neutrons which is then

used to create an energy function. This method depends on these additional neurons to

converge to zero in order to obtain a feasible solution. A generalized Boltzmann machine

concept was proposed by Vaithyanathan et al. (1994) to solve multidimensional knapsack

problems (MDKP). The authors have shown how to map MDKP into the Boltzmann ma-

chine and solve them using probability distribution generated from the states of neurons.

The method suggested by Talaván & Yáñez (2006) solves a generalized quadratic knapsack

problem using continuous Hopfield network. In this problem the variables or unknowns are

booleans, but the slack variables considered are continuous between 0 and 1. In a similar

approach, Lee & Hsu (1989) presented a neural network based solution method for MDKP.

Again, they have considered the variables to be continuous between 0 and 1, and an ad-

ditional term to represent the variables was added to the energy function. Ohlsson et al.

(1993) proposed a neural network based method to solve the MDKP. Their method does not

consider any slack variables and the penalty for each constraint is adjusted according to the

amount of violation. This method tends to produce final solutions that violate constraints

and is of limited practical importance as noted by Fréville (2004).

2.4 Existing Solution Procedures for XQX
To solve the model obtained in (2.6), techniques such as tabu search, genetic algorithm,

path relinking, and scatter search, among other methods, have been applied in the literature.

Lewis et al. (2005) solved their XQX model for uncapacitated task allocation problem using
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tabu search based on the use of strategic oscillation. Alidaee et al. (2008) also used the tabu

search method with strategic oscillation to solve their XQX model for set packing problems.

Douiri & Elbernoussi (2012) modeled the maximum independent set problem as XQX and

solved using genetic algorithm. Wang et al. (2012c) proposed a solution procedure for the

XQX model based on path relinking procedure. Wang et al. (2012b) presented a memetic

based algorithm to solve large instances of the XQX models.

Apart from directly applying heuristics on the XQX model, the literature has also con-

sidered applying gradient descent procedure on the model and then applying heuristics to

obtain the best solution. For example, the solution method considered by Wang et al. (2012a)

combines gradient descent with estimation of distribution algorithm and tabu search to solve

maximum diversity problems modeled as XQX. The gradient descent method is a first-order

optimization algorithm which is used to find the local minimum or local maximum based on

the gradient obtained. In gradient descent approach, the partial derivative with respect to

each variable is calculated, and the variable that gives the lowest derivative value (highest

derivative value in maximization problems) is assigned the value of 1.

To apply gradient descent to the XQX model obtained earlier, consider the expanded

form of the Q̂ matrix from (2.6),

x0 =x1(x1q11 + x2q21 + · · ·+ xnqn1)+

x2(x1q12 + x2q22 + · · ·+ xnqn2)+

...

xn(x1q1n + x2q2n + · · ·+ xnqnn) + c.

(2.7)

The partial derivative with respect to each variable is:

10



∂x0
∂x1

= q11 + x2q21 + · · ·+ xnqn1,

∂x0
∂x2

= x1q12 + q22 + · · ·+ xnqn2,

...

∂x0
∂xn

= x1q1n + x2q2n + · · ·+ qnn.

(2.8)

Note that the term x2n is represented as xn in (2.8) since the variables are binary.

Starting with an initial solution, the gradient descent approach helps to choose the

variable to be added or removed based on the partial derivatives obtained. Even though

this provides a feasible solution, the best solution is obtained by coupling this variable

selection procedure with tabu search or other heuristic algorithms. To conclude this section,

the XQX model and the solution procedures in the existing literature are limited to binary

problems with equality constraints. In the next section, we present our XQX model for the

general IP problems, and the local optima based solution procedures for the same.

2.5 XQX Model for General IP Problems

In this section we formally present our XQX based model for general IP problems, and

this is a new contribution to the existing literature and also the first objective of this work.

The proposed XQX based model for general IP problems is presented for problems with

both inequality and equality constraints. Formal proof for the XQX model and its solution

procedures are presented in this section, and this forms the basis for the rest of this thesis.

In section 2.6, we provide detailed derivations of our model using example problem sets.

We define the following to aid the formal presentation of our XQX model:

• n, number of variables

• m1, number of inequality constraints

• m2, number of equality constraints

11



• m = m1 +m2, total number of constraints

• X, a vector of variables of n integer components

• S, a vector of slack variables of m1 components

• f(X,S), value of objective function evaluated at variables X and slack variables S

(sometimes written as f(X))

• D (also d), a vector of n components

• A1, an m1 by n matrix

• A2, an m2 by n matrix

• A = A1 ∪ A2

• aij, the ij-th component of A

• aj, the j-th column vector of A

• B (also b), a column vector of m numbers

• B1, a column vector of m1 numbers

• B2, a column vector of m2 numbers

• Ik, a k x k identity matrix

• ek, k-th column vector of Ik

• a · b (also ab), dot product of two vectors a and b

• L, an n x n symmetric matrix

• K, a finite set

12



• P , a large enough constant

Suppose we have a general integer program P1 (a minimization problem), and the ob-

jective of this problem is to find the a vector X = (X1, . . . , Xn) to satisfy P1.

(P1) Min f(X) = DX

subject to A1X ≤ B1

A2X = B2

X ∈ K, and integer,

(2.9)

where we let K = {Xj : lj ≤ Xj ≤ uj, for j = 1, . . . , n}, where 0 ≤ lj ≤ uj.

We have the following equivalent problem without inequality constraints by adding slack

variables S to the first set of constraints in P1.

(P1) Min f(X) = DX

subject to A1X + S = B1

A2X = B2

X ∈ K, and integer,

S ≥ 0.

(2.10)

Let Y = {X ∈ K, and integer : A1X ≤ B1, and A2X = B2} and Y = K\Y complement

of Y .

Define a penalty function L(X) by

L(X) =


0, if X ∈ Y.

≥ L∗ > 0, if X ∈ Y .
(2.11)
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Here L∗ in the definition of L(X) is a constant number. In the literature, different

alternatives for L(X) have been proposed. Two such cases are quadratic penalties which

are defined as follows:

L1(X) =

m1∑
i=1

max

(
0,

n∑
j=1

aijXj − bi

)2

+

m2∑
i=1

(
n∑

j=1

aijXj − bi

)2

.

L2(X) =

m1∑
i=1

(
n∑

j=1

aijXj + Si − bi

)2

+

m2∑
i=1

(
n∑

j=1

aijXj − bi

)2

.

(2.12)

Lemma 1: Given a vector (X1, . . . , Xn), define each slack variable Sk(k = 1, . . . ,m1) by

S∗k = bk −
n∑

j=1

akjXj, and

Sk =


S∗k , if S∗k ≥ 0,

0, otherwise,

(2.13)

then, L1(X) and L2(X) are the same.

Proof of the lemma is straightforward, and we omit it here. In this research we use the

penalty function under the condition where lemma 1 is satisfied.

Given a constant P ≥ 0, the quadratic dual problem of P1, namely P2, can be defined

as follows:

(P2) Min F (X,P ) = f(X) + PL(X)

s.t. X ∈ K, and integer.

(2.14)

It is well known that under suitable conditions problem P2 is an exact method for

problem P1, i.e., solution of P2 solves problem P1 (Luenberger, 1973), (Luenberger & Ye,

2008), (Sinclair, 1986), (Li & Sun, 2006), and (Ben Hadj-Alouane & Bean, 1997). Some of

the useful results from the literature can be summarized as follows:
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(a) Let X∗ be the optimal solution to P1. Given a constant P ≥ 0, let X be optimal

solution to P2. We then have

F (X,P ) = f(X) + PL(X) ≤ f(X∗).

(b) Given a series of constant numbers Pk ≥ 0 (for k = 1, 2, . . .) such that Pk < Pk+1, let

Xk be the optimal solution for P2 for Pk. The following relations hold true under this

condition:

(1) F (Xk, Pk) ≤ F (Xk+1, Pk+1)

(2) L(Xk) ≥ L(Xk+1)

(3) f(Xk) ≤ f(Xk+1)

(4) f(Xk) ≤ F (Xk, Pk) ≤ f(X∗)

(c) Let f be a lower bound of MinX∈Kf(X) and γ > 0 be a lower bound of MinX∈K\Y f(X).

Suppose K\Y 6= ∅, then, there exists a P0 such that for any P > P0, any solution X∗

that solves P2 also solves P1 and F (X∗, P ) = f(X∗). A value of P0 is given by

P0 =
f(X∗)− f

γ
. (2.15)

(d) Let f be an upper bound of the objective function of P1. If constraints A1X + S −B1

and A2X − B2 are integer-valued on K, then for any P > P0 = f − f , any solution

X∗ that solves P2 also solves P1 and F (X∗, P ) = f(X∗) (where L(X) is defined by

quadratic form.)

Note that in (c) the value of P0 depends on f(X∗), which is the optimal solution of the

original problem, and thus it is not easy to find. In practice, however, it is (d) that is being

used. Also note that the quadratic penalty defined above is same as

L(X) = (A1X + S −B1)
>(A1X + S −B1) + (A2X −B2)

>(A2X −B2). (2.16)
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Let A =

 A1

A2

 and B =

 B1

B2

, and Im1 to be an m1 x m1 identity matrix. We then

have an equivalent optimization problem given in proposition 1.

Proposition 1: Problem (P2) can be written in the equivalent form

(P2) Min F (X,P ) =DX + P (A1X + S −B1)
>(A1X + S −B1) + P (A2X −B2)

>(A2X −B2)

(2.17a)

=DX + P

[
X S

] A>A A>1

A1 Im1


 X

S

− 2P

[
(B>A) (B1)

] X

S


+ PB>B (2.17b)

s.t. X ∈ K, and integer,

S ≥ 0.

Proof: An equality i in the form A1X + S = B1 can be written as

ai1X1 + · · ·+ aijXj + ainXn + Si = bi.

This constraint in the objective function appears as

P (ai1X1 + · · ·+ ainXn + Si − bi)2.

Carrying the quadratic operation we get

P [(a2i1X
2
1 + · · ·+ a2inX

2
n + S2

i + b2i ) + (2ai1ai2X1X2 + · · ·+ 2ai1ainX1Xn)+

(2ai1X1Si + · · ·+ 2ainXnSi)− (2ai1biX1 + · · ·+ 2ainbiXn + 2Sibi)].

Similar quantity can be given regarding an equality i in the form A2X = B2. Expanding

the quantity over all i = 1, . . . ,m, and adding DX to the objective function, we have the

desired result. A detailed derivation for this proposition is provided in section 2.6. Corollary

1 follows from proposition 1.

Corollary 1: Problem (P2) can be written in the equivalent form
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(P2) Min F (X,P ) = P

[
X S

]



a1a1 · · · a1an a1e1 · · · a1em1

...
...

...
...

ana1 · · · anan ane1 · · · anem1

e1a1 · · · e1an e1e1 · · · e1em1

...
...

...
...

em1a1 · · · em1an em1e1 · · · em1em1



 X

S



+

[
d1 − 2Pba1 · · · dn − 2Pban −2Pbe1 · · · −2Pbem1

] X

S

+ Pbb

(2.18)

s.t. X ∈ K, and integer,

S ≥ 0.

Proof: Use of Proposition 1 and applications of dot products.

Let C =

[
d1 − 2Pba1 · · · dn − 2Pban −2Pbe1 · · · −2Pbem1

]
,

and Q the matrix in the problem, then equivalently we can write P2 in a compact form as

follows:

(P2) Min F (X,P ) = CX + P [X,S]Q [X,S] (2.19)

s.t. X ∈ K, and integer,

S ≥ 0.

Although the objective function of P1 includes a linear DX, it should be clear that

we can also consider a quadratic objective function as DX + XLX where L is an n x n

symmetric matrix. In that case, after carrying P into matrix Q, we can add each ij-th

element Lij of L to ij-th element of Q and consider dual problem P2 to solve P1.
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Below we present theoretical results that help to implement a solution procedure to P2.

Since the matrix Q is symmetric, with no loss of generality we can carry penalty P into

the matrix and multiply the strict upper triangular part of Q by 2, and concentrate on the

upper triangular matrix Q. The following definitions are used in the results.

For j = 1, . . . , n define:

Cj =dj − 2Pbaj, (2.20a)

Mj =2P

(
n∑

i=1,i 6=j

ajaiXi +

m1∑
i=1

ajeiSi

)
, (2.20b)

qjj =Pajaj ≥ 0, (2.20c)

Z∗ =
−(Cj +Mj)

2qjj
, (2.20d)

∆f ∗ =
−(Cj +Mj)

2

4qjj
− (Cj +Mj + qjjXj)Xj, (2.20e)

∂∆f

∂Z
=2qjjZ +Mj + Cj, (2.20f)

Z1 =Xj, (2.20g)

Z2 =−Xj −
Cj +Mj

qjj
. (2.20h)

For k = 1, . . . ,m1 define:

Cn+k =− 2Pbek = −2Pbn+k. (2.20i)

Note that in these definitions we have ajei = aij and qjj ≥ 0. Below it will be seen that the

positivity of element qjj ≥ 0 has implications in the development of results.

Proposition 2: Given a vector (X,S) = (X1, . . . , Xj, . . . , Xn, S1, . . . , Sm1), if a component

Xj is changed to X
′
j, the value of the objective function will change by

∆f =f(X
′
, S)− f(X,S) = (X

′

j −Xj)
[
Cj +Mj + qjj(X

′

j +Xj)
]
. (2.21)
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Proof: Substitute (X1, . . . , Xj, . . . , Xn, S1, . . . , Sm1) and (X1, . . . , X
′
j, . . . , Xn, S1, . . . , Sm1)

in the objective function and cancel common terms, we then have the desired results.

Note 1: Given a vector (X,S), when Xj is changed, the amount of change ∆f is a quadratic

function of one variable, Z, given by

∆f =(Z −Xj) [Cj +Mj + qjj(Z +Xj)] . (2.22)

The amount of change is ∆f = 0 when Z1 = Xj, or, Z2 = −Xj − Cj+Mj

qjj
.

Proposition 3: The quadratic function ∆f is convex. For any component j (j = 1, . . . , n),

the critical point is given by Z∗, and the amount of change at Z∗ is equal to ∆f ∗.

Proof: Using note 1 we have ∆f , a quadratic function of one variable Z. Convexity of ∆f

now follows from the fact that qjj = Pajaj ≥ 0. Taking derivative of the quadratic function

with respect to Z (i.e., with respect to component j), we have

∂∆f

∂Z
= 2qjjZ +Mj + Cj. (2.23a)

Solving equation
∂∆f

∂Z
= 0 gives the critical point equal to

Z∗ =
−(Cj +Mj)

2qjj
. (2.23b)

By substituting X
′

= (X1, . . . , Z
∗, . . . , Xn, S1, . . . , Sm1) in the quadratic function ∆f , we

have the amount of change equal to

∆f ∗ =
−(Cj +Mj)

2

4qjj
− (Cj +Mj + qjjXj)Xj. (2.24)

Note 2: Values Z∗ and ∆f ∗ depend only on known numbers. However, there is no guaran-

tee that Z∗ is integer, and even if it is integer we do not know if it is feasible for the original
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problem. Furthermore, we have Z∗ = Z1+Z2

2
.

Theorem 1: Given a vector (X1, . . . , Xj, . . . , Xn, S1, . . . , Sm1), changing a component Xj

results in one and only one of the following conditions:

(1) If Xj = 0 and Z2 ≤ 0, there is no improving value for the component j (Fig.2.1.a, b).

(2) If Xj = 0 and Z2 > 0, any integer number X
′
j ∈ (0, Z2) improves the value of the

objective function F (X,P ). If Z∗ is integer, it is the most improving, otherwise the

closest integer to Z∗ within the interval is the most improving value (Fig.2.1.c).

(3) If Xj > 0 and Z2 = Xj, there is no improving value for the component j (Fig.2.1.d).

(4) If Xj > 0 and Xj < Z2, any integer number X
′
j ∈ (Xj, Z2) improves the value of the

objective function F (X,P ). If Z∗ is integer, it is the most improving, otherwise the

closest integer to Z∗ within the interval is the most improving value (Fig.2.1.e).

(5) If Xj > 0 and 0 ≤ Z2 < Xj, any integer number X
′
j ∈ (Z2, Xj) improves the value of

objective function F (X,P ). If Z∗ is integer, it is the most improving, otherwise the

closest integer to Z∗ within the interval is the most improving value (Fig.2.1.f, g).

(6) If Xj > 0 and Z2 < 0, any integer number X
′
j ∈ [0, Xj) improves the value of the

objective function F (X,P ).

(a) If Z∗ > 0 and integer, it is the most improving, otherwise the closest integer to Z∗

within the interval is the most improving value (Fig.2.1.h).

(b) If Z∗ ≤ 0, the most improving value is X
′
j = 0 (Fig.2.1.i, j).
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Figure 2.1. All possible conditions for variable update.
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Proof: Consider the quadratic function

∆f =(Z −Xj) [Cj +Mj + qjj(Z +Xj)] . (2.25)

Equating ∆f = 0 leaves two possible situations:

Z1 =Xj and Z2 = −Xj −
Cj +Mj

qjj
. (2.26)

By Proposition 3, ∆f is quadratic and convex. Since variables must be non-negative, two

possible cases Xj = 0 and Xj > 0 can be considered.

Case 1, (Xj = 0): Here we have one of the three possible situations (Fig.2.1.a-c).

Fig.2.1.a: If Xj = Z2, changing Xj only increases the value of ∆f ; thus there is no improving

value for the component j.

Fig.2.1.b: If Z2 < Xj, all improving values are negative numbers. Since Xj cannot take

negative number; thus no improving value exists for component j.

Fig.2.1.c: If Xj < Z2, changing Xj within the interval (0, Z2) improves the value of ∆f .

Since Z∗ is the critical point, it is the most improving. However, there is no guarantee

that Z∗ is integer. If it is not integer then any integer in this interval is improving,

and clearly the closest integer to Z∗ is the most improving. If there is no integer in

(0, Z2), there is no improving value for component j.

Case 2, (Xj > 0): Here we have one of the seven possible situations (Fig.2.1.d-j).

Fig.2.1.d: If Xj = Z2, changing Xj only increases the value of ∆f ; thus there is no improving

value for component j.
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Fig.2.1.e: If Xj < Z2, changing Xj within the interval (Xj, Z2) improves the value of ∆f .

Since Z∗ is the critical point, it is the most improving. However, there is no guarantee

that Z∗ is integer. If it is not integer then any integer in this interval is improving,

and clearly the closest integer to Z∗ is the most improving. If there is no integer in

(Xj, Z2) there is no improving value for component j.

Fig.2.1.f, g: If 0 ≤ Z2 < Xj, changing Xj within the interval (Z2, Xj) improves the value

of ∆f . Since Z∗ is the critical point, it is the most improving. However, there is no

guarantee that Z∗ is integer. If it is not integer then any integer in this interval is

improving and clearly the closest integer to Z∗ is the most improving. If there is no

integer in (Z2, Xj) there is no improving value for component j.

Fig.2.1.h, i, j: If Z2 < 0, any value of Xj in the interval (Z2, Xj) is improving. However,

we must have non-negative values for all variables; thus only changing Xj within the

interval [0, Xj) that improves the value of ∆f . Depending on if Z∗ > 0 or Z∗ ≤ 0 we

have two situations.

Fig.2.1.h: If Z∗ > 0, since it is the critical point, it is the most improving. However,

there is no guarantee that Z∗ is integer. If it is not integer then any integer in [0, Xj)

is improving, and clearly the closest integer to Z∗ is the most improving. If there is

no integer number in the interval, there is no improving value for component j.

Fig.2.1.i, j: If Z∗ ≤ 0, clearly 0 ∈ [0, Xj) is an acceptable integer; thus it is

improving.

Note 3: In theorem 1 we consistently used Z∗ which is the critical value of change in objec-

tive function value, ∆f , as a result of change in a component Xj. The following proposition

emphasizes that Z∗ is equal to the critical value of the objective function F (X,P ) as a result

of change in component Xj.
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Proposition 4: Critical value of the objective function f with respect to component Xj is

Z∗ defined by

Z∗ =
−(Cj +Mj)

2qjj
. (2.27)

Proof: Taking derivative of F (X,P ) with respect to a component Xj we have

∂f

∂Xj

=Cj +Mj + 2qjjXj. (2.28)

In the above equation we have

Cj =dj − 2Pbaj, (2.29a)

Mj =

j−1∑
i=1

qijXi +
n∑

i=j+1

qjiXi + 2P

m1∑
k=1

akjSk = 2P

[
n∑

i=1,i 6=j

aiajXi +

m1∑
k=1

akjSk

]
, (2.29b)

qij =2Paiaj, and qjj = 2Pajaj. (2.29c)

Solving ∂F (X,P )
∂Xj

= 0 for the unknown component Xj we have the desired result for the

critical value Z∗.

Note 4: In theorem 1 we concentrated on changing a component Xj, however all results

are applicable to the case when a slack variable Sk for (k = 1, . . . ,m1) is changed. In this

case, results can be simplified as follows. Given a vector (X1, . . . , Xn) the optimal value, S∗,

for a component Sk is equal to

S∗ =bk −
n∑

j=1

akjXj. (2.30)

Note that components Si (for all i 6= k) does not contribute in calculation of S∗. Also note

that there is no guarantee that S∗ ≥ 0. Thus, it is clear that given (X1, . . . , Xn) the optimal
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value of Sk (k = 1, . . . ,m1) needs to be set equal to

Sk =


S∗k , if S∗k ≥ 0,

0, otherwise.

(2.31)

Theorem 1 can be used to find a local optimal solution when one component at a time

can be changed. Results of theorem 1 are further simplified in theorem 2.

Theorem 2: Given a vector (X1, . . . , Xj, . . . , Xn, S1, . . . , Sm1), a component Xj can be

improved if and only if one of the following conditions holds:

(1) If Z∗ ≥ 0 and Xj < Zj, then all integer numbers in the interval (Xj, Z2) are improving.

The most improving value is the closest integer to Z∗ (including Z∗).

(2) If Z∗ ≥ 0 and Xj > Z2, then all non-negative integer numbers in the interval (Z2, Xj)

are improving. The most improving is the closest non-negative number close to Z∗

(including Z∗).

(3) If Z∗ < 0, Xj > Z2 and Xj > 0, then all integer numbers in the interval [0, Xj) are

improving. The most improving value is 0.

Proof: It follows directly from all possible cases included in theorem 1. Improving cases

are Fig.2.1.c, Fig.2.1.e-j. If Xj = Z2, there is no improving value for the component j,

thus there is no need to consider such case. Condition 1 follows from Fig.2.1.c. Condition

2 follows from Fig.2.1.e-i. Condition 3 follows from Fig.2.1.j. Using theorem 2, a necessary

and sufficient condition for a locally optimal solution can be given as follows

Theorem 3: A solution (X1, . . . , Xj, . . . , Xn, S1, . . . , Sm1) is locally optimal for problem P2

if and only if for each component Xj one of the following holds, and each slack variable Sk
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satisfies

Sk =


S∗k , if S∗k ≥ 0,

0, otherwise,

(2.32a)

where S∗ = bk −
n∑

j=1

akjXj. (2.32b)

(1) Xj = Z2.

(2) Z2 < 0 = Xj.

(3) Xj < Z2 and there are no integer numbers in the interval (Xj, Z2).

(4) 0 ≤ Z2 ≤ Xj and there are no integer numbers in the interval (Z2, Xj).

Proof: A vector (X1, . . . , Xj, . . . , Xn, S1, . . . , Sm1) is locally optimal if and only if there is no

component improvingXj and all slack variables are optimally chosen. Theorem 1 provided 10

possible situations for each component Xj. Out of the 10 possibilities, Fig.2.1.h-j are always

improving and thus cannot happen for any component in a local optimal solution. These

situations are excluded from occurring for any component j in the theorem. Condition 1 is

the case when we have Fig.2.1.a or Fig.2.1.d where both are non-improving for a component

j. Condition 2 is the situation where Fig.2.1.b is applicable; thus all improving values are

negative. However, we never allow negative number for all Xj and Sk. Applicable figures to

condition 3 are Fig.2.1.c and Fig.2.1.e. Both situations can have improving value if and only

if there is an integer number in (Xj, Z2). Applicable figures for condition 4 are Fig.2.1.f and

Fig.2.1.g. Both situations can have improving value if and only if there is an integer number

in (Z2, Xj). This covers all possible situations for component j, (j = 1, . . . , n). Given

(X1, . . . , Xn) in order to have local optimal solution for P2, all values of Sk (k = 1, . . . ,m1)

must be optimally chosen. Based on note 4, all values of Sk (k = 1, . . . ,m1) are optimally

chosen. This completes the proof of the theorem.
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Note that after a component Xj is changed to X
′
j we update all slack variables accord-

ingly. The proposition 5 proves that for each change in slack variable the objective function

value will improve or will not change. Thus, when a component j is changed to improve the

objective function, a series of possible improving changes on slack variables are implemented.

Proposition 5: Given a vector (X1, . . . , Xj, . . . , Xn, S1, . . . , Sk, . . . , Sm1), assume compo-

nent Xj is changed to an improving value X
′
j. Then changing each slack variable Sk to S

′

k

(k = 1, . . . ,m1) will not increase the value of objective function where:

S
′

k =


S∗k , if S∗k ≥ 0,

0, otherwise,

(2.33a)

and S∗ = bk −
n∑

j=1

akjXj. (2.33b)

Proof: Assume we have changed component Xj to X
′
j. Thus for each k (k = 1, . . . ,m1)

there is a change on S∗k . Now, changing a slack variable Sk to S
′

k, the amount of change to

the objective function is equal to

∆f = (S
′

k − Sk)
[
Ck +Mk + P (S

′

k + Sk)
]

= (S
′

k − Sk)

[
−2Pbk + 2P

n∑
j=1

akjXj + P (S
′

k + Sk)

]

= P (S
′

k − Sk)

[
−2

(
bk −

n∑
j=1

akjXj

)
+ (S

′

k + Sk)

]

= P (S
′

k − Sk)
[
−2S∗k + (S

′

k + Sk)
]

= −P (S
′

k − Sk)
[
(S∗k − S

′

k) + (S∗k − Sk)
]
.

(2.34)

Two cases are considered:

Case 1, (S∗k > 0): Substitute S
′

k = S∗k in ∆f then for all Sk ≥ 0 we have ∆f = −P (S
′

k −
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Sk)2 ≤ 0. If equality holds, there is no change in the objective function; otherwise the

objective function is improved.

Case 2, (S∗k ≤ 0): Substitute S
′

k = 0 in ∆f . Now two subcases are considered.

(i) (Sk = 0): Here we have ∆f = 0; thus no change in the objective function.

(ii) (Sk > 0): Here we have ∆f = PSk[2S∗k − Sk] < 0 and thus the objective function

is improved.

Of course all presented results are applicable to the case when Xj ∈ {0, 1} for j =

1, . . . , n. However, in the case of binary variables and possibility of having general inequali-

ties, the above results can be simplified. This is due to the fact that for each j = 1, . . . , n,

we have X
′
j + Xj = 1 and X2

j = Xj. In theorem 4 we present the necessary and sufficient

condition for local optimality of a solution when one component Xj at a time is changed.

Theorem 4: A vector (X1, . . . , Xj, . . . , Xn, S1, . . . , Sm1) is locally optimal for problem P2

if and only if for each component Xj both (a) and (b) hold true.

(a) Xj = 1 ⇐⇒ ∆j(X) < 0, and Xj = 0 ⇐⇒ ∆j(X) ≥ 0,

where,

∆j(X) = Cj +Mj + qjj, (2.35a)

Mj =

j−1∑
i=1

qijXi +
n∑

i=j+1

qjiXi + 2P

m1∑
k=1

akjSk = 2P

(
n∑

i=1,i 6=j

ajaiXi +

m1∑
k=1

ejakSk

)
,

(2.35b)

Cj = dj − 2Pbaj, (2.35c)

qjj = Pajaj. (2.35d)
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(b) Each component Sk satisfies

Sk =


S∗k , if S∗k ≥ 0,

0, otherwise,

(2.36a)

where S∗ = bk −
n∑

j=1

akjXj. (2.36b)

Proof: Since the variables are binary, X
′
j + Xj = 1 and X2

j = Xj for j = 1, . . . , n. If Xj is

changed to X
′
j = 1−Xj, the amount of change is equal to

∆f = (1− 2Xj)[Cj +Mj + qjj] = (1− 2Xj)∆j(X). (2.37)

Part (a) follows from ∆f .

Given (X1, . . . , Xj, . . . , Xn, S1, . . . , Sm1), optimal value of Sk (k = 1, . . . ,m1) is equal to

S∗ = bk −
∑n

j=1 akjXj.

Part (b) follows from the fact that we must have Sk ≥ 0.

Proposition 6: Given a vector (X1, . . . , Xj, . . . , Xn, S1, . . . , Sk, . . . , Sm1), assume compo-

nent Xi is changed to an improving value X
′
i . The slack variable Sk can be updated to S

′

k

(k = 1, . . . ,m1) using

S
′

k =


S∗k = Sk − aki(X

′
i −Xi), if S∗k ≥ 0,

0, if S∗k < 0.

(2.38a)

Proof: Given a vector (X1, . . . , Xj, . . . , Xn), the value of each slack variable (S1, . . . , Sk, . . . , Sm1)

is calculated using

Sk = bk −
n∑

j=1

akjXj. (2.39)
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The value of Sk could be positive or negative above. However, we are interested only in

values ≥ 0. Based on note 1, we have the following:

Sk =


S∗k , if S∗k ≥ 0,

0, otherwise,

(2.40a)

where S∗ = bk −
n∑

j=1

akjXj. (2.40b)

Now if Xi is changed to X
′
i we update vector S. If we keep track of vector S∗, it makes

the update of vector S easier. Updating to new S∗ is as follows:

Sk = bk −
n∑

j=1

akjXj, (2.41a)

S
′

k = bk −
n∑

j=1

akjXj + akiXi − akiX
′

i , (2.41b)

S
′

k = Sk + akiXi − akiX
′

i , (2.41c)

S
′

k = Sk − aki(X
′

i −Xi) = new S∗k . (2.41d)

Again we have:

If S
′

k ≥ 0 =⇒ new Sk = new S∗k . (2.42a)

If S
′

k < 0 =⇒ new Sk = 0. (2.42b)

Note 5: In proposition 6, we showed an easy way to update the slack variables Sk, but the

same can be achieved by recomputing S∗k (k = 1, . . . ,m1) using note 4 with the updated

value of X
′
i . After updating Xi to X

′
i and updating slack variables S, all the partial deriva-

tives with respect to variable X needs to be updated to select the next variable update.

This can be accomplished as shown in proposition 7.
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Proposition 7: Given a vector (X1, . . . , Xi, . . . , Xj, . . . , Xn, S1, . . . , Sk, . . . , Sm1), and an

updated vector
(
X1, . . . , X

′
i , . . . , Xj, . . . , Xn, S

′
1, . . . , S

′

k, . . . , S
′
m1

)
, updating partial deriva-

tives with respect to X can be easily accomplished by keeping track of vector X and vector

S.

Proof: From proposition 4 and theorem 4 we have:

Case 1: ∂f
∂Xj

= Cj +Mj + 2qjjXj, when X ≥ 0 and integer.

Case 2: ∂f
∂Xj

= Cj +Mj + qjj, when X{0, 1}.

After changing Xi to X
′
i and updating vector S to S

′
:

For j = 1, . . . , n:

Cj = dj − 2Pbaj, will not change. (2.43a)

qjj = Pajaj ≥ 0,will not change. (2.43b)

For j 6= i, the new values of Mj are:

Mj = Mj + 2P
(
−ajaiXi + ajaiX

′

i

)
+ 2P

(
−

k=m1∑
k=1

ajekSk +

k=m1∑
k=1

ajekS
′

k

)
,

= Mj + 2Pajai

(
X

′

i −Xi

)
+ 2P

k=m1∑
k=1

ajek

(
S

′

k − Sk

)
.

(2.44)

This is the same as:

For j < i,Mj = Mj + 2Pqji

(
X

′

i −Xi

)
+ 2P

k=m1∑
k=1

ajk

(
S

′

k − Sk

)
.

For j > i,Mj = Mj + 2Pqij

(
X

′

i −Xi

)
+ 2P

k=m1∑
k=1

ajk

(
S

′

k − Sk

)
.

(2.45)
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For j = i:

Mj = Mj + 2P

k=m1∑
k=1

ajk

(
S

′

k − Sk

)
. (2.46a)

2qjjXj = 2qjj

(
X

′

j −Xj

)
. (2.46b)

Note 6: In proposition 6 we updated vector S to S
′

after updating Xi to X
′
i . The amount

of change on value of f can be calculated using proposition 2 and proposition 5.

2.6 Derivation for General XQX Model

The detailed derivations to model an integer programming problem in XQX form is

presented in this section and this complements the theorems provided in the previous sec-

tion. Consider Example 1 which is a general IP minimization problem with 2 unknowns, 3

inequality constraints, 2 equality constraints, and integer variables.

Example 1

min z = d1x1 + d2x2

subject to a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

a31x1 + a32x2 ≤ b3

a41x1 + a42x2 = b4

a51x1 + a52x2 = b5,

(2.47)

where dj ∈ R, aij ∈ R, bi ∈ R, and xj ∈ Z+, i = 1, 2, 3, 4, 5 and j = 1, 2, and,
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a1 =



a11

a21

a31

a41

a51


, a2 =



a12

a22

a32

a42

a52


, b

′
=


b1

b2

b3

 , b =



b1

b2

b3

b4

b5


, A1 =


a11 a12

a21 a22

a31 a32

 ,

A2 =

 a41 a42

a51 a52

 , A =

 A1

A2

 , D =

[
d1 d2

]
, X =

[
x1 x2

]
, and S =

[
s1 s2 s3

]
.

(2.48)

Example 1 is converted to standard form by adding slack variables:

min z = d1x1 + d2x2

subject to a11x1 + a12x2 + s1 = b1

a21x1 + a22x2 + s2 = b2

a31x1 + a32x2 + s3 = b3

a41x1 + a42x2 = b4

a51x1 + a52x2 = b5,

(2.49)

where si ≥ 0. The constraints are then represented similar to (2.5) to obtain the trans-

formation shown in (2.6).

z = d1x1 + d2x2 + P (a11x1 + a12x2 + s1 − b1)>(a11x1 + a12x2 + s1 − b1)+

P (a21x1 + a22x2 + s2 − b2)>(a21x1 + a22x2 + s2 − b2)+

P (a31x1 + a32x2 + s3 − b3)>P (a31x1 + a32x2 + s3 − b3)+

P (a41x1 + a42x2 − b4)>P (a41x1 + a42x2 − b4)+

P (a51x1 + a52x2 − b5)>P (a51x1 + a52x2 − b5),

(2.50)
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where P is a large positive number for penalty. Expanding the terms produced by each

constraint gives the following:

For constraint 1 we have:

P (a11x1 + a12x2 + s1 − b1)>(a11x1 + a12x2 + s1 − b1) = P (a211x
2
1 + a212x

2
2 + s21 + b21+

a11a12x1x2 + a11s1x1 − a11b1x1+

a12a11x2x1 + a12s1x2 − a12b1x2+

a11s1x1 + a12s1x2 − b1s1−

a11b1x1 − a12b1x2 − b1s1).
(2.51)

For constraint 2, we have:

P (a21x1 + a22x2 + s2 − b2)>(a21x1 + a22x2 + s2 − b2) = P (a221x
2
1 + a222x

2
2 + s22 + b22+

a21a22x1x2 + a21s2x1 − a21b2x1+

a22a21x2x1 + a22s2x2 − a22b2x2+

a21s2x1 + a22s2x2 − b2s2−

a21b2x1 − a22b2x2 − b2s2).
(2.52)

For constraint 3, we have:

P (a31x1 + a32x2 + s3 − b3)>(a31x1 + a32x2 + s3 − b3) = P (a231x
2
1 + a232x

2
2 + s23 + b23+

a31a32x1x2 + a31s3x1 − a31b3x1+

a32a31x2x1 + a32s3x2 − a32b3x2+

a31s3x1 + a32s3x2 − b3s3−

a31b3x1 − a32b3x2 − b3s3).
(2.53)
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For constraint 4, we have:

P (a41x1 + a42x2 − b4)>P (a41x1 + a42x2 − b4) = P (a241x
2
1 + a242x

2
2 + b24+

a41a42x1x2 − a41b4x1+

a42a41x2x1 − a42b4x2−

a41b4x1 − a42b4x2).

(2.54)

Finally, for constraint 5, we have:

P (a51x1 + a52x2 − b5)>P (a51x1 + a52x2 − b5) = P (a251x
2
1 + a252x

2
2 + b25+

a51a52x1x2 − a51b5x1+

a52a51x2x1 − a52b5x2−

a51b5x1 − a52b5x2).

(2.55)

Substituting (2.51) through (2.55) in (2.50), we obtain the following:

z = z1 + z2 + z3 + z4,where, (2.56a)

z1 = d1x1 + d2x2, (2.56b)

z2 = P (a211x
2
1 + a212x

2
2 + s21 + 2a11a12x1x2 + 2a11s1x1 + 2a12s1x2+ (2.56c)

a221x
2
1 + a222x

2
2 + s22 + 2a21a22x1x2 + 2a21s2x1 + 2a22s2x2+

a231x
2
1 + a232x

2
2 + s23 + 2a31a32x1x2 + 2a31s3x1 + 2a32s3x2+

a241x
2
1 + a242x

2
2 + 2a41a42x1x2+

a251x
2
1 + a252x

2
2 + 2a51a52x1x2),

z3 = − 2P (a11b1x1 + a12b1x2 + b1s1+ (2.56d)

a21b2x1 + a22b2x2 + b2s2+

a31b3x1 + a32b3x2 + b3s3+
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a41b4x1 + a42b4x2+

a51b5x1 + a52b5x2),

z4 = 2P (b21 + b22 + b23 + b24 + b25). (2.56e)

In the above set of equations, z1 can be represented as [X ·d>]. The term z4 is a constant

term and can be represented by c. The term z2 can be regrouped to produce the following:

z2 = P (z2a + z2b + z2c + z2d + z2e + z2f + z2g + z2h + z2i + z2j + z2k + z2l), (2.57a)

where,

z2a = x21(a
2
11 + a221 + a231 + a241 + a251), (2.57b)

z2b = x22(a
2
12 + a222 + a232 + a242 + a252), (2.57c)

z2c = 2x1x2(a11a12 + a21a22 + a31a32 + a41a42 + a51a52), (2.57d)

z2d = 2s1x1(a11), (2.57e)

z2e = 2s1x2(a12), (2.57f)

z2f = 2s2x1(a21), (2.57g)

z2g = 2s2x2(a22), (2.57h)

z2h = 2s3x1(a31), (2.57i)

z2i = 2s3x2(a32), (2.57j)

z2j = s21, (2.57k)

z2k = s22, (2.57l)

z2l = s23. (2.57m)

The terms represented by z2a, z2b, and z2c in (2.57) can be written as follows using the

definitions in (2.48):
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z2a = x1[a
>
1 a1]x1, (2.58a)

z2b = x2[a
>
2 a2]x2, (2.58b)

z2c = 2x1[a
>
1 a2]x2. (2.58c)

Using the equations in (2.57) and (2.58), z2 can be represented in XQX form as follows:

z2 =P



z2a
z2c
2

z2d
2

z2f
2

z2h
2

z2c
2

z2b
z2e
2

z2g
2

z2i
2

z2d
2

z2e
2

1 0 0

z2f
2

z2g
2

0 1 0

z2h
2

z2i
2

0 0 1


,

=P

[
x1 x2 s1 s2 s3

]


a>1 a1 a>1 a2 a11 a21 a31

a>1 a2 a>2 a2 a12 a22 a32

a11 a12 1 0 0

a21 a22 0 1 0

a31 a32 0 0 1





x1

x2

s1

s2

s3


.

(2.59)

The XQX matrix from (2.59) can then be generalized as:

z2 = P

[
X S

] A>A A>1

A1 I


 X

S

 . (2.60)
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The remaining term z3 represented by (2.56d) can be regrouped as follows:

z3 = − 2P (z3a + z3b + z3c). (2.61a)

Where,

z3a = x1(a11b1 + a21b2 + a31b3 + a41b4 + a51b5), (2.61b)

z3b = x2(a12b1 + a22b2 + a32b3 + a42b4 + a52b5), (2.61c)

z3c = b1s1 + b2s2 + b3s3. (2.61d)

The terms represented by z3a, z3b, and z3c in (2.61) can be written as follows using the

definitions in (2.48):

z3a =x1[b
>a1], (2.62a)

z3b =x2[b
>a2], (2.62b)

z3c =S[b
′>]. (2.62c)

The term z3 in (2.62) can be generalized as:

z3 =− 2P

[
z3a z3b z3c

]
, (2.63a)

=− 2P

[
b>a1 b>a2 b

′>

]
x1

x2

S

 , (2.63b)

=− 2P

[
b>a1 b>a2 b

′>

] X

S

 . (2.63c)
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Thus the final form for z = z1 + z2 + z3 + z4 in (2.56a) is:

z = d1x1 + d2x2 + P

[
X S

] A>A A>1

A1 I


 X

S

− 2P

[
b>a1 b>a2 b

′>
] X

S

+ c.

= P

[
X S

] A>A A>1

A1 I


 X

S

+

[
d1 − 2P (b>a1) d2 − 2P (b>a2) −2P (b

′>)

] X

S

+ c.

(2.64)

The form obtained in (2.64) represents the XQX form for the general integer program-

ming problems. This XQX model is certainly new and does not exist in the literature. This

general form can be used to represent a maximization or minimization problem with integer

or binary variables, and with inequality and equality constraints. The XQX model for the

boolean IP problem is presented next, followed by the XQX model for general IP problem

with only inequality constraints.

2.6.1 XQX Model for Binary IP Problems

The XQX form for a binary IP problem is exactly the same as (2.64) since the variables

being binary or integer does not make any difference in the derivations presented above.

Even though x2 = x for a binary IP, this was never used in the above derivations. Thus, if

Example 1 had binary variables (x ∈ {0, 1}) instead of integer variables, the XQX form is

still the same as obtained in (2.64).

2.6.2 XQX Model for IP Problems with Inequality Constraints

Consider the problem in Example 2, which is the same as Example 1, but without the

equality constraints. We present this new example since the multi-dimensional knapsack

problems does not contain any equality constraints.
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Example 2

min z = d1x1 + d2x2

subject to a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

a31x1 + a32x2 ≤ b3,

(2.65)

where dj ∈ R, aij ∈ R, bi ∈ R, and xj ∈ Z+, i = 1, 2, 3 and j = 1, 2. The standard form

after adding slack variables to Example 2 is:

min z = d1x1 + d2x2

subject to a11x1 + a12x2 + s1 = b1

a21x1 + a22x2 + s2 = b2

a31x1 + a32x2 + s3 = b3,

(2.66)

where si ≥ 0. Let

a
′

1 =


a11

a21

a31

 , a′

2 =


a12

a22

a32

 , b′ =


b1

b2

b3

 , A1 =


a11 a12

a21 a22

a31 a32

 ,
D =

[
d1 d2

]
, X =

[
x1 x2

]
, and S =

[
s1 s2 s3

]
.

(2.67)

Using the procedure presented in section 2.5, the XQX form for this problem is as follows:

z = d1x1 + d2x2 + P

[
X S

] A>1 A1 A>1

A1 I


 X

S

− 2P

[
b
′>a

′
1 b

′>a
′
2 b

′>
] X

S

+ c.

(2.68a)
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= P

[
X S

] A>1 A1 A>1

A1 I


 X

S

+ (2.68b)

[
d1 − 2P (b

′>a
′
1) d2 − 2P (b

′>a
′
2) −2P (b

′>)

] X

S

+ c.

This XQX form is the same as the general form obtained in (2.64) and only difference

being that the A matrix, which represented the coefficients of variables for the inequality

and equality constraints in the general form, is replaced by A1 matrix which represents the

variable’s coefficients for the inequality constraints. The column matrix b, which contained

the right hand side coefficients for both equality and inequality constraints, is replaced by

b
′
. Also note that the column matrix a

′
1 and a

′
2 represent the coefficients from the three

inequality constraints.

2.6.3 Alternate Representations of Min and Max IP problems

Our solution method (presented in the next section) for the general XQX form in (2.64)

is based on gradient descent method, and a given IP problem is transformed to an equivalent

alternate representation as shown in Table 2.2.

Given Problem Equivalent Alternate Representation

max z = {dx : Ax ≤ b, x ∈ Z+} min −z = {−dx : Ax ≤ b, x ∈ Z+}

min z = {dx : Ax ≥ b, x ∈ Z+} min z = {dx : −Ax ≤ −b, x ∈ Z+}

Table 2.2: Alternate Representations for IP problems.

2.7 Solution Procedures for XQX Model

The solution procedure presented here is also new and does not exist in the literature,

and this is the second objective of this work. In this section we present the local optima

based solution procedure for our XQX model, which is based on gradient descent method

described in section 2.4. We will first present the solution procedure for the general IP XQX
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model followed by the solution procedure of the XQX model for binary IP problems. We

will continue to use the problem in Example 1 and its corresponding XQX model and show

the general solution procedure for any problem size. The solution procedures presented here

will be used in our the heuristic procedure to solve the benchmark problems.

The general form of our XQX model from (2.64) is:

z = P

[
X S

] A>A A>1

A1 I


 X

S

+

[
d1 − 2P (b>a1) d2 − 2P (b>a2) −2P (b

′>)

] X

S

+ c.

(2.69)

The expanded XQX form for the above (from (2.59) and (2.63)) with respect to Example

1 is:

z =

[
x1 x2 s1 s2 s3

]


P (a>1 a1) P (a>1 a2) Pa11 Pa21 Pa31

P (a>1 a2) P (a>2 a2) Pa12 Pa22 Pa32

Pa11 Pa12 P 0 0

Pa21 Pa22 0 P 0

Pa31 Pa32 0 0 P





x1

x2

s1

s2

s3


+

[
d1 − 2P (b>a1) d2 − 2P (b>a2) −2Pb1 −2Pb2 −2Pb3

]


x1

x2

s1

s2

s3


+ c.

(2.70)

To show the solution procedure in a general way we will use the following form to
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represent our XQX model:

f(x, s) =

[
x1 x2 s1 s2 s3

]


q11 q12 q13 q14 q15

q21 q22 q23 q24 q25

q31 q32 q33 q34 q35

q41 q42 q43 q44 q45

q51 q52 q53 q54 q55





x1

x2

s1

s2

s3


+

[
r1 r2 r3 r4 r5

]


x1

x2

s1

s2

s3


+ c.

(2.71)

As mentioned earlier, the lower the value of f(x, s) is, the better the solution is for our

minimization problem. With the general matrices shown in (2.71), we will now present the

solution procedure for the general and binary IP problem in the following sections. Also, for

a general minimization problem with n variable and m constraints, we will use the stencil

shown in Figure 2.2 to calculate ∂f with respect to any variable.
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q11 q12 · · · q1n q1(n+1) q1(n+2) · · · q1(n+m)

q21 q22 · · · q2n q2(n+1) q2(n+2) · · · q2(n+m)

...
... · · · ...

...
... · · · ...

qn1 qn2 · · · qnn qn(n+1) qn(n+2) · · · qn(n+m)

q(n+1)1 q(n+1)2 · · · q(n+1)n q(n+1)(n+1) q(n+1)(n+2) · · · q(n+1)(n+m)

q(n+2)1 q(n+2)2 · · · q(n+2)n q(n+2)(n+1) q(n+2)(n+2) · · · q(n+2)(n+m)

...
... · · · ...

...
... · · · ...

q(n+m)1 q(n+m)2 · · · q(n+m)n q(n+m)(n+1) q(n+m)(n+2) · · · q(n+m)(n+m)





x1 x2 · · · xn s1 s2 · · · sm

r1 r2 · · · rn r(n+1) r(n+2) · · · r(n+m)

[ ]x1 x2 · · · xn s1 s2 · · · sm

Figure 2.2. Stencil used for calculating change in function value with respect to any variable.

2.8 Solution Procedure for General IP Problem with Inequality

Constraints

Consider the problem in Example 1 with 2 integer type unknown variables (x1 and x2)

and 3 slack variables (s1, s2 and s3), which are also integer type. The solution procedure

and the update rules for the integer type unknown variables (x) are presented first, followed

by the solution procedure and the update rules for integer type slack variables (s).
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2.8.1 Integer Type Unknown Variables

The critical point of f(x, s) based on the variable x1 is obtained as follows:

f(x1) = x1(q11x1 + q12x2 + q21x2 + q13s1 + q31s1 + q14s2 + q41s2 + q15s3 + q51s3 + r1) + c.

(2.72)

The partial derivative with respect to the unknown variable x1 is:

∂f

∂x1
= 2q11x1 + q12x2 + q21x2 + q13s1 + q31s1 + q14s2 + q41s2 + q15s3 + q51s3 + r1. (2.73)

Since q12 = q21, q13 = q31, q14 = q41, and q15 = q51:

∂f

∂x1
= 2q11x1 + 2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1. (2.74)

The critical point x?1 for the variable x1 is obtained by equating the partial derivative to

zero:
∂f

∂x1
= 0 =⇒

2q11x1 + 2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1 = 0,

2q11x1 = −(2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1),

x1 =
2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1

−2q11
,

or, x?1 =
2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1

−2q11
.

(2.75)

Substituting the original values from (2.70) in (2.75), we obtain:

x?1 =
2P (a>1 a2)x2 + 2Pa11s1 + 2Pa21s2 + 2Pa31s3 + (d1 − 2P (b>a1))

−2P (a>1 a1)
, (2.76)

which is a critical point at which the function f(x, s) is at relative extremum (relative

minimum for our minimization problem).

45



The change in f(x, s) due to change in x1 is calculated as follows:

f(x1) = x1(q11x1 + q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1) + c.

(2.77)

If x1 changes to x
′
1, then f(x

′
1) is given by:

f(x
′

1) = x
′

1(q11x
′

1 + q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1) + c.

(2.78)

The difference between (2.78) and (2.77) gives the change in value of function when x1

changes to x
′
1. Therefore,

∆fx′
1

= f(x
′

1)− f(x1),

= (x
′

1 − x1)(q11(x
′

1 + x1) + q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1),

= q11x
′2
1 − q11x

2
1 + (q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1)x

′

1−

(q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1)x1.

(2.79)

Since q12 = q21, q13 = q31, q14 = q41, and q15 = q51:

∆fx′
1

= q11x
′2
1 − q11x21+

(2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)x
′

1−

(2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)x1.

(2.80)

Note that the partial derivative of (2.80) with respect to x
′
1 is the same as (2.74):

∂∆fx′
1

∂x
′
1

= 2q11x
′

1 + 2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1. (2.81)
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If the value of x1 is updated to x?1, we obtain ∆f due to change in x1 to x?1 as follows:

∆fx?
1

= q11x
?2
1 − q11x

2
1+

(2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)x?
1 − (2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)x1,

=
(2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)2

4q11
− q11x

2
1+

(2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)2

−2q11
− (2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)x1,

=
(2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)2

−4q11
− (q11x1 + 2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)x1,

= −[q11x
?2
1 + (q11x1 + 2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)x1].

(2.82)

Substituting the original values from (2.70) in (2.82), we obtain:

∆fx?
1

= −x?21 P (a>1 a1)−

x1(P (a>1 a1)x1 + 2P (a>1 a2)x2 + 2Pa11s1 + 2Pa21s2 + 2Pa31s3 + (d1 − 2P (b>a1))).

(2.83)

Using the similar approach, the value of x?2 and ∆fx2 is:

x?2 =
2q21x1 + 2q23s1 + 2q24s2 + 2q25s3 + r2

−2q22
, (2.84a)

∆fx?
2

= −[q22x
?2
2 + (q22x2 + 2q21x1 + 2q23s1 + 2q24s2 + 2q25s3 + r2)x2]. (2.84b)

The general form for x?i , ∆fx?
i
, and ∆fx′

1
for a problem with n integer variables and m

inequality constraints shown in Figure 2.2 is:

x?i =
2
∑i−1

k=1 qikxk + 2
∑n

k=i+1 qkixk + 2
∑m

k=1 qi(n+k)sk + ri

−2qii
, (2.85a)

∆fx?
i

= −qiix?2i − (qiixi + 2
i−1∑
k=1

qikxk + 2
n∑

k=i+1

qkixk + 2
m∑
k=1

qi(n+k)sk + ri)xi, (2.85b)

∆fx′
i

= (x
′

i − xi)(qii(x
′

i + xi) + 2
i−1∑
k=1

qikxk + 2
n∑

k=i+1

qkixk + 2
m∑
k=1

qi(n+k)sk + ri). (2.85c)
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Substituting the original values from (2.70) in (2.85) we obtain:

x?i =
2P
∑i−1

k=1(a
>
k ai)xk + 2P

∑n
k=i+1(a

>
i ak)xk + 2P

∑m
k=1 akisk + (di − 2P (b>ai))

−2P (a>i ai)
,

(2.86a)

∆fx?
i

= −P (a>i ai)x
?2
i −

(P (a>i ai)xi + 2P
i−1∑
k=1

(a>k ai)xk + 2P
n∑

k=i+1

(a>i ak)xk + 2P
m∑
k=1

akisk + (di − 2P (b>ai)))xi,

(2.86b)

∆fx′
i

= (x
′

i − xi)(P (a>i ai)(x
′

i + xi))+

(x
′

i − xi)(2P
i−1∑
k=1

(a>k ai)xk + 2P
n∑

k=i+1

(a>i ak)xk + 2P
m∑
k=1

akisk + (di − 2P (b>ai))).

(2.86c)

Updating Integer Type Unknown Variables

In the previous section, we calculated the value of x?i which is the critical value of xi at

which the function f(x, s) equals zero, we then calculated ∆fx′
i

when the variable changes

from xi to x
′
i, and finally we calculated ∆fx?

i
which shows the change in f(x, s) if the variable

changes from xi to x?i . Based on this information we will show that updating variable xi to

a new value is based up on xi and x?i , and using graphical representations we will show the

feasible and infeasible regions for the new value of xi.

Recall from the previous section that if x1 changes to x
′
1 then ∆fx′

i
is given by:

∆fx′
1

= f(x
′

1)− f(x1),

= (x
′

1 − x1)(q11(x
′

1 + x1) + q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1),

(2.87)

In (2.87) the value of ∆fx′
1

is equal to zero when one of the following condition is met:
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∆fx′
1

= 0 =⇒ (2.88a)

x
′

1 − x1 = 0, (2.88b)

q11(x
′

1 + x1) + q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1 = 0.

(2.88c)

From (2.88b), if x
′
1 − x1 = 0 then the variable is not changing, since x

′
1 = x1, and ∆fx′

1

is always 0 in this case. But, from (2.88c), we obtain the following:

q11(x
′

1 + x1) + q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1 = 0,

q11(x
′

1) = −(q11(x1) + q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1),

x
′

1 =
−(q11(x1) + q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1)

q11
,

x
′

1 =
−(q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3 + r1)

q11
− x1,

x
′

1 =
−(2q12x2 + 2q13s1 + 2q14s2 + 2q15s3 + r1)

q11
− x1,

x
′

1 = 2x?1 − x1.
(2.89)

From (2.89), if the value of variable is changed from x1 to x
′
1 where x

′
1 = 2x?1 − x1, then

∆fx′
1

= 0.

To generalize our findings, x?i represents the critical value at which the function f(x, s)

is at relative extremum (relative minimum for our minimization problem). The value of

∆fx′
i

= 0 when:

• x
′
i = xi (new value equals old value).

• x
′
i = 2x?i − xi (new value = 2x?i - old value).
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The variable update procedure is simply based on xi and x?i , and the four possible combina-

tions of these two parameters give the following cases. Note that the figures shown in these

cases are parabolic since ∆fxi
is quadratic in nature.

• Case 1: xi = 0 and x?i ≤ 0

∆fx

x
xi

x < 0

x
′
i =2x?i

∆fx?
i

Figure 2.3. Change in ∆fx when: xi = 0 and x?
i ≤ 0.

Figure 2.3 represents the change in ∆fx when xi = 0 and x?i ≤ 0. Based on this figure,

the best new value for xi is x?i where ∆fx?
i

is obtained, but since x?i < 0 the new value

of xi is kept at 0.
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• Case 2: xi = 0 and x?i > 0

∆fx

x
xi

∆fx < 0

x
′
i = 2x?i

∆fx?
i

Figure 2.4. Change in ∆fx when: xi = 0 and x?
i > 0.

Figure 2.4 represents the change in ∆fx when xi = 0 and x?i > 0. Based on this, the

best new value for xi is x?i , since maximum absolute value ∆fx?
i

is obtained at x?i . If x?i

is not integer then the best integer value based on ∆fx that is closer to x?i is chosen.

Also, in an attempt to escape local optimality of the objective function, xi can be

updated to an integer value of x, where xi < x ≤ 2x?i .
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• Case 3: xi > 0 and x?i ≤ 0

∆fx

x
xi

x < 0
∆fx < 0

x
′
i = 2x?i − xi

∆fx?
i

x?i = 0
x?i < 0

Figure 2.5. Change in ∆fx when: xi > 0 and x?
i ≤ 0.

Figure 2.5 represents two different curves based on the value of x?i .

If x?i = 0, represented by the red curve, the best new value of xi is x?i since the

maximum absolute value ∆fx?
i

is obtained at x?i . A new value for xi can also be

updated to an integer value of x, where 0 ≤ x < xi to escape local optimality of the

objective function value.

If x?i < 0, represented by the blue curve, the best new value of xi is x?i since the

maximum absolute value ∆fx?
i

is obtained at x?i . Since x?i < 0, the new value of xi is

updated to 0, or to an integer value of x where 0 ≤ x < xi.
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• Case 4: xi > 0 and x?i > 0

∆fx

x
xi

x < 0

∆fx?
i

x
′
i = 2x?i − xi

∆fx < 0

(2x?i − xi) < 0

0 ≤ (2x?i − xi) < xi

(2x?i − xi) > xi

Figure 2.6. Change in ∆fx when: xi > 0 and x?
i > 0.

Figure 2.6 represents three different curves based on the value of 2x?i − xi.

If (2x?i − xi) > xi, represented by blue curve, the best new value for xi is x?i since

maximum absolute value ∆fx?
i

is obtained at x?i . If x?i is not integer then the best

integer value based on ∆fx that is closer to x?i is chosen. Also, in an attempt to escape

local optimality of the objective function, xi can be updated to an integer value of x,

where xi < x ≤ 2x?i − xi.

If 0 ≤ (2x?i − xi) < xi, represented by red curve, the best new value for xi is x?i since

maximum absolute value ∆fx?
i

is obtained at x?i . If x?i is not integer then the best

integer value based on ∆fx that is closer to x?i is chosen. Also, in an attempt to escape
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local optimality of the objective function, xi can be updated to an integer value of x,

where 2x?i − xi ≤ x < xi.

If (2x?i − xi) < 0, represented by green curve, the best new value for xi is x?i since

maximum absolute value ∆fx?
i

is obtained at x?i . If x?i is not integer then the best

integer value based on ∆fx that is closer to x?i is chosen. Also, in an attempt to escape

local optimality of the objective function, xi can be updated to an integer value of x,

where 0 ≤ x < xi.

In Table 2.3, we summarize the update rules from the four cases. Here xi represents the

current value of the variable and x
′
i represents the new value of the same variable. Note that

an integer value is always selected for the new value of xi.

Case xi x?i (2x?i − xi) Best x
′
i Acceptable x

′
i

1 0 ≤ 0 ≤ 0 0 0

2 0 > 0 > 0 x?i xi < x ≤ 2x?i

3 > 0 0 < 0 0 0 ≤ x < xi

> 0 < 0 < 0 0 0 ≤ x < xi

4 > 0 > 0 > xi x?i xi < x ≤ 2x?i − xi

> 0 > 0 ≥ 0 & < xi x?i 2x?i − xi ≤ x < xi

> 0 > 0 < 0 x?i 0 ≤ x < xi

Table 2.3: Updating integer type unknown variable based on critical value.

2.8.2 Slack Variables

The critical point of f(x, s) based on the variable s1 is obtained as follows:

f(s1) = s1(q33s1 + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3) + c.

(2.90)
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The partial derivative with respect to the slack variable s1 is:

∂f

∂s1
= 2q33s1 + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3,

= 2q33s1 + 2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3.

(2.91)

The critical point s?1 for the variable s1 is obtained by equating the partial derivative to

zero:
∂f

∂s1
= 0 =⇒

2q33s1 + 2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3 = 0,

2q33s1 = −(2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3),

s1 =
2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3

−2q33
,

or, s?1 =
2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3

−2q33
.

(2.92)

Substituting the original values from (2.70) in (2.92) we obtain:

s?1 =
2Pa11x1 + 2Pa12x2 − 2Pb1

−2P
,

= b1 − (a11x1 + a12x2).

(2.93)

Note that s?1 simply represents the first constraint from Example 1, and s?1 represents a

critical point at which the function f(x, s) is at relative extremum (relative minimum for

our minimization problem).

The change in f(x, s) due to change in s1 is calculated as follows:

f(s1) = s1(q33s1 + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3) + c.

(2.94)

If s1 changes to s
′
1, then f(s

′
1) is given by:

f(s
′

1) = s
′

1(q33s1 + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3) + c.

(2.95)
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The difference between (2.95) and (2.94) gives the change in value of function when s1

changes to s
′
1. Therefore,

∆fs′1
= f(s

′

1)− f(s1),

= (s
′

1 − s1)(q33(s
′

1 + s1) + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3),

= q33s
′2
1 − q33s

2
1 + (q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3)s

′

1−

(q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3)s1.

(2.96)

Since q13 = q31, q23 = q32, q34 = q43, and q35 = q53:

∆fs′1
= q33s

′2
1 − q33s21+

(2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)s
′

1−

(2q13x1 + 2q23x2 + 2q43s2 + 2q53s3)s1.

(2.97)

Note that the partial derivative of (2.97) with respect to s
′
1 is the same as (2.92):

∂∆fs′1
∂s

′
1

= 2q33s
′

1 + 2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3. (2.98)

If the value of s1 is updated to s?1, we obtain ∆f due to change in s1 to s?1 as follows:

∆fs?1 = q33s
?2
1 − q33s

2
1+

(2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)s?1 − (2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)s1,

=
(2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)2

4q33
− q33s

2
1+

(2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)2

−2q33
− (2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)s1,

=
(2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)2

−4q33
− (q33s1 + 2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)s1,

= −[q33s
?2
1 + (q33s1 + 2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)s1].

(2.99)

Substituting the original values from (2.70) in (2.99), we obtain:

∆fs?1 = −s?21 P − s1(s1P + 2P (a11)x1 + 2P (a12)x2 − 2P (b1)). (2.100)

56



The general form for s?i , ∆fs?1 and ∆fs′1
for a problem with n boolean variables and m

inequality constraints shown in Figure 2.2 is:

s?i =
2
∑n

k=1 q(k)(n+i)xk + 2
∑i−1

k=1 q(n+k)(n+i)sk + 2
∑m

k=i+1 q(n+k)(n+i)sk + rn+i

−2q(n+i)(n+i)

, (2.101a)

∆fs?i = −q(n+i)(n+i)s
?2
i −

si(q(n+i)(n+i)si + 2
n∑

k=1

q(k)(n+i)xk + 2
i−1∑
k=1

q(n+k)(n+i)sk + 2
m∑

k=i+1

q(n+k)(n+i)sk + rn+i),

(2.101b)

∆fs′i
= (s

′

i − si)(q(n+i)(n+i)(s
′

i + si))+

(s
′

i − si)(2
n∑

k=1

q(k)(n+i)xk + 2
i−1∑
k=1

q(n+k)(n+i)sk + 2
m∑

k=i+1

q(n+k)(n+i)sk + rn+i).

(2.101c)

For the general form above, substituting the original values from (2.70) in (2.101), we

obtain:

s?i = bi − (
n∑

k=1

aikxk), (2.102a)

∆fs?i = −s∗2i P − s2iP + 2Psi(bi − (
n∑

k=1

aikxk)), (2.102b)

∆fs′i
= (s

′

i − si)(P (s
′

i + si)− 2P (bi − (
n∑

k=1

aikxk))). (2.102c)

Updating Slack Variables

The update procedure for slack variables will be similar to the one presented for integer

type unknown variables in Section 2.8.1 without the integer restriction, since slack variables

can be ≥ 0. Updating a slack variable from si to s
′
i depends only on si to s?i , and this is

shown using graphical representations in this section.
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From 2.96 the value of ∆f when s1 changes to s
′
1 is given by:

∆fs′1
= f(s

′

1)− f(s1),

= (s
′

1 − s1)(q33(s
′

1 + s1) + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3).

(2.103)

In (2.103) the value of ∆fs′1
is equal to zero when one of the following condition is met:

∆fs′1
= 0 =⇒ (2.104a)

s
′

1 − s1 = 0, (2.104b)

q33(s
′

1 + s1) + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3 = 0.

(2.104c)

In the first case above, since s
′
1 = s1, the value of ∆fs′1

is always 0. But from the second

case, we obtain the following:

q33(s
′

1 + s1) + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3 = 0,

q33s
′

1 = −(q33s1 + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3),

s
′

1 =
−(q33s1 + q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3)

q33
,

s
′

1 =
−(q13x1 + q31x1 + q23x2 + q32x2 + q43s2 + q34s2 + q53s3 + q35s3 + r3)

q33
− s1,

s
′

1 =
−(2q13x1 + 2q23x2 + 2q43s2 + 2q53s3 + r3)

q33
− s1,

s
′

1 = 2s?1 − s1.
(2.105)

From (2.105), if the value of slack variable is changed from s1 to s
′
1 where s

′
1 = 2s?1 − s1,

then ∆fs′1
= 0.

To generalize our findings, s?i represents the critical value at which the function f(x, s)

is at relative extremum (relative minimum for our minimization problem). The value of

∆fs′i
= 0 when:
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• s
′
i = si (new value equals old value).

• s
′
i = 2s?i − si (new value = 2s?i - old value).

Based on the values of si and s?i we can obtain the four possible combinations for which

the varible update procedure is shown pictorially.

• Case 1: si = 0 and s?i ≤ 0

∆fs

s
si

s < 0

s
′
i =2s?i

∆fs?i

Figure 2.7. Change in ∆fs when: si = 0 and s?i ≤ 0.

Figure 2.7 represents the change in ∆fs when si = 0 and s?i ≤ 0. Based on this figure

the best new value for si is s?i where ∆fs?i is obtained, but since s?i < 0, the new value

of si is kept at 0. This is the case in which the constraint related with the variable si

is currently under violation due to the values assigned to the unknown variables x.

• Case 2: si = 0 and s?i > 0
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∆fs

s
si

∆fs < 0

s
′
i = 2s?i

∆fs?i

Figure 2.8. Change in ∆fs when: si = 0 and s?i > 0.

Figure 2.8 represents the change in ∆fs when si = 0 and s?i > 0. Based on this,

the best new value for si is s?i since maximum absolute value ∆fs?i is obtained at

s?i . If s
′
i > s?i then a constraint violation occurs, hence the range si < s ≤ s?i will

be given more importance in our heuristic procedure. Also, in an attempt to escape

local optimality of the objective function, si can be updated to a value of s, where

si < s ≤ 2s?i .
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• Case 3: si > 0 and s?i ≤ 0

∆fs

s
si

s < 0
∆fs < 0

s
′
i = 2s?i − si

∆fs?i

s?i = 0
s?i < 0

Figure 2.9. Change in ∆fs when: si > 0 and s?i ≤ 0.

Figure 2.9 represents two different curves based on the value of s?i . In both the condi-

tions represented here, the corresponding constraint will be violated if s
′
i > 0.

If s?i = 0, represented by the red curve, the best new value of si is s?i since the maximum

absolute value ∆fs?i is obtained at s?i . A new value for si can also be updated to a

value of s, where 0 ≤ s < si to escape local optimality of the objective function value.

If s?i < 0, represented by the blue curve, the best new value of si is s?i since the

maximum absolute value ∆fs?i is obtained at s?i . Since s?i < 0, the new value of si is

updated to 0, or to a value of s where 0 ≤ s < si.
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• Case 4: si > 0 and s?i > 0

∆fs

s
si

s < 0

∆fs?i

s
′
i = 2s?i − si

∆fs < 0

(2s?i − si) < 0

0 ≤ (2s?i − si) < si

(2s?i − si) > si

Figure 2.10. Change in ∆fs when: si > 0 and s?i > 0.

Figure 2.10 represents three different curves based on the value of 2s?i − si.

If (2s?i − si) > si, represented by blue curve, the best new value for si is s?i since

maximum absolute value ∆fs?i is obtained at s?i . If s
′
i > s?i then a constraint violation

occurs, hence the range si < s ≤ s?i will be given more importance in our heuristic

procedure. Also, in an attempt to escape local optimality of the objective function, si

can be updated to a value of s, where si < s ≤ 2s?i − si.

If 0 ≤ (2s?i − si) < si, represented by red curve, the best new value for si is s?i

since maximum absolute value ∆fs?i is obtained at s?i . Also, in an attempt to escape

local optimality of the objective function, si can be updated to a value of s, where
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2s?i − si ≤ s < si.

If (2s?i − si) < 0, represented by green curve, the best new value for si is s?i since

maximum absolute value ∆fs?i is obtained at s?i . Also, in an attempt to escape local

optimality of the objective function, si can be updated to a value of s, where 0 ≤ s < si.

In Table 2.4, we summarize the update rules from the four cases. si represents the current

value of the variable and s
′
i represents the new value of the same variable. Note that integer

restriction is not applied for si.

Case si s?i (2s?i − si) Best s
′
i Acceptable s

′
i

1 0 ≤ 0 ≤ 0 0 0

2 0 > 0 > 0 s?i si < s ≤ 2s?i

3 > 0 0 < 0 0 0 ≤ s < si

> 0 < 0 < 0 0 0 ≤ s < si

4 > 0 > 0 > si s?i si < s ≤ 2s?i − si

> 0 > 0 ≥ 0 & < si s?i 2s?i − si ≤ s < si

> 0 > 0 < 0 s?i 0 ≤ s < si

Table 2.4: Updating integer type slack variable based on critical value.

2.8.3 Solution Procedure for Binary IP Problem with Inequality Constraints

We apply the same gradient descent procedure used for the General IP problem with

integer unknowns. In gradient descent approach, we determine the change in the value of a

function f(x) with respect to a variable xi. Based on this change, the variable xi is either

changed from 0 to 1 or vice versa for a boolean type variable. Consider Example 1 with

binary unknowns instead of integer unknowns. In this problem, we have 2 boolean type

variables (x1 and x2) and 3 slack variables (s1, s2 and s3) that are integers. The partial

derivatives obtained with respect to the unknown variables here will be different from the

ones obtained for integer type since x2i 6= xi in the general case.
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f(x1) = x1(q11x1 + q12x2 + q21x2 + q13s1 + q31s1 + q14s2 + q41s2 + q15s3 + q51s3 + r1) + c.

(2.106)

Note that f(x1) was obtained using (2.71). Since xi is boolean, x2i = xi, the partial

derivative is:

∂f

∂x1
= (q11 + r1) + q12x2 + q13s1 + q14s2 + q15s3 + q21x2 + q31s1 + q41s2 + q51s3. (2.107)

Substituting the original values from (2.70) in (2.107), we obtain:

∂f

∂x1
= (P (a>1 a1) + (d1 − 2P (b>a1))) + 2P (a>1 a2)x2 + 2Pa11s1 + 2Pa21s2 + 2Pa31s3.

(2.108)

Note that q12 = q21, q13 = q31, q14 = q41, and q15 = q51 was used to obtain (2.108).

Similarly we obtain the partial derivative with respect to x2:

∂f

∂x2
= (P (a>2 a2) + (d2 − 2P (b>a2))) + 2P (a>1 a2)x1 + 2Pa12s1 + 2Pa22s2 + 2Pa32s3.

(2.109)

The general form of the partial derivative with respect to variable xi for a problem with

n boolean variables and m constraints shown in Figure 2.2 is:

∂f

∂xi
= (qii + ri)+

(
i−1∑
k=1

qikxk +
i−1∑
k=1

qkixk +
n∑

k=i+1

qikxk +
n∑

k=i+1

qkixk +
m∑

k=n+1

qiks(k−n) +
m∑

k=n+1

qkis(k−n)).

(2.110)

Substituting the actual values of the matrices obtained from (2.64) in the above general
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form will produce:

∂f

∂xi
= (P (a>i ai) + (di − 2P (b>ai))) + 2P

i−1∑
k=1

(a>k ai)xk + 2P
n∑

k=i+1

(a>i ak)xk + 2P
m∑

k=n+1

akis(k−n).

(2.111)

The possible ways to update boolean variable xi based on the partial derivative are shown

in Table 2.5. If the partial derivative is < 0, the function is decreasing in value and the value

xi is changed to 1, as shown in rows 1 & 2 in the table. If the partial derivative is ≥ 0, the

function is increasing and hence the value of xi is changed to 0, as shown in rows 3 & 4.

Old value xi Value obtained for ∂f
∂xi

New value of xi

0 < 0 1

1 < 0 1

0 ≥ 0 0

1 ≥ 0 0

Table 2.5: Updating boolean type variable based on partial derivative.

The partial derivatives for the slack variables in the binary IP case are exactly the same

as the general IP case shown in Section 2.8.3, since it simply represent the constraints in

the given problem. Hence, we will use the update procedure shown in Table 2.4 to update

the slack variables in the boolean IP case.

2.9 Summary

In this chapter, we formally stated the IP problems from literature, presented the existing

XQX models for IP problems currently used in literature, and presented existing solution

procedures to solve the XQX models from literature. We then presented our XQX model

for IP problems with inequality and equaity constraints and the local optima based solution

procedure for the same. Our XQX model and the solution procedures are new contributions

to the existing literature and are two of the four objectives of this work. To show the
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application of our XQX model and our solution procedure, we consider 0-1 multidimensional

knapsack problem (an instance of binary IP problem) in the next chapter. The definition of

0-1 MDKP, existing heuristic and exact methods to solve this problem, and the application of

our XQX model and our solution procedure using a heuristic procedure to solve benchmark

cases are presented next.
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CHAPTER 3

0-1 MULTIDIMENSIONAL KNAPSACK PROBLEM

To show the application of our XQX model from section 2.5 we consider 0-1 multidi-

mensional knapsack problem (0-1 MDKP) which is an instance of binary IP problem. The

application of our XQX model to binary IP is the third objective of this thesis. The 0-1

MDKP problem is a strongly NP-hard problem and one of the most challenging in the class

of knapsack problems (Mansini & Speranza, 2012). In this chapter, first we define one di-

mensional knapsack problem, then present the 0-1 MDKP, then describe the mathematical

formulation for these problems from literature, and then present various real life applications

for this problem. We then provide a detailed literature survey which includes the state-of-

the art algorithms for solving 0-1 MDKP. Finally, we apply our XQX model and solution

procedures on 0-1 MDKP using a basic heuristics that we have developed and present the

results obtained from solving benchmark problems.

3.1 Definition

The one dimensional knapsack is defined by the following formulation (Kellerer et al.,

2004):

maximise
n∑

j=1

pjxj

subject to
n∑

j=1

rjxj ≤ b,

xj ∈ {0, 1}, j = 1, . . . , n,

(3.1)
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where pj, rj, and b are assumed to be positive integer values. In the above single resource

constrained problem we are given n items each with profit pj and cost rj, and the objective

of the problem is to select a subset of n items such that the profit is maximized and the cost

doesn’t exceed the capacity b.

The 0-1 MDKP includes multiple resource constraints instead and is defined by the

following formulation (Kellerer et al., 2004):

maximise
n∑

j=1

pjxj

subject to
n∑

j=1

rijxj ≤ bi, i = 1, . . . ,m,

xj ∈ {0, 1}, j = 1, . . . , n,

(3.2)

where pj, rij, and bi are assumed to be positive integer values. Given n items, with each

having profits pj and m resources with capacities bj, the goal is to select a subset of items

with maximum total profit when each item j consumes rij from each of the i resources. This

problem has many practical applications such as capital budgeting, project selection, cargo

loading, and cutting stock problems (Chu & Beasley, 1998). It is to be noted that there are

many different kinds of knapsack problems, and a 0-1 multidimensional knapsack problem

is different from 0-1 multiple knapsack problem (Lin, 1998). We make this note since many

papers in the literature solve a MDKP problem, but it is referred to as a multiple knapsack

problem; Fidanova (2005) is one such paper.

3.2 Applications

The motivation for the work done by Weingartner & Ness (1967) is based on a capital

budgeting problem. Capital budgeting problem is the process of making decisions about

the financial desirability of a projects. Since capital budgeting decisions impact the firm

for several years, they must be carefully planned. A bad decision can have a significant
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effect on the firm's future operations, and the capital budgeting is a common issue faced

by firms as suggested by Gow & Reichelstein (2007). We are given j different projects each

with profit pj. Project j is selected if xj = 1, and each project j consumes rij of resource

i where the total number of available resources is m. The m resources correspond to the

various needs of the project such as man power, machines, inventory. Thus, the objective is

to find a subset of the n projects such that the total profit is maximized without violating

any resource constraints, and this problem was modeled as 0-1 MDKP.

Cargo loading problem on a ship or airplane is another application of 0-1 MDKP (Shih,

1979), and this problem has its importance in supply chain management. Consider a com-

pany shipping several packages where each package has a profit pj, weight wj, and volume

vj. Also, there is a weight limit l1 and volume limit l2 for the airplane or ship. The objective

of this problem is to maximize the profits for the company by selecting a subset of packages

while satisfying the weight and volume constraints.

The design of computer and database location in a wide-area network by Gavish &

Pirkul (1986) was formulated as an integer programming problem, and the relaxed version

of their formulation is a 0-1MDKP with three constraints. The objective of the problem is

to determine the number of computers required at a location on a leased telecommunica-

tions link in order to process and store all jobs efficiently. The three constraints are: total

processing requirements at a location should be less than maximum processing capacity con-

sidered, total storage requirement should be less than maximum capacity considered, and

total telecommunication capacity must be less than maximum telecommunication capacity.

The scheduling of design process in a product development cycle was decomposed in

to a series of 0-1 MDKP by Belhe & Kusiak (1997). A design process consists of several

stages ranging from consumer requirements to product adoption, and reducing the product

development cycle is an important goal for many industries when multiple concurrent design

projects compete for the limited available resources. The authors considered five different

phases, namely, identify customer demands, preliminary design, detailed design, build pro-
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totype, and testing and evaluation to be executed serially for product development. Due to

the dynamic nature of the resources considered, the product development was modeled as a

MDKP problem to determine the best eligible activity at time t, and this information is used

to model and solve at time t+ 1. The model consists of n activities and m resources where

each activity xj if scheduled has a profit of pj. Each activity xj requires many resources and

consumes rij of resource type Ri.

Shelf space allocation problem was modeled as 0-1 MDKP with an added policy con-

straint by Yang (2001). Shelf space is an important resource in retail management and a

well managed shelf space increases sales and profit, improves return on inventory, and im-

proves customer satisfaction. The shelf space allocation problem consists of n products to

be displayed in m shelves and each product has a profit pj when displayed in shelf k. Each

shelf m has a total length of Ti, and each product has a length of ai. The additional policy

constraint dictates a lower and upper bound for number of occurrences of each product in

each shelf.

3.3 Literature Review

In this section, we present various existing methods that solve MDKP. Several meth-

ods, which include exact methods; such as branch & bound; exact methods with heuristics,

dynamic programming, genetic algorithm, tabu search , memetic algorithm based, and oth-

ers, are presented in this section. Even though there are other algorithms and heuristics

that were not considered, the presented literature summarizes the important approaches in

terms of breadth and performance. A comprehensive survey of different methods to solve

MDKP can be found in Chu & Beasley (1998), Fréville (2004), (Kellerer et al., 2004), and

Varnamkhasti (2012). The exact methods presented here provided high quality solutions

using very little time for small problems, but for larger problems, heuristics based methods,

which consume more computational time to solve, provided the best solutions.
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Balas (1965) proposed an additive algorithm to solve inequality constrained linear prob-

lems with 0-1 variables. The solution method sets all n variables to 0 and systematically

assigns certain variables to 1 without going through all 2n combinations. The author has

solved problems with up to 15 variables and up to 12 constraints using hand calculations on

an average of about 2 hours per problem.

Senju & Toyoda (1968) proposed efficient gradient method to find approximate solutions

for MDKP problems. This method initially starts with all variables equal to 1, and then for

each variable an effective gradient is calculated. To calculate the effective gradient, first the

variables contributions to the constraint violation are calculated, then the ratio between the

profit and the contribution to constraint is calculated to obtain the effective gradient. The

effective gradients for all variables are then ordered in ascending order, and the variables

with the lowest ratio are made equal to 0. When a feasible solution is found, the effective

gradient method is repeated using the new constraint violation contributions based on the

updated variables. The time complexity for this algorithm is O(mn2).

Hillier (1969) presented a 3 phase heuristic procedure for integer linear programming

problems having only inequality constraints. In phase 1, optimum non integer solution

using simplex algorithm and another near by solution whose rounded integer solution that

does not violate any constraints are found. Then, in phase 2, the algorithm searches the

line segment that connects these two points for a better solution. Finally, in phase 3, an

attempt is made to improve the feasible solution found in phase 2. Different methods were

also used in phases 2 and 3.

Zanakis (1977) compared the methods proposed by Senju & Toyoda (1968), Hillier (1969),

and Kochenberger et al. (1974) where he concluded that one does not dominate the other

computationally, and more over the three different heuristic approaches considered only

small problem sizes.

Shih (1979) developed the first linear programming based branch & bound method to

solve MDKP. In their method, a m- constraint knapsack problem is treated as m single
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constraint knapsack problem (solving each single constraint problem separately) to estimate

an upper bound and branching node. They applied this method to randomly generated

problems with up to 90 variables and 5 constraints and obtained solutions to all problems

with a superior solution time when compared to Balas (1965).

Loulou & Michaelides (1979) presented a greedy based heuristics for the MDKP. This

method is similar to Senju & Toyoda (1968), but starts with all variables equal to zero, and

is based on pseudo-utility function to select variables. The pseudo-utility is defined using

multiple ways that include the consumption of resources, the amount of remaining resources,

and the potential demand for the resource if a variable is selected. Few real-world problems

were considered, and other problems with sizes up to n = 45 and m = 330 were solved. The

method found high quality solutions for small problems and up to 20% deviation for larger

problems.

Balas & Martin (1980) proposed a pivot and complement heuristics to solve MDKP

problems. The method consists of two phases, pivot and complement for the search phase,

and the improvement phase. In pivot and complement phase, the relaxed problem is solved

using simplex and then it attempts to include the slack variables in to basis at minimal

cost. The algorithm considered three type of pivots: type 1 that maintains feasibility and

exchanges a slack variable in to basis; type 2 that maintains feasibility and leaves the number

of basic variables unchanged after exchanges; and type 3 where the feasibility is maintained

when an exchange is performed. The variables are then complemented (xj = 1 − x
′
j) to

improve the current solution. In the improvement phase, variable fixing and rounding of

fractional solutions are performed based on solution improvement. The time complexity of

this heuristics is O(m+n)4 and was applied to some real world problems and problems with

up to 200 constraints and 900 variables. The solutions to the various problems were on an

average within 0.15% of the optimum.

Magazine & Oguz (1984) proposed an heuristic algorithm for MDKP by combining La-

grange multipliers method of (Everett, 1963) with the efficient gradient method of Senju &
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Toyoda (1968). Initially all multipliers are set to 0 and all variables set to 1. Then, during

each iteration, the constraint with largest ratio between the remaining and the total capac-

ity is determined. The multiplier associated with this constraint is then made large enough

such that one variable can become 0. This process is repeated until a feasible solution is

found, after which a solution improvement process is applied. The time complexity of the

proposed heuristics is O(mn2), and randomly generated problems with m up to 1000 and

n up to 1000 were solved. For the randomly generated problems, the heuristics produced

high quality results for large problems when compared with Senju & Toyoda (1968) and

Kochenberger et al. (1974), where the later was unable to produce any results. For small

and medium size problems, Kochenberger et al. (1974) produced high quality results in spite

of being the slowest.

Gavish & Pirkul (1985) developed a branch & bound method that has been noted as the

most efficient algorithm of such type by Kellerer et al. (2004). In this algorithm, lagrangean,

surrogate and composite based relaxations were used to find a high quality solution. Using

the solutions obtained, a sensitivity analysis is performed to reduce the number of variables

by fixing some of the variables. Finally, a branch & bound procedure is applied to the reduced

problem and solved for optimality. The authors report that this method is significantly

faster and produced the best bounds overall when compared to the exact method by Shih

(1979), heuristic based method by Loulou & Michaelides (1979), and commercial integer

programming software Scionic/VM. A total of 240 randomly generated problems with up to

500 variables and 3 constraints, and up to 300 variables and 5 constraints were considered.

Pirkul (1987) proposed a surrogate constrained based heuristic procedure for MDKP.

The method first solves m single constrained knapsack problems, and the constraint that

produces the lowest objective value is marked as surrogate 1. From the values of variables

in surrogate 1, the most violated constraint is determined and marked as surrogate 2. It-

eratively the set of surrogate multipliers are obtained until no further changes occur in the

objective value. The procedure then calculates the ratio between the objective function coef-
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ficients and the coefficients of the surrogate resource constraint. The values of the variables

are updated using variable fixing, which is based on the violations and the ratios obtained.

The method obtained results within 1% of the optimal for 98% of the problems, with m

up to 20 and n up to 200, and performed better when compared to Loulou & Michaelides

(1979) and Balas & Martin (1980).

Lee & Guignard (1988) proposed a parametric based heuristic approach by combining

the pivot and complement method of Balas & Martin (1980) and a modified efficient gradient

method of Senju & Toyoda (1968). Problems with up m = 5 and n = 20 and m = 6 and

n = 600 were solved within an average of 0.34% from optimum. Their heuristics produced

better results when compared to Magazine & Oguz (1984), but is outperformed by Balas &

Martin (1980).

Fréville & Plateau (1994) proposed a surrogate constraint based heuristic algorithm sim-

ilar to Pirkul (1987), but with different schemes to fix variables and an additional oscillation

assignment technique. This algorithm provides sharp lower and upper bounds on the optimal

value and provides an efficient reduction scheme for the problem. Their procedure provided

better results when compared to Pirkul (1987) in spite of consuming more computational

time. Randomly generated problems with up to m = 30 and n = 500 were solved using this

method with this heuristic algorithm whose time complexity of O(mn2).

Glover & Kochenberger (1996) proposed a tabu search method based on critical events

to solve MDKP. The tabu procedure is based on short term and long term memory obtained

by using a strategic oscillation between constructive and destructive phases to obtain in-

tensification and diversification. The constructive phase moves from a feasible solution to

an infeasible, and the destructive goes from infeasible to feasible. Surrogate constraints are

formed based on the current solution, which guides whether the variable is selected or not

in the two phases. Their method was tested on 57 standard test cases for which optimal

solutions were obtained for all, and the authors also note that no other method has been able

to provide optimal solutions for all the 57 problems. Additionally, 24 randomly generated
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problems with m uo to 25 and n up to 500 were solved using this tabu search approach. For

23 of the 24 problems, generated solutions were superior to those given by branch & bound

algorithm.

Chu & Beasley (1998) proposed a genetic algorithm based heuristics for the MDKP. In

their algorithm, a repair operator based on greedy approach was used in addition to the cross-

over and mutation operations, in order to satisfy the constraints. To obtain the pseudo-utility

for each variable, they applied surrogate relaxation for which the weights were computed by

solving the dual of the problem. By combining CPLEX to solve the dual, and their problem

specific genetic algorithm, they solved small real-world problems with m = 2-30 and n =

6-105 to optimality, and showed superior performance when compared with other genetic

algorithm based approach proposed by Thiel & Voss (1994), tabu based approach proposed

by Løkketangen & Glover (1996), and simulated annealing based approach proposed by

Drexl (1988). They also solved large problems with m = 5, 10, and 30, and n = 100, 250,

and 500, and showed superiority over other heuristic based methods proposed by Magazine

& Oguz (1984), Volgenant & Zoon (1990), and Pirkul (1987) in terms of computation time

and quality of solutions. The time complexity for this algorithm is O(mn).

Vasquez & Hao (2001) proposed a hybrid method that combines linear programming

and tabu search to solve MDKP. Their method initially solves the relaxed MDKP using

simplex with an additional constraint
∑n

j=1 xj = k to find the fractional solutions for at-

tractive values of k. Then a tabu search is used to search around the fractional solutions

to obtain high quality solutions. Their method was tested on several benchmark problems

and outperformed all methods. Their method improved all the solutions found by Chu &

Beasley (1998), and, in spite of high computational time (up to 3 days), their method found

improved solutions to large problems with m up to 100 and n up to 2500 obtained from

Glover & Kochenberger (1996).

Osorio et al. (2002) proposed an algorithm based on surrogate, cutting planes, and

branch & bound for the MDKP problems. The algorithm first solves the relaxed problem to
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obtain optional solution. Based on this solution, and by generating surrogate constraints,

the algorithm produces several logical cuts (additional constraints) for the MDKP. Then a

branch & bound method is applied to solve the MDKP with the added cuts. Computational

results show better quality solutions obtained in less time when compared to the leading

commercial software CPLEX.

Gabrel & Minoux (2002) proposed an exact separation scheme to identify the most

violated extended cover inequalities for MDKP. Their method is based on finding the ratio

between the left and right hand sides of the constraint where the maximum ratio provides

the best extended cover. Using an iterative algorithm, they solved randomly generated

problems with up to 180 variables and 60 constraints and showed much lower computational

times compared to the Cplex 6.5 commercial software.

Vasquez & Vimont (2005) presented a hybrid method with variable fixing, which was

based on Vasquez & Hao (2001). They presented comparisons of results between Chu &

Beasley (1998), Vasquez & Hao (2001) and Vasquez & Vimont (2005) and showed improved

results using their original approach but failed to show any improvements from their latest

approach using variable fixing. Their method was able to improve many lower bounds for

the bench mark problem sets, and the combination of fixing variable, linear relaxation, and

tabu search improved the results from their previous work. Up to 33 hours of wall time was

used during the execution of their latest hybrid tabu search method.

Fréville & Hanafi (2005) presented a review of different methods available to solve the

MDKP. They concluded that the enhanced versions of tabu search methods provide the best

near-optimal results to date for the most difficult problems in spite of their high computa-

tional time, and the exact methods with low computational times face difficulties when the

number of constraints go higher.

Kaparis & Letchford (2008) proposed lifted cover inequalities based on Gabrel & Minoux

(2002) to obtain better upper bounds for MDKP. To obtain a lifted cover, first a minimal

cover is obtained, then a lifting coefficient is obtained for each variable, sequentially, by
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fixing the variable to either 0 or 1 to create an effective cutting plane. The upper bounds

obtained by this method dominates all the other available upper bounds for the MDKP

problems in literature.

Balev et al. (2008) proposed a dynamic programming based procedure for the MDKP.

Their method first solves the relaxed versions of the problem to compute a number of upper

bounds by adjusting the variables with respect to constraint feasibility. A series of lower

bound is also produced using dynamic programming and the two bounds are compared to fix

certain variables and to reduce the problem size. Computational results show the superior

performance over the leading commercial software CPLEX interns of solutions quality and

the time required to solve.

Vimont et al. (2008) proposed a variable fixing heuristics that combines the hybrid

method by Vasquez & Hao (2001), hybrid method with variable fixing by Vasquez & Vimont

(2005), and an enumeration technique for the sub problems. Their method obtained the best

lower bounds for the benchmark problem set but failed to obtain optimum values in most

cases due to non-optimal variable fixing.

Puchinger et al. (2010) proposed a core concept for solving MDKP and produced high

quality results at significantly shorter times. The method first solves the relaxed version of

the MDKP, based on this a core concept is defined. A core concept is effectively reducing

the problem size by variable fixing, and the core is solved using a meta heuristic called

memetic algorithm. The memetic algorithm is based on Chu & Beasley (1998) but includes

probabilistic concepts and local improvement concepts. The authors note that the best

results for the benchmark problems are provided by Vasquez & Hao (2001) and Vasquez &

Vimont (2005).

Boussier et al. (2010) presented a multi-level search strategy for MDKP that combines

resolution search, branch & bound, and variable fixing. Initially a relaxed problem is solved

using simplex, to which an iterative resolution search (inverse of branch & bound method)

and branch and bound methods are applied by fixing some variables. Their computational
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results show improvements to many solutions obtained by Chu & Beasley (1998) and Vasquez

& Vimont (2005), but the time required to obtain the solutions may reach up to 148 hours in

some cases. The authors duly note the huge time requirement and state that the algorithm

is not really suited for the instances solved.

Angelelli et al. (2010) proposed a heuristic procedure based on kernel search for the

MDKP. An initial set of promising candidates are obtained by solving the relaxed problem,

and this forms the kernel. Then, a sequence of subproblems which are restricted to the

present kernel (variables in kernel) is then solved with a few more added variables. The

kernel is updated using the better solutions found by an ILP solver, and, in the end of the

iterative procedure, the best solution for the MDKP is represented by the kernel. Benchmark

problems of size n = 250 and m = 30, and n = 500 and m = 30 were solved by setting a

time limit of up to 2 hours. The solutions to few problems in the first set (n = 250) were

improved when compared to Boussier et al. (2010).

Mansini & Speranza (2012) proposed an exact algorithm for MDKP based on variable

fixing and branch & bound method. Their algorithm solves subproblems (considering fewer

variables) by iteratively fixing variables, and then branch & bound method is applied for

the sub problem. The initial solutions for their sub problems are obtained either by greedy

method or from the kernel search method (Angelelli et al., 2010). The algorithm was tested

on various benchmark cases, was shown to be better than the most recent branch & bound

method (Vimont et al., 2008), and was able to find new optimal solutions in 5 hours for

problems size m = 30 and n = 250.

3.4 Application of XQX Model for 0-1 MDKP

In this section, we present the application of our XQX model for 0-1 MDKP using a

basic heuristics that we developed. The purpose of this heuristic is to show that the XQX

model and the solution procedures presented in the previous chapter can be used to solve

benchmark problems irrespective of its size. The MDKP problem considered in this chapter
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is a binary IP problem with inequality constraints, and we presented our XQX model for

such a problem type in section 2.6.2. The variable update procedure for the binary variables

was discussed in section 2.8.3, and the update rules for the slack variables were presented in

section 2.8.2 for the same problem type. The heuristic incorporates all these methods, and

Algorithm 1 shows the overall procedure.

Note that the MDKP problem is a max problem type and the XQX model presented in

the previous chapter used a min problem type. To be consistent with our XQX model, we

have converted the max problem type to min using the following convention:

min f(x) = −max (−f(x)). (3.3)

The Algorithm was coded using Python programming language and uses a combination

of serial and parallel processing during execution. The parallel processing was obtained

using PyOpenCL (Klöckner et al., 2012) for the computation of ∂f
∂x

and s∗. PyOpenCL is

an open source Python wrapper for OpenCL (Open Computing Language), which allows

Python based codes to take advantage of heterogeneous computing resources. OpenCL is an

industry standard for heterogeneous computing framework, which is a combination of CPU,

GPU, and other processors. Codes with OpenCL modules can make use of the multi-core

CPU, or multi-core GPU, or their combination to obtain parallel execution. In our parallel

implementation, we have developed a very basic version that does not involve advanced

techniques to obtain higher speedups; also the heuristics procedure presented here is very

basic. Our goal in this thesis is not to create a heuristic that solves problems to optimality,

but to show the application of developed XQX model and the solution procedures.

In Algorithm 1, lines 1 through 4 represent the initialization phase. In line 1, we first read

the problem instance from a file; the number of variables, number of constraints, objective

function, and the constrains are then stored in appropriate variables. In line 2, we compute

the XQX matrix for the problem instance based on 2.68. In line 3, all the variables are
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initialized to 0, and in line 4, the initial ∂f
∂x

are calculated using parallel processing.

Algorithm 1: Heuristic for Binary IP

1 READ problem instance
2 COMPUTE Q matrix
3 xi ← 0, si ← 0, s∗i ← 0

4 COMPUTE ∂f
∂xi

5 while maximum time not reached do
6 if all constraints satisfied then
7 Best xi ← 1 if xi == 0

8 COMPUTE s∗i , constraint violation, si,
∂f
∂xi

9 else
10 while constraints violated do
11 Worst xi ← 0

12 COMPUTE s∗i , constraint violation, si,
∂f
∂xi

13 if all constraints satisfied then
14 COMPUTE objective function value
15 if better solution found then
16 UPDATE previous best x and s∗

17 UPDATE current best x and s∗

18 else
19 if random variable == true then
20 Randomly select xi ← 0 if xi == 1, or xi ← 1 if xi == 0

21 COMPUTE s∗i , constraint violation, si,
∂f
∂xi

22 FORCE all constraints satisfied

23 if best solution not updated in p iterations then
24 current x, s ← previous best x, s∗ OR current x, s ← best x, s∗

25 Randomly select xi ← 1 if xi == 0 from current solution

26 COMPUTE s∗i , constraint violation, si,
∂f
∂xi

27 return best solution

The Algorithm then enters the main loop of execution from lines 5 through 26 where

the variable update procedures are implemented to solve the problem. We will present a

sample code execution description after we present the details of this loop. In line 6, if all

the constraints are satisfied, the code then sorts the computed ∂f
∂x

, and the best xi (lowest

∂f
∂xi

) which is 0, is changed to 1. A status is also updated to the selected variable so that
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it is not changed back to 0 in the very next iteration, and before changing the variable’s

value from 0 to 1, the status is checked to make sure that it can be changed in that specific

iteration. In line 13, if one or more constraint is violated, the code then sorts the computed

∂f
∂x

, but this time the worst xi (highest ∂f
∂xi

), which has a value of 1, is changed to 0. Similar

status checks and updates are performed here. Under line 13, the procedure changes the

variable value to 0 until all the constraints are satisfied, which is obtained by calculating the

s∗. Note that as soon as a variable xi is updated, the new values of s∗, constant violations,

si, and ∂f
∂xi

are calculated, and this procedure is adopted throughout the code execution. In

the variable update procedure for binary variables from 2.8.3, we showed Table 2.5 which

used positive or negative values of ∂f
∂xi

to determine its corresponding update. The sorting

procedure implemented also works in the same way where the variable with lowest partial

derivative is assigned 1 and the one with highest is assigned 0.

After the updating procedures under line 6 and line 13 are performed, the objective

function value is calculated in line 14 if all the constraints are satisfied. If a better solution

is found, the array containing the best solution and the previous best solution are updated.

For example, if a best solution is found in iteration k, then previous best solution array is

updated to the best solution found in iteration k− i, and the best solution array is updated

to the current best solution obtained in iteration k. Note that the value of si is updated

to s∗i in the best solution since s∗ represents the actual constraint violation, as shown in

2.93. If the constraints are still violated in line 18, based on the random variable calculated,

the current solution set is randomly updated based on the random variable obtained in line

19. If the random variable is true in line 19, then another random variable is calculated

to decide between random addition or random deletion. In random addition, one variable

xi from the set with a value of 0 and with an acceptable status is selected randomly and

its value is changed to 1, along with status update. In random deletion, a similar step is

performed where a variable xi with value 1 is changed to 0. At the end of this operation, we
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update a variable that forces the value of constraint violation to 0 irrespective of the actual

calculated constraint violation.

If the best solution has not been updated after certain number of iterations, the current

solution set is updated to either the best solution set or the previous best solution set under

line 23. If previous best was chosen in iteration j, then best solution set is chosen the next

time and so on. After updating the current solution set, the random addition procedure

described earlier is performed, which is again based on a random true or false value, and

then the new values of s∗, constant violations, si, and ∂f
∂xi

are calculated. If random variable

is true, then the random addition is performed, or else the solution set is not changed.

3.4.1 Example Code Execution

To visualize a sample code execution, assume that the procedure is beginning its 100th

iteration, and also assume best and previous best solution exist where the best solution was

found in 82nd iteration. At 100th iteration, in line 6, assume that all the constraints are

satisfied. The code then adds one more variable by determining the best variable to add

and then the values for slack variables and partial derivatives are calculated in line 8. After

adding 1 more variable, assume that one or more constraint has been violated and the code

enters in to line 18. Here, let us also assume that a random addition takes place, which

makes the constraint violation even higher; also the constraint violation variable is forced

to 0 at the end. At this stage too many variables have a value of 1, and at the end of 100th

iteration the procedure is forced to assume that all constraints are satisfied.

Now, the procedure enters 101st iteration with all constraints satisfied (since it was forced

earlier). The procedure again adds a best variable under line 6, and then the constraints are

further violated. The procedure will then enter line 18 since the constraints are violated.

Now, assume that the random variable calculated in line 19 is false, and due to this the

procedure does not update the current solution (infeasible solution) set and it simply goes

to the next iteration.
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In the next iteration, 102nd, using the results from previously calculated constraint vio-

lations, the worst variables will be removed until all the constraints have been satisfied; as

shown in line 10. At the end of this procedure, the code will enter line 13 since all constraints

are satisfied. Now assume that after calculating the objective function value a better solu-

tion was found. The code will then update the previous best solution to the best solution

found in 82nd iteration, and the best solution is updated to the current best solution found

in 102nd iteration. If a new solution was not found in 102nd iteration, the code then reaches

line 23. Assume that the value of p is 20 in line 23, and since the last best solution was

found in 82nd iteration, and since we are currently in 102nd iteration, it is time to change

the current solution set with previous best or the best solution with or without random

addition. The procedure then continues to execute as shown in the pseudocode until the

maximum time has been reached and then returns the best solution found.

In neural networks, the output of one variable depends upon the output of all other

variables in system. Similarly here, the output of one variable depends upon all the other

binary variables and the slack variables, and this can be clearly seen from 2.101a and 2.111.

In our heuristics, we have tried to mimic the same behavior by using the update rules for

the binary and slack variables, which in turn changes the contribution of one variable based

on the value of others. We have also used randomness to escape local optima.

3.4.2 Time Complexity of XQX based Heuristic for Binary IP

In this section, we provide the time complexity associated with the different operations

in a iteration for the heuristic presented above. The computation of ∂f
∂xi

for each unknown

variable (xi) involves all the unknowns except xi, slack variables, and a constant number.

Hence, the time complexity of this operation is O(n(n − 1 + m)). The calculation of s∗i

also involves O(n(n + m)) operations, but it can be reduced to O(mn) operations based

on 2.30. To find the best or worst xi, we have used the quick sort algorithm, and its time

complexity is O(n(logn)). Updating si involves a total of m operations, and checking the
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constraint violation involves m operations in the worst case. Hence, we have O(m) for for

updating siand O(m) for checking constraint violation in the worst case. Calculating the

new objective function value has a complexity of O(n) since the slack variables do not play

a role in this calculation based on Proposition 5 (2.33). The worst time complexity in this

heuristics is the computation of ∂f
∂xi

, but this can be reduced based on the Proposition 7

(2.43). Also note that the while loop in line 10 will not iterate m times. The worst case is

m times, but this definitely does not happen. In the worst case scenario, with m operations

in line 10, the worst time complexity would be O(mn(n+m)). For other operations in the

heuristics the time complexities are much less than the worst case reported.

3.5 Solutions for Benchmark Problems

In this section, we present the results from solving some of the benchmark problems

available for 0-1 MDKP problem, and problems were obtained from http://www.cs.nott.

ac.uk/~jqd/mkp/index.html. The heuristic procedure explained in the previous section

was used to obtain solutions for these benchmark problems. The penalty value P was set

to 100, and this value was chosen arbitrarily.

The solutions obtained from our heuristics are compared to the best solutions obtained by

the most recent exact algorithm proposed by Mansini & Speranza (2012), the large instances

are compared against the hybrid method with variable fixing and tabu search developed by

Vasquez & Vimont (2005), and the largest with Vasquez & Hao (2001) . It is also to be

noted that the best methods available in literature to solve 0-1 MDKP problems, both exact

and heuristics based, always include a linear relaxation (0 ≤ x ≤ 1 instead of x ∈ {0, 1})

in their procedures. Also, Kellerer et al. (2004) states that the d-dimensional knapsack

problems are particularly difficult instances of integer programming because the constraint

matrix is usually dense, and, due to this, it has been a favorite playground for experiments

with heuristic procedures such as tabu search and genetic algorithm to develop advanced

techniques.
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The size of the benchmark problem ranges from m = 5 to m = 500 and n = 100 to

n = 2500. There are a total of 281 problems from which we are presenting the results for 92

instances. Each instance was executed on an Intel 2.93 GHz machine with 8 cores, and the

CPU occupancy during the execution of an instance was about 20% for n ≤ 500 and about

40% for n ≥ 1000. All the instances were solved twice each for a period of 1800 seconds.

We report the best solution obtained from those two runs for each reported instance in the

following tables. In the tables given below, column 1 gives the best known solution for the

instance, column 2 shows the best solution obtained by our method, column 3 shows the %

gap between the best known and our solution, column 4 shows the time required to obtain

our solution, column 5 gives the best solution from CORAL (Mansini & Speranza, 2012), or

from HFTABU (Vasquez & Vimont, 2005), or from HTABU (Vasquez & Hao, 2001), column

6 gives their % gap, and column 7 gives their time required.

The results shown in tables 3.1 to 3.9 are solutions for the problem sets created by Chu

& Beasley (1998), and Table 3.10 shows the solutions for the problem sets created by Glover

& Kochenberger (1996). The Chu & Beasley (1998) source problem sets were constructed

using the procedure suggested by Fréville & Plateau (1994). For each problem set, the

wij are integer numbers uniformly drawn in [0, 1000], and for each combination (n,m) the

constraint capacities are computed as ci = α
∑n

j=1wij, where α is the tightness factor. The

tightness factors used in the problem sets are 0.25, 0.5 and 0.75 to create these problem sets.

In our tables 3.1 to 3.9 the first three rows correspond to problems with tightness factor

0.25, the next three with 0.5, and the last three with 0.75. We could not find the problem

construction procedure for Glover & Kochenberger (1996) sets in our literature search.
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No. Best Known Z XQX % Gap Time(sec) CORAL % Gap Time(sec)

1 23534 23468 0.28 1791 23534 0.0 4.59

2 23991 23922 0.288 1527 23991 0.0 1.95

3 24216 24161 0.227 89 24216 0.0 1.22

4 42545 42339 0.484 1406 42545 0.0 0.81

5 45090 44953 0.304 794 45090 0.0 3.14

6 42218 42005 0.505 850 42218 0.0 1.92

7 61091 61091 0.0 1051 61091 0.0 0.98

8 58959 58921 0.064 908 58959 0.0 2.06

9 61520 61459 0.099 739 61520 0.0 1.58

Table 3.1: Results for: m = 5, n = 100 (Chu & Beasley Instances)

No. Best Known Z XQX % Gap Time(sec) CORAL % Gap Time(sec)

1 23064 22904 0.694 680 23064 0.0 140

2 22635 22394 1.065 1399 22635 0.0 11.23

3 22511 22359 0.675 1089 22511 0.0 18.39

4 45624 45311 0.686 1201 45624 0.0 55

5 43574 43342 0.532 1113 43574 0.0 126

6 42970 42692 0.647 1739 42970 0.0 43

7 57375 57137 0.415 1074 57375 0.0 5

8 56377 56197 0.319 1421 56377 0.0 60

9 60205 59947 0.429 558 60205 0.0 18

Table 3.2: Results for: m = 10, n = 100 (Chu & Beasley Instances)
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No. Best Known Z XQX % Gap Time(sec) CORAL % Gap Time(sec)

1 21946 21576 1.686 1612 21946 0.0 1925

2 21464 21044 1.957 730 21464 0.0 2456

3 21397 21006 1.827 1099 21397 0.0 2093

4 41041 40659 0.931 499 41041 0.0 1985

5 40889 40450 1.074 1717 40889 0.0 1952

6 41700 41226 1.137 1231 41700 0.0 1937

7 57494 57494 0.0 369 57494 0.0 1207

8 60011 59594 0.695 1168 60011 0.0 1899

9 58132 57938 0.334 823 58132 0.0 1736

Table 3.3: Results for: m = 30, n = 100 (Chu & Beasley Instances)

No. Best Known Z XQX % Gap Time(sec) CORAL % Gap Time(sec)

1 59463 58903 0.942 1495 59463 0.0 129

2 61472 60905 0.922 1511 61472 0.0 137

3 61885 61276 0.984 1566 61885 0.0 76

4 109109 108059 0.962 770 109109 0.0 111

5 109841 109237 0.55 1607 109841 0.0 99

6 109383 108226 1.058 1502 109383 0.0 110

7 149665 148845 0.548 1595 149665 0.0 116

8 149334 148400 0.625 1258 149334 0.0 155

9 152130 151676 0.298 1416 152130 0.0 88

Table 3.4: Results for: m = 5, n = 250 (Chu & Beasley Instances)
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No. Best Known Z XQX % Gap Time(sec) CORAL % Gap Time(sec)

1 58781 57656 1.914 1657 58781 0.0 3870

2 61000 59933 1.749 1643 61000 0.0 4364

3 59387 58355 1.738 1576 59387 0.0 3612

4 110913 109062 1.669 1730 110913 0.0 4907

5 108932 107250 1.544 1549 108932 0.0 4085

6 110845 109094 1.58 1022 110845 0.0 7193

7 153578 152480 0.715 1682 153578 0.0 4230

8 149160 148596 0.378 1327 149160 0.0 3776

9 149704 148808 0.599 1258 149704 0.0 3649

Table 3.5: Results for: m = 10, n = 250 (Chu & Beasley Instances)

No. Best Known Z XQX % Gap Time(sec) CORAL % Gap Time(sec)

1 56357 53890 4.377 1785 56357 0.0 18000

2 56457 54463 3.532 1316 56457 0.0 18000

3 56447 54378 3.665 1407 56447 0.0 18000

4 107770 105484 2.121 1763 107770 0.0 18000

5 106442 103976 2.317 1570 106442 0.0 18000

6 104032 101381 2.548 1514 104032 0.0 18000

7 149958 147692 1.511 1680 149958 0.0 18000

8 148574 146556 1.358 1711 148574 0.0 18000

9 149570 147401 1.45 1791 149570 0.0 18000

Table 3.6: Results for: m = 30, n = 250 (Chu & Beasley Instances)
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No. Best Known Z XQX % Gap Time(sec) CORAL % Gap Time(sec)

1 120148 118190 1.63 1699 120148 0.0 839

2 117879 115793 1.77 696 117879 0.0 190

3 121586 119288 1.89 1713 121586 0.0 766

4 218428 216226 1.008 1233 218428 0.0 655

5 221202 218661 1.149 1777 221202 0.0 146

6 218215 215746 1.131 1240 218215 0.0 288

7 295828 293069 0.933 1542 295828 0.0 71

8 308086 305788 0.746 1129 308086 0.0 393

9 300342 297549 0.93 1717 300342 0.0 327

Table 3.7: Results for: m = 5, n = 500 (Chu & Beasley Instances)

No. Best Known Z XQX % Gap Time(sec) CORAL % Gap Time(sec)

1 119249 114748 3.774 1567 119232 0.00014 18000

2 118829 114184 3.909 1601 118825 0.00003 18000

3 116530 113304 2.768 1515 116509 0.00018 18000

4 217377 211947 2.498 1051 217377 0.0 18000

5 213873 207514 2.973 1741 213859 0.00006 18000

6 220899 214299 2.988 1353 220899 0.0 18000

7 304374 300470 1.283 1647 304374 0.0 18000

8 296478 292505 1.34 1054 296478 0.0 18000

9 301359 296330 1.669 1707 301359 0.0 18000

Table 3.8: Results for: m = 10, n = 500 (Chu & Beasley Instances)
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No. Best Known Z XQX % Gap Time(sec) HFTABU % Gap Time(sec)

1 115741 109502 5.39 1665 115741 0.0 616

2 114181 108707 4.794 1798 114181 0.0 110873

3 117116 111123 5.117 1684 117116 0.0 121248

4 218104 210620 3.431 1731 218104 0.0 96952

5 214648 206472 3.809 1787 214648 0.0 167224

6 215890 207742 3.774 1600 215890 0.0 117102

7 301675 295611 2.01 1621 301675 0.0 143430

8 300055 294294 1.92 1516 300055 0.0 218994

9 302032 296525 1.823 1617 302032 0.0 156377

Table 3.9: Results for: m = 30, n = 500 (Chu & Beasley Instances)

No. n,m Best Known Z XQX % Gap Time(sec) HTABU % Gap Time(sec)

1 100, 15 3766 3730 1.218 1735 3766 0.0 259200

2 100, 25 3958 3922 0.91 453 3958 0.0 259200

3 150, 25 5656 5593 1.114 1493 5656 0.0 259200

4 150, 50 5767 5680 1.509 1331 5767 0.0 259200

5 200, 25 7560 7463 1.283 1721 7560 0.0 259200

6 200, 50 7677 7572 1.368 1768 7677 0.0 259200

7 500, 25 19220 18964 1.332 1779 19220 0.0 259200

8 500, 50 18806 18458 1.85 1620 18806 0.0 259200

9 1500, 25 58087 56838 2.15 1772 58087 0.0 259200

10 1500, 50 57295 56075 2.129 1033 57295 0.0 259200

11 2500, 100 95237 93607 1.712 1374 95237 0.0 259200

Table 3.10: Results for: Other large instances (Glover & Kochenberger Instances)

90



3.5.1 Results Discussion

In tables 3.1 to 3.8 we compared our results with the results obtained by Mansini &

Speranza (2012) (CORAL). It is clear that CORAL performs very well for small problem

sets by computing optimal results in short time, since it is a complex method which combines

different features. But as the problem size gets larger, CORAL does use more time and faces

difficulty. It is also evident from Mansini & Speranza (2012) that the commercial solver

CPLEX gives similar performance when compared with CORAL for small problem sets, but

as the problem sets gets larger, (m ≥ 10, n ≥ 500) CPLEX faces difficulty. To be specific,

for problems with (m ≥ 10, n ≥ 250), with infeasible starting solutions, CPLEX provided

“infeasible” solutions even after 5 hours or even 10 hours of computational time. Comparing

our results with CORAL, we were able to match the optimal results for two cases, and in

one case, XQX out-performed CORAL.

It is also evident from Mansini & Speranza (2012) that they fail to show any results for

problem sets with (m >= 30, n >= 500), and, due to this, we have compared our solutions

for the large problem sets with the results obtained by Vasquez & Vimont (2005) (HFTABU)

and Vasquez & Hao (2001) (HTABU) in tables 3.9 and 3.10. In fact, Mansini & Speranza

(2012) clearly states that CORAL cannot handle large problems.

For the large problems sets, the best results were provided by Vasquez & Vimont (2005)

(HFTABU) and Vasquez & Hao (2001) (HTABU). It is to be noted that HFTABU results

shown in Table 3.9 took more than 1 day of computational time, and in certain cases, up to

2.53 days to obtain the optimal value. We are able to get within 2% of the optimal solution

in 0.5 hours for a few cases. Similar conclusion can be drawn from Table 3.10 where the

results are obtained after 3 days of computation, and we are able to get within 2% of the

optimal solution value in 0.5 hours of computation time for most of the cases.

The conclusions we would like to draw from the results are as follows. The proposed

XQX model was able to handle small, medium and very large problem sizes. It was able to

produce reasonable solution quality, especially for large problem sets, in a very reasonable
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time. This XQX model is new and it does not exist currently in literature, and if our XQX

model is included in a sophisticated heuristic model, it can provide better solutions for any

problem size.

3.6 Summary

In this chapter, we defined the 0-1 MDKP based on existing literature, presented real

life applications of 0-1 MDKP, and described several existing methods from literature that

can solve small and large MDKP. We applied our XQX model for 0-1 MDKP using our

simple heuristics and demonstrated that our model can be applied to any problem size. In

the next chapter, we present the general multidimensional knapsack problem, describe its

mathematical formulation for this problem, and then present a detailed literature survey

about the existing methods used to solve such a problem. The general MDKP is a problem

with integer variables and inequality constraints, and our XQX model developed in section

2.6.2 for general IP and the solution procedures presented in sections 2.8.1 and 2.8.2 will

be applied to solve benchmark problems using our heuristic procedure. The application of

our general XQX model to general IP problem (general MDKP) will be the fourth and final

objective of this thesis.
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CHAPTER 4

GENERAL MULTIDIMENSIONAL KNAPSACK

PROBLEM

In this chapter, we apply our general XQX model from section 2.5 to general multidimen-

sional knapsack problem (GMDKP). The application of our general XQX model to GDMKP

is the fourth and final objective of this thesis. The GMDKP is a strong NP-hard problem

and is similar to 0-1 MDKP from the previous chapter, but all the variables in GMDKP are

integers.

4.1 Definition

The GMDKP problem is a multiple resource constraint integer type problem and is

defined by the following formulation (Kochenberger et al., 1974):

maximise
n∑

j=1

pjxj

subject to
n∑

j=1

rijxj ≤ bi, i = 1, . . . ,m,

xj ∈ Z+, j = 1, . . . , n,

(4.1)

where pj, rij, and bi are assumed to be positive integer values. Given n items with each

having profits pj and m resources with capacities bj, the goal is to select a subset of items

with maximum total profit when each item j consumes rij from each of the i resource.
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4.2 Literature Review

In our extensive review of literature we found only three published papers which deal

with GMDKP, and the solution approaches for GMDKP problems are scarce (Akçay et al.,

2007).

Kochenberger et al. (1974) proposed a heuristic for general integer programming problem

based on the efficient gradient method by Senju & Toyoda (1968). This heuristic starts with

all variables set to 0, calculates the efficient gradient for all variables, and the variable with

highest gradient is updated to a new value (incremented by 1) if the update does not violate

any constraints. If one or more constraints are violated, the next best efficient gradient

is chosen. This heuristics was used to solve 26 problems with up to 50 variables and 12

constraints, or 15 variables and 50 constraints, and found optimal solutions to 86% of the

problems.

Pirkul & Narasimhan (1986) proposed a branch & bound based algorithm to solve general

multidimensional knapsack problem. This algorithm combines surrogate relaxation, variable

fixing and sensitivity analysis with their branch & bound procedure to solve randomly

generated problem instances with up to 5 constraints and 200 variables. The surrogate

relaxation is used to obtain bounds, then variables were fixed according to the bounds

obtained, after which sensitivity analysis was performed to improve the bounds. When

compared with CPLEX, their algorithm was able to obtain optimal solutions for all problems.

Akçay et al. (2007) proposed a greedy-like algorithm called PECH which was shown to

be superior when compared with the other two methods, (Kochenberger et al., 1974) &

(Pirkul & Narasimhan, 1986). This algorithm considers effective capacity for each item,

which is defined as the maximum copies of item j that can be accepted for remaining

available capacity for one knapsack. PECH starts with all variables equal to 0 and updates

their values based on the reward obtained with respect to effective capacity. The variables

are incremented by one or more than one unit at any given update. Randomly generated

problem sets with number of variables up to 400 and number of constraints up to 200 were
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created to test their method. Note that, in the version of GDMKP generated and solved by

PECH, the variables are bounded by a positive integer.

4.3 Application of XQX Model for GMDKP

In this section, we present the application of our XQX model for GMDKP using another

basic heuristics that we developed, and this heuristics is similar to the one presented for

solving 0-1 MDKP problems. The purpose of this heuristics is to show that the XQX model

and the solution procedures presented earlier can be used to solve benchmark problems

irrespective of its size. The GMDKP problem is an IP problem with inequality constraints,

and we presented our XQX model for such a problem type in section 2.6.2, and the variable

update rules were presented in section 2.8.1 and section 2.8.2. The heuristics incorporates

all these methods, and Algorithm 2 shows the overall procedure. Note that the GMDKP

problem is a max problem type and it was converted to a min problem type using 3.3.

This Algorithm was coded using Python programming language and uses a combination

of serial and parallel processing during execution (similar to the 0-1 MDKP heuristics pre-

sented in the previous chapter). The parallel processing was obtained using PyOpenCL for

the computation of ∂f
∂x

, s∗, and the minimum remaining capacity.

In Algorithm 2, lines 1 through 3 represent the initialization phase. In line 1, we read the

problem instance and then compute the XQX matrix for the problem. In line 2, we initialize

the unknowns (x) to 0, or a random number between 0 and 1, or a random number between

1 and 5. The initialization of x based on these three cases will be addressed appropriately

when the benchmark results are presented. In line 3, we compute the constraint violation

and s.

The Algorithm then enters the effective capacity based variable updates from lines 4

through 10. The method PECH suggested by Akçay et al. (2007) is used to update the

variables, and this method works as follows. First, the effective capacity of all the variables

are calculated. In this calculation, for each variable, we compute its remaining capacity
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in each constraint and then take the minimum capacity for each variable. The minimum

remaining capacity for each variable is then multiplied with its corresponding profit value,

and this gives the effective capacity for each variable.

The greedy update in line 5 chooses the variable with highest effective capacity (variable

that gives the highest profit based on its minimum remaining capacity) and then updates

this variable to xi + max(1, int(0.05 ∗ ECi)). Note that the 5% was suggested as the best

update by Akçay et al. (2007). The other values of 20% and 10% in other parts of the

Algorithm were chosen arbitrarily. In line 6, the remaining capacity in each constraint

(or slack variables s) is updated along with the constraint violation and objective function

value. In lines 7 and 8, the best and the previous best solutions are updated if a better

solution is found. Note that the concept of best and previous best solution was described in

the previous chapter. In line 10, if the solution fails to improve, the Algorithm terminates

PECH based updates and enters the main loop in line 12.

In the main loop represented in lines 12 through 46, the XQX based variable update

method and the PECH based updates are integrated to improve all the solutions found in

lines 4 through 10. In lines 13 to 18, if all the constraints are satisfied, the best greedy

improving variable based on PECH is updated, after which the constraint violation, s∗, s,

and ∂f
∂x

are calculated in line 15. In line 16, based on a random variable generated between

1 and 2, the best improving x based on the ∂f
∂x

is selected, and a random integer number

generated between 1 and 25 is added to its current value. Note that, instead of updating

the variable to x∗, we are updating it randomly. The constraint violation, s∗, s, and ∂f
∂x

are

then updated in line 18. A status is also updated so that any variable that is increased in

value is not increased again for the next few iterations.

In lines 19 to 21, if one or more constraints are violated, the worst improving ∂f
∂x

is chosen,

and the corresponding value of the variable is updated to x∗. This x∗ calculation is based

on the core methods described earlier in section 2.8.1. The Algorithm then computes the

objective function value in line 22, and the best and previous best solutions are updated
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Algorithm 2: Heuristic for General IP

1 READ problem instance, COMPUTE Q matrix
2 xi ← 0 or xi ← U [0, 1], or xi ← U [1, 5]
3 COMPUTE s∗i , constraint violation
4 while all constraints satisfied do
5 COMPUTE effective capacities (EC), Greedy xi ← xi +max(1, int(0.05 ∗ ECi))
6 COMPUTE s∗i , constraint violation, objective function value
7 if better solution found then
8 UPDATE current & previous best x and s∗

9 if solution not improving then
10 break

11 COMPUTE ∂f
∂xi

12 while maximum time not reached do
13 if all constraints satisfied then
14 COMPUTE effective capacities (EC), Greedy xi ← xi +max(1, int(0.2 ∗ECi))
15 COMPUTE s∗i , constraint violation, si,

∂f
∂xi

16 for i = 1 to U[1,2] do
17 XQX best xi ← xi+ U[1,25]
18 COMPUTE s∗i , constraint violation, si,

∂f
∂xi

19 while constraint(s) violated do
20 XQX Worst xi ← x∗i
21 COMPUTE s∗i , constraint violation, si,

∂f
∂xi

22 COMPUTE objective function value
23 if better solution found then
24 UPDATE current & previous best x and s∗

25 for i = 1 to U[1,2] do
26 XQX Worst xi ← max(0, xi − 1)
27 COMPUTE s∗i , constraint violation, si,

∂f
∂xi

28 for i = 1 to U[1,2] do
29 COMPUTE EC, Greedy xi ← xi +max(1, int(0.2 ∗ ECi))
30 COMPUTE s∗i , constraint violation, si,

∂f
∂xi

31 if all constraints satisfied then
32 COMPUTE objective function value
33 if better solution found then
34 UPDATE current & previous best x and s∗

35 if random variable == true then
36 Randomly select XQX best or worst xi ← max(0, x

′
i)

37 COMPUTE s∗i , constraint violation, si,
∂f
∂xi

38 if best solution not updated in p iterations then
39 current x, s ← previous best x, s∗ OR current x, s ← best x, s∗

40 for i = 0 to U[0,2] do
41 COMPUTE EC
42 Randomly select between highest ECi and lowest ECi

43 Highest ECi xi ← max(0, xi − 1) or Lowest ECi xi ← xi + int(0.1 ∗ xi)
44 COMPUTE s∗i , constraint violation, si,

∂f
∂xi

45 FORCE all constraints satisfied

46 return best solution
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in line 24 if a better solution is found. The status which was set when increasing the value

of a variable is ignored when the value is decreased to x∗, and a new status is set after

decreasing the value.

In lines 25 through 27, the worst improving ∂f
∂x

is chosen, and the corresponding value of

the variable is updated to max(0, xi− 1), after which the constraint violation, s∗, s, and ∂f
∂x

are updated. The random number generated in line 25 determines the number of updates

performed. In lines 28 through 30, we compute the effective capacity (based on PECH) and

update the best improving variable. The constraint violation, s∗, s, and ∂f
∂x

are updated

after performing PECH based updates. Again, the random number generated in line 28

determines the number of updates performed. Note that the status set previously for any

variable is respected to allow a simple diversification in line 26 and 29. In lines 31 through

34, the current and the previous best solutions are updated if an updated solution is found

after calculating the objective function value. If not, based on a random variable generated,

the best improving or the worst improving xi based on ∂f
∂x

is randomly selected and updated

to max(0, x
′
i). The value of x

′
i is computed using 2x?i − xi from section 2.8.1.

In lines 38 through 45, if the solution has not improved in p iterations, the current

best or previous best solution is modified based on the random number generated in line

40. In line 42, we decide randomly between the highest remaining capacity or the lowest

remaining capacity. Then in line 43, the variable with the highest remaining capacity is

decremented by 1 or the variable with the lowest remaining capacity is incremented by

10%. In line 44, the constraint violation, s∗, s, and ∂f
∂x

are updated, and the number of

modifications performed is based on the random number generated in line 40. At the end of

these operations, irrespective of the constraint violations, the Algorithm is forced to assume

that all constraints have ben satisfied in line 45.

Finally, in line 46, the best solution found is returned after the time limit has been

reached. In the next section, we present a sample code execution of this Algorithm, which

will help to see how the XQX and PECH methods work together to find solutions.
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4.3.1 Example Code Execution

To visualize a sample code execution, assume that the procedure is just starting and the

variables are initialized in line 2. The code then calculates the remaining capacities under

each constraint (slack variables) and computes the constraint violation based on the selected

values for x. Now, assume that all the constrains are satisfied after initialization, and we now

enter the effective capacity based variable update in line 4. Here, the code finds the effective

capacity of each variable in each iteration and adds one variable at a time. After a certain

number of iterations (within a few seconds), the PECH based update will fail to improve the

solution since PECH does not have any repair mechanisms to lessen the value of a variable.

Also, PECH fails to improve when xi is updated to xi + max(1, int(0.05 ∗ ECi)), where

sub-optimal quantities are added, which in-turn exhausts the available knapsack capacities.

Now, assume that the code has finished 100 iterations by the time it breaks out of

the PECH based updates, and then enters the main loop in line 12 after computing the

values of ∂f
∂x

, s∗, s in the previous step. Also assume that the current and previous best

solutions were found during the PECH updates. Since all the constraints are satisfied at

this time, the code tries to increment the best variable to xi +max(1, int(0.2 ∗ECi)) based

on effective capacity in line 14. Since this update creates a constraint violation, it does

not update any variable. The code then updates the variable using the best improving

∂f
∂x

to xi + U [1, 25]; where U [1, 25] randomly generates an integer between 1 and 25. The

idea here is to randomly update the best improving variable as this will trigger the least

improving variables to reduce in strength in line 19. After this update, the values of s∗, s,

and ∂f
∂x

are updated, and this process is repeated if the random number generated in line

25 is greater than 1. At the end of this operation, assume that one or more constraints

has been violated and the code now enters line 19 where the least improving variables are

updated to the local optimal value. Under the while loop in line 19, the least improving

∂f
∂x

is selected and the corresponding variable is updated to x∗. This operation is performed

until all the constraints are satisfied. In line 22, we compute the objective function value
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(since all constraints are satisfied) and update the current and previous best solution if an

improvement is found. After this, the code tries to update the variable corresponding to the

least improving ∂f
∂x

to xi = max(0, xi − 1). The max criteria is used so that the variables

do not become negative. The code then tries to update the best variable using the PECH

method using xi + max(1, int(0.2 ∗ ECi)). The idea here is to force further reduction for

the least improving variables, and this may allow the PECH based update to increment the

greedy based best improving variable. Now, assume that the PECH based updates in line 29

found an improved solution. The current and the previous best solutions are then updated

in line 33. If an updated solution is not found, the code then modifies the current solution

set based on the random variable generated in line 35. If the random variable is true, then

the modification occurs, otherwise no changes are made. In the modification process, the

variable corresponding to the best improving or least improving ∂f
∂x

is selected randomly and

it is updated to max(0, x
′
); the value of x

′
is derived from 2x?i − xi. This operation may

or may not violate the constraints, and, based on this, the next iteration either starts from

line 13 or from line 19.

At the beginning of the next iteration, the constraints are either violated due to the

operations in line 36, or the constraints are not violated. For the first case, the code enters

into line 19 and the least improving variables are updated to its local optimal value. In

the second case, the code enters into line 13 and it tries to update the variables based on

available capacity and the random updates based on the best improving partial derivative.

Now, assume that the code has performed p iterations and the solution has not improved.

At this stage, the current best or the previous best solutions is chosen randomly as the

current solution set for this iteration. Based on the random number generated in line 40,

the current solution set is then modified based on either the highest remaining capacity or

the lowest remaining capacity. The variable with the lowest remaining capacity is updated

to xi + int(0.1 ∗ xi), or the variable with the highest remaining capacity is updated to

max(0, xi − 1). The idea here is to increase the strength of a variable that plays a major
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part in the solution, or decrease the value of a variable that doesn’t play a major role. At

the end of these operations, the code is forced to assume that all constraints are satisfied,

and in the next iteration, the code will enter line 16 for a random update with the current

best or previous best solution (with or without modifications). The code continues in this

fashion until the end time has been reached and returns the best solution at the end.

The main idea behind this Algorithm is to integrate the new XQX based variable update

procedures with the existing PECH method. The random update of a variable in line 17

forces the constraint violation, and this helps the XQX based method to reduce the value

of the least improving variable to its local optimal value. Similarly, the changes in variable

values made in line 25 allow the PECH based method to update the best variable without

violating any constraints. In this heuristics, we have implemented all the ideas presented

in Chapter 2, and have also integrated our XQX based method with an existing method in

literature.

4.3.2 Time Complexity of XQX based Heuristic for General IP

In this section, we provide the time complexity associated with the different operations

in a iteration for the heuristic presented above. The computation of ∂f
∂xi

for each unknown

variable (xi) involves all the unknowns, slack variables, and a constant number. Hence,

the time complexity of this operation is O(n(n + m)). The calculation of s∗i also involves

O(n(n + m)) operations, but it can be reduced to O(mn) operations based on 2.30. The

calculation of x∗i involves O(n+m) operations for one variable. Note that the x∗i calculation

is performed only when required, and not for all variables. The remaining capacity for each

variable involves O(nm) operations, and the effective capacity involves O(n) operations. To

find the best or worst xi, we have used the quick sort algorithm, and its time complexity

is O(n(logn)). Updating si involves a total of m operations, and checking the constraint

violation involves m operations in the worst case. Hence, we have O(m) for for updating si,

and O(m) for checking constraint violation in the worst case. Calculating the new objective
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function value has a complexity of O(n) since the slack variables do not play a role in this

calculation based on Proposition 5 (2.33). The worst time complexity in this heuristics is

the computation of ∂f
∂xi

, but this can be reduced based on the Proposition 7 (2.43). Also

note that the while loop in line 19 will not iterate m times. The worst case is m times, but

this definitely will not happen. In the worst case scenario, with m operations in line 19, the

worst time complexity would be O(mn(n + m)). For other operations in the heuristics the

time complexities are much less than the worst case reported.

4.4 Solutions for Benchmark Problems

In this section, we present the results from solving some benchmark problems. Since

there wasn’t any standard set of benchmark problem sets, we have created problems similar

to the method used by Akçay et al. (2007). The generated set consists of a total of 45

problems of sizes ranging from m = 10 to m = 200 and n = 100 to n = 500, and for each

combination of m and n, 5 problems were created. The method to create these problem

sets are as follows. The coefficients for each variable in each constraint (rij) was randomly

generated from U [1, 100]. The profit associated with each variable (pj) was also randomly

generated from U [1, 100]. To obtain the right hand side (bi), first the values of xj were

randomly generated from U [1, 200]. Then, we use the slackness ratio Si = bi∑
rijxj

proposed

by Zanakis (1977) to obtain the values for bi. The different values for Si were obtained

randomly from U [0.2, 0.4], U [0.4, 0.6], or U [0.6, 0.8]. For each instance, after obtaining the

values for rij and cj, a value for Si was generated, and by using the slackness ratio equation

we obtain the values for the bi by substituting the different values. Note that the values of

rij, cj and bj are integers.

We have also considered some large problems of size ranging from m = 15 to m = 100

and n = 100 to n = 2500. There are a total of 11 such problems, and these were created by

Glover & Kochenberger (1996). Note that, these exact same sets were solved as 0-1 type in

the previous chapter, but here we solve them as general integer problems.
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We have executed all the 56 problems on a dual core machine (2.88 GHz) with 8GB of

RAM. To compare our results, we have done the following. For all the problem sets we are

comparing the results obtained from our heuristics with CPLEX and PECH (Akçay et al.,

2007). We have coded the PECH algorithm, which is a single threaded algorithm and is also

the first part of our XQX based heuristics. The CPLEX is a standard solver used by many

in the literature to compare results. It is a multi-threaded program and used about 100%

of the CPU resources to solve these 56 problems. On the other had, our XQX algorithm is

single threaded with multi-threaded implementations for certain computations as mentioned

earlier. The CPU occupancy of our heuristics was between 50% and 75%. Note that we

have used multi-threading computation to calculate the remaining capacities for PECH, due

to which the execution times are much faster than a completely single threaded PECH.

The first 45 instances were solved 2 times for 15 minutes each, and the larger 11 instances

were solved 2 times for 30 minutes each by XQX based heuristics. The CPLEX runtime was

set to 1 hour for the first 45 instances, and it returned the best solution found in 1 hour of

wall time. For the 11 larger instances, CPLEX was allowed to run beyond 1 day, and the

execution was terminated arbitrarily after reaching more than 1 day for certain instances.

Due to the arbitrary termination criteria, the CPLEX times reported for the 11 problem

sets are not exactly the same. The CPLEX version 12.6 was used, and it was executed using

its auto algorithm mode.

In all the tables shown below (except two), the first column shows the problem instance

or the problem size. In column 2, the solution obtained by our XQX based heuristics is

given, followed by its time required to obtain the solution in column 3. In column 4, the

solution obtained by our PECH implementation (Akçay et al., 2007) is given, followed by

its time required to obtain the solution in column 5. In column 6, the solution obtained by

CPLEX is given, followed by its time required to obtain the solution in column 7. In column

8, we report the %gap between XQX and the CPLEX solution, and in column 9 we report

the %gap between PECH and the CPLEX solution.
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Note that, we can assume the CPLEX solution to be optimal if: It returned a solution

in less than 1 hour for the 45 instances, or less than 1 day for the 11 large instances.

4.4.1 Results for xi = 0 and P = 100

In this section, we present the results for the 56 instances in tables 4.1 to 4.10. These

instances were solved with the penalty value P = 100, and all the unknowns (xi) were

initialized to 0.

No. XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

1 15756.0 92 14328.0 1 15793.0 0.2 0.234 9.276

2 16120.0 93 15003.0 1 16125.0 0.2 0.031 6.958

3 20793.0 834 19617.0 1 20950.0 2 0.749 6.363

4 29730.0 582 25413.0 1 29852.0 0.2 0.409 14.87

5 31201.0 186 28771.0 1 31220.0 0.3 0.061 7.844

Table 4.1: Results for: m = 10, n = 100. (Generated Instances)

No. XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

1 42422.0 667 35951.0 2 42595.0 2 0.406 15.598

2 62473.0 663 59267.0 2 63386.0 5 1.44 6.498

3 50112.0 85 50021.0 2 50119.0 0.3 0.014 0.196

4 87254.0 282 85026.0 2 87401.0 0.8 0.168 2.717

5 84859.0 836 82934.0 2 85533.0 4 0.788 3.039

Table 4.2: Results for: m = 10, n = 250. (Generated Instances)
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No. XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

1 99509.0 890 87378.0 4 104416.0 5 4.699 16.317

2 115719.0 726 113538.0 3 116268.0 6 0.472 2.348

3 90865.0 859 89112.0 3 93587.0 26 2.909 4.782

4 138671.0 895 136826.0 4 142109.0 0.5 2.419 3.718

5 162300.0 849 160908.0 3 166676.0 1 2.625 3.461

Table 4.3: Results for: m = 10, n = 500. (Generated Instances)

No. XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

1 10677.0 139 10133.0 2 10870.0 99 1.776 6.78

2 16125.0 600 14824.0 2 16326.0 2814 1.231 9.2

3 16594.0 830 15819.0 2 16742.0 1017 0.884 5.513

4 20874.0 888 19570.0 2 21154.0 1472 1.324 7.488

5 21876.0 429 21213.0 2 22004.0 3600 0.582 3.595

Table 4.4: Results for: m = 100, n = 100. (Generated Instances)

No. XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

1 30030.0 266 27850.0 3 30751.0 3600 2.345 9.434

2 29556.0 711 28724.0 3 30355.0 3600 2.632 5.373

3 55461.0 881 53051.0 4 56948.0 3600 2.611 6.843

4 55272.0 533 52273.0 4 56904.0 3600 2.868 8.138

5 56077.0 575 52407.0 4 57905.0 3600 3.157 9.495

Table 4.5: Results for: m = 100, n = 250. (Generated Instances)
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No. XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

1 115355.0 766 108211.0 7 120906.0 3600 4.591 10.5

2 91353.0 880 87740.0 6 94338.0 3600 3.164 6.994

3 89123.0 835 86142.0 6 92762.0 3600 3.923 7.137

4 89689.0 883 87540.0 6 92675.0 3600 3.222 5.541

5 88610.0 882 83433.0 6 91605.0 3600 3.269 8.921

Table 4.6: Results for: m = 100, n = 500. (Generated Instances)

No. XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

1 10350.0 661 9621.0 3 10440.0 3600 0.862 7.845

2 14949.0 718 13956.0 4 15114.0 3600 1.092 7.662

3 10178.0 755 9446.0 3 10302.0 2374 1.204 8.309

4 19443.0 200 18775.0 4 19728.0 3600 1.445 4.831

5 19897.0 692 17999.0 4 20143.0 3600 1.221 10.644

Table 4.7: Results for: m = 200, n = 100. (Generated Instances)

No. XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

1 26557.0 736 25541.0 5 27376.0 3600 2.992 6.703

2 28340.0 827 27338.0 5 29158.0 3600 2.805 6.242

3 27078.0 825 25124.0 5 27845.0 3600 2.755 9.772

4 52279.0 750 49969.0 6 53896.0 3600 3.0 7.286

5 52823.0 457 49816.0 6 54409.0 3600 2.915 8.442

Table 4.8: Results for: m = 200, n = 250. (Generated Instances)
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No. XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

1 58495.0 858 54730.0 8 61056.0 3600 4.195 10.361

2 86371.0 883 83198.0 8 88583.0 3600 2.497 6.079

3 114582.0 897 110237.0 9 118139.0 3600 3.011 6.689

4 113903.0 899 107150.0 9 118881.0 3600 4.187 9.868

5 84417.0 811 77788.0 8 88553.0 3600 4.671 12.157

Table 4.9: Results for: m = 200, n = 500. (Generated Instances)

n,m XQX (Q) Time PECH (E) Time CPLEX (C) Time Q vs. C E vs. C

Z (sec) Z (sec) Z (sec) % Gap % Gap

100, 15 3931.0 952 3824.0 1 3953.0 9 0.557 3.263

100, 25 3994.0 31 3966.0 1 4114.0 32 2.917 3.597

150, 25 5773.0 275 5594.0 1 5879.0 2329 1.803 4.848

150, 50 5713.0 537 5638.0 1 5872.0 113695 2.708 3.985

200, 25 7659.0 136 7438.0 1 7886.0 57387 2.879 5.681

200, 50 7637.0 423 7537.0 1 7839.0 117550 2.577 3.853

500, 25 19996.0 1779 19222.0 2 20536.0 90885 2.63 6.399

500, 50 18703.0 1274 18416.0 4 19391.0 122165 3.548 5.028

1500, 25 59530.0 1306 59078.0 2 62518.0 97624 4.779 5.502

1500, 50 57807.0 1484 57655.0 3 60095.0 91797 3.807 4.06

2500, 100 94757.0 1762 93259.0 5 98031.0 122105 3.34 4.868

Table 4.10: Results for: Other large instances (Glover & Kochenberger Instances)

4.4.2 Results for xi = 0 with P = 100, P = 500, and P = 1000

In this section, we present the results for the 11 large instances in tables 4.11 and 4.12.

These instances were solved with the penalty values P = 100, P = 500, and P = 1000 and

all the unknowns (xi) were initialized to 0.
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n,m XQX (P1) Time XQX (P2) Time XQX (P3) Time CPLEX (C) Time

Z (sec) Z (sec) Z (sec) Z (sec)

100, 15 3931.0 952 3938.0 432 3918.0 222 3953.0 9

100, 25 3994.0 31 3972.0 27 4002.0 399 4114.0 32

150, 25 5773.0 275 5787.0 1565 5723.0 168 5879.0 2329

150, 50 5713.0 537 5699.0 1074 5680.0 610 5872.0 113695

200, 25 7659.0 136 7589.0 983 7661.0 337 7886.0 57387

200, 50 7637.0 423 7621.0 725 7577.0 1702 7839.0 117550

500, 25 19996.0 1779 20085.0 629 19890.0 1639 20536.0 90885

500, 50 18703.0 1274 18585.0 1698 18543.0 778 19391.0 122165

1500, 25 59530.0 1306 59680.0 1483 59838.0 1615 62518.0 97624

1500, 50 57807.0 1484 57848.0 1769 57798.0 1629 60095.0 91797

2500, 100 94757.0 1762 93965.0 1724 94079.0 1793 98031.0 122105

Table 4.11: Results for: Other large instances with P1 = 100, P2 = 500, and P3 = 1000

(Glover & Kochenberger Instances)
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n,m P1 vs. C P2 vs. C P3 vs. C

%Gap %Gap %Gap

100, 15 0.557 0.379 0.885

100, 25 2.917 3.452 2.722

150, 25 1.803 1.565 2.654

150, 50 2.708 2.946 3.27

200, 25 2.879 3.766 2.853

200, 50 2.577 2.781 3.342

500, 25 2.63 2.196 3.146

500, 50 3.548 4.157 4.373

1500, 25 4.779 4.539 4.287

1500, 50 3.807 3.739 3.822

2500, 100 3.34 4.148 4.031

Table 4.12: % Difference with CPLEX for other large instances with P1 = 100, P2 = 500,

and P3 = 1000 (Glover & Kochenberger Instances)

4.4.3 Results for P = 100 with xi = 0, xi ∼ U [0, 1], and xi ∼ U [1, 5]

In this section, we present the results for the 11 large instances in tables 4.13 and 4.14.

These instances were solved with the penalty value P = 100, and three different initial

values for the unknowns were used. xi = 0: all unknown initialized to 0. xi ∼ U [0, 1]: all

unknown variables were initialized to random integer number generated in the range [0,1].

xi ∼ U [1, 5]: all unknown variables were initialized to random integer number generated in

the range [1,5].
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n,m XQX (R1) Time XQX (R2) Time XQX (R3) Time CPLEX (C) Time

Z (sec) Z (sec) Z (sec) Z (sec)

100, 15 3931.0 952 3929.0 95 3936.0 1406 3953.0 9

100, 25 3994.0 31 4046.0 128 4043.0 186 4114.0 32

150, 25 5773.0 275 5764.0 1362 5773.0 1459 5879.0 2329

150, 50 5713.0 537 5704.0 508 5713.0 1534 5872.0 113695

200, 25 7659.0 136 7718.0 109 7720.0 941 7886.0 57387

200, 50 7637.0 423 7656.0 1141 7579.0 1146 7839.0 117550

500, 25 19996.0 1779 19876.0 1790 19901.0 1564 20536.0 90885

500, 50 18703.0 1274 18666.0 1263 18712.0 818 19391.0 122165

1500, 25 59530.0 1306 59503.0 1605 59140.0 1259 62518.0 97624

1500, 50 57807.0 1484 57673.0 1619 57654.0 1692 60095.0 91797

2500, 100 94757.0 1762 93806.0 1465 93165.0 1756 98031.0 122105

Table 4.13: Results for: Other large instances with R1 : xi = 0, R2 : xi ∼ U [0, 1], and

R3 : xi ∼ U [1, 5] (Glover & Kochenberger Instances)
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n,m R1 vs. C R2 vs. C R3 vs. C

%Gap %Gap %Gap

100, 15 0.557 0.607 0.43

100, 25 2.917 1.653 1.726

150, 25 1.803 1.956 1.803

150, 50 2.708 2.861 2.708

200, 25 2.879 2.13 2.105

200, 50 2.577 2.334 3.317

500, 25 2.63 3.214 3.092

500, 50 3.548 3.739 3.502

1500, 25 4.779 4.823 5.403

1500, 50 3.807 4.03 4.062

2500, 100 3.34 4.31 4.964

Table 4.14: % Difference with CPLEX for other large instances R : xi = 0, R2 : xi ∼ U [0, 1],

and R3 : xi ∼ U [1, 5] (Glover & Kochenberger Instances)

4.4.4 Results Discussion

The results obtained using XQX based heuristics improved all the solutions found by

PECH in tables 4.1 to 4.9. In the smallest problem set with m = 10 and n = 100, CPLEX

provides the best results at a very short time. For the same problem set, the XQX based

heuristics was able to provide high quality results at a reasonable time, and it was able

to significantly improve the results from PECH. Similar conclusions can be drawn for the

all problem sets with m = 10. As the number of constraints increases, for example when

m = 100, CPLEX tends to take more time (1 hour) in certain cases. For one such case, the

XQX based heuristics was able to provide within 0.58% of the result obtained by CPLEX

in about 430 seconds. Again, the XQX based heuristics was able to improve all the PECH
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based results significantly for problems with m = 100. As the problem size grows larger,

m ≥ 100 and n ≥ 250, CPLEX takes more time. All the results reported by CPLEX for these

problem sizes are obtained at 1 hour, which means that they are not the optimal solutions.

For these problem sets, the XQX based heuristics was able to obtain within 0.862% of the

result obtained by CPLEX in about 661 seconds in one case. Overall, for the 45 problem

instances, the XQX based heuristics was able to improve all the PECH based solutions.

When compared with CPLEX, the XQX based heuristics was able to obtain within 4.67%

of the result obtained by CPLEX in 811 seconds for the largest problem size within these

45 sets. For the same problem, PECH obtained within 12.157% of the CPLEX solution in

8 seconds. Note that the results reported by our PECH implementation cannot improve

beyond what is reported in the tables. This is due to the fact that it does not have any

repair mechanisms to alter the strength of any variable. Overall, the XQX based heuristics

improved the PECH solution between 15.1% and 0.182% for these problem sets.

In the results reported in table 4.10 for large problem sets, CPLEX runs for a much

longer time (> 1 day) even for a small instance such as m = 50 and n = 150. Note that

the CPLEX solutions obtained after 1 day in several of these cases are not optimal, but the

best solution found at that time. There is a good possibility that CPLEX may run out of

memory or take a much longer time to obtain the optimal solutions for most of problem sets

here. The results reported by PECH are of high quality within a very short time. It appears

as if PECH can obtain high quality solutions for very large problem sets when compared

with its trend from tables 4.1 to 4.9. The XQX based heuristics was also able to provide

high quality solutions and improved all the solutions found by PECH; between 3.769% and

0.253% better. In one case, the result obtained by XQX was within 2.63% of the solution

found by CPLEX, and in this specific case, CPLEX returned the solution after 1.05 days,

where as XQX returned the solution in about 0.5 hours. For all the large problems, XQX

was able to find within 4% of the solution returned by CPLEX in most of the cases.

The results presented in table 4.11 show the solutions obtained by solving the 11 large
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problem sets with different penalty values and initial xi = 0. Note that the penalty value

is a part of the XQX model derived previously. In table 4.12, the % difference between the

solutions obtained from CPLEX and by using various penalty values are shown. Note that

the solutions from CPLEX presented in table 4.11 are the same as the CPLEX solutions from

table 4.10. For the largest problem, the penalty value P = 100 provides the best solution

when compared with others. For the smallest problem, the penalty value of P = 500 provides

the best results. The penalty value P = 1000 seems to be the worst case since it provided

the best solution for 3 problems. The penalty value P = 100 provided the best results for

4 problems, similar to the penalty value P = 500, which provided the best results for 4

problems. From these results, it is difficult to see which penalty value is a suitable number.

The results presented in table 4.13 show the solutions obtained by solving the 11 large

problem sets with different initial values for xi and P = 100. In table 4.12, the % difference

between the solutions obtained from CPLEX and by using various initial values are shown.

Note that the results from the XQX heuristics with different initial values for xi are not

compared with different initial values for PECH. The results obtained when using xi ∼

U [0, 1] affects the performance of the XQX heuristics since it was able to find the best

solutions in only 2 problems The results obtained when using xi ∼ U [1, 5] were able to find

the best solutions in 5 problems, followed by xi = 0, which found the best solutions for 6

problems. Also, the solutions with initial values xi ∼ U [1, 5] take more time on an average

when compared with the solutions obtained with initial values xi = 0. For the largest

problem, the initial value of x = 0 found the best results, and for the smallest problem, the

initial value of xi ∼ U [1, 5] found the best result. It can also be seen that irrespective of the

initial values, the XQX based heuristics was ale to provide almost the same quality results.

From the results obtained from CPLEX for the largest problem set, 96% of xi had a value

of 0 and only the rest 4% contributed to the solution. The XQX based heuristics was still

able to remove most of the least attractive variables and provide good quality solutions in
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the case of xi ∼ U [1, 5]. Even though we are showing any results from PECH with an initial

value of xi ∼ U [1, 5], it is fair to say that PECH will perform poorly under such conditions

since there are no repair operators. One possible conclusion from these results could be to

use initial values xi = 0 for large problems and to use initial values xi ∼ U [1, 5] for small

problems.

To conclude this discussion, the proposed XQX model was able to handle small, medium

and very large problem sizes. It was able to improve all the solutions found by PECH and was

able to provide good quality solutions when compared with CPLEX. The solutions for very

large problems were also better from XQX heuristics when compared with PECH. Within a

reasonable amount of time, XQX heuristics was able to obtain good quality solutions when

compared with the results obtained from CPLEX after 1 day. The heuristics we presented

integrates the proposed XQX based method and PECH. By integrating our XQX model with

other sophisticated heuristic algorithm we can obtain even better solutions for any problem

size, and obtain better performance than CPLEX.

4.4.5 Feasibility Issues for XQX based Heuristics

The results presented above from the XQX based heuristics are all feasible solutions. The

PECH based initialization used in the initial stage of the heuristics does not provide infeasible

solutions. In the XQX based heuristics, the random updates to variables (U [1, 25]) can

make the solution in that iteration infeasible, but a repair operator is applied immediately

afterwards to lower the values of least attractive variables. The repair operator is based on

the core methods described in the XQX model earlier, and it serves two purposes. One, it

is able to lower the values of least attractive variables, and two, it continues to do so until

all the constraints are satisfied. Hence, the repair operator, which is based on x∗, helps to

maintain feasibility.
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4.5 Summary

In this chapter, we defined the GMDKP problem based on existing literature and pre-

sented a detailed literature review for the same. Due to the non-availability of benchmark

problems, we generated certain problems based on existing methods and applied our XQX

model for general integer problems using a basic heuristics we developed. The XQX based

heuristics was able to handle problems of any size and it was able to find reasonable qual-

ity solutions within reasonable time. It also maintained feasibility for all solutions, and it

outperformed the existing procedure in literature called PECH, in all cases.
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CHAPTER 5

CONCLUSIONS

This thesis developed a XQX model for general integer programming problems in which

the constraints are equality, inequality, or a combination of both.

First, we derived the XQX model for general integer programming problems of any size.

Next, we showed how this model is applicable for problems with only binary unknowns. We

then defined the procedures to update an unknown integer variable to a new value. We then

defined several cases for variable updates based on the current value of the integer variable,

including the procedures to update the slack variables after updating the unknowns. We

also presented new theorems and their proofs to support our XQX model.

Next, we applied our XQX model to the 0-1 multidimensional knapsack problem (0-1

MDKP) using a heuristics that we developed. We found that the XQX based heuristics

was able to handle problems of any size. We found that the XQX based heuristics for the

0-1 MDKP was also able to provide reasonable quality results at a reasonable time when

compared with the other methods from literature. We also found that the heuristics was

able to provide good quality results in a short time for very large instances.

Finally, we applied our XQX model to the general multidimensional knapsack problem

(GMDKP) using another heuristics we developed. We integrated an existing procedure called

PECH from literature with our heuristics and solved several problems of various sizes. We

found that the XQX based heuristics for GMDKP was able to improve all the results when

compared with the existing procedure in literature called PECH. We also found that this

heuristics was able to always provide feasible solutions irrespective of the starting solutions
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and the procedures implemented. The results from our heuristics when compared with a

standard solver also fared well. We found that it is difficult to assign a specific penalty value

P for the XQX model. We also found that certain initial solutions may not be the best

choice.
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CHAPTER 6

FUTURE DIRECTIONS

We believe that the work presented here will provide a new direction for XQX based

models in operations management and supply chain management. Operations management

is referred to the planning, scheduling, and controlling activities within a firm, which trans-

forms inputs to finished goods and services (Bozarth & Handfield, 2008). Where as in supply

chain management, a network of manufacturers and service providers work together to move

the goods from raw materials to the end user, and they are linked via the physical, infor-

mation and monetary flow. There are a number of activities within any supply chain such

as, planning activities to plan demand requirements against available resources, sourcing

activities to schedule the procurement of goods, production activities to produce the goods

and services, delivery activities to move good, and return activities to process the excess

and damaged goods. The active management of these activities ensures a firm to achieve

competitive advantage and at the same time maximize customer value. In all the activities

mentioned above, modeling plays an important role and especially due to the global nature

of supply chains, modeling and solving these large-scale, real-world, complex supply chains

are very challenging. The main objective in modeling these activities is to either maximize

or minimize a specific goal; broadly speaking, maximizing profit or minimizing cost. There

also several different resources constraints associated with each activity, which are either

equality, inequality or a combination of both.

The following are some of the areas in supply chain where our XQX based model can

be used to solve some challenging problems. Managing quality is an important aspect for
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any firm producing goods and services. A quality product should conform to the stan-

dards required, provide basic performance, must be free from defects, should be reliable and

durable among other factors. At the same time, such a product should be manufactured

by maintaining low cost. For example, efficient design and manufacturing of printed circuit

boards. Project management is another important part of any business process where the

technologies, skills, and tools are integrated to achieve project requirement. For example,

assigning resources to several stages of the project or controlling the overall duration of the

project based on critical paths and process times. Manufacturing process such as production

line, continuous flow process, jobshop, batch manufacturing, fixed position layout, hybrid

manufacturing, and linking several manufacturing processes across the supply chain is an-

other area where optimal conditions can be obtained by efficient solution methods to the

optimization models. Managing capacity to produce output by a specific time in another

important issue. Lead and lag capacity should be planned considering the cost, raw material

availability and machine downtime. Logistics also plays a vital role in controlling the flow

and the reverse flow of goods. Optimal goods delivery over many modes of transportation.

Optimal location and types of warehouses for goods handling are important issues. Manag-

ing inventory to satisfy the needs of upstream and downstream firms in a supply chain, and

to minimize ”Bullwhip effect”.

The heuristics presented in this work to solve the 0-1 MDKP and GMDKP problems

does not integrate any advanced metaheuristics available in the literature. The XQX model

and its solution procedures can be implemented using the following metaheuristics such as

simulated annealing, advanced tabu search procedures, greedy randomized adaptive search

procedure (GRASP), variable neighborhood search, genetic algorithm, estimation of distri-

bution algorithm, scatter search and path relinking, ant colony optimization, particle swarm

optimization, mementic algorithm and other procedures. We have provided directions in this

work to show that a variable can also be updated to an integer value within the parabola
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while improving the objective function function value. Depending on the problem modeled,

it will be worth exploring the effects of x?j based updates vs. updating the variable to an

integer value within the parabola, while improving the objective function value. Note that

the x?j based updates are only good for that specific local solution, and the value of a variable

previously updated to its x?j may need an update.

The penalty value P also plays an important role in the XQX model. The convergence

and quality of the solution depends upon this value, but since this is a problem dependent

value, it is very hard to find an appropriate P value. In the solution procedure we presented

earlier, a constant value of P is used. This could be a dynamic value for a problem instance

depending upon the solution improvement rate. Finding an appropriate P value based on

the number of constraints, or the number of variables, or the coefficients of the objective

function, or the coefficients of the constraints is also an area worth exploring.
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Klöckner, A.; Pinto, N.; Lee, Y.; Catanzaro, B.; Ivanov, P.; & Fasih, A.
(2012) “PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code
generation.” Parallel Computing, Vol. 38(3), pp. 157–174.

Kochenberger, G. & Glover, F. (2006) “A unified framework for modeling and solving
combinatorial optimization problems: A tutorial.” Multiscale Optimization Methods and
Applications, Vol. pages 101–124.

Kochenberger, G.; Glover, F.; Alidaee, B.; & Rego, C. (2004) “A unified model-
ing and solution framework for combinatorial optimization problems.” OR Spectrum, Vol.
26(2), pp. 237–250.

Kochenberger, G.; Hao, J.-K.; Glover, F.; Lewis, M.; Lü, Z.; Wang, H.; &
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