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PREFACE 

My thesis includes a series of experiments that place my work in a larger context 

and will expedite the process of preparing this body of work for journal publication. The 

methods and results for Experiments 1 and 2 are vastly edited versions from unpublished 

manuscripts of several of the contributors. The final format of the introduction and 

discussion is almost exclusively the creative output of the thesis author and his mentor. 

Material in the introduction and discussion, as well as all methods and results related to 

Experiments 3 and 4, are the work of the thesis author completed under the tutelage of his 

mentor.   

Credits: Chelsea Vann Vaculcik and Dr. Amy Hribar discovered that we had  an 

egg laying zebra finch in a male-plumaged aviary. Chelsea and Dr. Hribar initiated 

behavioral observations, and Dr. Hribar helped with the building of mate preference 

chambers and with the development of the mate preference tests in Experiment 1. Megan 

E. Jones was principal in caring for the gynandromorph lineage and conducting 

behavioral observations of the gynandromorphs, and recording nesting and singing 

behavior (data not reported here). Megan Jones, Rebekah E. Cummins, and Elizabeth 

Jenkins conducted the mate preference experiments with the assistance of Roberto J. 

Perez. Roberto extended the subject numbers in the sex orientation preference test. 

Malcolm Barker-Kamps, Hannah Witchen, and Roberto J. Perez ran the PCRs for blood 

and tissue samples. Dr. Lainy Day trained students in all techniques, supervised all 

aspects of the experiments after the initial discovery of the gynandromorphs, guided the 

analyses and interpretation of results, and edited drafts of the manuscript. 
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ABSTRACT  
 

Zebra finches (Taeniopygia guttata) are oscine Passerine songbirds that are native 

to Australia. Zebra finches have sexually dimorphic plumage, song nuclei, and behavior. 

The role of chromosomes, hormones, and genes on sexual differentiation are not 

completely understood. A gynandromorph in our aviary had male plumage, a male 

partner, and produced viable offspring. Mate preference tests revealed lower preference 

for the gynandromorph and its progeny than controls, suggesting that they had some traits 

that made them unattractive to other birds. Gynandromorph lineage males had greater 

same-sex preferences than control males. Chromosomes in birds are different than those 

in humans. Males are homozygous ZZ, and females are heterozygous ZW. All sampled 

gynandromorph tissues, including those in sexually dimorphic plumage regions, had ZW 

female chromosomes. Of zebra finches, males sing and females do not. Because of this, 

the regions associated with song learning and production, collectively called a song 

system, are larger in males than in females. We thought to measure the size of the song 

nuclei in our gynandromorph and compare it to control males and control females. For 

song system comparison of the gynandromorph, volume, cell number, and cell size of 

sexually dimorphic song nuclei were measured. The volumes of the song nuclei for the 

gynandromorph were consistently between the song nuclei volumes of males and 

females. Additionally, because birds can see in the ultraviolet spectrum of light, color 

spectra were analyzed to determine if the gynandromorph or its progeny had plumage 

differences that were undetectable by the human eye. Video analysis of the 

gynandromorph and its mate is being completed to determine if the gynandromorph sang 

and to observe nesting behaviors.   
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INTRODUCTION 

Sexual differentiation, the acquisition of “male” typical and “female” typical 

traits, occurs via a series of multifaceted and integrated processes that begin at 

fertilization, proceed until birth, and are basically fully developed when the organism 

reaches adult reproductive status. Sexual differentiation of the chromosomes, gonads, 

internal reproductive structures, brain regions and associated behaviors, and external 

sexually dimorphic features do not occur during the same critical periods (Agate et al., 

2003; Berenbaum & Beltz, 2011; Gahr, 2007; Schlinger, 1998; Tomaszycki et al., 2009). 

Thus, while a pattern of these “male” and “female” features form concomitant with sex-

typical behaviors in most vertebrate species; a mosaic of features, many of which exist 

along a continuum rather than as binomial traits, are found in some individuals of most, if 

not all, vertebrate species (Berenbaum & Beltz, 2011). While the basic processes 

underlying sexual differentiation in mammals are understood and many of these 

processes have been studied in birds, we are far from a complete understanding in 

mammals and have further to go in understanding the processes in birds (Agate et al., 

2003). Novel influences on sexual differentiation from cellular to environmental 

perturbations are regularly discovered and help shape a more complete model of 

development (Graves, 2014; Grisham et al., 2007; Itoh, Kampf, & Arnold, 2008; 

Tomaszycki et al., 2009). Gynandromorphs, animals that have both male and female 

features, have contributed to our understanding of the processes of sexual differentiation 

and how combinations of features influence mating preference and reproductive 

behaviors (Agate et al., 2003; DaCosta, Spellman, & Klicka, 2007). Here we studied a 

male-plumaged, egg-laying zebra finch (Taeniopygia guttata) and her progeny to further 
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understand the role of male plumage and sexual imprinting on two male-plumaged 

parents in mate preference, whether the appropriate sex chromosome is a prerequisite for 

male and female plumage and tissue types, and whether masculinized plumage is 

associated with brain masculinization in this gynandromorphy.  

Zebra finch plumage patterns are known to be sexually dimorphic; males have 

bright orange cheek patches, zebra striped feathers on their chests, and brown and white 

spotted feathers down their sides. Females lack these features but have the species typical 

light grey plumage with a cream belly, and a white patch with a black dividing line on the 

cheeks (see Figure 1). Males are usually described as having redder beaks and feet than 

females (Simons et al., 2012), but this trait appears to vary greatly within sexes and may 

be influenced by hormones. Female sex chromosomes are heterozygous (ZW), and male 

sex chromosomes are homozygous (ZZ), the opposite of the human pattern (Itoh et al., 

2008). In zebra finches, plumage pattern is not strongly associated with developmental 

(organizational) or adult circulating levels of hormones (activational), but appears to be 

influenced by sex-specific gene expression (A. Arnold, 1997). In zebra finches, males 

typically sing and have distinctly larger song nuclei in the brain than females, which do 

not sing (Nottebohm & Arnold, 2010). 

 

 

 

Figure 1: Plumage differentiation between male and female zebra finches (de Wolf, 

2008) 
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Most studies of zebra sexual differentiation have focused on the song system, but 

many studies have also examined gonadal, plumage, and behavioral differentiation.  

While our understanding of sexual differentiation in zebra finches is far from complete, 

the most influential processes at several stages of sexual differentiation are clear. Sex 

chromosomes are known to control gonadal development in zebra finches (Schlinger, 

1998); birds that are ZZ develop ovaries, and birds that are ZW develop testes. Markers 

for these sex chromosomes are found at different levels and appear to be dimorphic in the 

song nuclei of male and female zebra finches (Itoh et al., 2008). Gonadal, organizational, 

and activational hormones may also play a prominent role in the sexual differentiation of 

the zebra finch song circuit (Agate et al., 2003).  

It is beyond the scope of this study to outline our current understanding of all the 

processes involved in zebra finch sexual differentiation, and the reader is encouraged to 

examine recent reviews on the subject (A. P. Arnold & Itoh, 2011; Schlinger, 1998; 

Wade & Arnold, 2004). Studies most pertinent to understanding the current study are 

those that involve gynandromorphic zebra finches, individuals that have both male and 

female typical characteristics. Zebra finches with bilateral gynandromorphy have female 

plumage and an ovary on one side of the body and male plumage and a testis on the other 

side of the body. Gonadal development is thought to result from a gene or genes on the Z 

or W chromosome (Schlinger, 1998), but may be guided by gene dosage effects (A. 

Arnold, 1997). Differentiation of the song nuclei, has long been thought to be primarily 

influenced by hormones because of their role in the formation of many other secondary 

sexual traits and because females induced with testosterone can sing (Schlinger, 1998). 
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However, sex atypical hormones given exogenously or endogenously via 

testicular induction do not fully masculinize females nor prevent masculinization in 

males. Furthermore, bilateral gynandromorphs, with both ovarian and testicular hormones 

circulating from early in development (Agate et al., 2003), demonstrate that not only is 

plumage unilaterally distinct, but the expression of Z and W linked genes is more 

prominently expressed in brain and other tissues on the male and female side 

respectively. Interestingly, the song nuclei of one of the studied bilaterally 

gynandromorphic zebra finches were somewhat feminized on the male side and 

somewhat masculinized on the female side (Agate et al., 2003). In addition, this bird sang 

a mostly typical male song. Thus, at least in bilateral gynandromorphs, gonads and 

plumage are strongly sex chromosome linked, while brain is influenced by sex 

chromosome genes and gonadal hormones (Agate et al., 2003).There are no studies, of 

which we are aware, that have published complete descriptions of the song systems of 

non-bilateral gynandromorphs with unilateral male plumage and female reproductive 

systems like the one in this study. However, two reports have been published in abstract 

form (Cui et al., 2015; Grisham et al., 2007). These two studies suggest the possibility for 

variation in degree of neural sexual differentiation when plumage is male typical but 

internal reproductive organs are female typical. Interestingly, it appears that only 

moderately masculinized song nuclei are necessary for song production (Agate et al., 

2003), so birds with male plumage and female sexual organs may have the ability to 

produce male-typical song patterns.  

Thus, we were interested in understanding the degree of sexual differentiation in 

our gynandromorphic bird. After decades of study, we have a fairly intricate, though far 
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from complete, knowledge of the song circuitry in zebra finches (Wade & Arnold, 2004).  

Of over a dozen known song nuclei, there are four that have been best studied and that 

are known to be highly sexually dimorphic (Wade & Arnold, 2004). The predominantly 

downstream song pathway involves a projection from nucleus HVC to the robust nucleus 

of the archistriatum (RA) and then to brain stem nuclei controlling singing. HVC also 

projects to Area X, which in turn projects to the lateral magnocellular nucleus of the 

neostriatum (LMAN), and this pathway is thought to be more related to hearing and 

learning song than the HVC/RA production pathway (Schlinger, 1998). Area X is not 

apparent in females, and HVC and RA are approximately five fold larger in males than in 

females (Schlinger, 1998). HVC and RA also have more and larger neurons in males than 

in females, and HVC, Area X, and LMAN have been found to contain more androgen 

receptors in males than in females (Wade & Arnold, 2004). LMAN volume is known to 

have similar volumes in both males and females, but the soma size is larger in males than 

in females (Tomaszycki et al., 2009). Differences in the size of these song nuclei have 

been found to correlate with singing behavior within and between sexes (Nottebohm & 

Arnold, 2010) and across species (Nottebohm & Arnold, 2010).  

Parameters of song production are learned, generally from the father, but song 

quality in terms of mating success is also highly heritable (Adkins-Regan & Krakauer, 

2000) and influenced by environmental factors affecting eggs and young (Adkins-Regan 

& Krakauer, 2000; Gong, Freking, Wingfield, Schlinger, & Arnold, 1999). Mate 

preference in zebra finches is also influenced by beak color, plumage, song rate, and male 

aggressiveness (Forstmeier & Birkhead, 2004). Thus, song nuclei development and the 
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songs produced should be an honest signal of ultimate and proximate mate quality, and 

appear to be an important factor in mate choice (Williams, 2004).  

Zebra finches are socially monogamous and biparental (Banerjee & Adkins-

Regan, 2014) though they  typically live in colonies. In order to quantify mate preference 

in laboratory settings, various choice chamber procedures have been used to measure 

aspects of affiliate behavior, such as time spent near specific individuals. These measures 

of affiliate behavior correlate highly with mate preference in an open aviary (Rutstein, 

Brazill-Boast, & Griffith, 2007).  

Despite the ease of measuring mate preference, we know of no study that has 

examined the mate preferences of gynandromorphic birds. This may be, in part, due to 

the unavoidable nature of the gynandromorph’s uniqueness. If the gynandromorph is the 

only subject in its group, anecdotal evidence of this bird’s mate preference or rejection by 

others may not hold up to the preferred standards of statistical evaluation. Fortunately, for 

us, our gynandromorph partnered with a seemingly typical male and produced 7 adult 

offspring. While we can not be certain that the young inherited qualities of the 

gynandromorph, we hypothesized that if progeny were in any way different from the 

average birds in our colony, mate preference tests would demonstrate these differences in 

the gynandromorphic lineage. By having the gynandromorph involved in mate preference 

tests as both a chooser and choice, we hoped to provide some quantification of the types 

of preferences the gynandromorph, her partner, and her progeny demonstrated.  

In the current study we had a unique opportunity to verify the role of sex 

chromosomes and hormones in influencing sexual dimorphism of song nuclei, singing 

behavior, and plumage pattern. We also had the opportunity to determine the influence of 
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sexual imprinting, color pattern, and song production in influencing mate preference. 

Given the complex nature of sexual differentiation in “typical” zebra finches, we 

hesitated to make specific theoretical hypotheses related to our expected results.  

However, we did predict that the gynandromorph would have an absence of W linked 

genes in plumage tissues but not in reproductive tissues. Furthermore, given that the 

gynandromorph had several clutches with her mate, we predicted that she would exhibit 

female typical song nuclei and singing behavior. We did not have specific predictions 

about mate preference patterns for her progeny other than that the male progeny was 

likely to exhibit same sex partner preferences as shown in previous studies for males 

raised in the absence of females (Banerjee & Adkins-Regan, 2014).  Once we found that 

the progeny were not preferred by other zebra finches in our colony, we predicted that 

color patterns would distinguish the progeny from other zebra finches in our aviary.
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METHODS 

Animals 

For all experiments, we examined normal adult zebra finches and those of the 

gynandromorphic lineage bred in our aviary at the University of Mississippi (IACUC 16-

024). The gynandromorph lineage consisted of the gynandromorph, its male partner, 6 

female offspring, and 1 male offspring. All of the birds were given drinking and bathing 

water and fed a standard zebra finch diet ad libitum, except during habituation and testing 

periods, which lasted no longer than three hours. Food deprivation for longer periods, as 

much as 8 hours a day out of a 10 hour light cycle, have been shown to have no long term 

effects on behavior with weights, energetic output, and behavior recovering in a few days 

after 11 days of 8/10 hours a day food restriction. The aviary was on a 12-14 hour light 

schedule over the course of experiments, with lights on at 7 a.m. The aviaries used to 

house the breeders, the gynandromorph, and its partner were 182 x 182 x 121 cm. 

Juveniles were moved to same sex aviaries or cages (91 x 45 x 30 cm) upon sexing. 

 

Experiment 1: Mate Preference 

We performed two types of mate preference tests. To assess whether the 

gynandromorph lineage had qualities that were cryptic to humans but could be detected 

by the frequency that they would be chosen as mates, we measured the preference of 

control birds for other control birds versus gynandromorph lineage birds in a two choice 
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mate tests. To determine if being raised by two male plumage parents influenced the 

sexual orientation in the gynandromorph lineage, we compared the preferences of the 

gynandromorph lineage birds and control birds for same versus opposite sex plumaged 

birds. 

Subjects 

In the mate preference experiments, we tested 41 zebra finches including the 

gynandromorph lineage. The sexually naïve gynandromorph progeny were matched with 

other sexually naïve control females and males. The gynandromorph and partner were 

tested with other breeder adults. Subjects were age matched. No bird participated as a 

chooser more than once, and birds that were used as choices were not used more than 

once. Lineage birds were first tested as choices and then acted as choosers in the mate 

preference test. We thus matched choosers in the sexual-orientation task for experience 

with having been a choice bird in a mate preference test. However, all choice birds were 

similarly naïve to the mate preference task. Neither morphological nor behavioral 

differences were readily apparent between lineage birds and other birds in the aviary, 

though some hints of color differences in beaks were suspected. Lineage and 10 control 

birds matched for plumage, age, and reproductive state did not differ in body weight and 

no differences were found between any groups (𝑋,SE,min:max; CF=15.8±0.59,14:19; 

PF=15.4±0.28,15:16; CM=15.2±0.47,14:18; PM=17). Controls for motivation and 

definitive choice behavior in mate preference tests (see procedures below) resulted in the 

exclusion of several subjects. 
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Materials 

Six identical arenas (10.3 x 8 cm, see Figure 5) were split into two choice 

chambers, “A” and “B” (15.5 x 19 cm size) and a chooser chamber “C” (31 x 19 cm 

size). The choosers could view choices through a Plexiglass window. Choice birds were 

visually isolated with opaque dividers, but none of the birds were acoustically isolated.  

To make it difficult for the chooser bird to view both choices simultaneously, a “no 

choice zone” was created by occluding the middle 10 cm of the viewing window. A 

cardboard insert was also used to block the viewing window during habituation to the test 

chamber. To track the movements of the chooser bird, we used an ImagingSource (The 

Imaging Source, Germany) camera fed into Ethovision (Noldus Information Technology. 

Wageningen, The Netherlands) software with a multi-arena module to track the center 

point of chooser birds in the six arenas. Video footage of all birds was also captured for 

manual inspection of all bird behavior. 

Procedure  

Choosers were placed in C chambers, and choices were placed in A and B 

chambers (Figure 5) in one of six arenas. Testing was conducted starting with habituation 

between 7-9 a.m. or between 1-3 p.m. with controls and lineage birds balanced as much 

as possible (given even or odd numbers or greater numbers of control subjects) between 

morning and afternoon tests. Sexually inexperienced birds were all housed in same-sex 

group cages for several weeks before testing, while breeding adults remained in large nest 

active aviaries. To begin testing, birds were first captured and moved to single bird cages 

with dark cloth covers and were then placed into the appropriate chamber under infrared 

lighting conditions. Standard fluorescent lighting was then turned on from outside the 
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room and birds habituated to the arenas with the viewing window occluded for two hours 

prior to the preference trial. At the end of the habituation period, experimenters turned off 

the lights from outside the room, quietly entered the room turning on an infrared light to 

guide removal of the viewing barriers and begin Ethovision tracking. Lighting was 

returned to normal and the birds’ behaviors were video recorded for 30 minutes. Birds’ 

position in the A or B chamber was counterbalanced and re-tested 24 hours after the 

initial trial. 

 We calculated the proportion of the total time the birds were positioned in 

preference area A and preference area B based on the center point tracking (A/A+B and 

B/A+B). Since birds were swapped between chamber A and chamber B, preference for 

the A side in initial and counterbalanced trials would indicate a preference to a side of the 

chamber, not a particular bird. Birds that that showed a side preference (greater than 60% 

on the same side) were removed from the experiment. In addition, trials during which a 

bird did not spend time in both chamber A and B before remaining in one chamber or a 

bird spent the majority of the time in the no choice zone were not included in the 

experiment. If the chooser appeared to view both choices during the trial but remained 

motionless for most of the trial, regardless of which chamber it was in, the trial was 

considered a “no-choice” trail, and the chooser bird was retested with a new naïve pair of 

choices for sex-preference tests. We balanced the number of retested choosers across 

controls and gynandromorph lineage as much as possible. For mate preference tests, 

unmotivated or biased choosers were replaced with naïve choosers so that the lineage 

birds and controls being chosen between had the same exposure to the testing apparatus.  
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Test of Sex Preference  

To determine whether the gynandromorph lineage and controls differed in their 

degree of same versus opposite sex preference, birds in each group were given a choice 

between randomly selected birds with matching or opposite plumage to their own in 

choice chambers (see Figure 2). 

 

 

 

 

 

 

 

 

Figure 2: Illustration of sex preference tests conducted with gynandromorph lineage 

 

Preference for Gynandromorphs vs. Controls 

To determine whether control birds preferred control birds to gynandromorph 

lineage individuals, a gynandromorph lineage bird and a control bird that were both the 

plumage of the opposite sex of the chooser were placed in the choice chambers (see 

Figure 3). 
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Figure 3: Illustration of mate preference tests conducted with gynandromorph lineage 

Data Management and Statistics 

After eliminating birds that had side preferences or were unmotivated to perform 

in the mate preference tests, we had 26 birds that chose between birds of the same 

plumage or different plumage to their own (GYN lineage n=9, 3 male plumage, 6 female 

plumage, 1 GYN, 1 Male Mate; Controls = 17, 10 male plumage, 7 female plumage; 3 

birds were dropped for side preferences and 2 GYN lineage and 2 controls were tested 

twice with new choice birds on the retest). There were 9 control birds that selected 

between one of the 9 gynandromorph lineage birds and an age, reproductive status, and 

plumage matched control (2 choosers had side preferences and were replaced with new 

choosers, choices were maintained so that they were matched for exposure to testing 

arena).  Proportion data was angular transformed to better fit assumptions of normality. 

Independent t-tests were used to compare same-plumage orientation between 

gynandromorph lineage and controls (no significant differences in variance were detected 

between groups, all Levene’s test p > 0.21), and paired t-test were used to compare the 
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degree of same versus opposite sex preference within groups and to compare control 

birds preferences for gynandromorph lineage birds versus control birds.   

Results 

Control birds in our aviary spent more time interacting with other controls than 

with gynandromorph lineage birds (t(8) = 2.39, p < 0.044, see Figure 4) suggesting that 

birds in our aviary could identify some cryptic quality of the gynandromorph lineage that 

differed from controls. Gynandromorphs also differed from controls in having a lower 

degree of opposite plumage orientation in choice tests than control birds (t(24) = 2.94, p 

= 0.007) see Figure 4). Control birds had a strong preference for opposite plumage birds 

(t(16) = 2.85, p = 0.01), whereas birds of the gynandromorphic lineage did not show a 

preference for birds of the same or opposite plumage to themselves (t(8) = 1.65, p = 

0.12). To more accurately assess orientation patterns, we analyzed male and female 

plumage birds separately and found that female plumaged birds of either group did not 

have plumage orientation preferences (GYN, (t(5) = .0524, p = 0.623), control, (t(6) = 

0.901, p = 0.402) and did have a difference in the strength of their orientation to same 

sex-linked plumage (t(11) = 0.96, p = 0.358) in that they did not prefer a certain sex 

(t(11) = 3.73, p < 0.03). Thus, differences between groups is driven mainly by the males, 

with control males having a strong opposite plumage preference (t(9) = 2.63, p = 0.027), 

and the gynandromorph lineage male plumage birds strongly preferring the same sex 

plumaged birds (t(2) = 8.07, p = 0.015), resulting in greater strength of opposite plumage 

preference in control males compared to male plumaged gynandromorphs (t(11) = 3.73, p 

= 0.003). While there are only three male plumaged birds in the gynandromorph lineage, 

it should be noted that the similarities in female plumaged controls and the lineage was 
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quite similar, while those in the male lineage were very different from the strong opposite 

plumage orientation of control males. Arguably, we might only consider the 

gynandromorph’s partner and her male progeny as acting against their gonadal 

orientation when choosing same plumage affiliation in the mate preference tests. But, the 

association with same plumage affiliation is not being driven by the gynandromorph, the 

male progeny chose same plumage 93% of the choice duration, and the male partner 

chose same plumage 96% of the choice duration. Obviously, the male partner also chose 

a same plumage partner in an open aviary test. Given the known association of same 

plumage preference in motherless males (Banerjee & Adkins-Regan, 2014) that is 

thought to be based on sexual imprinting of the young on the only available parental 

plumage reference, one might posit that our male progeny is fairly typical of other males 

under similar conditions. Therefore, it would seem that the greatest abnormality in regard 

to partner preference is actually driven by the same-sex plumage orientation of the 

gynandromorph partner.   

a) b) 

Figure 4: Results from the mate preference tests (a) show that control birds prefer other 

control birds to the gynandromorph lineage. Sex preference tests (b) shows that neither 

female group has a significant sex preference. Male controls prefer opposite sex birds; 

male lineage birds prefer same sex birds. Asterisks (*) indicate significance. 
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Figure 5: Mate Preference Apparatus

 

Experiment 2: Tests for Sex Chromosome-Specific Gene Markers 

In the typical male and female zebra finch, all somatic cells contain two Z or a Z 

and W sex chromosome, respectively. Genes that appear on only one chromosome, or 

that differ in length between the chromosomes, can be used as markers to confirm the 

presence of Z and W chromosomes in various tissue types. We used Z and W gene 

markers to determine if the gynandromorph or its progeny are chimeric, having the 

presence of ZW chromosomes in some tissues and ZZ in other tissues, as do bilateral 

gynandromorphs (Graves, 2014). 

Animals 

Blood samples were taken from the gynandromorph, its male partner, three 

female plumaged progeny that are still living, one female plumaged progeny that later 

died, the one male plumaged progeny that is currently living, a control male, and a 

control female. Tail feathers were plucked from the gynandromorph, its partner, and the 

one male plumaged progeny. Tail feathers for controls and female progeny were plucked 

from different individuals to minimize disturbances to any one individual and diversify 

our sample. Samples of feather quills were removed from the check area and breast area 
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where males have reddish-orange checks and black and white zebra-striped plumage and 

females have more grey plumage. The smallest samples of feather quills adequate for 

DNA extraction were collected from a previously un-sampled female progeny, and the 

male and female progeny were returned to their cages. An ovary from a nestling progeny 

(approximately 12-15 days old) was collected after it was sacrificed by isoflurane 

overdose. The bird had been found on the floor of the aviary after caretakers had returned 

it to the nest box two other times. Feather quill samples for cheek and zebra-striped 

feathers areas in a control female, a control male, the gynandromorph, and her partner 

were taken upon sacrifice, as was the underlying skin from these areas. DNA samples of 

feather quills and underlying skin from the spot area (see Figure 1) as well as a gonad, 

and samples from the beak, liver, and heart of the gynandromorph, its partner, and a 

control male and female have all been extracted but are not yet represented in PCRs. 

Each PCR run is independent, but the same individual’s extracted DNA is used for 

multiple genes and may be run several times for the same gene if the sample failed to 

amplify on the first run. 

Materials  

DNA from blood, skin, tissues and feathers was extracted using Chelex (Chelex 

100 resin, Sigma) methods as previously described in (Jensen et al., 2003; Walsh et al., 

1991; Day, McBroom, Schlinger, 2006). All other sample types and some blood, skin 

tissue, and feathers were extracted using the Qiagen blood and tissue kit (Valencia, CA) 

with user supplied protocol modifications for feathers posted on the Qiagen website 

(https://www.qiagen.com/us/resources). Primers for CHD1 employed the P2/P8 primers 

(Fridolfson & Ellegren, 1999; Griffiths, Double, Orr, & Dawson, 1998). The CHD1 gene 
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has different sequences on the Z and W chromosome but has conserved regions. The P2 

and P8 primers bind to regions that are conserved on the Z and W versions of the CHD1-

Z and CHD1-W gene but also amplify intron regions that differ in length for this portion 

of CHD1 such that products for ZZ individuals result in a single band while ZW 

individuals have both the shorter Z and the longer W band (forward primer, 5’-

YTKCCAAGTTGAGAAACTG-3; and reverse primer 5’-

TCTGCATCACTAAAKCCTTT-3’). TGW is a W specific gene sequence and primers 

TGW1: 5'-GCAGCATGGATGTTTGGAGC-3' and TGW2: 5'-

TGGCGCAGGTAGAAAATAGTC-3' will amplify a 293bp W specific sequence. This 

marker is run with myoglobin primers (Myoint.c (forward): 5' 

AGCCCTGGAGGATCCATTGG 3’, Myoint2.nc (reverse): 5' 

CAGTGAGGTCTAGTATGCAAGG 3' that amplify sequences for both males and 

females of the same size as a positive control for male DNA amplification (Runciman, 

Zann, & Murray, 1999). ZBM is a W-specific sequence for which different lengths of the 

sequence can be amplified using ZBM1 and ZBM2 primers (Itoh et al., 2008). Primers 

used were ZBMF (5′-GCTCATTTAGTTGTTCCTGT-3′), ZBM1R (5′-

ATCTCCACCAACTCTTCTA-3′), ZBM2R (5′-TAAAATCACAGAGGTGACAT-3′), 

and internal control primers that amplify both Z and W forms of spindlin INT-F (5′-ATA 

GAA ACA ATG TGG GAC-3′) and INT-R (5′-CTC TGT CTG GAA GGA CTT-3′) 

(Itoh et al., 2001). 

Procedures 

 For the extraction of blood of subjects, on average, 50-120 µL of blood was 

extracted from the jugular vein and stored at -20 °C or placed in lysis buffer and stored at 
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4°C. For the unfertilized egg, vitelline membrane tissue was extracted for PCR analysis 

(K. E. Arnold, Orr, & Griffiths, 2003). Chelex extraction methods were performed as in 

(Jensen et al., 2003; Walsh et al., 1991; Day, McBroom, Schlinger, 2006), and Qiagen 

extraction methods followed manufacturers suggested protocols. PCR methods followed 

published methods for each sequence (CHD, Day, McBroom, & Schlinger, 2006; ZBM, 

Itoh et al., 2001; TGW, Runciman et al., 1999). All products were run on a 2% agarose, 

sodium borate gel at 200V until there was clear separation of bands. Products that did not 

produce bands were first rerun on gels and then re-amplified with PCR.  Results shown 

here represent all products that amplified in no more than two attempts for each gene 

shown. 

Results and Discussion 

Our results show that the gynandromorph, her female progeny, and female 

controls expressed markers for the W chromosome in all tissues tested, and the male 

mate, male progeny, and control males expressed a lack of W marker, or the Z length 

sequence for all tissues sampled. The PCR results are shown in Figures 6-9. The 

unfertilized egg contained the ZBM gene suggesting that the W chromosome is inherited 

only from the gynandromorph. While some samples for the GYN or the female plumage 

bird do not show a clear W, this is never the case when the control gene is also clearly 

amplified. 

 

 

 

 



 

 22 

 

 

 

 

Figure 6: Female length of CHD gene is present in progeny female (PF) blood and 

gynandromorph (GYN) tail feathers, progeny female gonads, a gynandromorph egg, and 

control female (CF) tail feathers, yet is not present in control males (CM). Partner (MM) 

blood, control male blood, progeny male (PM) blood, progeny male tail feathers, and 

control male tail feathers do not show the female length of the CHD gene. A ladder is 

included in the first lane. 

 

Figure 7: ZBM gene is present in control female (CF) tissue, progeny female (PF) tissue, 

progeny female gonads, gynandromorph (GYN) egg, and control female tail feathers. 

ZBM gene not present in progeny male (PM) tissue, male mate (MM) tissue, control male 

(CM) tissue, male mate tail feathers, or progeny male tail feathers. A ladder is included in 

the first lane. 
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Figure 8: ZBM gene is present in cheek feathers, zebra stripe feathers, cheek skin, and 

blood of control females (CF) and the gynandromorph (GYN). ZBM is not present in the 

male mate (MM) or progeny male (PM). The control band at 200bp is amplification of 

spindlin. A ladder is included in the first lane.  

 

Figure 9: ZBM gene is present in control females (CF), progeny females (PF), progeny 

female gonads, and the gynandromorph (GYN) egg. ZBM is not present in progeny 

males (PM) or the male mate (MM). The small control band at 200bp in each lane 

represents the amplification of spindlin. A ladder is included in the first lane. 

 

Experiment 3: Color Spectrometry  

 Mate choice experiments suggested that some cryptic trait of the gynandromorphs 

lineage reduced preference for these birds compared to matched controls. While a 

number of behavioral or morphological differences could influence mate choice, we 

noticed that at least one of the female progeny had a rather pale beak, but could not tell 
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from visual inspection alone whether this trait differed from the normal range in our 

aviary. In addition, like many avian species (Peters et al., 2004), zebra finches have 

retinal cones that are sensitive to the ultraviolet (UV) portion of the spectrum of light 

(Bowmaker et al., 1997). Since humans cannot see UV reflectance, it is important to use 

a spectrometer to measure reflectance of wavelengths from 300-700 nm and to calculate 

color variables based on a retina that has four cones absorbing spectra in the species-

specific range. Higher overall brightness and bright UV reflectance are often associated 

with greater mate preference and often with health or fitness measures in birds (Simons et 

al., 2012), and increased red, especially in the carotenoid inducing red range, predict mate 

preference in both male and female zebra finches (Peters et al., 2004). Thus, we predicted 

that the gynandromorph lineage would have lower values of red in the beak and feet, 

especially in the carotenoid range. We predicted higher brightness for beaks and feet of 

gynandromorph lineage overall, because less saturated colors will reflect more. However, 

we predicted that for other body parts, the gynandromorph lineage might show less 

brightness and lower UV reflectance as indicators of abnormal sexual differentiation of 

plumage.  

Animals 

 We measured color patterns of the gynandromorph, its mate, their 7 progeny (1 

male plumaged), 6 control males, and 6 control females. All birds were housed in aviaries 

as in Experiments 1 and 4. Due to experimenter error, the spectra for the breast of one 

progeny female were omitted. The narrow variation of this group for this measurement 

suggested this one measurement would not alter the overall results.  

Obtaining Color Spectra 
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 Color reflectance spectra were measured for seven sexually dimorphic plumage 

and body regions of zebra finches: beak, cheek, breast, feet, stripes, spots, and tail (see 

Figure 1). Progeny and control birds were carried in cages covered with black cloth from 

aviaries to be measured in an adjacent room. Care was taken to hold birds in such a way 

as to not spread finger grease on areas to be measured. The bodies of the gynandromorph 

and its mate were removed from -80 °C storage, and the body regions to be measured 

were dissected, cutting under the skin to collect plumage regions. This was done to avoid 

thawing the entire carcass while allowing dissected areas to thaw and dry to prevent 

interference of ice and water on the reflectance spectra. Measurements taken from 

museum preserved skins, arguably far more disturbed than frozen specimen, have proven 

to be indistinguishable from measurements taken from wild caught birds (Endler & 

Thery, 1996). To keep feather tracts flat and in as normal a configuration as the original, 

we taped the top of skin sections to white card stock, taking care that plumage in the 

section was thick enough to be opaque.  

Color reflectance spectra were collected in the bird visual spectrum (300-700 nm) 

using a spectrometer (Ocean Optics, Dunedin, FL, USB2000+) with a custom probe 

affixed to an Ocean Optics synchronized xenon light source (model PX2), which emits 

light at a desired wavelength from 5 fiber optic channels and gathers the reflected light 

from one fiber optic channel (Maddocks, Church, & Cuthill, 2001). The probe allowed 

for a consistent angle of capture at 90° and 10.13mm from the samples, a sampling 

distance that resulted in 80% reflectance intensity for the white standard (Spectralon). 

SpectraSuite software (Ocean Optics, Dunedin, FL, 2.0.162) was used to capture the 

reflected light. The reflectance sensor was calibrated after every third measurement using 
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the white reflection standard and a black standard, a solid matte black surface that emits 

nearly 0% reflectance. Each region was sampled three times. The photon captures for 

each 1 nm captured by the SpectraSuite, were extracted and various color parameters 

were calculated using the CLRVars program in the CLR 1.05 JAVA suite (Montgomerie, 

2008).  

This program allowed us to view many different aspects of our color spectra. 

From the available calculated values, we selected those pertinent to our study. Brightness 

is the total amount of light reflected from the surface (Saks et al., 2003). Chroma is a 

measure of purity or saturation (Saks et al., 2003) of a color (Meadows, Morehouse, 

Rutowski, Douglas, & McGraw, 2011), which can be thought of as the amount of “grays” 

of a certain brightness added to a hue (color). So a particular hue that has a high peak of 

reflectance in the range of that hue’s wavelength (nm) and little reflectance of other 

wavelengths would be highly saturated or have a high chroma value. Thus, red chroma is 

the sum of the reflectance in the red portion of the spectra (Meadows et al., 2011) relative 

to overall reflectance: 
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒!!"#

!!"#
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 (Montgomerie 2008). UV 

chroma is the sum of reflectance in the UV portion of the spectra relative to the overall 

reflectance: 
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒!!""

!!"#
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 (Montgomerie 2008). Carotenoid chroma 

is specific for reds for which the reflectance at 450 nm is less than the reflectance at 700 

nm (Peters et al., 2004), indicating that the reflected light that is in the portion of red 

wavelengths is related to the organisms level of carotenoids. Hue, the “color” of an 

object, was measured across the zebra finch visual range and was calculated using the 

approximate cone captures for birds (Bowmaker et al., 1997). While these differ slightly 

for different song birds, these calculations give us a basic idea of what the color was for 
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the peak reflectance of the curve. The hue calculation is a correlate of the reflectance 

data, measured in degrees, around a circular spectrum or color wheel (Saks et al., 2003). 

These measurements were used to plot the reflectance spectra and analyze differences in 

plumage coloration parameters between groups.  

Statistics 

 Measurements for each of the five sexually dimorphic plumage regions were 

averaged for individuals. These subject means were used to calculate the CLR spectra 

values of brightness, red chroma, UV chroma, overall chroma, carotenoid saturation, and 

hue as discussed above. SPSS (Version 22.0, IBM) was used to compare the control male 

(CM), control female (CF), and female progeny (FP) groups using one-way ANOVA. 

The gynandromorph (GYN), its male mate (MM), and its male progeny (MP) were 

qualitatively compared because these groups have an n = 1. We considered these to be 

planned comparisons, and we obtained all p values from the ANOVA output. 

Significance is indicated in Table 1 by superscripted letters. Shared letters indicate a 

significant difference between the groups that also have that letter. If no letters are 

present, the values did not differ significantly. If all values in a row have an asterisk, then 

they all differed significantly from one another.  

 

Results and Discussion 

Only beak, breast, and cheek calculated color spectra variables differed 

significantly between the groups tested (see Table 1). In the beak, there were differences 

in red chroma and hue between the control males and females, regardless of whether they 

were control females or female progeny. The progeny females and control females had 
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slight variations among one another for the measured variables, but they did not differ 

significantly for the beak measurements. This is expected because males are known to 

have redder beaks than females (Simons et al., 2012). In red chroma, control males were 

significantly redder, indicating higher values of reflectance in the red wavelengths, than 

control females, and progeny females did not differ from control females. If we look at 

overall hue, there is a similar result in that control males differ from progeny females, but 

control females and progeny females do not differ from one another. This suggests that 

both female groups differed from males as expected, and that beak coloration is not a 

characteristic that would have identified the progeny females in the mate preference tests. 

The gynandromorph was actually lower than both the female range and the male range 

for red chroma, but its value was closer to the range of female controls. This means that 

the gynandromorph had less reflectance than both male and female controls for the red 

wavelengths but was closer in value to the reflectance in red wavelengths for females. 

For hue, the gynandromorph value was higher than both the female and male ranges, 

indicating that it had a beak with slightly different coloration from both males and 

females.  

 For the breast, progeny females were noted to have more white feathers present 

than the other groups. Breast feathers are typically gray in both males and females. When 

we measured the breasts of the progeny females, however, we aimed to include as much 

gray as possible for an accurate comparison among the groups. The spectra data indicated 

that the progeny females had the brightest breasts, indicating higher overall reflectance, 

which was expected due to the amount of white feathers present. Control males stood out 

for UV chroma, with a higher reflectance in the UV range than both control and progeny 
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females, and hue. Each group had different overall chroma, suggesting that there are 

variations in the patterns of gray across the spectra. The gynandromorph is in both the 

male and female control range for breast brightness, but it is not in the range of the 

progeny females. In UV chroma, the gynandromorph is in the range of both control and 

progeny females, but in hue, the gynandromorph is in the range of the control males. This 

yields interesting results because the gynandromorph does not stand out from control 

females in the variables of brightness or UV chroma, but it is within the range of typical 

male hue. In mate preference tests, breast brightness could have been an indicator to 

chooser birds that progeny females were different.  

 The cheek coloration is thought to be a prominent secondary sexual characteristic 

and is suspected to be an area where the gynandromorph lineage could be identified as 

unusual even though we did not observe any differences without the aid of a 

spectrophotometer. The cheek region has the most differences among groups. This is 

expected because male zebra finches have bright orange cheeks, and females have gray 

cheeks. In each of the variables produced by the CLR program, the control males stood 

out, and female groups did not differ from one another. Control males had a lower 

brightness than females, which is expected because gray feathers reflect more light than 

colored feathers. The red chroma of the control males is higher than the females, due to 

the orange coloration of their cheeks compared to the gray coloration of the females’ 

cheeks. The UV chroma is lower in control males than female groups, and the overall 

chroma for control males is nearly three times higher in males than females. Carotenoid 

chroma in male cheeks is less than female groups, and the overall hue of the male cheeks 

is different than the hue of female cheeks. The gynandromorph falls into the female 
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ranges for brightness and hue, but it falls into the male ranges for red chroma, UV 

chroma, overall chroma, and carotenoid chroma. This indicates that cheek coloration was 

likely not a factor that prevented the progeny females from being chosen in the mate 

preference trials. However, cheek coloration is definitely a distinguishable factor for the 

gynandromorph. 

 Spots are only found on male zebra finches, so a comparison between the spots of 

males and females could not be done. Since our gynandromorph did have spots, we could 

compare it to control males. The gynandromorph was within the control male range for 

spots for both brightness and hue, but it was slightly out of range for UV chroma and 

overall chroma. Thus, it can be determined that the gynandromorph closely resembled a 

control male in the region of spots as well.  

 None of the groups showed significant differences in the variables measured for 

feet. This was unexpected because we thought we would see similar results for the beak 

and the feet, as they are both thought to have color differences due to carotenoids. 

 Because the gynandromorph is a group of one, there is no test to determine if the 

values of the color spectrometry for the gynandromorph are significant. However, we can 

look at the ranges for the other groups (control males, control females, and progeny 

females) and see where the gynandromorph falls within these ranges to determine if the 

gynandromorph value would be significant (see Table 1). By this logic, the 

gynandromorph would differ significantly from other control groups in the chroma of the 

beak and the brightness of the cheeks. Beak coloration has been correlated with mate 

choice in zebra finches, with both males and females preferring mates with redder beaks 

(Simons et al., 2012). Also, while the gynandromorph had orange cheeks, the brightness 
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of its cheeks was closer to that of a control female than a control male (see Figure 12). It 

is possible that the mate looked at the cheeks for brightness and not coloration when he 

decided to mate with the gynandromorph.  

Beak 

Variable   CM PF CF MM  PM GYN 

Brightness 
Mean 68.5151 69.2886 80.003 55.61 43.09 99.96 

Range (45.3402 − 91.6899) (44.2053 − 94.372) (70.6619 − 89.3441) MM~CM ALL>PM  ALL<GYN  

Red 
Chroma 

Mean 0.5253a 0.4944 0.4527a 0.49 0.57 0.41 

Range (0.4639 − 0.5867) (0.4221 − 0.5667) (0.4269 − 0.4785) MM~CM PM~CM ALL>GYN  

UV 
Chroma 

Mean 0.1714 0.1716 0.1972 0.15 0.11 0.18 

Range (0.1521 − 0.1907) (0.1334 − 0.2098) (0.1799 − 0.2145) MM~PF ALL>PM  GYN~ALL 

Overall 
Chroma 

Mean 24.0742 22.6455 24.7482 20.75 19.73 25.99 

Range (20.1672 − 27.9812) (19.0916 − 26.1993) (22.6177 − 26.8787) ALL>MM  PM~PF GYN~ALL 

Carotenoid 
Mean -0.8055 -0.802 -0.7568 -0.83 -0.9 -0.73 

Range (-0.8662 − -0.7449) (-0.8791 − -0.7249) (-0.789 − -0.7246) MM~CM,P
F ALL>PM  GYN~PF,CF 

Hue 
Mean 0.0495a 0.1345a 0.0824 0.26 0.29 0.29 

Range (0.0341 − 0.0649) (0.0273 − 0.02417) (0.0304 − 0.1343) ALL<MM  ALL<PM  ALL<GYN  

Breast 

Variable   CM PF CF MM  PM GYN 

Brightness 
Mean 69.0492a 89.3884a,b 51.7825b 60.08 67.62 76.19 

Range (58.5537 − 79.5447) (89.3884 − 132.5047) (51.7825 − 96.8005) MM~CM,C
F 

PM~CM,C
F GYN~CM,CF 

UV 
Chroma 

Mean 0.215a,b 0.1622b 0.1793a 0.17 0.21 0.18 

Range (0.2075 − 0.2225) (0.1341 − 0.1902) (0.1602 − 0.1983) MM~PF,CF PM~CM GYN~PF,CF 

Overall 
Chroma 

Mean 2.3559* 8.421* 4.3333* 6.74 2.58 6.17 

Range (2.0311 − 2.6807) (5.8732 − 10.9688) (2.9353 − 5.7314) MM~PF PM~CM GYN~PF 

Hue 
Mean 0.5288a,b 0.8283a 0.7915b 0.68 0.62 0.65 

Range (0.3707 − 0.6869) (0.7186 − 0.938) (0.7068 − 0.8762) MM~CM PM~CM GYN~CM 

Cheek 

Variable   CM PF CF MM  PM GYN 

Brightness 
Mean 42.0244a,b 63.2842a 68.3129b 61.68 54.81 62.58 

Range (27.7569 − 56.292) (52.7052 − 73.8632) (49.56 − 87.0658) MM~PF,CF PM~ALL GYN~PF,CF 

Red 
Chroma 

Mean 0.4626a,b 0.3023a 0.3059b 0.48 0.55 0.38 

Range (0.3702 − 0.5551) (0.2882 − 0.3163) (0.2914 − 0.3204) MM~CM PM~CM GYN~CM 

UV 
Chroma 

Mean 0.1136a,b 0.1861a 0.1814b 0.1 0.07 0.14 

Range (0.0584 − 0.1689) (0.1673 − 0.2048) (0.1629 − 0.2) MM~CM PM~CM GYN~CM 

Overall 
Chroma 

Mean 12.9864a,b 4.2869a 4.6772b 18.85 21.77 10.55 

Range (6.5435 − 19.4294) (2.9958 − 5.5781) (4.2426 − 5.1118) MM~CM ALL<PM GYN~CM 

Carotenoid 
Mean -0.7099a,b -0.3084a -0.3261b -0.78 -0.86 -0.56 

Range (-0.9518 − -0.468) (-0.3692 − -0.2475) (-0.3829 − -0.2693) MM~CM PM~CM GYN~CM 
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Hue 
Mean 0.434a,b 0.6262a 0.6379b 0.45 0.44 0.6 

Range (0.4012 − 0.4667) (0.4592 − 0.7932) (0.4895 − 0.7863) MM~CM PM~CM GYN~PF,CF 

Foot 

Variable   CM PF CF MM  PM GYN 

Brightness 
Mean 52.5975 59.0853 54.9526 60.74 58.73 59.63 

Range (45.6467 − 59.5482) (55.7658 − 62.4048) (48.1998 − 61.7054) MM~PF,CF PM~ALL GYN~PF,CF 

Red 
Chroma 

Mean 0.4012 0.3772 0.405 0.35 0.37 0.38 

Range (0.3701 − 0.4323) (0.3551 − 0.3993) (0.379 − 0.431) ALL>MM PM~CM,P
F GYN~ALL 

UV 
Chroma 

Mean 0.2049 0.2168 0.2097 0.2 0.2 0.21 

Range (0.1896 − 0.2202) (0.2057 − 0.228) (0.1966 − 0.2229) MM~ALL PM~ALL GYN~ALL 

Overall 
Chroma 

Mean 11.9658 10.8598 12.0363 9.47 10.71 12.33 

Range (9.113 − 14.8187) (8.626 − 13.0935) (9.5039 − 14.5686) MM~CM,P
F PM~ALL GYN~ALL 

Carotenoid 
Mean -0.6744 -0.6211 -0.679 -0.52 -0.62 -0.63 

Range (-0.7381 − -0.6108) (-0.6908 − -0.5515) (-0.738 − -0.6201) ALL>MM  PM~ALL GYN~ALL 

Hue 
Mean 0.1035 0.0468 0.0324 0.33 0.21 0.18 

Range (0.0474 − 0.1596) (-0.0344 − 0.128) (0.0411 − 0.1059) ALL<MM  ALL<PM  ALL<GYN  

Spots 

Variable   CM PF CF MM  PM GYN 

Brightness 
Mean 61.2099 N/A N/A 52.45 72.34 65.3201 

Range (53.24 − 67.22) N/A N/A CM>MM  CM<PM ~CM 

UV 
Chroma 

Mean 0.1682 N/A N/A 0.13 0.14 0.1241 

Range (0.14 − 0.20) N/A N/A CM>MM  ~CM CM>GYN 

Overall 
Chroma 

Mean 9.5968 N/A N/A 12.04 15.02 14.9017 

Range (2.40 − 14.28) N/A N/A ~CM CM<PM  CM<GYN 

Hue 
Mean 0.4245 N/A N/A 0.44 0.44 0.4737 

Range (0.19 − 0.65) N/A N/A ~CM ~CM ~CM 

Table 1: Means and ranges of multiple comparisons of brightness, red chroma, UV 

chroma, overall chroma, carotenoid chroma, and hue (as described above) for beak, 

breast, cheek, and foot. Shared superscripts indicate significant differences between 

groups, and an asterisk (*) indicates significant differences between all groups (p < 0.05). 

For groups or variables with no superscripts, there were no significant differences. 

Because the GYN, MM, and PM were individuals, no range is reported. Instead, the 

range row for these individuals includes information about how they relate to the ranges 

of the comparison groups. A greater than (<) or less than (>) symbol means that the 

individual’s value was greater than or less than all comparison groups, respectively. A 
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congruence symbol (~) followed by a group name indicates that the individual’s value 

was within a particular group range. 

a) b) 
 
 
Figure 10: Beak – Box plots showing the ranges for CM, PF, and CF groups and where 

MM, PM, and GYN fall within these ranges for the red chroma (a) and hue (b) 

measurements of beak. Panel a shows that control males have a significantly higher 

amount of red chroma, relative to total reflectance, than females. This simply means that 

their beaks are redder. Panel b shows that control males and progeny females have 

different hues, or general coloration, of their beaks. This is expected because male zebra 

finches are known to have redder beaks than females (Simons et al., 2012).  
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a) b) 

c) d) 
 
Figure 11: Breast – Box plots showing ranges for CM, PF, and CF groups and where 

MM, PM, and GYN fall within these ranges for brightness (a), UV chroma (b), overall 

chroma (c), and hue (d) measurements of the breast. Panel a shows that the progeny 

female are significantly brighter than other groups. We attribute this to the increased 

amount of white feathers present on their breasts, causing them to reflect more light than 

the typical gray feathers. Panel b shows that control males have higher reflectance in the 

UV regions of light than either female group. Panel c shows that the progeny female had 

a different overall chroma for their breast, again attributed to the large amount of white 

feathers present. Panel d shows that males had a different hue than both female groups. 
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a) b) 

c) d) 

e) f) 
Figure 12: Cheek – Box plots showing ranges for CM, PF, and CF groups and where 

MM, PM, and GYN fall within these ranges for brightness (a), red chroma (b), UV 

chroma (c), overall chroma (d), carotenoid saturation (e), and hue (f) measurements of 

the cheek. Panel a shows that both female groups were significantly brighter than the 

control males. This is due to the gray female cheek plumage, which reflects more light 

than the orange cheeks that males have. Panel b shows that males have increased 
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amounts of red chroma present in their cheeks than females, which is expected. Panel c 

shows that males have significantly less UV chroma in their cheeks than females. Panel d 

shows the chroma differences between males and females. Males have higher overall 

chroma because their cheeks have orange coloration, while female cheeks are gray. Panel 

e shows differences in carotenoid levels in the cheeks of the male and female zebra 

finches. Males have a more negative value for carotenoid saturation, indicating that the 

cheek region coloration is likely to be carotenoid dependent. Panel f shows that males 

have a different hue for the cheek region than female groups, which is expected. 

 

Experiment 4: Sexual Differentiation of the Gynandromorph Brain  

Male zebra finches, which sing, have larger volumes of three song nuclei 

(LMAN, HVC, and RA) (Schlinger, 1998; Tomaszycki et al., 2009; Wade & Arnold, 

2004) than females, which do not sing and also lack a noticeable fourth song nucleus, 

Area X. Masculinization of the song circuit is influenced during development by genetic 

and hormonal factors and during adulthood, mainly by circulating levels of testosterone. 

Given that our gynandromorph showed W genes in all tissues tested and clearly had 

sufficiently normal levels of female hormones for reproduction and lacked testes, we 

predicted that the song nuclei would be similar in size to other females. To determine the 

extent of the masculinization of our gynandromorph, we felt it necessary to obtain precise 

measures of the song nuclei in the gynandromorph’s brain.  

Animals 

 We sacrificed 4 female controls, and 4 male controls, the gynandromorph, and its 

male partner when all birds were within a few months of 3.3 years old. All birds had been 
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breeders for most of their adult life. Approximately 23 months prior to tissue collection, 

control males had been used in another study that involved a 30 minute relatively non-

invasive surgery. A sham lesion was performed which involved sedation, and dissecting a 

skin flap, but no craniotomy or penetration of the underlying tissue (IACUC protocol 16-

024).  

Tissue Preparation 

 Birds were overdosed via isoflurane inhalation, and brains were dissected, sliced 

into two hemispheres, and fast frozen on a dry ice/isopentane slurry and then stored at -80 

°C until cutting. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: HVC, RA, LMAN, and Area X outlined in a male zebra finch in a sagittal 

section approximately 2.07 mm from the midplane. Arrows indicate projection patterns 

among the nuclei. 

Slide Preparation 

 We used optimal cutting temperature compound (O.C.T.) to stabilize the tissue 

and affix it to a chuck for sagittally cutting at 30 µm in a cryostat. Only one hemisphere 

of each brain was cut, to preserve the remaining hemispheres for further studies involving 
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the zebra finch song system. Brain slices were placed on slides in three series. Two of the 

series were Nissl stained with cresyl violet, to allow nuclear and cytoplasmic 

visualization, the remaining series was stored in the -80 °C freezer for future 

experiments.  

Measurements of Brain Region Volumes 

 The neuroanatomical boundaries of the four song nuclei to be measured are very 

well defined in print and online versions of zebra finch brain atlases (Nixdorf-Bergweiler 

& Bischof, 2007; Brain Architecture Project) that delineate their appearance throughout 

the brain making identification relatively easy (see Figure 13). We used stereological 

methods for all measurements using a Stereologer software to analyze images 

(Stereological Resource Center, St. Petersburg, FL) captured by an Imi Tech IMC-

3145FT camera (Imi Tech, Seoul, South Korea) from a Zeiss light microscope (Zeiss 

AxioImager M1, Germany). Each slice containing the region from lateral to medial was  

identified to determine the number of total slices and develop efficient sampling 

strategies that kept the coefficient of error within samples and averaged across samples 

below 10% . Using a Cavalieri point counting, volume = 𝑉!"# = 𝑇 ∙ Σ𝐴, where Vref is 

region volume estimate, T is the thickness of your section, and A is the sum of all the 

sampled surface areas obtained from point counts  (Mouton, 2011). Region volume was 

estimated on 8-10 sections (90 µm apart) using a grid size of 0.25% screen height2 

resulting in a CE of 0.0319. Region boundaries were identified and point counts 

performed at 2.5x objective and 100x images were used to determine section thickness. 

The camera and phototube magnify objects by 10x making the total magnifications 25x 

and 1000x for region point counting and depth measurements respectively. The thickness 
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of each slice is determined by focusing through the Z-axis and identifying the first and 

last Z value at which an object is in focus and applying an upper and lower guard zone of 

0.50 µm to avoid the artifacts on the cut surfaces of slices and measure only the central 

portion. This Optical Dissector method is also used for counting cells and measuring cell 

size. An inclusion frame size of 25% screen height2 was sampled for every 175 µm 

within each region throughout the 10 µm height of the Optical Dissector across all cells 

for which a clearly identifiable nucleolus comes in focus, that is within the inclusion 

frame, and does not touch the non-inclusion lines is counted. Our sampling strategy was 

to aim for an average of 100 cells counted and measured. For cell size, we used the 

independent uniform random (IUR) method with three dissector lines that were 3 µm 

apart. The sampling frames are the same as for cell counts except that only one dissector 

plane is randomly chosen, and only cells in focus in this plane are measured. The CE for 

cell size was 0.100 and for cell counts was 0.133. 

Statistics 

 Measurements for volume, cell number, and cell size were averaged for both the 

control males and control females. Since the gynandromorph and its mate were n = 1, 

their values could not be averaged. We used SPSS (Version 22.0, IBM) to perform 

independent t-tests on the group averages for the three parameters of volume, cell number 

and cell size to obtain p-values and ranges for each group. We also performed Levene’s 

test for heterogeneity of variances. For any comparisons where Levene’s test for 

heterogeneity of variance was significant, we used the t that was corrected for unequal 

variances. Significance between the control male and control female groups is indicated 
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in Table 2 by asterisks (*). General linear models were used to adjust the volumes of the 

regions for the size of the telencephalon.  

Results and Discussion 

 Our results show that the volume of the gynandromorph’s song nuclei was within 

the range of control males for HVC, RA, and LMAN. The male mate, however, had a 

larger volume than the control males for each of these regions. For cell number, the 

gynandromorph was within the control male range for each of the three regions. The 

gynandromorph’s mate was within control male range for RA and HVC, but the mate had 

more cells in LMAN than control males. HVC and RA are known to be approximately 

five times larger, and contain more and larger neurons, in males than in females 

(Schlinger, 1998). LMAN, however, has not been shown to differ in size between sexes, 

but is shown to have an increased number of larger cells in males than in females 

(Tomaszycki et al., 2009).  

Our results show that RA volume, both relative and absolute, is larger in males 

than in females (t(7) = 9.3037 p<0.0001). The volume of RA for our control males was 

found to be 4.56 times larger than control females, which is consistent with the literature 

(Schlinger, 1998). The volume of RA in the gynandromorph brain was found to be within 

the range of our control males, and the volume of RA for the gynandromorph’s partner 

was found to be slightly larger than our control male range (see Figure 14). RA cell 

number was found to be marginally significant between control males and control 

females (t(3.052) = 2.660, p = 0.075), with males having more cells in the RA nucleus 

than females. The gynandromorph and its mate were both within range of control males 

for RA cell number (see Figure 15). Our two control groups had no significant difference 
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for RA cell size (t(7) = -0.241, p = 0.816), but males were expected to have larger cell 

size in the RA nucleus. The gynandromorph and its mate were both within male range for 

cell size (see Figure 16).   

 Our control males had a significantly larger absolute volume of HVC compared to 

control females (t(6) = 3.122 p = 0.021), but there was no significant difference when the 

volumes were relative to the telencephalon. The volume of HVC in our control males was 

only 2.13 times larger than control females, which is less than the published ratios that 

suggest that HVC is approximately five times larger in males than in females (Nottebohm 

& Arnold, 2010). Our gynandromorph was within the range of HVC volumes for control 

males, while its mate was slightly above range for control males (see Figure 14). While 

our control males had a larger number of cells present in HVC, and those cells were 

larger in size, the differences between control males and control females for cell number 

and cell size were not significant (t(3.008) = 1.399, p = 0.256; t(6) = 0.749, p = 0.482). 

Our gynandromorph and its mate were both within male range for cell number (see 

Figure 15), but both contained cells larger than control males (see Figure 16).  

Though previous studies have reported LMAN to have similar volumes between males 

and females (Tomaszycki et al., 2009), we found both the absolute and relative volume of 

LMAN in our control males to be larger than control females (t(3.909) = 4.365, p = 

0.013). Control male volume was 2.51 times larger than control females, and our 

gynandromorph was within the range of control males, but the gynandromorph’s partner 

had a volume of LMAN that was larger than the range of control males (see Figure 

1215). Males also had a significantly larger number of cells than females (t(7) = 2.754, p 

= 0.028), but cell size did not show any significant differences (t(7) = -0.316, p = 0.761). 
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Our gynandromorph was within male range for cell number, but the male partner had 

more cells than the control male range (see Figure 15). For cell size, both the 

gynandromorph and the male partner had larger cells than control males and control 

females (see Figure 16).  

 The experimenter was blind to expectations in size differences between subjects 

when performing most volumetric measurements and only became aware of expectations 

for Area X volume after measuring Area X in both males and the gynandromorph. Later, 

the experimenter was confused by an inability to find Area X in females, at which time it 

was revealed that Area X is not detectable in normal females (Schlinger, 1998). Because 

volumes of males and the gynandromorph were measured first, and the gynandromorph 

has an n=1, it was not possible to be blind to the identity of females. However, our results 

are in the opposite direction to our expectation of a female like brain, suggesting little 

expectation bias during measurement of female brains and cell measurements. 

We also found a putative Area X, which is only found in male zebra finches, in 

our gynandromorph. The volume of Area X for our gynandromorph is 2.20 times smaller 

than that of a control male, but the volume of Area X for the male mate was within 

control male range (see Figure 14).  

 In all three regions that we measured, the volume and cell numbers of each region 

in the gynandromorph brain was within range of control males. In HVC and LMAN, the 

cell size of the gynandromorph was larger than both control males and control females. 

After noticing the masculinization of the song nuclei in our gynandromorph, we began to 

observe nesting video footage to determine if the gynandromorph ever produced viable 

song. We discovered a segment of video that clearly shows our gynandromorph 
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producing song. As far as we know, this is the first time that a unilaterally plumaged 

gynandromorph produced viable song. This also adds an interesting facet to the mating 

patterns of the gynandromorph and its mate, because typical females do not produce 

song. 

Table 2: Mean and range for song nuclei measurements of control males (CM), control 

females (CF), the gynandromorph (GYN), and its mate (MM). Asterisks (*) indicate 

significance between male and female controls. The volumes reported are the raw 

volumes (mm3), and the ranges reported are the maximum and minimums for each group. 

 CM CF GYN MM 
RA  

Vol mm3* 
0.0735 0.0161 0.0734 0.0959 

(0.0606 − 0.0909) (0.0104 − 0.0217) GYN~CM MM>CM 
Cell 

Number 
11691.692 2534.861 7903.396 12283.85 

(4801.003 − 19782.44) (1689.05 − 3287.63) GYN~CM MM~CM 
Cell Size 

 
29.901 31.456 25.298 43.856 

(16.558 − 44.807) (20.838 − 42.290) GYN~CM,CF MM~CM 
HVC  

Vol mm3* 
0.0444 0.0208 0.0436 0.0759 

(0.0251 − 0.0662) (0.0149 − 0.0261) GYN~CM MM>CM 
Cell 

Number 
8180.810 2614.0742 3571.677 7592.167 

(1660.322 − 19198.641) (2422.095 − 3037.584) GYN~CM MM~CM 
Cell Size 

 
29.160 26.689 86.458 63.286 

(20.902 − 32.124) (21.745 − 29.84) GYN>ALL MM>ALL 
LMAN  

Vol  mm3* 
0.0382 0.0152 0.0431 0.0792 

(0.0226 − 0.0548) (0.00998 − 0.0155) GYN~CM MM>CM 
Cell 

Number* 
5336.567 1779.901 6100.118 9548.742 

(2065.393 − 9080.791) (1252.673 − 2511.959) GYN~CM MM>CM 
Cell Size 

 
29.843 32.443 47.509 45.0706 

(28.837 − 41.574) (17.548 − 48.898) GYN~CF MM~CF 

X  
Vol mm3 

0.4087  0.1857 0.4205 

(0.322 − 0.473)  GYN<CM MM~CM 
Cell 

Number 
47681.29   

 (9293.553 − 105704.397)   
 X Cell Size 

 
38.316   

 (33.964 − 46.694)   
 Tele* 

 Vol mm3 
18.336 13.893 19.827 15.571 

(14.984 − 21.066) (11.341 − 16.800) GYN~CM MM~CM,CF 
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Because the GYN and MM were individuals, no range is reported. Instead, the range row 

for these individuals includes information about how they relate to the ranges of the 

comparison groups. A greater than (<) or less than (>) symbol means that the individual’s 

value was greater than or less than all comparison groups, respectively. A congruence 

symbol (~) followed by a group name indicates that the individual’s value was within a 

particular group range. 

a) b) 

c) d) 
Figure 14: Volumes and ranges of the four song nuclei measured: RA (a), LMAN (b), 

HVC (c), and Area X (d). Control Females are not included in the graph of Area X 

volume because they do not have Area X. All units are in mm3. Panels a, b, and c show 

that the volume of RA, LMAN, and HVC for the gynandromorph is within range of male 

controls, while the volume of these regions for the male mate is larger than male controls. 

Panel d shows that the volume of the gynandromorph’s putative Area X is below the 
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range of control males, and the volume of Area X for the male mate is within the range of 

male controls. 

 

a) b) 

c)  
Figure 15: Cell number of three song nuclei measured: RA (a), LMAN (b), and HVC (c). 

Panels a and c show that the gynandromorph and male mate are within control male 

range of cell number for RA and HVC. Panel b shows that the gynandromorph is within 

male control range for cell number of LMAN, while the male mate has more cells than 

control males.   
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a) b) 

c)  
Figure 16: Cell size of three song nuclei measured: RA (a), LMAN (b), and HVC (c). 

Panel a shows overlap between the male and female ranges for cell size and also shows 

that the gynandromorph and male mate are within range of the control males for RA. 

Panel b shows that the gynandromorph and male mate are within range of control females 

for cell size of LMAN. Panel c shows that the gynandromorph and male mate have larger 

cells than both control males and control females in HVC. 
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GENERAL DISCUSSION AND CONCLUSION 

Results of our experiments suggest that the gynandromorphic zebra finch and her 

lineage support previous studies on sexual orientation in mate preference test, suggest 

that color patterns of plumage might influence mate preference and that these color 

patterns might be heritable, and extend our understanding of sex chromosome expression 

and hormonal influences on sexual differentiation of plumage and song nuclei .  

The gynandromorph lineage was less preferred in two-choice mate preference 

tests, and the gynandromorph mate and male progeny had strong same plumage 

orientation in the sex preference tests. Abnormal plumage patterns were found in the 

gynandromorph lineage, and the gynandromorph did not have sex chromosomes that 

differed from those expected from her reproductive sex even in the male-typical plumage 

samples and her progeny and mate did not have any sex chromosome unexpected for 

their plumage appearance. The gynandromorph has masculinized song nuclei and 

produced song. Due to the gynandromorph’s reproductive output and normal appearance 

of her ovaries and reproductive tract, we assume that circulating reproductive hormones 

would be within the normal range of normal females. 

Mating in zebra finches is known to be influenced by song (Gahr, 2007), 

ultraviolet plumage differences (Maddocks et al., 2001), and beak coloration (Simons et 

al., 2012). Less is known about how particular aspects of color such as red chroma, 

brightness, and hue influence mate preference. Our color spectra data shows that the 

gynandromorph plumage was distinct from both males and females. The gynandromorph 

was within male ranges for some regions (beak, cheek, and spots) and within female 

ranges for breast. Some of these plumage differences may be heritable, as seen in 
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measures where the gynandromorph and her partner were within the female progeny 

range but not the control male or female range. This occurred for UV chroma of the beak 

and overall chroma of the breast. Initially we assumed most differences in the breasts of 

the progeny females to be due to the increased amount of white feathers present. 

However, we did not note any excess of white feathers in the gynandromorph or mate, so 

the overall chroma difference seen in the progeny females for breast could be a heritable 

factor instead of the distribution of white feathers. 

We know that mate preference, and song nuclei size, can be heritable as well, but 

this has typically been studied in the context of song (Airey et al., 2000; Rutstein et al., 

2007). Our results suggest the possibility that zebra finches may attend to specific aspects 

of plumage when choosing mates and that abnormalities unapparent to us can be detected 

by other zebra finches. However, we cannot determine in the current experiments if these 

plumage differences directly influenced mate preference.  One other distinct possibility 

for the gynandromorph lineage being less preferred is that the sexual orientation biases of 

the gynandromorph lineage also influenced the preference of choosers when selecting 

between them and a control.  

Having same sex plumage parents has been shown to increase same sex 

preference due to sexual imprinting (Adkins-Regan & Krakauer, 2000; Banerjee & 

Adkins-Regan, 2014). The gynandromorph progeny had two same sex plumage parents, 

and males were shown to have same sex orientation. Female zebra finches generally have 

less strong sex preference than males (Rutstein et al., 2007). Our female progeny sex 

preference was not significant, but they chose opposite sex controls more than same sex 
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controls. Our results suggest that sexual imprinting plays a role in the same sex 

preferences of our gynandromorph lineage.  

This sexual imprinting may have also caused behavioral abnormalities that would 

influence preference tests. Previous studies have shown that sexually naïve birds, that 

have never had contact with a bird of the opposite sex, may require time to develop 

attractiveness towards the opposite sex due to lack of exposure to sex specific behavioral 

and plumage differences (Adkins-Regan & Krakauer, 2000). While our gynandromorph 

progeny were sexually naïve, they were housed in an aviary with each other. This lack of 

exposure to potential normal mates of the opposite sex could have influenced their choice 

in the mate and sex preference trials.  

Interestingly, our gynandromorph’s male mate has an extremely masculinized 

song system, but he chose a male plumaged mate that also produced song. Given the 

masculinization of our gynandromorph’s brain, we immediately suspected that she would 

have unusual behaviors for a female. Zebra finches typically learn their song from their 

father (Williams, 2004), and our gynandromorph sang. This may have affected the song 

that the male progeny learned, and thus affected the male progeny’s ability to sing 

directed song during the mate and sex preference experiments.  

 Our gynandromorph is different from the other two reported unilaterally 

plumaged gynandromorphs. One of the reported gynandromorphs has male plumage, ZZ 

male typical chromosomes, an ovary and no testis, produces song, and has a partially 

masculinized song system (Grisham et al., 2007). The other reported gynandromorph has 

male plumage, ZW female typical chromosomes, normal ovaries, does not sing, and has a 

feminine song system (Cui et al., 2015). Our gynandromorph has male plumage, ZW 
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female chromosomes, normal ovaries, produces song, and has a masculinized song 

system. We believe that the combination of these attributes in these three 

gynandromorphs could further our knowledge of the processes of sexual differentiation. 

Zebra finch plumage differentiation is thought to be controlled by an imbalance of 

Z and W genes present in an individual, with more Z expression leading to masculinized 

plumage (A. P. Arnold & Itoh, 2011). In this case, our gynandromorph may have had 

more Z expression, which caused her to develop masculine plumage. Our 

gynandromorph’s particular combination of features suggests that both singing behavior 

and plumage differentiation in zebra finches may be determined by gene expression on 

the Z chromosome. We do not think that circulating gonadal hormones determined the 

plumage or singing ability in our gynandromorph since she had female typical hormones 

levels, as evident by her reproductive abilities.  

 Analyzing our gynandromorph’s song for male typical singing patterns would 

help us better understand the nesting behavior that she and her mate exhibited as well as 

the effect that would have had on the progeny. We also hope to obtain hormone levels 

from the gynandromorph’s remaining tissue to verify that her hormone levels were within 

female range and did not affect her plumage or song system differentiation.  

Our data suggest that genes that influence plumage may also masculinize the 

brain and create subtle differences in plumage coloration. These coloration differences, 

behavioral differences, and interest for the opposite sex could influence how often birds 

are chosen for mates and also suggest the possibility that variation in these variables in 

the normal population could influence mate selection. 
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Our gynandromorph provides a unique perspective into the sexual differentiation 

mechanisms of zebra finches. We had a bird with male plumage, ZW sex chromosomes, 

and masculinized song nuclei that produced song and 7 viable offspring. Through our 

studies, we have gotten a better grasp of what differences birds may notice when 

choosing a mate and how zebra finch behavior can be altered when both parents share 

plumage coloration. We hope that our research, combined with the efforts of other 

scientists studying the zebra finch sexual differentiation pathways, can lead to the full 

understanding of this complex system and the process of sexual differentiation overall.  
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