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ABSTRACT

In the thesis, we study the theory of Markov Chain Monte Carlo (MCMC) and its

application in statistical optimization.

The MCMC method is a class of evolutionary algorithms for generating samples from

given probability distributions. In the thesis, we first focus on the methods of slice sampling

and simulated annealing. While slice sampling has a merit to generate samples based on the

underlying distribution with adjustable step size, simulated annealing can facilitate samples

to jump out of local optima and converge quickly to the global optimum.

With this MCMC method, we then solve two practical optimization problems. The

first problem is image transmission over varying channels. Existing work in media trans-

mission generally assumes that channel condition is stationary. However, communication

channels are often varying with time in practice. Adaptive design needs frequent feed-

back for channel updates, which is often impractical due to the complexity and delay. In

this application, we design an unequal error protection scheme for image transmission over

noisy varying channels based on MCMC. First, the problem cost function is mapped into

a multi-variable probability distribution. Then, with the detailed balance”, MCMC is used

to generate samples from the mapped stationary distribution so that the optimal solution

is the one that gives the lowest data distortion. We also show that the final rate allocation

designed with this method works better than a conventional design that considers the mean

value of the channel.

In the second application, we consider a terminal-location-planning problem for in-

termodal transportation systems. With a given number of potential locations, it needs to

find the most appropriate number of terminals and their locations to provide the economi-

cally most efficient operation when multiple service pairs exist simultaneously. The problem
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also has an inherent issue that for a particular planning, the optimal route paths must be

determined for the co-existing service pairs. To solve this NP-hard problem, we design a

MCMC-based two-layer method. The lower-layer is an optimal routing design for all service

pairs given a particular planning that considers both efficiency and fairness. The upper-

layer is finding the optimal planning based on MCMC with the stationary distribution that

is mapped from the cost function. The effectiveness of this method is demonstrated through

computer simulations and comparison with one state-of-the-art method.

The work of this thesis has shown that a MCMC-method, consisting of both slice

sampling and simulated annealing, can be successfully applied to solving practical optimiza-

tion problems. Particularly, the method has advantages in dealing with high-dimensional

problems with large searching spaces.
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CHAPTER 1

MARKOV CHAIN MONTE CARLO METHOD

In statistics, Markov Chain Monte Carlo is a class of methods for generating samples

from probability distributions. By constructing a Markov Chain with a desired distribution

and after running the chain for large steps, the states of the Markov Chain can be used

as the samples of the stationary probability distribution. Usually, a large initial “burn-in

step” should be used to make sure that sample generated by MCMVC matches well with

the desired probability distribution. One critical point in MCMC is developing methods to

generate the useful samples quickly.

An example of using MCMC is to calculate the area of a specific county in the world

map. The shape of a country on map is usually irregular and it is hard to use the coordinates

to measure its area. With the Monte Carlo process, we can drop small dots on the map

randomly. After a large number of dots painted on the map, we compare the dots inside

and outside the country. So that we can find the ratio of the area of the country and that of

the whole world. In this procedure, the system reaches its equilibrium distribution after a

large number of dots painted. At that moment, the area of the country could be calculated

accurately. Apparently, a small number of samples will generate inaccurate result.

There are various of Markov Chain Monte Carlo methods, such as, the Metropolis-

Hastings algorithm, Gibbs Sampling algorithm, Slice Sampling and successive over-relaxation.

They can all generate samples of the equilibrium distribution after large number of steps

running. Some of the methods approach the equilibrium distribution with completely ran-

dom walk that does not give a specific direction in the parameter space. These MCMC

algorithms are easy to construct, such as the Metropolis-Hastings algorithm, but usually

take excessively long running time to reach the underlying probability distribution.
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To avoid unnecessary steps and slow moving, we use Slice Sampling as our MCMC

method (Neal, 2003). The idea of Slice Sampling is that any distribution could be sampled

uniformly from the area under the distribution function. The Slice Sampling also uses an

area called slice to accelerate the sampling speed and avoid being trapped in local basin

areas.

Compared with a popular MCMC method like the Metropolis-Hastings, Slice Sam-

pling is very efficient in speed for two reasons. First, Slice Sampling has strategy of modify

the neighbor space of current sample in the whole process; this makes better chance to find

a useful sample than the Metropolis method. Second, normal Metropolis method takes a

random walk to find next sample, for a new sample only n steps away, it could take about

n order of 2 steps to reach, if these steps moved consistently in one dimension.

1.1 MCMC Design

In (Ross, 2010), let x be a discrete variable or vector, which has possible value space.

Say χj is a possible value of x. Then the probability of x could be represent as P{x = χj}

( χj could be any value in the space). If we want to calculate the mean value of a function

g(x), it is:

E[g(x)] =
∞∑
j

g(χj)P{x = χj} (1.1)

Intuitively g(x) could be any function. However if g(x) is very complicated for calculation

or input x has extremely large number of possible values, for example, x is a 128-bit-vector

of binary numbers. Then the searching space of x is 2128, which is too large for normal

computers to handle. In this case, we should only find an approximate value of E[g(x)].

MCMC could be used to generate a large number of samples, such as x1, x2, . . . . By the

strong law of probability,

2



lim
n→∞

n∑
i

g(xi)

n
= E[g(x)] (1.2)

when n is large enough, we could approximately consider equation (1.2) holds.

It can be observed that we can calculate the mean value of a function through samples

of the MCMC, and do not need to consider whether the underlying probability distribution

function is integrable or not. We avoid the hardest part which is the integration.

The way to construct such a MCMC procedure is not difficult. The following is a brief

process of how the Metropolis-Hastings algorithm works. Assume that we have a function

h(χj), and the sum is H =
∑
h(χj), j = 1, 2, . . . , and His finite. Then for each state

x = χj of Markov Chain has the stationary probability π(χj) = h(χj)/H, and obviously∑
π(χj) = 1. When current state is x = χi, we assume that q(i, j) is the probability

of moving x = χi to a new state x = χj. With q(i, j) found, a table of probability of

transition from any state χi to χj could be accomplished. In addition, we need a probability

of acceptance of x = χj, namely α(i, j). Then Markov Chain state change probability

represents as:

P{i→ j} = q(i, j)α(i, j), i 6= j (1.3)

Since we already have the stationary probability, and the Markov Chain has to be an equi-

librium chain, then,

P{i→ j}π(χi) = P{j → i}π(χj), i 6= j (1.4)

Combined equation (1.3) and (1.4) and rearrange, we can get,

α(i, j)

α(j, i)
=
π(χj)q(j, i)

π(χi)q(i, j)
(1.5)

The equation (1.5) is still complicated, because α(i, j) and α(j, i) are depending on each
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other. Therefore in this situation, the Metropolis choice is given as:

α(i, j) = min

{
π(χj)q(j,i)

π(χi)q(i,j)
, 1

}
(1.6)

Intuitively there are only two options. First, if α(i, j) = 1, then:

α(j, i) =
π(χi)q(i, j)

π(χj)q(j, i)

Second, if we have:

α(i, j) =
π(χj)q(j, i)

π(χi)q(i, j)

then α(j, i) = 1.

Finally, if put π(χj) = h(χj)/H into equation (1.6), we can get:

α(i, j) = min

{
h(χj)q(j,i)

h(χi)q(i,j)
, 1

}
(1.7)

Briefly the Metropolis-Hastings algorithm is like following:

1. set χi as initial/current state of Markov Chain

2. generate χj as new state by q(i, j)

3. use α(i, j) to decide whether χj is accepted or not.

4. if it is not accepted, Markov Chain has no state change. Then go to step 2.

5. if it is accepted, Markov Chan has a state change. The process restarts with χj as

current state.

Note that this is the process of the Metropolis-Hastings method. Different MCMC

algorithms may have different ways to generate the new samples. However they are all

sharing the same idea, i.e., achieving the “detailed balance” represented in equation (1.4).
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1.2 Slice Sampling

Slice Sampling could be applied to any case that Metropolis method could be used( the

Metropolis-Hastings algorithm is considered as the most basic method of MCMC). However

Slice Sampling has better performance than the Metropolis methods with more flexible choice

in searching parameters.

1.2.1 Single variable Slice Sampling

Depending on configuration of parameters, MCMC may have very different perfor-

mance even for the same problem. The Metropolis-Hastings method is sensitive to the

parameter setting, for example, if the step size is too small, it may take very long running

time to find an acceptable new sample; otherwise, if step size is too big, program may miss

some useful points. Slice Sampling changes the step size automatically to fit into the local

shape of the probability distribution so that it can generate samples more quickly. The only

requirement of Slice Sampling is that the target density function P (x(t)) has to be evaluated

at any point x(t) (MacKay, 2003).

Because of the automatically change of step size, Slice Sampling could locate a neigh-

boring space near the current state, and draw samples from it. The idea of neighboring

apace is to guarantee that the acceptable state/sample is contained inside. This improve-

ment makes Slice Sampling to have high chance find a new acceptable state.

Compared with the Metropolis-Hastings method, the better performance of slicing

sampling (Gilks et al., 2003) is achieved through two more steps: “create interval” and

“modify interval”, in the searching space. In the process below, they are step 3 and step 8.

Based on these two steps, slice sampling could change region of neighbor space to allocate

the next possible state, and accelerate the process of finding a new sample.

Assume at current time t, the system x(t) is in state i. A brief process of searching

for next state x(t + 1) = j by Slice Sampling in the one-dimension parameter space is like

following:
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1. evaluate P [x(t) = i]

2. draw a vertical coordinate,

u ∼ Uniform(0, P [x(t) = i])

3. create a interval enclosing current state i,

i ∈ (Ileft, Iright)

4. start loop {

5. draw j from neighbor space, j ∈ (Ileft, Iright)

6. evaluate P [x(t+ 1) = j]

7. if P [x(t+ 1) = j] ≥ u,

the next state x(t+ 1) = j is accepted

break out loop

8. else modify the neighbor space and repeat loop

9. }

Here P [x(t) = i] is the probability function. i, j represents possible states of system. The

time is indexed as t = {1, 2, 3, . . . , }. (Ileft, Iright) is an interval.

In step 1 and 2, program generates a random value, u, which is uniformly within range

(0, P [x(t) = i]). Then the “slice region” would be constructed as {x(t) : u < P [x(t) = i]}.

All values in the “slice” will be the region where next state x(t+1) could be possibly selected.

Slice region indicates the vertical region of neighbor space. It should be noted that the region

is not necessarily continuous. Figure 1.1 show how this process works:

step 3 creates an interval (for one dimension case). The interval, (Ileft, Iright) indicates

the neighboring space. Any new states should be within the range. Note that the union
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Figure 1.1. Uniform random variable u is generated here. It constructs the slice region,
which is the grey area. In the grey area, condition u < P [x(t) = i] is followed.

of interval (Ileft, Iright) and slice region is the neighbor space, where x(t) could move to.

Interval indicates the horizontal range of neighbor space. More details of step 3 is as follows:

1. set a value for the “width”, termed as w

2. generate rand ∼ Uniform(0, 1)

3. Ileft = i− rand ∗ w

4. Iright = i+ (1− rand) ∗ w

5. while P [Iright] > u, then Iright = Iright + w

6. while P [Ileft] > u, then Ileft = Ileft − w

Here w is a constant set in the beginning by the user. It is used to represent the step size

at each time. The (Ileft, Iright) is the interval space of state i. In the “creating” process, the

Slice Sampling use two loops to find the adaptive region of neighbor space. Figure 1.2 show

how this process works:
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Figure 1.2. (I ′left, Iright) is the interval enclosing current state i in the beginning. Left end
of the interval P (I ′left) is evaluated and is known to be greater than u (because it is in the
grey area, which is slice region). After two times stepping out to left of size w is made,
which make left end to Ileft. Check P (Ileft), found P (Ileft) is smaller than u, so stop step
out. In addition, the right end of the interval P (Iright) is evaluated and is smaller than u, so
no stepping out should be done. When process above are done, both ends should be smaller
than u. Then the interval is hold as (Ileft, Iright).

As we could see, step 3 is actually a process to extend the range of interval. It

intends to create a large enough neighbor space for drawing next state. And the extension

stops when it first meet condition P [Ileft] < u in order to avoid decreasing the percentage of

acceptable states in neighbor space. Users should always try to use different w. An adaptive

step size w makes Slice Sampling work better.

It should be noted that step 3 above is just one way to setup the interval. There are

also many other useful ways to construct the interval. Again, finding a proper way is always

important to make Slice Sampling performing well. Some schemes are listed below:

1. We could set interval same as slice region. This also results neighbor space same as

slice region. It is easy to understand, but most time it is hard to find infimum and

supremum of all grey area (slice region). Apparently we do not need any further

modification in step 3, since it is fixed range.

2. We first fix w. Then every time when extension is needed, we can double the size of
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interval. For example, if the left end Ileft does not fit P [Ileft] < u, then extension step

of current interval size will be stepped out. Note that the stepping out direction here

is random. As long as stepping out is needed, the interval extends randomly to left or

right (Neal, 2003).

In any MCMC algorithm, we know there are always some chances to reject a new

state. Slice Sampling method may “recycle” the rejected new state in order to improve the

successful chance in next drawing. Strategy used here is to shrink the region again, which is

implemented in step 8. Whenever a new state x(t+ 1) = j is rejected, the method modifies

the interval.

step 8: modifying the interval of one dimension problem:

1. if j > i, then Iright = j

2. else Ileft = j

Here j belongs to neighbor space of i, which is constructed in the previous process.

Figure 1.3 shows how it works.

Figure 1.3. An interval Ileft and Iright is found for current state i. A new state j is drawn
from interval, and is rejected because it is outside of slice region. Then the program will
shrink the left end to new position I ′left = j. As we can see, shrinking interval increase
acceptation probability of new state.

The reason to compare j > i is trying to find out their position on the x-axis, and then

shrink the neighboring space. Based on the strategy of “creating and modifying interval”,
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Slice Sampling could setup and adjust the neighboring space automatically. Also by defining

value of w, we could control the speed of step out and shrinking of the neighbor space. In

most cases, interval strategy and w are important, particularly for distributions with multiple

variables.

1.2.2 Multivariate Slice Sampling

Practical problems generally have multiple variables, which means multivariate MCMC

method would be needed. In this subsection, we adjust the single variable slice sampling to

handle multi-dimensional case. The same strategy could be used to the multivariate case

with some proper changes. In the multi-dimension space, values along difference axis need

to be handled separately. A common representation of multiple inputs at time t could be

written as:

x(t) = {x1(t), x2(t), x3(t), . . . , xN(t)}

A summary of multivariate Slice Sampling is as follows:

1. draw random variable, u, uniformly on (0, P [x(t) = {χ1 . . . χN}]).

2. define interval for every xi(t) ∈ x(t), say {(I left1 , Iright1 ), (I left2 , Iright2 ), . . . , (I leftN , IrightN )}.

These intervals contains each xi(t) individually. Note that the interval group should

be generated and modified independently.

3. find next state x(t+ 1), if rejection occurs, modify interval group.

Apparently, the most important change in the multivariate Slice Sampling is to deal

with the parameter vector x(t). To process, one rule is that only one variable will be selected

randomly and updated each time, while all other variables will be fixed.

Let us assume x1(t) be selected, and we find out its interval (I left1 , Iright1 ). When we

are doing step-out of interval of x1(t), there should be no change made to other variables.

By repeating this process for each xi(t), the interval group (I left, Iright) could be created.
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As long as we found out the interval (I left1 , Iright1 ), we can draw new state x(t + 1)

from it. Assume xi(t+ 1) is chosen, the process is like following:

1. draw each xi(t+ 1) based on interval (I lefti , Irighti ), and put into x(t+ 1).

2. if u < P [x(t+ 1)] then the new state accepted.

3. otherwise modify interval (I lefti , Irighti ) for each xi(t+ 1).

If the new state is rejected, then shrinking interval should be done accordingly and

modified individually. Since x(t) is a vector, an interesting idea is considering each variable

as a direction element of the state x(t). Each variable has its own interval. By drawing and

combining all variable, we know which way the state should move.

1.2.3 Detailed Balance Slice Sampling

In this section, we discuss the detailed balance of Slice Sampling, which means the

probability of choosing a new state y given the current state x s the same as probability of

choosing a new state x give current state y, and this is true for any states x, y. In order

to prove detailed balance, x, y must be both in the same slice area, because new sample is

generated uniformly on neighbor space. If both x, y have the same neighbor space, we can say

they have the same probability to be chosen. In addition, we can separate detailed balance

into two cases: first, case without intermediate state chosen; second, case with intermediate

state chosen.

We consider the case without intermediate point chosen first. In such case, y is

drawn in the union of the slice region and the interval, which means it is guaranteed to be

accepted. Therefore Slice Sampling does not use y as an intermediate state to shrink the

interval. Figure 1.4 is as below:

Let’s first assume the current state is x. In the step-out process, a uniform variable

randx is generated to define the initial position to hold point x within range size w. Then

Slice Sampling extends initial interval until both Ileft and Iright are outside of the slice region.
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Figure 1.4. x, y are both in the slice. No intermediate point drawn in process.

Then we can construct a variable randy corresponding to randx, and define it as

randy = Frac(randx + (y − x)/w)

Frac is the function that outputs the fraction part of its input. Intuitively, after two times

extension of the left end Ixleft, the interval size is 3w, which is shown in Figure 1.4 above.

Now we set the start/current state as y, and use randy to indicate initial position of

y within w. We find both Iyleft and Iyright need to step-out to meet the condition that both

Ileft and Iright must be outside of the slice region. After the construction of interval for y,

we can find it has same range as interval of x. This means, by knowing randx and randy, x

or y have the same interval. Therefore, we proved Slice Sampling without intermediate state

holds the detailed balance.

The second case is Slice Sampling with an intermediate state drawn. Figure 1.5 is as

below:

In this case, state i is outside of the slice region, and x, y are in slice region. i is the

intermediate state between x, y.

Assume that x is the start/current state. Then interval {Ileft, Iright} can be found

with width 3w in Figure 1.5. Then i is drawn with probability density 1/3w. Since i is
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Figure 1.5. x, y are both in the slice. With intermediate state i drawn in process.

outside of the slice region, Slice Sampling shrinks the interval to {I left = i, Iright}. Then y

is drawn in {I left = i, Iright}.

Assume that y is the start/current state. Then Slice Sampling extends both ends, and

interval is {Ileft, Iright}. The intermediate state i is drawn with probability density 1/3w.

Then Slice Sampling shrinks Ileft to i. So x can be drawn from {I left = i, Iright}.

Therefore, with intermediate state i, x, y hold the detailed balance. Because they

have the same interval {i, Iright}, which means they have same neighbor space. Also we can

prove from induction this is true for the case with n+ 1 intermediate states by proving the

case with n intermediate states.

P (new = x; |current = y; intermediate = i) = P (new = y; |intermediate = i; current = x)

We can say Slice Sampling holds the detailed balance.

1.2.4 Convergence of Slice Sampling

In this section, we discuss the complexity of Slice Sampling. Many MCMC algorithm

use the “rejection-acceptation method to generate samples. In this case, these algorithms

need a compatible probability density function. For an example of the Metropolis-Hastings

13



Algorithm, assume x is from density function f(x). Then transmission distribution function

is defined by user, assume q(x, y). For the Metropolis-Hastings algorithm, a new value y is

drawn from distribution function q(x, y). Then the acceptance variable α(x, y) is calculated.

Based on α, we will decide whether y is accepted as new sample.

In this process, the most important thing is the transmission distribution, i.e., the

proposal distribution. A high compatible distribution may greatly decrease the chance of

rejection. Apparently looking for a compatible proposal distribution is always not easy.

Sometimes any minor change could make the target density function difficult to find, such

as, drawing samples from any distribution with lots of interval region of x. Such a distribution

only has values, when x ∈ (2n−1, 2n), n = 1, 2, 3, 4. It is hard to find an efficient transmission

distribution for such a distribution.

However for Slice Sampling, the above case becomes extremely easy, since proposal

distribution is not important in Slice Sampling. All Slice Sampling does is to compare

variables drawn from uniform distribution. Slice Sampling still has to deal with the region

problem above. However it is just a uniform distribution, which makes the process much

easier. This is why Slice Sampling is easy to use than the Metropolis-Hastings method.

Also Slice Sampling has been proved to have better convergence performance than

Independence the Metropolis Hastings Algorithm (IMHA) in many cases (Mira and Tierney,

2002). In order to explain that, we assume a mass density f(x), which is our target density

function.

f(x) ∝ p(x)Q(x)

The Q(x) is always not less than 0, which is also considered as likelihood probability,

and p(x) is prior probability. In order to construct a joint distribution of auxiliary variable

u and x, we could set up the region of 0 < u < Q(x). Then the equation will be:

f(x, u) ∝ p(x)I0<u<Q(x)(x) (1.8)
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I0<u<Q(x)(x) indicates the region of u, when current state x is given. General case of Markov

chain (discrete case) constructs transition kernel as following:

K(χ, Y ) = Prob(xi+1 = y ∈ Y |xi = χ) = Prob(Y |xi) (1.9)

The K(χ, Y ) is the transition kernel of slice sampling. Given the current state xi, transition

kernel gives the probability of new state Y . Apparently the new state y is always dependent

on the current state, but not relate to the sequence of former states {x1, x2, x3, }. For

notation, we write kernel as K(x, Y ) to indicate the transition probability from x to Y .

If an invariant probability distribution f(x) and K exist, then they must follow f(Y ) =∫
K(x, Y )f(x)dx. Since we know the relationship among x, u, y in Slice Sampling, then we

write the transition kernel [1.9] as following:

K(x, Y ) =

∫
Y

∫
Prob(y|u)Prob(u|x)dudy

=

Q(x)∫
u=0

Prob(u|x)

∫
Y

Prob(y|u)dydu

=

Q(x)∫
u=0

1

Q(x)

∫
Y

p(y|Au)dudy

Since u is uniformly on range (0, Q(x)), probability of u given x is 1/Q(x). Au here

indicates {x : 0 < u < Q(x)}. Given current state x, transition kernel K(x, Y ) generates

possible set Y . Let p(y|Au) = p(y)IAu(y)/p(Au) by Bayes’ theorem. Then it could be written

as

K(x, Y ) =
1

Q(x)

∫
Y

p(y)

Q(x)∫
u=0

IAu(y)

p(Au)
dudy (1.10)

Similarly the transition kernel of IMHA could be written as following (Mira and Tierney,
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2002):

KIMHA(x, Y ) =
1

Q(x)

∫
Y

p(y)

min{Q(x),Q(y)}∫
u=0

dudy (1.11)

In the process of Slice Sampling, if any y is accepted, q(y) must be greater than

auxiliary variable u, otherwise y is rejected. Then we can modify equation (1.10):

K(x, Y ) =
1

Q(x)

∫
Y

p(y)

Q(x)∫
u=0

IAu(y)

p(Au)
dudy =

1

Q(x)

∫
Y

p(y)

min{Q(x),Q(y)}∫
u=0

1

p(Au)
dudy

Comparing kernel of Slice Sampling and IMHA, we get

min{Q(x),Q(y)}∫
u=0

1

p(Au)
du ≥

min{Q(x),Q(y)}∫
u=0

du (1.12)

In (Mira and Tierney, 2002) (Tierney, 1998), based on equation (1.12), it can be

proved that Slice Sampling converge faster than IMHA, because Slice Sampling has less

total variation distance to converge to any distribution. Hence Slice Sampling method can

be applied to problems computable by IMHA.

1.3 Simulated Annealing

Another important algorithm used in our thesis is Simulated Annealing. Markov

Chain Monte Carlo is good at sampling from desired distributions. However, our applications

are more likely to search optimal solution for a particular question. Therefore Simulated

Annealing has also been employed in this thesis.

Simulated Annealing is a general strategy used for locating the global best solution

by given a desired distribution. It is usually used in the situation of a large searching space.

Instead of searching for the best solutions, Simulated Annealing generates approximate so-

lution which is close to the best solutions. In a large searching space, which could not be
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searched by brute force, Simulated Annealing could give solution depending on the running

time. Usually the longer running time given, the better solution will be generated.

An important idea in Simulated Annealing is the feature of “temperature”, τ . In

the beginning, temperature is usually set very high, while with time goes by, it slowly

decreases. This process comes from the idea of annealing in metallurgy. The atoms are

moving strenuously when temperature is high. And they keep steady, when temperature

gets low. We reduce temperature gradually in order to make it possible for the search

process to reach all areas of the search space and jump out of local optimal points. When

temperature is low, search process is not as active as in the beginning, which makes search

process to reach the peak of optima.

Simulated Annealing is easy to apply to any evaluable function. Say, we want to find

out the global minimal value of function h(x), and assume h(x) > 0. Intuitively, h(x) could

be any function. It is hard to search all possible x ∈ (−∞,∞). In Simulated Annealing, we

change h(x) into a new form:

P (x) =
1

Z
∗ exp−h(x) (1.13)

Z is a fixed value of function, and h(x) could be found out at any point x. For equation (1.13),

we know that P (x) is always between range (0, 1). To introduce the feature of Simulated

Annealing, a temperature variable can be used.We could rewrite equation (1.13) into new

form as below:

Pτ (x) =
1

Zτ
∗ exp−h(x)/τ (1.14)

Since equation (1.14) is in the form of distribution, MCMC methods is capable of finding

global optimal solution of target function h(x).

Simulated Annealing was first designed based on the Metropolis-Hastings method.

Then its idea has been applied to a lot of algorithms of MCMC as an advanced usage. Sim-

ulated Annealing works well with most algorithms of MCMC, for example, the Metropolis-
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Hastings, the Gibbs Sampling, and the Slice Sampling. There are two important ideas of

Simulated Annealing. First is its mapping strategy, which converts any normal function into

a distribution function by using the exponential function. Second is its feature of tempera-

ture. When the temperature is low, Simulated Annealing increase the difficulty of accepting

new states. So if we want to find minimal value of h(x), Simulated Annealing generates

1000 samples. Then the average value of the first hundred samples would be higher than

average value of the last hundred samples. The detailed process of Simulated Annealing will

be presented in later chapters for applications.
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CHAPTER 2

APPLICATION OF IMAGE TRANSMISSION

Progressive image compression, such as SPIHT (Said and Pearlman, 1996), is an

approach that exploits the inherent similarities across the sub-bands in a wavelet decompo-

sition of an image, and the algorithm codes the most important wavelet coefficients first, and

transmits the bits so that an increasingly refined copy of the original image can be obtained

progressively. The progressive compression is widely used in many applications, because the

media can be restored with the best quality by receiving a sequence of continuous error-free

data. However, in the coded data stream, any error bit due to channel noise would cause

the loss of synchronization between the sender and receiver, which means that all the data

after that bit error has to be completely discarded. Therefore, an important issue in image

transmission is to design a protection strategy for the source data, i.e., allocating channel

code rates to different data packets, based on the channel condition and the rate-distortion

feature of the source, in order to optimize the overall recovery quality of image in the noise

channel.

In (Sherwood and Zeger, 1997), the cyclic redundancy check codes and rate compat-

ible punctured codes (CRC/RCPC) were employed to protect SPHIT coded data and ob-

tained performance better than previous results in binary symmetric channels (BSCs). This

work used equal error protection and was then extended to the product code protection (Sher-

wood and Zeger, 1998) when the Gilbert-Elliot channel (GEC) model was considered. Since

then, many error-control solutions for progressive image transmission (Sherwood and Zeger,

1998; Mohr et al., 2000; Chande and Farvardin, 2000; B.A., 2002; Stankovic et al., 2003; Nos-

ratinia et al., 2003; Stankovic et al., 2004, 2005; Thomos et al., 2005) have been proposed.
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In these methods, different codes are used, including CRC/RCPC (Chande and Farvardin,

2000; Stankovic et al., 2003; Nosratinia et al., 2003), cyclic redundancy check codes and rate

compatible punctured turbo (CRC/RCPT) codes (B.A., 2002; Stankovic et al., 2004, 2005;

Thomos et al., 2005), Reed-Solomon (RS) codes (Mohr et al., 2000; Thomos et al., 2005)

and their product codes. Different channel conditions are also considered, including BSC,

GEC, and packet loss channels. In multimedia network, JPEG2000 lea12:fast can be used

to scale the performance, based on the data rate. Therefore, a research focus is to provide

optimal unequal error protection (UEP) to the coded data packets where bits coded early

represents greater significance in image reconstruction than bits coded later.

All existing optimal methods consider only the fixed channel condition. In practice,

however, the channel condition always change with the time, mainly due to the mobility and

multi-path factors in the communication. As a result, the designed UEP system has to be

updated with frequent feedback of the channel condition. This is impractical as the multi-

dimensional optimization process is often very complicated and the channel variation can be

fast. Therefore, a more realistic solution is to design the protection method considering all

the channel conditions. The channel variation, which is captured by the probability density

distribution (PDF) of SNR, can often been estimated from a long period of operation of the

communication network. Considering the channel PDF, the optimization problem is even

more complicated than the previous design because channel effects must also be marginalized.

In this paper, the simulation is calculating the image distortion of different allocation

of UEP system, since any error would cause distortion in image transmission in SPIHT. So

the target is to find out the optimal allocation to make system has lowest distortion in the

varying SNR channel. The MCMC technique is applied to optimal UEP system design. We

use the exponential function of simulated annealing method to map the cost function into

a probability distribution, and use the slice sampling of MCMC. Since the samples drawn

from MCMC approach the mapped stationary probability distribution, the MCMC method

provides more probabilistic information than other heuristic optimization method. We show
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that the MCMC method provides a low complexity design with a solution approaching the

optimal one. Finally, we show that the system design based on channel distribution indeed

outperforms the design based on a specific channel statistic such as the mean value.

2.1 Problem Description

With time goes by, the channel condition is always varying. Optimization of allocation

of message packets based on a specific SNR is not realistic, especially the channel is changing

dramatically. So it is advantageous to optimize the rate allocation based on the statistics of

channel on time period instead of a particular channel SNR. We consider a joint source-

channel coding system with N coded packets with fixed packet length as shown below,

. . . . . . 

Packet 1 Packet 2 Packet N

Parity bits

Figure 2.1. A message via channel contains N packets. Each packet could contain diferent
length of parity part and data part, but each packet has the same length of bits.

This data structure was provided by B. Banister in (B.A., 2002) and has been adjusted

for many applications. Rate compatible punctured turbo (RCPT) codes are used to provide

unequal error protection. Assuming the space of different channel code rates is in order, and

in form of,

C = {c1, c2, c3 . . . , cM}, c1 > c2 > · · · > cM

which represents the rate of the source data over the packet length. Since each packet has

the fixed length L ( In our work, we set coded packet size L = 4096 ), the corresponding

number of source bits for each code rate is si = ci · L. Therefore the number of the overall
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source bits is
N∑
i=1

ci · L

and the number of overall channel parity bits is

(1−
N∑
i=1

ci) · L

After being transmitted over a specific channel with SNR = x dB, the packet error proba-

bilities after decoding are denoted as E = {e1(x), e2(x), . . . , eM(x)}, where e1(x) > e2(x) >

· · · > eM(x) (Cao, 2007b).

In this paper, the Turbo code (15, 17)oct with mother code rate of 1/3 is considered.

A set of code rates of {4/4, 4/5, 4/6, 4/7, 4/8, 4/9, 4/10, 4/11, 4/12} are obtained through

puncturing (Rowitch and Milstein, 2000). The first bit of number represent the data (the

white part of each packet in Figure 2.1. The second bit of number represents the total

length of a packet. For example, 4/8 means half of the packet is data, and the other half is

protection code.

Figure 2.2 shows the residual packet error rate (PER) in different additive white

Gaussian noise (AWGN) channel conditions. It needs to be noted that the PER also depends

on the packet size and can be different if a different packet length is used. A larger data

length increases the coding gain in turbo decoding in general.

Suppose a message contains N coded packets being transmitted, each packet being

protected with channel code rate of ri ∈ C, i = 1, ..., N. N is determined by the total

transmission rate and the packet length. For channel x, the corresponding packet error rate

is pi(x) ∈ E , which is probability of error occur on ith packet. Denote Pi(x) as the probability

that the first i th packets are decoded without errors, howerver the (i + 1) th packet is not

correctly decoded. Then we have
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Figure 2.2. Turbo code performance for fixed coded packet length. Package error rate in
different AWGN channel SNR (Cao, 2007a).

Pi(x) =


p1(x) if i = 0

Πi
j=1(1− pj(x))pi+1(x) if i = 1, . . . , N − 1

ΠN
j=1(1− pj(x)) if i = N

(2.1)

Intuitively, any packets after error occurs is no longer considered, because SPIHT discard

all packets after any error.

Distortion between the recovered image and the original image is represented by the

mean square error (MSE). Apparently it is based on the correctly decoded source bit. Let

Di be the distortion of the image restored by the first i packets that have been correctly

decoded, and (i + 1) th packet is uncorrect. Then, the message has an allocation RN =
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{r1, r2, . . . , rN}, ri ∈ C, of channel code rates, the expected distortion is

DN(x,RN) =
N∑
i=0

Pi(x)Di (2.2)

This distortion in equation (2.2) has a recursive representation (Chande and Farvardin, 2000)

as:

DN(x,RN) = D0 − EN(x,RN)

EN(x,RN) = (1− p1)[∆D1 + EN−1(x,RN−1)] (2.3)

where D0 is the distortion of the case that no correct packet is received. ∆Di is the reduced

distortion between Di−1 and Di. Also RN−1 = {r2, . . . , rN} is the rate allocation for the last

N − 1 packets.

When the channel SNR is given, a dynamic programming method was suggested

in (Chande and Farvardin, 2000) for this distortion-based optimization problem. This

method is a backwards updating process. That is, the reduced distortion of a latter packet

should be used first to determine the optimal allocation. However, the reduced distortion

in a latter packet actually depends on the channel code rates in former packets, which is

evident in equation (2.3). Therefore, the forward-updating process along trellis is in fact

more practically used (B.A., 2002; Thomos et al., 2005) to reduce the complexity. However,

the solution becomes sub-optimal as indicated in (B.A., 2002).

For a varying channel, if the channel SNR density function fX(x) is known, then

the joint source-channel coding problem becomes to find a channel code rate set RN which

24



minimizes, subject to a given overall transmission rate,

DN(RN) =

∞∫
−∞

f(x)DN(x,RN)dx

=

∞∫
−∞

f(x)
N∑
i=0

Pi(x)Didx (2.4)

Apparently, this is different from finding the optimal rate-allocation for the mean

channel condition, because mean SNR is a fixed value, so equation (2.2) should be used,

DN(x̄,R) =
N∑
i=0

Pi(x̄)Di (2.5)

where x̄ is the mean channel SNR. The varying channel case is more complicated than con-

sidering only on the specific channel instance as the channel variable x must be marginalized

in the optimization process. In later section, we propose to solve this optimization problem

with the MCMC method.

2.2 Mapping Cost Function to Probability

The cost function has the channel code rate of each packet as input, and the distortion

value as output. if the image message is transported by N packets, there are N inputs ri.

Intuitively the allocation RN = {r1, . . . , rN}, should be considered in order to generate

output. The optimization task is to find allocations RN that gives the minimum distortion

value. The first issue in using MCMC is the need of mapping the cost function into a

likelihood function that could be used as the stationary probability distribution in the Markov

Chain. We use the function in the Simulated Annealing for this purpose, i.e,

1

Zτ
exp

{
−J(·)
τ(t)

}
(2.6)
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where Zτ is a normalization constant so that any possible value is always between (0, 1), and

J(·) is the cost function. Note the sum of all probability is 1.

If the current state x(t) is equal to i, suppose a neighbor j of i is visited with a

probability qij = qji. Then whether j will be selected as a new sample is given by the

probability of

min

{
1, exp

[
−J(j)− J(i)

τ(t)

]}
. (2.7)

i is current state x(t) = i and next state x(t+ 1) = j. Any value greater than one will be set

as one, since probability is always between (0, 1). This is termed as the Metropolis process

and it can be proved that with this process, the stationary probability of the Markov Chain

is (2.6). It can be noted that

1. If J(j)→∞, then exp{−[J(j)−J(i)]/τ(t)} → 0. In this case the accepting probability

for j is tending to 0. That is, a state j associated with a high cost has a low chance to

be accepted ( the higher the cost function J() is, the lower chance the system x(t+ 1)

accept new state j.

2. On the other hand that J(j) → 0 means the new cost is negligible. Then −[J(j) −

J(i)]/τ(t) could be positive, which implies the new state j is always selected due to its

lowest cost value

The parameter τ(t), termed as the temperature in the simulated annealing, also

needs to be considered carefully. To make the algorithm approach the optimal solution, the

temperature changes with the time. The temperature function is a non-increasing function,

which represents the cooling down process. τ(0) is usually set as a high value in the beginning

of simulation. This makes sure that with a high probability a new state will be accepted.

In this stage, system may reach more diverse and different states based on the probability

contribution. When τ(t) approaches 0, the probability becomes very small. The system is

reluctant to accept a new state j, which is often described as a “Frozen” stage. The process

of decreasing of temperature is usually slow to give system enough time to be ”trapped” in
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the low cost area. In our simulation, we reduce the temperature after each new sample is

generated.

In an ideal case, we hope τ(t) would reach 0 in the end of simulation, which means

totally frozen of the system. However in most case, it is almost impossible to achieve that,

because with the time t passing through, new acceptable state becomes harder and harder to

be found. That is why equation (2.8), uses limit and infinity time to represent the condition

that Simulated Annealing reach the optimal solution set.

lim
t→∞

P [x(t) ∈ S∗] = 1 (2.8)

S∗ is the optimal solution set. In any simulation, an adaptive temperature function τ(t) is

always a important factor of the time performance. In case of big initial τ(0), temperature

would take unnecessary extra time to reach 0; Also if τ(0) is too small, the system may still

stay in a local minimum,without a chance to jump out yet. In Hajek’s paper (Hajek, 1988)

in 1988, a popular temperature function is given like following:

τ(t) =
d

log(t)

The d here is a constant number which is considered as the measure of how difficult for state

x(t) to jump out from the current local minimum and travel to optimal state space S∗. In

the other words, simulation need a large enough d to make sure, simulation has enough time

to jump out local minimum and achieve the global optimal set.

2.3 MCMC Pseudocode for UEP protection in Image Transmission

The distortion function is the cost function in the simulation. The goal is to find the

lowest distortion based on the packets rate. We assume the channel SNR is in the range of

[0, 4]dB as shown in Figure 2.2. . The turbo code rate space is one of the 9 different numbers
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in the set of

C = {4/4, 4/5, 4/6, 4/7, 4/8, 4/9, 4/10, 4/11, 4/12}

Each number in the space represents the rate of data code and total code. RN is the input

of the cost function. It is a vector with N elements, each representing the code rate for each

packet, i.e., RN = {r1, r2, . . . , rN}, and ri ∈ C. Apparently, our simulation Markov Chain

has the invariant probability distribution like

J(RN) = DN(RN),

and then,

P [x(t) = RN ] =
1

Zτ
exp[−DN(RN)

τ(t)
]

where Zτ is a normalizing constant. Because the probability values are only compared in

the slice sampling, we can simply set Zt = 1. The method used is actually a combination of

simulated annealing and slice sampling. We use the probability representation of simulated

annealing and reduce the temperature with time, while use the slice sampling to access

new states and generate new samples. When τ → 0, the probability distribution πτ would

trapped in the optimal set. Note that in a multiple input problem, it is possible for different

inputs share same value of output, and the optimal solution is not necessarily unique.

The MCMC process is modified like below,

1. evaluate P [x(t) = RN ]

2. draw u ∼ Uniform(0, P [x(t) = R])

3. create neighbor space to enclosing every ri ∈ C,

(rlefti ≤ ri ≤ rrighti )
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4. loop {

5. draw new x(t+ 1) = R′N

6. evaluate P [x(t+ 1) = R′N ]

7. if P [x(t+ 1) = R′N ] ≥ u, break out loop

the next state x(t+ 1) = R′N is accepted

8. else modify the neighbor space

9. }

Since it is multiple input, Note that

Step 1: The state x(t) = i becomes x(t) = RN in the MCMC process. P [x(t) = RN ]

is a function for the initial input RN .

Step 3: for RN = {r1, r2, . . . , rN}, ri ∈ C, constructing a interval space for each

variable ri. That makes the neighbor space look like:

space = {(rleft1 , rright1 ), (rleft2 , rright2 ), . . . , (rleftN , rrightN )}

In the process, Current state x(t) = RN , and R′N is the next state x(t + 1). Also R′N =

{r′1, r′2, . . . , r′N}, r′i ∈ C is the next state corresponding to ri. In order to find x(t+2) = R′′N ,

which is the next state of R′N , R′N should be put in the step 1 and repeat the process.

Simulation keeps doing that to generate samples.

Our simulation uses parallel process to find the neighbor space, i.e, neighbors of all

ri,i = 1, . . . , N be updated before next state is drawn and checked. A concrete process of

step 3 is like this,

1. set a value for ”wide”, call wi

2. loop (r1 → rN){
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3. generate rand ∼ Uniform(0, 1)

4. rlefti = ri − rand ∗ wi

5. rrighti = ri + rand ∗ wi

6. check rlefti , rrighti ∈ C

7. while P [{r1, . . . , r
left
i , . . . , rN}] > u, then we have rlefti = rlefti − wi

8. while P [{r1, . . . , r
right
i , . . . , rN}] > u, then we have rright = rright + wi

9. check rlefti , rrighti ∈ C

10. }

The process is same as the one-dimensional case, except that a loop is needed here.

Because the neighbor space needs to be checked for each ri ∈ RN . In addition, different wi

may be used if necessary. For example, in some cases the input may have different range. A

common practice is to set wi as a certain percentage of the whole range.

Step 8: Let R′N = {r′1, . . . , r′N} be the new state, then the neighbor space is modified

as

1. loop (r1 → rN){

2. if r′i > ri, then rrighti = r′i

3. else rlefti = r′i

4. }

Since the code rate space is {4/4, 4/5, 4/6, . . . , 4/12}, which contains 9 possible values.

Instead of multiplying w, a random integer, rand ∼ Randn(0, w), could be applied as rrighti =

ri + rand in simulation.
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2.4 Simulation and Result

In this section, the MCMC method has been applied to design the UEP system for

progressive image transmission. The Lena image with size of 512× 512 and 8 bits per-pixel

(bpp) was passed through the SPHIT algorithm to obtain the source data. RCPT codes

are then used for channel protection, where a set of numbers is used to represent the set of

channel coding rates, as shown in Table (2.1). The distortion value is the MSE between the

reconstructed image and the original image.

rate 4/4 4/5 4/6 4/7 4/8 4/9 4/10 4/11 4/12
represent 1 2 3 4 5 6 7 8 9

Table 2.1. Rates corresponding to numbers. Number will be used in later chapter to represent
the rate of each input.

We first consider a case with a small number of packets, with the purpose to check

whether the MCMC method can perform as expected. Then we consider cases with more

number of packets and different channel probability distributions to study the performance

based on the MCMC method. We also compare the design results based on the channel

distribution and the mean value of the channel. Also note that each simulation trial generates

10000 samples in this paper.

2.4.1 Case of 10 packets

The channel distribution is uniformly distributed, i.e., fX(x) ∼ Uniform[0, 4] dB.

MCMC is used to generate the samples of RN based on the probability mapped from the

cost function. Different trials are conducted, i.e., the MCMC process are repeated to find

independent UEP designs. It was found that the MCMC almost always gives the optimal

RN . It closely approaches the optimal design even if the optimal result was not reached

occasionally.

With the simulation runs by, new minimum distortion value and related rate allo-
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cation RN would be found, the program is set to put these date into a table, called the

minimum table, such as Table (2.2). It shows the last eight minimal results for the case of

10 packets.

Input rate Distortion
9 8 6 6 6 4 3 3 2 1 243.77079
9 8 7 6 6 5 4 3 3 1 236.55292
9 9 9 7 7 5 5 3 2 1 234.74915
9 8 6 6 5 5 5 5 4 4 230.74674
9 9 9 6 5 5 5 4 3 3 225.47482
9 9 9 9 8 7 6 5 4 3 221.22013
9 9 9 8 8 7 6 5 5 3 221.20497
9 9 9 8 8 7 6 5 5 4 220.76209

Table 2.2. Table of Minimum: Uniform / 10 packets / SNR = [0, 4]dB

In this trial, the best solution given is RN = {9, 9, 9, 8, 8, 7, 6, 5, 5, 4} with the lowest

distortion value 220.76209 in the table.

To validate the results of MCMC, we exhaustively enumerate all possible RN for this

10 packets case. Brute force method has been used to compute all the 910 different rate

allocations and took significant amount of time with a PC(in this case, it is two weeks). By

using several computers, Table (2.4) may be generated in shorter time, but in most case it

could take weeks or months to calculate the table. A few least distortion values and the

number of corresponding allocations RN to achieve each of these values are listed in Table

(2.4).

Here is the partial table of brute force result:

Distortion 220.7 220.8 220.9 221.0 221.1
Frequency 1 2 5 9 13

Distortion 221.2 221.3 221.4 221.5 221.6
Frequency 27 34 40 68 103

Table 2.3. Frequency from brute force: Uniform / 10 packets

The frequency of distortion occurs by different input, RN is shown. For example,

distortion 221.5 has a frequency value of 68, in other words there are 68 different input, RN ,
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result in distortion value of 221.5. Apparently, the global minimum is 220.7 here. Compared

with the Table (2.2), it is clear RN = {9, 9, 9, 8, 8, 7, 6, 5, 5, 4} actually achieved the global

minimum of all possible rate allocation, which means it is the optimal solution.

Also by further testing, in the case of 10 packets, 8 out of 10 times, the MCMC

simulation could achieve the best solution, with no matter what distribution fX(x) of the

channel SNR is. And in the rest cases, MCMC gives results very close to the optimal solution.

An important issue here is if the MCMC simulation really draws samples from the

target distribution plot. In order to prove this, we sample 10,000 samples by Slice Sampling,

and plot the histogram together with the results obtained from brute force search. The

results are shown in Figure 2.3.
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Figure 2.3. MCMC vs Enumeration: Uniform / 10 packets / SNR = [0, 4]dB and fixed
τ = 1000. The histograms of all possible distortion based on both MCMC and enumeration
are collected.

In this simulation, the temperature τ(t) was set as a large constant value (i.e., 1000

in simulation) and was not decreased after each sample generated, which means that the

simulation become a normal slice sampling method. To make the shape clear in a large

x-axis scale, an average function was also used. That is, every x axis and y axis value on this

figure are the average of the a few neighbors and itself, i.e, xnewi = (xi−4 +xi−3 + · · ·+xi+4)/9
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(In our case, it is 8 neightbors. To make shape more smooth, more neightbors should be

chosen). However result of bruce force has much more samplers than our simulation, which

means brute force has much higher y axis value than our simulation. So we have to normalize

the y axis to make they could be shown on same figure by dividing each distortion point by

the number of samplers for both methods. According to Figure 2.3, the results of MCMC

and brute force method have very similar shape, which verifies that MCMC indeed generates

samples according to the mapped distribution. This property illustrates that the MCMC

have visited all regions of the parameter space based on the their contribution to the mapped

probability.
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Figure 2.4. Simulation result with reducing temperature, Uniform distribution, 10 packets.
The probability is the histogram of different distortion value divided by number of samples.

Figure (2.4) is pdf of Slice Sampling with using the mapping and temperature function

of Simulated Annealing. After each new sample is generated, program reduces temperature

by 0.1 starting from 1000. Figure (2.4) is very different form Figure (2.3). The samples

are squeezed on the left side. Since the temperature is decreasing with time passes by, the

samples with small distortion values have higher probability to be picked up in order to

find global optimal value. Hence, the histogram is attracted to the left side of x axis so as
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to escape from local best set to optimal set. Also on the figure, we can see the minimal

distortion in this trial is aroud 220.

2.4.2 Case of 32 packets

In 32 package case, the method work well also, except the time performance. The

complexity of computation is greatly increased in this case, because of a lot more calculation

needed for neighbor space checking of each ri ∈ R. In the case of 32 packets, Uniform

distribution fX(x) is also assumed.

Input rate Distortion
99999988888877765555444444332211 49.71207
99999988888877766655554444332211 49.43509
99888888887777766655555544333321 48.06369
99999998888887777666555554443331 46.64615
99998888888877777666665554444431 46.55235
99988877777776666666555444444333 46.49173
99999998888887777666665555544443 45.31980
99999988877766666655555555554443 45.28976
99999988888877776666655555554444 45.19252
99999988888877776665555555554443 45.19155

Table 2.4. Table of Minimum: Uniform / 32 packets / SNR = [0, 4]dB

This trial runs for couple minutes in simulation. However the brute force may take

billion years to do the exactly same thing, since there are 932 different possible R exist. And

unfortunately, it is still not the worst case, since a huge message can be easily divided into

64, 128, 256 or even more packets. So we are not able to calculate a table such as Table

(2.2) to put frequency.

One idea can be drawn so far, by looking at the minimum table (2.1) and (2.4) is

that each rateri ∈ R is not equally important. It has been proved by hundreds trials so far

and is easy to be figure out. Due to the fact that an early package lost will cause discard of

packets starting from the error occurs, the packet loss in the beginning is very critical to the

whole performance. These first couple packets should be considered more important than

the last several packets and are deserved higher protection level. Also related this aspect to
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the result in the trials of Table (2.1) and (2.4), the best results found are like following:

9 9 9 9 8 7 6 5 5 4 (10 bits);

9 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 7 7 6 6 5 5 5 5 5 5 4 4 4 3 (32 bits);

Obviously, these result all start with a sequence of “9”, which is 4/12, the highest rate

between protection code and data code, and representing the highest error protection.

2.4.3 Compare with mean value design SNR channel

In this section, simulation based on varying SNR and Mean SNR are compared,

results are showed in the Table 2.5, 2.6, 2.7, and 2.8. Three different probability density

functions are assumed, which are N(2, 0.5), N(2, 1) and Uniform distribution. In order to

compare varying SNR channel and mean value SNR channel, considering varying SNR =

[0, 4]dB, 2dB is assigned to mean SNR channel. In the mean SNR case, the optimal solution

Rmean is generated by MCMC simulation. Then Rmean is put back into the SNR = [0, 4]dB

condition to find out the MSE and PSNR, since the channel of varying SNR condition is

more likely to channel of real world than the channel of mean SNR condition.

Table 2.5. Performance based on different bpp on range of SNR = [0, 4]dB ∼ N(2, 0.5)

Packets
num-
ber

Optimal solution Overall
bpp

Source
code
bpp

Protect
code
bpp

10 9876555544 0.1563 0.0732 0.0831
16 9998877655 555444 0.25 0.1123 0.1377
32 9(6) 8(6) 7(4) 6(3) 5(9) 4(3) 3(1) 0.50 0.2187 0.2813
48 9(10) 8(7) 7(9) 6(5) 5(10) 4(6) 3(1) 0.75 0.3249 0.4251
64 9(21) 8(10) 7(5) 6(11) 5(10) 4(6) 3(1) 1.00 0.4159 0.5841

Table 2.5 shows the source code bpp and protection code bpp under condition of

different overall bpp. The table also contain the optimal result generated by MCMC.

Table 2.6, 2.7, 2.8 shows the comparison between varying channel and mean SNR

channel. In each table, the 2nd and 3rd columns are the varying SNR channel and last

two columns are mean SNR channel. Apparently, simulation proved that MCMC based on
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Table 2.6. Performance based on channel of SNR = [0, 4]dB ∼ N(2, 0.5) and channel of
Mean SNR = 2dB

Packets
number

MSE
[0, 4]dB

PSNR
[0, 4]dB

MSE
[2]dB

PSNR
[2]dB

10 104.07093 27.9575 160.6278 26.0726
16 73.98707 29.4392 88.4346 28.6646
32 45.19155 31.5802 48.3620 31.2858
48 35.13393 32.6735 37.6239 32.3762
64 29.95420 33.3662 30.9719 33.2211

Table 2.7. Performance based on channel of SNR = [0, 4]dB ∼ N(2, 1) and channel of Mean
SNR = 2dB

Packets
number

MSE
[0, 4]dB

PSNR
[0, 4]dB

MSE
[2]dB

PSNR
[2]dB

10 135.9264 26.7978 234.1765 24.4354
16 105.3338 27.9051 136.1534 26.7905
32 76.27627 29.3069 82.2316 28.9804
48 66.13733 29.9263 71.5604 29.5841
64 61.02982 30.2754 62.7087 30.1575

varying SNR = [0, 4]dB channel can always obtain better PSNR and lower MSE than mean

value SNR channel.

The cost performance can be calculated and has been put in the Table (2.9). For

any ri ∈ R, the space of ri is {4/4, 4/5, . . . , 4/12}, there are 9 possible numbers are as-

sumed. Apparently for R = {r1, r2, . . . , rN}, there are 9N different R, since each ri has

9 possible value. By counting the time of calculation of MCMC and compared with the

number of possible inputs based on each bpp, cost performance table could be generated like

Table 2.8. Performance based on channel of SNR = [0, 4]dB ∼ Uniform and channel of
Mean SNR = 2dB

Packets
number

MSE
[0, 4]dB

PSNR
[0, 4]dB

MSE
[2]dB

PSNR
[2]dB

10 220.76209 24.6916 515.7425 21.0065
16 191.32468 25.3131 255.8785 24.0505
32 163.88001 25.9855 176.9067 25.6534
48 154.31311 26.2468 164.3646 25.9727
64 149.55694 26.3827 151.9254 26.3145
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Table 2.9. Cost based on different bpp with N(2, 1) and SNR = [0, 4]dB

bpp 0.1563 0.25 0.50 0.75 1.00
packet
num

10 16 32 48 64

possible
input

910 916 932 948 964

cost 1.01e-005 8.07e-12 5.68e-27 3.24e-42 2.34e-57

Table2.9. Compared with the exponential increasing of the number of possible input, the

cost dramatically decreasing, because the calculation time of MCMC increase linearly.
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Figure 2.5. PSNR of optimal R: 32 packets / SNR = [0, 4]dB

Figure 2.5 shows the performance of optimal R generated by MCMC method based

on different channel conditions. Optimal solution R usually has the greatest average PSNR

or lowest MSE in order to make it the best solution. In the figure 2.5, Rmean results has

lower PSNR than others in range 0 to 1.75 approximately, but in range 1.75 it has better

PSNR. However what we looking for is the average PSNR, in the case N(2, 0.5) and uniform

distribution, the area of PSNR are bigger than Mean channel. So we say optimal R based

on a real distribution density function has better performance than Mean SNR channel.
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CHAPTER 3

APPLICATION OF LOCATION PLANNING IN INTERMODAL TRANSPORTATION

In this chapter, we consider the planning of terminal locations for intermodal trans-

portation systems. With a given number of potential locations, we aim to find the most

appropriate number of those as terminals to provide the economically most efficient op-

eration when multiple service pairs are needed simultaneously. The problem also has an

inherent task to determine the optimal route paths for each service pair. For this NP-hard

problem, we present a Markov Chain Monte Carlo (MCMC)-based two-layer method to find

a suboptimal solution. In the lower-layer, the routing for all service pairs given a particu-

lar location planning is solved through a table-based heuristic method that considers both

efficiency and fairness. In the upper-layer, by mapping the cost function into a stationary

distribution, the optimal planning is solved based on a MCMC method that integrates ad-

vantages of both simulated annealing and slice sampling. Finally, the effectiveness of this

Heuristic MCMC-based method is demonstrated through computer experiments.

3.1 Introduction

In 2010, the US President announced that the US Federal Government will achieve

a reduction of emission of greenhouse gas (GHG) pollution by 28% by year 2020. As the

largest consumer of US, Federal government spent at least 24.5 billion on energy and gasoline

in year 2008. If the goal achieved, as stated in (Office, 2010) the federal government could

reduce about 205 million barrels of oil, which also means taking at least 17 million cars off

road for one year. . According to (UIRR, 2009), (UNECE, 2009), the transportation system

plays a key role of polluting environment and is responsible for 30% of the total greenhouse

gas emission. Intermodal transportation is considered as one key part of the solution for this
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problem. With reduced delay, congestion and operational cost compared to conventional

transportation systems, intermodal transportation can significantly improve economic com-

petitiveness, as well as help to sustain a more amiable environment by significantly reducing

the total CO2 emissions.

Considering the interconnection of the road mode and other modes such as railway

transportation via terminals so that the road mode focuses more on many low-flow localized

services and the railway mode acts as the major backbone for high capacity and large range

services, one specific problem is to decide on the number of terminals and their locations

given a set of potential terminals and to determine the route paths of difference services.

The current research in this area has considered different intermodal representation

models, such as (Macharis and Bontekoning, 2004; Meinert et al., 1998; Ishfaq and Sox,

2011), and different heuristic optimization methods, such as (Bornstein and Azlan, 1998;

Jaramillo et al., 2002; Filho and Galvao, 1998; Sorensen et al., 2012). In (Macharis and

Bontekoning, 2004), an overview of the most prominent research efforts within operational

research in the intermodal transportation has been provided. Compared with simulation-

based techniques in (Meinert et al., 1998), using network models becomes more popular

in research. In (Ishfaq and Sox, 2011) an overview is provided on several network models

based on which the optimization process is then carried out. As proven in (Sorensen et al.,

2012), this location planning problem is an NP-hard problem and hence the deterministic

methods are impractical when the size of the network grows. As a result, when the number

of nodes increases, an optimization method based on the heuristic search has to be applied,

such as using simulated annealing in (Bornstein and Azlan, 1998), genetic algorithms (GA)

in (Jaramillo et al., 2002), Tabu search in (Filho and Galvao, 1998) and greedy randomized

adaptive search procedure and attribute-based hill climber in (Sorensen et al., 2012).

In this chapter, based on the terminal location modal proposed by Arnold (Arnold P,

2001), we present a new method using Markov Chain Monte Carlo (MCMC). MCMC is a

Bayesian inference method that is commonly used in numerical generation of complex prob-
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ability distributions with a high dimensional variable space. MCMC has also been widely

applied to optimal system design problems such as (Shahrzad Faghih-Roohi and Ng, 2014;

Xiaobin Wu and Goggans, 2012; Polasek, 2014). In MCMC-based optimization, the basic

concept is to construct a Markov Chain with an equilibrium distribution that is appropriately

mapped from the cost function of the problem to be solved. Therefore, samples generated

based on this distribution represent different solutions of the original problem. It is known

that heuristic methods have been well used for complex optimization problems to find sub-

optimal solutions. For example, In (Marichelvam and Prabaharan, 2015; Mousavipour and

Hojjati, 2014; Manimaran and Selladurai, 2014) the Particle Swarm Optimization (PSO)

algorithms have been used to solve various practical problems including industrial schedul-

ing, vehicle routing and supply chain related problems. In (D.K. Jana and Roy, 2013),

GA was used to solve a fuzzy rough expected value multi-objective decision making model

concerning a production inventory problem. In (J. Rezaeian and Arab, 2015), Multinode

resource-constrained project scheduling problem (MRCPSP) is targeted with a GA-based

meta-heuristic method. It can be observed that a common process in these methods is gen-

erating possible decisions and examining whether these decisions are appropriate. Similar

to these heuristic methods, a MCMC method also generates samples that correspond to

different solutions. However, the advantage of a MCMC-based method is that the sample

(i.e. decision) generation and acceptance are based on the equilibrium probability distribu-

tion. Therefore, it has a better guidance for samples to evolve out of local optima such as

in (Xiaobin Wu and Goggans, 2012). In this chapter, we design a two-layer MCMC-based

method for the terminal location planning problem. We will show the effectiveness of the

proposed MCMC-based method as compared to the Brute-force search in cases with man-

ageable scales. We will also demonstrate that the method indeed provides a better solution

as compared to an existing state-of-the-art method for the same problem (Sorensen et al.,

2012) in the case of large random networks.

The rest of chapter is organized as follows. In section II, the intermodal network
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model and the problem formulation are described. In section III, the MCMC-based method

is addressed. It consists of two layers of algorithms, where the lower-layer is a table-based

heuristic routing method and the upper-layer is a MCMC-based location planning method.

Section IV provides the simulation results for the performance evaluation and comparison.

Finally, section V concludes the chapter.

3.2 Problem Description

We consider an intermodal transportation system consisting of two types of nodes,

i.e., service nodes in “circle” and terminal nodes in “square”, as shown in Fig. 3.1. For

simplicity, they can be perceived as road and railway transportation modes, respectively. In

such a system, services are offered between a certain number of origin-destination locations,

such as represented by service nodes 1 to 9. In general, the direct delivery service using

a specific carrier is very expensive and the number of direct deliveries is often limited. In

order to improve the economic competitiveness, low-volume demands can be moved to a

consolidation terminal, such as represented by nodes A,B,C, via the road mode. In these

terminals, a large number of low-volume freight will be consolidated into high-volume flows

that will be routed to other terminals through high-frequency, high-capacity services that

could be operated in the railway mode. A large number of lower frequency services, often

operated with smaller vehicles, are used between the terminals and the origin/destination

nodes. Without the loss of generality, we also allow the customized direct service using paths

between an origin node and a destination node that does not go through any consolidation

terminals. Allowing these uni-modal services makes the terminal location planning problem

different from the body of research in the hub location planning in (Crainic et al., 1989) where

any transportation strictly follows “hub-and-spoke” organization and must go through hub

terminals.

Since the terminal operation and the initial and final drayage move between the

terminals and service nodes contribute significantly to the operational and transportation

42



Main route

1

2
A

B

C

3

4 5

6

7

89

Local route

Figure 3.1. Intermodal transportation network with consolidation terminals.

cost, terminal location planning is critical for the success of an intermodal transportation

system. The objective of the intermodal terminal location planning is to determine which

terminals from a set of potential terminal locations will be used, and how to route the

supply and demand of a set of customers through the network, via both uni- and intermodal

transportation, so as to minimize the total cost.

To illustrate the research problem, we adopt the basic model proposed in (Arnold

et al., 2004) and describe the transportation with a graph network. Let I be the set of

all origin-destination service pairs and K the set of all potential terminal locations in the

network. Each origin-destination pair (i, j) has associated with it a positive and fixed amount

qij of goods that need to be transported (clearly qii = 0). The variable xij represents the

portion of the demand qij transported uni-modally, whereas the set of variables xgkij relate

to the portion of the demand qij transported inter-modally using terminals g, k ∈ K. Let

cgkij be the unit cost of transporting demand between i and j through terminals g and k and

cij be the unit cost of transporting demand directly from i to j without any intermediate

intermodal operations. cgkij is generally much less than cij due to = the high cost of direct

transportation. For each potential terminal location k ∈ K, it has been associated with a

positive and fixed capacity Ck, a fixed cost Fk proportional to the capacity, and a decision

variable yk which is “1” when terminal k is open (i.e., selected in the planning) and “0”

otherwise. Then the overall cost function is given as
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J =
∑

i,j:(i,j)∈I

∑
g,k∈K

cgkij x
gk
ij +

∑
i,j:(i,j)∈I

cijxij +
∑
k∈K

Fkyk. (3.1)

There are three parts in equation (3.1). The first part is the cost from the path

through intermediate terminals; the second part represents the direct transportation cost

between two service nodes; and the third part is the operational cost for the open terminals

including the cost of the construction, equipment and manpower. In equation (3.1), we

can notice that the path through exactly two intermediate terminals is the only choice for

intermodal transportation. In practice, terminal transportation can occur through multiple

terminals. However, given a specific transportation network, the cost along the multiple

terminals can always be summed as the cost between the initial and ending terminals.

This objective function represents the total transportation cost associated with all

transportation flows within the network. Therefore, the terminal planning problem becomes

to find the decision variables yk, xij and xgkij that minimize the function of J , subject to the

following constraints:

xgkij ≤ qijyg, ∀g, k ∈ K,∀(i, j) ∈ I (3.2)

xgkij ≤ qijyk, ∀g, k ∈ K,∀(i, j) ∈ I (3.3)∑
g,k∈K

xgkij + xij = qij , ∀(i, j) ∈ I (3.4)

∑
i,j:(i,j)∈I

∑
g∈K

xgkij +
∑

i,j:(i,j)∈I

∑
g∈K

xkgij ≤ Ck, ∀k ∈ K (3.5)

xi,j ≥ 0, xgkij ≥ 0, xkkij = 0, ∀(i, j) ∈ I, ∀g, k ∈ K (3.6)

yk ∈ {0, 1} ∀k ∈ K (3.7)

Constraints (3.2.2) and (3.2.3) ensure that one flow can only go through those opened

terminals. Constraint (3.2.4) shows that the sum of flows transported from intermodal
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and unimodal network must be equal to the overall demand associated with each origin-

destination pair. Constraint (3.2.5) means that the overall flow going through a terminal

cannot exceed the capacity of the terminal. Constraint (3.2.6) ensures that the amount of

flow is non-negative and one flow cannot go through one terminal only. Constraint (3.2.7)

means that one terminal is either selected (open) or not selected (closed).

Note that the above formulation also involves an underlying operation that simulta-

neously determines the optimal route paths for each service pair (i, j), given a set of selected

terminal locations. That is, xgkij and xij are in fact related to the route paths associated with

yk and other variables including qij, Fk, Ck, for k ∈ K. Therefore, two issues are involved in

this problem:

• For a particular terminal planning, i.e., the open/close status of potential terminals,

determine the optimal route paths for all service pairs simultaneously.

• Determine the set of the most appropriate terminals that minimizes the overall cost

function.

These two issues are related to each other. Opening more terminals may provide more

options to choose route paths, but causes additional infrastructure and operational cost for

the terminals. The first issue appears similar to a routing problem such as finding the shortest

path between a particular source and destination pair. However, when multiple service pairs

exist simultaneously, finding the shortest path for one service pair could prevent some other

service pairs from using certain paths and hence lead to high cost for these service pairs.

In addition, when the number of terminals and service pairs grows, greedy algorithms, such

as (Thomas H. Cormen and Stein, 1990), become less and less efficient. Let b = |K| be the

number of potential terminals. There are 2b different possible planning. As b increases, it

is computational demanding to enumerate all the possible terminal planning cases and for

each case to find the best route paths for all service pairs. To solve this complex problem,

we design a heuristic MCMC-based method.
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3.3 MCMC-based suboptimization methodology

MCMC (Gregory, 2005) is a method for sampling from probability distributions.

It uses the “detailed balance” mechanism to construct a Markov chain that has a desired

equilibrium distribution. After a short “burn-in” stage, the states of the Markov chain will

represent the samples from the desired distribution. One merit of this method is that the

samples visit all regions in the parameter space based on their contribution to the equilibrium

distribution, rather than sticking with a specific attraction region.

To apply MCMC to the location planning problem, we first need to map the cost

function into a probability function. This is represented as

PS(D|Ω) =
1

ZS
exp

[
−J(D|Ω)

S

]
(3.8)

where S is a scaler used to adjust the shape of the probability function. ZS is the nor-

malization constant to ensure that the function is a probability distribution. J(D|Ω) is the

cost function calculated with equation (1) for one set of decision variables D, given sys-

tem setup parameters Ω. D includes a binary bit sequence y = {yk, k ∈ K} indicating

whether one potential terminal is open or closed, and the best route paths, i.e., xgkij and

xij, (i, j) ∈ I, g, k ∈ K, for all service pairs. Ω is the set of known network parameters

including the capacity and operation expense of each potential terminal, and the distance

and unit cost of each path. Clearly a small system cost gives a large probability value in

this inference/optimization problem.

The purpose is to find a specific decision set D that maximizes PS(D|Ω). The ability

of MCMC to generate samples conforming with a well defined probability density function

can be applied to solve the optimization problem by finding the chain state giving the highest

probability value. We solve this problem by design a two-layer algorithm. The first is to

find xij, x
gk
ij , (i, j) ∈ I, g, k ∈ K given y, i.e., finding the route paths for all services pairs

simultaneously, given a particular terminal location planning. The second is to find the
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optimal terminal location planning y that maximizes P (D|Ω).

3.3.1 Lower-layer: Table-based Heuristic Routing Method

This method is designed to find the shipping paths xij, x
gk
ij , given a specific location

planning {yk, k ∈ K}. For each service pair (i, j), we first construct a routing information

table Mij, and then based on all these tables we find the final routing result for each service

pair and store the information in a table Rij

3.3.1.1 Routing Information Table Mij and Final Routing Table Rij

We assume that for each service pair {i, j}, any indirect path only uses two terminals,

one connected to i (denoted as T1) and the other connected to j (denoted as T2). Given total

|I| service pairs, the routing information for each service pair {i, j} is created individually

and stored in a table Mij with the structure shown in Table 3.1.

Table 3.1. Data structure of Table Mij for service pair {i, j}.
i T1 T2 j Unit Cost Path Capacity Prediction factor

Each row of this table represents a possible path between {i, j}. If the values of T1

and T2 are “0”s, it represents the direct path. For a terminal planning with b open terminals,

there are
(
b
2

)
= b(b− 1)/2 possible indirect paths. These b(b− 1)/2 + 1 rows are listed in the

ascending order based on the “Unit Cost” which denotes the cost to transport one unit of

load along this path. The “Path Capacity” shows the maximum load that can be transported

through this path. For an indirect path, this is upper-bounded by the minimum capacity

value of the starting and the ending terminals.

One Mij is created independently without the knowledge of other service pairs. When

these service pairs coexist, simultaneously routing is needed. The final route paths for each

service pair (i, j) are stored in a table Rij, with the same structure information as in Mij

except that the “Path Capacity” now shows the amount of load that will be transported

through that path for service pair (i, j). Apparently, finding Rij should consider Mij of all
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service pairs. The method to obtain Rij is as follows.

3.3.1.2 Route-Assignment Method with a Prediction Factor

Assume there are |I| number of service pairs. Some of which may compete for the

use of certain terminals. A natural question is which service pair has the priority to use a

particular path. The key issue in the routing design is that we need to avoid the situation

that one service pair occupies most capacity of one terminal that is also demanded by other

service pairs. To handle this problem, we propose to make use of a prediction factor Pred(ij)

that is defined as the inverse of the ratio of unit cost of the current path (row) and the

next path (row) for service pair (i, j) in Mij. For example, after sorting the Mij table by

the “Unit Cost” in ascending order, i.e., the path with the lowest “Unit Cost” is in the first

row and the cost is denoted as c1st
ij while the second lowest is c2nd

ij , then Pred(ij) = c2nd
ij /c1st

ij

for the first row. This factor captures the information that if we have missed assigning the

current path best for service (i, j), how much difference in scaling it would be if the service

has to use the next best path for transportation. As the path assigning procedure continues,

this prediction factor for each service pair also varies as different paths will be considered.

The heuristic routing method is as follows. For each service pair (i, j), starting from

the top row of Mij, the process proceeds by continuously assigning a path and the number of

unit loads transported through that path to a specific service pair. For a particular service

pair (i, j), the probability of being chosen for the current path is determined by
Pred(i,j)∑
Pred(i,j)

.

The denominator is the sum of the prediction factors of all the service pairs that may also

use the same path for transportation. To further improve the fairness, the number of units

of load in one assignment for a particular path may be up-bounded. For example, in one

assignment, the selected service (i, j) can only use the minimum value of its remaining service

demands and one-tenth of the maximum capacity of the current path. Intuitively, services

with more urgency to use a particular path are likely to be assigned with more portion of

that path. Once one assignment is completed for service (i, j), the routing information, such

as the path index m and the number of loads, will be stored in Rij in a row. In the meantime,
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the path information will be updated for all Mij. That is, the capacity of path m in all Mij

should be reduced accordingly. A row with a path capacity reduced to zero is referred to

as an empty row, meaning that the path is no longer available. Routing process for each

service pair (i, j) ends when the sum of loads along different paths in Rij equals qij.

Using the prediction variable helps to solve the route competition problem. If a

service pair with a high prediction factor has no conflict with other service, it can occupy

the path alone. If one path is need by multiple service pairs, every service pair has a chance

to use this path due to the probabilistic selection and the granularity in path assignment.

The pseudo-code for one-pass of route assignment and table-update is given in Algorithm 1.

Algorithm 1 Lower-layer: Heuristic Routing design
Input:
b (the number of total potential terminals)
I (the set of the total service pairs)
C (the set of terminal capacity)
Output: Rij for each (i, j, qij) in I
While (i, j, qij) ∈ I do
Generate table Mij (with ordered rows);
Calculate prediction value Pred(i,j) ;
end
While not all (i, j, qij) are routed do
1. Find the first non empty row m of Mij ;
2. Obtain Pred(i,j) from Mij;
3. Select (i, j, qij) ∈ I with probability Pred(i,j)/

∑
Pred(i,j);

4. Calculate current ship load = Min(0.1 ∗ Cmax
m , qij);

5. Record m, current ship load in Rij;
6. Reduce qij by current ship load;
7. Update path capacity in all Mij ;
end

qij in (i, j, qij) is the quantity of load needs to be shipped between (i, j). The first

“while” loop is to generate Mij that stores all routing information and path costs between

terminal (i, j). For a path with intermediate terminals, such as i→ g → k → j, “Unit Cost”
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is calculated as

cgkij = cig + cgk + ckj

= Dist(i, g)Z1 +Dist(g, k)Z2 +Dist(k, j)Z1 (3.9)

where Z1, Z2 are values in “cost per unit load per mile” for each mode of transportation.

Due to the nature of intermodal transportation, cgkij is much smaller than the unit cost cij

used in a direct transportation that is calculated as Dist(i, j)Z1.

The second loop in Algorithm 1 is to find the route paths for all services simultane-

ously. Once a single assignment is completed, the algorithm iterates for next service pair.

In each assignment, it always starts from the first non-empty row in a Mij table. For the

fairness of using particular path, one service should not occupy all the transportation ca-

pacity of a path that might be important to other services too. In step 3 of Algorithm 1 we

set the upper limit for each route assignment as one-tenth of the path’s maximum capacity.

The actual load assignment is Min(qij, 0.1C
max
m ), m is the current best path of (i, j). This

upper limit can be set by the user, while noting that the smaller the limit is, the more time

the process needs. In step 6, after one path and load assignment, the available capacity of

intermediate terminals needs to be updated. This is critical because any terminal that runs

out of capacity will be no longer used. As a result, some paths in Mij associated with this

terminal will no longer be valid and need to be eliminated. When updating all Mij tables in

step 7, these rows are considered as empty.

3.3.2 Upper-layer: MCMC-based Optimal Planning

Given the service and network parameters Ω and the terminal open/close status

y ∈ D, we can find the routing information and then calculate the cost function J(D|Ω)

in the lower-layer. The problem remains to find the best y that gives the minimum overall

cost. Assume that there are total b = |K| possible terminals. Therefore, there are a total of

2b possible ways of planning. Exhaustive search is possible only for a very small number of
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terminals. When b increases, heuristic methods must be used. In this work, this problem is

solved in the upper-layer with MCMC.

3.3.2.1 Simulated Annealing

Equation (3.8) shows the mapping from the cost to a probability distribution. Let y1

be the current location planning, i.e., the open/close status of the b terminals. Let J(y1|Ω)

be the total cost based on this location planning and the routing from Algorithm 1. Suppose

that y2 is a new b-bit-sequence (i.e., a new location planning) generated randomly. Then,

PS(y2|Ω)

PS(y1|Ω)
= exp

[
−J(y2|Ω)− J(y1|Ω)

S

]
. (3.10)

Whether this vector y2 will be selected as a new sample of the stationary probability of

MCMC is determined by the probability

Min

{
1, exp

[
−J(y2|Ω)− J(y1|Ω)

S

]}
. (3.11)

This process is termed as the Metropolis process in (Metropolis et al., 1953) in MCMC. It is

well known that with this process, the samples of the Markov Chain follow the distribution

function of equation (3.8). With the mapping between the distribution function and the cost

function, we can also find that

1. If J(y2|Ω) → ∞, then equation (3.10) goes to 0. In such a case, the acceptable

probability for y2 tends to be 0, which means that y2 has a low chance to be accepted

as a new sample in MCMC.

2. On the other hand, that J(y2|Ω) → 0 means that the cost of y2 is negligible. Since

exp[J(D1|Ω)
S

] is always larger than 1, y2 will always be selected.

To apply this MCMC to heuristic optimization problems, the scaler S can often be

modeled as a function of time τ(t) to speed up the optimization convergence, and this process
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is termed as simulated annealing in (Bertsimas and Tsitsiklis, 1993). Hence, equation (3.11)

becomes

Min

{
1, exp

[
−J(y2, t|Ω)− J(y1, t|Ω)

τ(t)

]}
. (3.12)

The use of parameter τ(t) came from physics mimicking the behavior of atoms that

move more rapidly when the temperature is high, and slowly when the temperature is low.

This strategy is designed to let a state easily jump out of a local optimum when the tempera-

ture is high, but focus on the neighborhood of the found optimal point when the temperature

is low. The temperature function is a non-increasing function, which represents a cooling-

down process. τ(0) is usually set as a high value in the beginning of simulation to make

sure that a new state has high probability to be accepted. In this stage, system may reach

more diverse states based on the probability contribution. When τ(t) approaches 0, the

probability becomes very small and the system is reluctant to accept a new state j, which is

often described as a “Frozen” stage. The speed of decreasing of temperature is usually slow

to give the system enough time to be “trapped” in the low cost area. In our simulation, we

reduce the temperature after each new sample is accepted.

3.3.2.2 Slice Sampling

Simulated annealing in equation (3.12) determines whether to accept a new sample

but does not concern how to generate the new samples used for the acceptance test. In this

work, we integrate simulated annealing with slice sampling. Slice sampling is based on the

idea that to sample a random variable from a distribution, one can sample uniformly from

the region under the graph of its density function (Kirkpatrick et al., 1983). Process of slice

sampling with one variable is shown in Fig. 3.2 and described as follows.

1. evaluate P [x(t) = i]

2. draw a vertical coordinate,

u ∼ Uniform(0, P [x(t) = i])
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3. create a neighbor space enclosing current state i,

i ∈ (Ileft, Iright)

4. start loop {

5. draw j from neighbor space, j ∈ (Ileft, Iright)

6. evaluate P [x(t+ 1) = j]

7. if P [x(t+ 1) = j] ≥ u, break out loop,

the next state x(t+ 1) = j accepted

8. else modify the neighbor space and repeat loop

9. end loop }

P [x(t) = i] is the probability function. x(t) = i represents that at time t, the state of system

is i. The time is indexed as t = {1, 2, 3, . . . }.

Figure 3.2. Slice sampling process. [L,R] is the neighbor space enclosing current state i.
Left end of the interval P (L) is evaluated and is known to be greater than u, so a step to
the left of size w is made, which make left end to L′. Check P (L′), found P (L′) is smaller
than u, so stop and step out. Also at the right end of the interval P (R) is evaluated and is
smaller than u, so no stepping out should be done. When the above process it done, P of
both ends should be smaller than u. Since the neighbor space is decided as [L′, R], then the
next state candidate will be picked randomly in the interval [L′, R].
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As a result, the proposed method is to use slice sampling to generate new samples

while use simulated annealing to improve the convergence speed in optimization. Compared

with a normal Metropolis process, slice sampling has variable step size in random walk and

can better characterize the local property of the underneath probability function, and there-

fore promptly generate acceptable new samples. Slice sampling can be applied to wherever

the Metropolis method can be use. The only requirement is that the target density function

P (y ∈ D, t|Ω) can be evaluated. In this work, due to the binary representation of y, the

implementation idea of multidimensional slicing sampling in (Skilling and MacKay, 2003)

can be directly modified and adopted here. The description of slice sampling to generate a

new sample at time t is as in Algorithm 2.

Algorithm 2 Upper-layer: Generating a new terminal planning sample.

Input: b, y, P (y|Ω)
Output: y′

Y = uniform(0, P (y, t|Ω);
U = randbits(2b);
Set L to a value L ≤ b;
Randomly generate y′;
While (P (y′, t|Ω) < Y )&(L > 0) do
1. N = randbits(L) ;
2. y′ = ((y − U)⊕N) + U ;
3. L = L− 1 ;
end
Increase t;

In the algorithm, steps within the “while” loop automatically take c

P (y, t|Ω) is the desired distribution function based on J(y|Ω) defined by Simulated

Annealing. P (y, t|Ω) = exp
[
−J(y|Ω)

τ(t)

]
(Goldstein and Waterman, 1988). τ(t) decreases by

every new state y′ found. Operations in binary sequences are all subjected to a final modular

operation with 2b. “-”, “+” and “⊕” between two binary vectors are subtraction, sum and

”exclusive-or” operations followed with mod of 2b.
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3.4 Experiments and Performance Evaluation

We test the proposed method with computer simulations. We first verify the effective-

ness of the routing algorithm in a simple network setup and then test the overall heuristic

MCMC-based planning in randomly generated network scenarios. Comparison with one

existing method is also provided.

3.4.1 Routing in an Equilateral Triangle Network

For simplicity, we design a special case to verify the effectiveness of the routing method

with prediction factors. We assume there are three service nodes, denoted as nodes 1,2 and

3, and three terminals denoted by nodes 4, 5 and 6. There are three service pairs as shown

in Table 3.2. The capacity of terminals are set as 50 each. As shown in Fig. 3.3, the three

service nodes are in the form of equilateral triangles, and so are the three potential terminals.

Table 3.2. Service pairs

origin (i) destination (j) units of load (qij)
1 2 100
2 3 100
3 1 100

The routing results are shown in Fig. 3.3 and Table 3.3 with the use of prediction

factor, and are shown in Fig. 3.4 and Table 3.4 without the use of prediction factor.

Table 3.3. With the predication factor. Routing path of Fig 3.3. Each service use 25 units
on potential terminal. Potential terminals 4, 5, 6 are fully used.

Origin (i) T1 T2 Dest. (j) Units of Load
1 4 5 2 25
1 0 0 2 75
2 5 6 3 25
2 0 0 3 75
3 6 4 1 25
3 0 0 1 75

Capacity of each of the three potential terminals has been set with 50 units of loads,

however, each service has amount of 100 to be shipped. This means that we cannot ship
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Figure 3.3. With the predication factors, the routing paths of service pairs (1 → 2), (2 →
3)and (3→ 1). The three services have the same distance and have the same chance to use
the potential terminals. Their routing paths are shown in Table 3.3.

Table 3.4. Without predication factor. The routing paths of Fig. 3.4. The first service pair
(1→ 2) used all capacity of potential terminals 4 and 5. This results in terminal 6 not being
used and large costs for other service pairs.

Origin (i) T1 T2 Dest. (j) Units of Load
1 4 5 2 50
1 0 0 2 50
2 0 0 3 100
3 0 0 1 100

all loads through the potential terminals, and there must be some loads shipped by direct

paths. The result in Fig. 3.3 and Table 3.3 clearly matches the intuition that the intermodal

transportation should be used and neither service pair can occupy a terminal capacity alone.

It can be noted that since the positions of these nodes are in a symmetric pattern, one service

pair should not use the terminal capacity more than other service pairs. While without the

fairness consideration by using the prediction factors, supporting one service most efficiently

could leave other service pairs in a pessimistic position as shown in Fig. 3.4 and in Table

3.4. The rows with T1 = T2 = 0 represent the direct paths.
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Figure 3.4. Without the predication factor. Terminal 6 has not been used. In this case,
(1 → 2) uses all the capacity of terminals 4, 5. Clearly this is not an efficient way to route
the shipping paths.

3.4.2 Random Networks

In this case, we randomly generate the service nodes and potential terminal nodes in

a two-dimensional plane, except that we set all potential terminals be in the central part of

the map, and set the service nodes surrendering them. Service loads for each service pair and

the capacity of each potential terminal are also generated randomly. The operational cost

of a terminal is set proportional to its capacity. The transportation cost of a path between

two nodes depends on the distance and transportation mode, on the premise that any two

terminals are connected. The direct path is also included but with a much high path cost.

Transportation distance between any two nodes is assumed to be the direct line distance

between the two nodes.

Fig. 3.5 shows an example of the random map with x, y axes ranging from 0 to 1000.

The services nodes are denoted by the triangle shape while the terminal nodes are denoted

by the square shape. All nodes are numbered. Each terminal is assigned with a capacity,

operational cost together with its location coordinates. In the Fig. 3.5, we assume there are

4 service pairs, with the loads of service randomly generated in the range of 15 to 30 for each
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Figure 3.5. Map contains service nodes and potential terminals. 1-8 are service nodes and
9-16 are potential terminals

pair. The service pairs are shown in Table 3.5.

Table 3.5. Service pairs

Origin (i) Destination (j) Units of Load
01 02 35
03 04 19
05 06 19
07 08 18

Each routing path has an associate cost. The lower cost the better. Since paths using

terminals are strongly suggested, we assume any path through two intermediate potential

terminals would have less total cost. In simulation, we assume that it has the half cost

compared with the cost that uses the direct path with the same distance. Apparently, other

assumptions of the cost of indirect-direct cost can also be used, which may change the final

results of the terminal planning. With the proposed heuristic MCMC method, the routing

information and the final cost are shown in Table 3.6 for Fig. 3.5. As can be found, different

service pairs may use different numbers of route paths. For example, service pair (1, 2) uses

both direct and indirect paths while pair (3, 4) only uses the intermodal transportation. It

can be noted that some potential terminals are used by different service pairs. Service pairs
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(1, 2) and (7, 8) share terminal 16; service pairs (7, 8) and (3, 4) share terminal 13. This

suggests some terminals are important to multiple service pairs. The route paths are also

shown in Fig. 3.6.

Table 3.6. In the final planning, all potential terminals are all selected except terminal 11.
The total cost is 7098, which includes the terminal operational cost 2930 and shipping cost
4168.

Origin (i) T1 T2 Dest. (j) Amount ship cost
3 10 14 4 13 498.0
3 14 13 4 6 254.3
7 13 16 8 6 215.8
1 16 15 2 11 443.6
7 14 9 8 8 306.3
1 9 15 2 2 84.2
1 12 9 2 19 806.7
7 0 0 8 4 287.6
5 0 0 6 19 1031.2
1 0 0 2 3 240.2

We also studied the effect of changing of terminal operational cost Fk on the planning

results. Fig. 3.7 and Table 3.7 show the results when Fk is increased by 80% compared to

the previous example. With the increase of Fk, the number of terminals selected decreases,

which matches intuition. In this situation, the total cost is slightly increased. Table 3.8

shows the open-and-close status of the terminals in two different cases.

3.4.3 Effectiveness Compared with Brute Force Method

In this part, we verify the effectiveness of the proposed MCMC method as compared

to the brute-force method. Both methods use the same lower-layer routing algorithm. We

denote the network setup as “IXKY ” which stands for having X service pairs and Y po-

tential terminals in the network. The brute-force method calculates all possible open/close

status of terminals in order to find the global optimal solution. In previous simulation, the

lower-layer uses the prediction factor which is implemented with a wheeling function (WF).

Due to the randomness in routing and MCMC, the same terminal location planning may give
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Figure 3.6. Paths and terminals after planning. Terminal 12, 13, 14, 15 have been fully
used. Fk depends on terminal capacity. Terminals with large capacity associate with large
operational cost.

0 200 400 600 800 1000
100

200

300

400

500

600

700

800

900

1000

1

2

3 4

5

6

7

8

9

10
11

12
13

14

15

16

Figure 3.7. Increased 80% of each termial cost Fk. Since the high cost Fk, the terminal
9, 10, 16 are closed in order to save operation cost. The terminals 11, 12, 13, 14, 15 are open
and shared by multiple services.

slightly different cost values in different runs of the program. Therefore, we test a number

of randomly generated networks for one “IXKY ” setup.

In table 3.9, for each of I8K8 and I10K10 cases, 10 random network scenarios are

tested. It can be found that the MCMC solution is very close to optimal solution from the
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Table 3.7. Final planning when Fk are increased by 80%. 5 out of 8 terminals are open. The
total cost is 9332.8, which includes the operation cost 4374 and transportation cost 4958.8.
If we use the planning obtained in table 3.6, the total cost would be 9441, which includes
the operation cost 5274 and transportation cost 4168.

Origin (i) T1 T2 Dest. (j) Amount ship cost
1 15 13 2 12 480.6
1 12 14 2 19 794.7
1 14 11 2 4 167.4
7 11 14 8 4 155.1
7 11 15 8 1 40.3
5 0 0 6 19 1031.2
7 0 0 8 13 934.7
3 0 0 4 19 1354.7

Table 3.8. Terminal status comparison between table 3.6 and 3.7 based on different Fk. In
the case of increased Fk, the number of closed terminals is also increased to avoid extra cost.

Terminal index 9 10 11 12 13 14 15 16
yk of normal Fk 1 1 0 1 1 1 1 1
yk of increased Fk 0 0 1 1 1 1 1 0
Capacity 30 13 10 19 12 27 13 17

brute-force method in each case. To further demonstrate the benefit of using prediction

factor, the results of the Brute Force search without the use of prediction factor in the

lower-layer is also included.

Table 3.9. Three methods are compared in order to verify if using the wheeling function
(WF) could result better routing plan. In this case terminals would be share by multiple
shipping flows based on predication factors.

I8K8 I10K10

Brute Force w/ WF
Max 10470 12165
Min 7623 8511
Avg 9112.7 10396.1

Brute Force w/o WF
Max 10639 12328
Min 7676 8526
Avg 9225.2 10502.1

Avg Difference -1.2 % -1.0 %

MCMC w/ WF
Max 10473 12203
Min 7623 8511
Avg 9130.3 10420.9

Avg Difference -0.19 % -0.24 %
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3.4.4 Comparison with an Existing Method

Two recently developed methods for terminal location problems were reported in (Sorensen

et al., 2012), termed as GRASP ( Greedy Randomized Adaptive Search Procedure) with

Heuristic evaluation procedure (HEP), and ABHC (Attribute Based Hill Climber) with

HEP). In both methods, HEP is used as the lower-layer algorithm and either GRASP or

ABHC is used as the upper-layer algorithm. Since comparison already has been made be-

tween GRASP and ABHC that shows similar performance (Sorensen et al., 2012), we com-

pare the performance of the MCM-based method with GRASP.

The GRASP is a meta-heuristic method appropriate for combinatorial optimization

problem. A GRASP algorithm usually consists of two steps: the construction layer to

generate a feasible greedy randomized solution and the local search layer to improve the

solution. In the construction layer, a restricted candidate list (RCL) is usually set up to

contain candidate. The candidates are ranked by order, and chosen by the construction

layer. The local searching layer starts from the construction layer solution and finds a local

optimal solution.

Table 3.10. Comparison for cases I16K16, I20K20, each with 10 independent network
scenarios. GRASP and MCMC used the same under-layer method presented in the chap-
ter, i.e., table-based heuristic method with prediction factor. The average improvement in
percentage of cost is listed in for MCMC-based method.

I16K16 I20K20

GRASP
Max 15504 20319
Min 12512 13462
Avg 13542.3 16900.4

MCMC
Max 15967 20688
Min 12140 13067
Avg 13394.2 16771.2

Avg Improvement 1.1 % 0.8 %

HEP in the lower-layer is similar to our Algorithm 1 but without the use of the

prediction factor. Because HEP has little consideration of the terminal competition for all

service pairs, we first use our lower-layer algorithm and test the performance of GRASP and
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MCMC in the location planning. Table 3.10 compares MCMC-based method and GRASP-

based method for randomly generated network for cases of I16K16, I20K20. 10 independent

random network scenarios are solved for each case. It can be observed that the MCMC-based

method has better performance in each example and hence demonstrates the advantage of

using distribution guided search in heuristic optimization process.

Next, we compare GRASP-HEP with the proposed heuristic MCMC method for four

different cases of I16K16, I20K12, I28K12, I30K20. In table 3.11, GRASP combined

HEP is compared with MCMC combined the proposed routing algorithm. The heuristic

MCMC-based method again shows better performance.

Table 3.11. Comparison for the cases of I16K16, I20K12, I28K12, I30K20. Both GRASP-
HEP and heuristic MCMC are applied to each map to make comparison. The max, min,
and average costs are listed.

I16K16 I20K12

GRASP-HEP
Max 19051 21649
Min 11946 16597
Avg 15591.4 18947.8

MCMC w/ WF
Max 16327 20912
Min 10656 14767
Avg 13897.9 17326.2

Avg Improvement 12.2 % 9.4 %

I28K12 I30K20

GRASP-HEP
Max 30005 33597
Min 18298 22503
Avg 26348.1 28055.2

MCMC w/ WF
Max 28267 32467
Min 17413 21248
Avg 24592.2 25749.1

Avg Improvement 7.1 % 9.0 %

3.5 Conclusion

The contribution of this chapter is development of a two-layer heuristic MCMC-

based method to solve the terminal location planning problem in intermodal transportation

systems. The lower-layer is a heuristic routing design for multiple service pairs given a par-
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ticular planning, where the prediction factor is used for fairness in path allocation so that a

much needed terminal could be fairly shared by multiple service pairs. In the upper-layer,

a MCMC-based method was presented where simulated annealing and slice sampling are

integrated for the search of the optimal location planning. While slice sampling can produce

new samples according to the underlying stationary probability distribution of the Markov

Chain, simulated annealing decides the acceptance of the new samples so that the optimiza-

tion process could jump out of the local optima and converge speedily. The advantage of

the proposed method has been demonstrated through comparison with both the brute-force

search and an existing method.

The work of this chapter demonstrates that MCMC, as a probability inference method,

could be used to solve complex optimization problems with high dimensional searching

spaces. This success comes from the ability of MCMC to generate samples (i.e., solutions)

based on a stationary distribution function mapped from the cost function of the problem.

In the future, more efficient sampling methods in (Skilling, 2006), such as nested sampling,

could be explored for further improvement in solving optimization problems.
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CHAPTER 4

CONCLUSIONS AND FUTURE RESEARCH

In this thesis, we studied the behavior of Markov Chain Monte Carlo method and its

application in different field. In the first few chapters, we introduced general idea of Markov

Chain Monte Carlo Method.

Then in the first application, image transmission over time varying channels is con-

sidered. The varying channel, characterized by its probability distribution, makes the opti-

mization problem of finding the best rate allocation very complicated. A MCMC method

is proposed to solve this problem. It has been shown that the method can generate near-

optimal solutions with low complexity. It also provides an overall picture of the distribution

of distortion versus the rate allocation. In addition, it has been shown that the design con-

sidering the channel distribution performs better than the design considering the mean value

of the channel.

In the second application, we have developed a MCMC-based two-layer method for the

location planning problem in multi-mode transportation systems. The upper-layer is MCMC-

based method to deal with terminal location problem in the intermodal transportation. The

lower-layer is a table-based optimal routing method in order to calculate cost of multiple

service pairs given a particular planning. In the lower-layer, the prediction factor is used to

let terminals shared by multiple service pairs. In the upper-layer, a MCMC-based method

is using both simulated annealing and slice sampling in order to search the optimal location

planning. The result is compared with the Brute force method to verify the correctness, and

an existing method (GRASP-HEP) to verify the advantage of performance.

The work of this thesis has demonstrated that a MCMC method, based on both slice
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sampling and simulated annealing, can be successfully applied to practical optimization prob-

lems with high-dimensional searching space. There are works that can be further researched

in the future. For example, more advanced sampling method, such as nested sampling, could

be used to further improve the performance. In addition, mapping between the cost function

and targeted stationary distribution in Markov chain could be further investigated.
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