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ABSTRACT

This thesis examines the robust behavior of quantized compressed sensing measure-

ments during transmission through an additive white gaussian noise wireless channel. The

poor rate-distortion performance that accompanies compressed sensing after applying quan-

tization has led to several works in quantized compressed sensing. However, most of these

works have less consideration of the effect of transmission channel on the resulting bit stream

of the quantized compressed sensing measurements. For an additive white gaussian noise

wireless channel model, the quantizer and bit energy signal-to-noise ratio determines the

degree of the channel effect. This thesis explores the effect of quantization and channel

noise during the transmission of quantized compressed sensing image over additive white

gaussian noise wireless channel. Based on the effect, an optimal resource allocation algo-

rithm is generated to maximize the compressed sensing performance. This was achieved

by deriving mathematical expressions that estimates the total distortion of a quantizer and

determining the resource (i.e bit and power) allocation that minimizes the mean square

error. This procedure is carried out using three quantizers (i.e Uniform scalar quantizer,

Cumulative Distribution function based quantizer, and Lloyd-maxx quantizer). Simulations

are formed that confirms our claim of deteriorating performance after considering channel

effect, and significant improvement in the performance of compressed sensing particularly

under extreme channel conditions based on the proposed optimal bit and power allocation

algorithm.
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Chapter 1

INTRODUCTION

The objective of this thesis is to study and improve on the robust performance of quan-

tized compressed sensing within a wireless image communication system while maintaining

a low complexity encoder. The unavoidable quantization noise and the huge bit error rate

of wireless transmission channels greatly degrades the quality of the received image after

transmission. Hence, the need for a mechanism able to minimize the effect of these distor-

tions. The compressed sensing algorithm is implemented in a layered multi-scale fashion

known as multi-scale block-based compressed sensing [14] in order to ensure room for op-

timization method implementations. The approach of multi-scale block-based compressed

sensing (MSBCS) is similar to that of the JPEG2000 compression technique which decom-

poses the image into different layers of unequal importance using the wavelet transform. The

complexity and cost to implement the JPEG2000 within the wireless image communication

system is increasing exponentially which is why we are studying the low-complexity MSBCS

method as an alternative. The statistical property of each wavelet layer is used to determine

the amount of bits and power needed to be allocated to the compressed sensing measure-

ments within that layer given a fixed quantization bit and power budget. Also, the bits

of a given measurement happen to have unequal significance to reconstruction which varies

based on the channel condition. The total distortion of each measurement can be estimated

based on the quantizer implemented which is able to estimate both the quantization noise

and channel noise. Towards this end, we proposed an algorithm that optimally allocates

a fixed quantization bit and power budget across the CS measurements and the individual
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measurement power across the measurement bits based on the channel condition.

Compressed sensing has been very effective in achieving robust compression using a low-

complexity encoder and have also developed variants to possess the possibility to increase

performance using lesser resources. However, most works to improve compressed sensing

performance have not fully considered the effect of quantization and transmission bit errors

together within the wireless image communication system. Compressed Sensing [8], also

identified by the acronym, CS, is a low-complexity signal acquisition and reconstruction

technique developed in 2004. It is based on exploiting the sparsity within a signal and

performing sampling at the sparsity rate which is significantly below the Nyquist rate of

sampling. This new paradigm jointly samples and compresses a signal during acquisition

to yield measurements that are inherently resilient to channel errors. The measurements

generated are real values and hence need to be quantized before storage or transmission for

pragmatic applications. However, it has been shown in [5] that compressed sensing gives

a disappointing rate-distortion performance with the most basic scalar quantization. This

issue has rendered the implementation of compressed sensing in visual communication over

wireless networks impractical in today’s systems. The success of compressed sensing in

image communication still remains theoretical except for the physical implementation of the

well-known single-pixel camera [13].

Over the years, more work have been done to adapt the compressed sensing algorithm

into the wireless transmission of images. Some works [15, 23, 14, 21, 27, 31] have suited the

algorithm to image signals by incorporating a block-based operation (BCS) within the image

for the purpose of lower computational cost, faster, and greater memory efficiency. In the

absence of quantization, wireless image transmission using compressed sensing have been

evaluated by [26, 11, 9, 22] with a focus on minimizing the effect of packet loss errors on the

received image. However, in wireless communication, transmission errors occur in form of

packet loss and bit errors. In order to manipulate the effect of bit errors, quantization would

have to be implemented. More so that quantization is unavoidable in practical systems.
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Due to the poor effect of quantization on compressed sensing performance, most works

on quantized compressed sensing [32, 2, 34, 24] have focused on designing an efficient way to

incorporate quantization on the compressive sensing measurements. Despite the success of

these works, their evaluations were done under the ideal assumption of a reliable noise-free

transmission channel. When the block-based compressed sensing (BCS) is considered, not

much work have been done on quantization except for [24] which also ignored the effect of

transmission. Although, compressed sensing yields error-resilient real-value measurements,

the resiliency of the quantized bit stream still needs more improvement. Hence, it is neces-

sary to consider both quantization and transmission together when minimizing the effect of

transmission errors and improving the rate-distortion performance of quantized compressed

sensing. A paper [34] which does consider quantization and the bit error model during

evaluation does not optimally implement error protection on the bits.

A great amount of work is still being done in order to make compressed sensing a prac-

tical standard for efficient compression and robust transmission of images within the severe

wireless channel. Due to the great practical potentials of compressed sensing, it is apparent

that this large field will open room for yet unknown applications. This work is primarily

concerned with the investigation of the effect of quantization and wireless transmission chan-

nel on the performance of block-based compressed sensing. Here, emphasis is placed more

on the effect of transmission bit errors rather than packet loss. The effects are then miti-

gated by proposing an algorithm that optimally allocates the transmission power across the

block-based compressed sensing measurements and quantized bits based on their importance

at varying channel conditions. Finally, we determine the optimal quantization bit rate and

number of compressed sensing measurements that minimizes the effect of the transmission

bit errors. This way, we focus on noisy channel which is a small sub-set of wireless image
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communications.

1.1 Literature Work

Since 2004, there has been a significant increase in literatures published about com-

pressed sensing. Some books have been written introducing the principles and fundamentals

of compressed sensing [1, 8]. Many came up presenting applications, majority of which have

been focused on compressed sensing as a potential alternative to image compression. Numer-

ous studies have been made about the compressed sensing algorithms applied in maximizing

the compression within the image communication system [3, 18, 35, 23, 14, 22? ]. However,

not much work has considered the effect of quantization and bit-stream transmission during

performance evaluations. These effects have mostly been assumed or totally ignored. With-

out the presence of quantization, robust transmission of compressed sensing measurements

has been evaluated on the basis of packet loss where each measurement represents a packet.

When quantization was later implemented using the simple uniform scalar quantizer,

image compressed sensing was found to be accompanied by a poor rate-distortion perfor-

mance [5] and Goyal et al. [16]. This problem led to several works focused on improving the

performance of quantized image compressed sensing. Most of these works approached the

problem by either replacing the scalar quantizer with vector quantizer [2, 19] and adding an

entropy coder [24] as performed in the popular image coding techniques. Despite the better

performance obtained, the vector quantizer and entropy coder are both high-complexity pro-

cesses that require many additional computations at the encoder, which is against the tenet

of compressed sensing (i.e. having a simple encoder). [32] implemented the scalar quanti-

zation on the compressed sensing measurements in two stages without entropy coding, and

then utilized the correlation between the stages combined with progressive binning to ob-

tain better compression performance. [10] proposed an optimized quantization process for

compressed sensing measurements that minimizes the reconstruction error. However, these

optimized quantization methods were based on noiseless channels. In fact, a common feature
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of the approaches surveyed is that their schemes were not developed specifically for trans-

mission over hostile wireless channels, considering the sensitivity of the vector quantizer,

entropy coder and correlation outputs to channel errors. Based on our survey, quantization

has been disregarded when evaluating the performance of block-based compressed sensing

approaches except in [24], which also implemented an entropy encoder with differential pulse

code modulation (DPCM) without considering the effect of channel transmission.

A number of works have been proposed to improve the robustness of compressed sensing

to transmission channel errors. These errors occur in two major ways after quantization;

packet loss and bit error during transmission. Majority of works have either assumed or

ignored quantization (i.e. no explicit implementation) and focused on minimizing channel

error due to packet-loss. This approach was usually simulated to make each measurement

represent a packet, and assume that packets with bit errors were discarded and regarded

as packet loss. This way, most of the modifications were performed within the compressed

sensing encoder-decoder algorithm with the aim of minimizing the effect of packet loss. In

[26], the bit error rate was estimated to determine the optimal number of samples. Over-

sampling is then used to make up for these errors and allow the receiver to recover the image

as if the original number of samples were sent. However, this approach does not combat bit

errors, instead it replaces packets corrupted with errors with more measurements. In [11], a

robust scheme was proposed in which it first converted the input image data to the wavelet

domain. Then, two separate compressed sensing algorithms were developed and applied to

both the scaling and the wavelet coefficients respectively. [22] combined compressed sensing

with multiple descriptions coding and proposed a new multiple descriptions coding scheme

based on quincunx downsampling. Despite the drive into the works on quantized compressed

sensing, no work has evaluated robust transmission based on bit errors that could occur in

the quantized bit stream except for [34]. Yan Zhang, Suxia Cui, and Dhadesugoor Vaman

[34], combatted bit errors by reducing the number of bits used for each measurement in
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order to increase the transmission power of each bit given a fixed measurement power. Here,

the bits were generated using a CDF-based quantizer which was shown to be more robust

than the scalar quantization technique. This approach appeared to be effective, but is not

optimal considering the fact that each measurement bit was assigned equal power regardless

of the significance of the bit to reconstruction quality.

1.2 Research Objective and Contributions
In this work, we implemented an existing block-based compressed sensing algorithm [14]

that had been shown to yield best compression performance in the absence of quantization

and transmission channel error based on our survey. This compression approach, known as

multi-scale block-based compressed sensing (MSBCS) is based on the wavelet transform that

possesses a set of desirable features that could be utilized further in mitigating quantization

and transmission channel noise. The MSBCS compression system supports scalable sensing,

which provides more than one resolution layer, where each layer successively improves the

image quality. Since each layer has different importance, unequal error protection algorithms

can be applied to the MSBCS measurements. With the obtained analog compressed sensing

measurements, three different quantization schemes; uniform scalar quantization, Lloyd-

maxx quantization and CDF-based quantization are used to generate a quantized stream

of bits in order to achieve a reliable comparison. Here, we implemented unequal error

protection by performing an optimal bit and power allocation across the measurements

in each layer based on an estimated rate-distortion function based on the quantizer. For

the AWGN wireless channel model considered in this thesis, each bit is subjected to error

depending on the power allocated to it. The greater the bit power, the less susceptible the

bit is to channel error. We therefore further optimized the power allocation (i.e. further

unequal error protection) across the bits of each measurement based on the importance of

the bit so that the most significant bit receives the most power, while the least significant

bit receives the least power. Given a fixed bit and power budget, the objective of this

6



thesis is to adaptively provide an optimal allocation of the available bits and power within

the encoder system in order to yield an optimal error protection and best performance at

varying channel conditions. Therefore, based on the quantizer implemented and the channel

condition, this thesis determines the optimal number of bits and measurements needed

to adaptively combat quantization noise and channel noise. Hence, our proposed system

provides adaptivity, optimality, and low-complexity

1.3 Organization of Thesis

Chapter 2 gives an introduction of compressed sensing. Chapter 3 describes the wireless

communication system using the compressed sensing compression scheme. Chapter 4 dis-

cusses the multi-scale block-based compressed sensing scheme and implements our proposed

bit allocation scheme before showing performance after transmission through a noiseless

channel. We then proposed our optimal transmission scheme, stating and solving the opti-

mization problem of allocating the power in chapter 5. Finally, Chapter 6 provides conclusion

and future work
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Chapter 2

COMPRESSED SENSING

A core tenet of signal processing shows that most real world signals are often redundant

and contain some type of structure that enables efficient representation in a sparse or com-

pressible transform domain. Basically, the transform domain is attained by de-correlating

a correlated signals energy into just a few significant coefficients whose locations within the

signal are unknown. This process of transform coding has been the foundation of majority

of compression techniques including compressive sensing. Existing image compression tech-

nologies can be classified into two categories based on the image transform types: Discrete

wavelet transforms (DWT) and discrete cosine transform (DCT). For example, JPEG2000

is a representative standard using wavelet based structure, while JPEG employs the DCT

based which is most widely used. Current state-of-the-art compression algorithms follow

the Shannon-Nyquist theorem which suggests sampling all the coefficients before discarding

the insignificant ones and keeping the significant ones for transmission or storage. However,

these algorithms are inefficient because many resources are wasted acquiring and processing

the majority of insignificant coefficients. This inefficiency problem led to a breakthrough

in 2004 by Emmanuel Candes, and Terrence Tao [7], and David Donoho [12] with a new

paradigm called compressed sensing that contradicts the Shannon-Nyquist theorem. Com-

pressed sensing is based on the idea that given the prior knowledge about the signals sparsity,

we can reconstruct the signal with even fewer samples than the Nyquist sampling theorem

requires. According to Donoho, ”why go to so much effort to acquire all the data when most

of what we get will be thrown away?”. Compressed sensing suggests ways to directly capture
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the significant coefficients within a small number of measurements without first sampling

the signal. It acquires the signal in the compressed form by non-adaptively sampling the

signal in an incoherent domain and invoking a linear programming method after the acqui-

sition step to decompress the data. The compressed sensing framework is accompanied by

properties of universality, error resiliency, and reverse-complexity (simple encoder-complex

decoder). Compressed sensing is potentially beneficial in applications where one cannot

afford to collect or transmit a lot of measurements such as the emerging applications that

demand wireless image transmission. A major example of these applications is the MRI,

and also scenarios where images of the patients medical condition at a remote location needs

to be obtained within minimal time before being transmitted wirelessly to the hospital for

diagnosis. The sole aim of the compressed sensing paradigm is to be able to perform re-

construction with as few measurements as possible while keeping a low-complexity encoder.

This drive is what is needed to solve the challenges within the wireless image communica-

tion system. This thesis will address the conditions under which image CS could perform

optimally within the wireless communication system.

2.1 Theory of Compressed Sensing

Suppose a signal f ∈ RN is K-sparse or compressible in a space Ψ, and M measurements

in the Φ domain are uniformly selected at random to form an M ×N measurement matrix,

then the signal measurements y ∈ RM are obtained with a sub-rate of M/N as follows;

y = Φf (2.1)

Let the measurements be y = [y1, y2, ..., yM ] and the measurement matrix be Φ =

[Φ1,Φ2, ...,ΦM ], then one measurement includes projecting f onto Φi and then measuring

the inner product yi = < f ,Φi > where Φi is a 1 × N row vector and i ∈ {1, 2, ...,M}. In

contrast to traditional encoders that acquire the signal f or its equivalent x directly, com-
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pressed sensing measures linear projections of f onto a measurement matrix Φ. This way,

compressed sensing performs compression by providing a reversible dimensionality-reduction

as opposed to the sample-and-discard approach of traditional encoders. However, the re-

versibiity or decodability of the dimensionality-reduction process is only possible based on

two major principles; sparsity and incoherence. These principles must be satisfied by Ψ and

Φ where Ψ must be able to give a sparse representation of f , and Φ must be incoherent with

Ψ. The degree of satisfaction of the principles play major role in determining the degree of

sub-sampling/compression.

2.1.1 Sparsity:

If Ψ ∈ RN×N is an orthonormal basis of a space, then x = ΨT f is the N × 1 transform

coefficient vector of signal f in the Ψ domain. If most coefficients of x are zero or close to

zero, then the signal is considered sparse in the basis Ψ. The sparsity of x is measured by

the number, K of significant non-zero coefficients.

Mathematically, the signal f can be expanded as follows

f =
N∑
i=1

ψixi = Ψx (2.2)

Where x is the coefficient sequence of f . If Ψ is full ranked, f and x are equivalent

representations of the signal (i.e f in the spatial domain and x in the Ψ domain). The

signal f has a sparse representation if it is a linear combination of only K basis vectors and

K << N . The vector x is sparse in a strict sense when all but a few of its entries are zero.

However, most real world signals are not strictly sparse, instead they are compressible with

a few large coefficients and many small coefficients. The sorted magnitudes of coefficients, xi

for compressible signals decay rapidly and the small coefficients can be discarded with small

loss in perceptual quality. Once, small coefficients are forced to zero, the new signal, xK is
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strictly sparse. Sparsity determines how efficiently one can acquire signals non-adaptively.

2.1.2 Incoherence:

Suppose we are given a pair (Φ and Ψ) of orthonormal basis of RN×N . Basis, Φ is used

to sense the signal as in Eqn.(4.1) and basis Ψ is used to represent the signal as in Eqn.

(2.2). The coherence between these basis is given by:

µ (Ψ,Φ) =
√
N max

{
ΦTΨ

}
(2.3)

In other words, the coherence measures the largest correlation between elements of Φ

and Ψ. If the coherence between Φ and Ψ is small (i.e. greater incoherence), then a signal

that is sparse in the Ψ domain is not sparse in the Φ domain and vice-versa. This way,

Φ can preserve the sparse coefficients of Ψ effectively, with greater probability of recovery.

Therefore, each sample contains a small portion of the global signal information. A good

measurement basis Φ must be incoherent with any sparsity basis to ensure a universality

and non-adaptive sensing.

It has been shown in [6] that random matrices are largely incoherent with any fixed basis,

Ψ. The random sensing strategy works because each sparse signal will have a unique set

of measurements. Usually M (M << N) random row vectors of Φ are stacked on top of

one another as rows in the M ×N matrix Φ. The greater the incoherence, the smaller the

number of row, M needed to preserve the sparse coefficients, and consequently, the fewer

samples are needed to guarantee reconstruction. An example of a random matrix which is

also used in this work is the Gaussian iid matrix.

11



2.2 CS Reconstruction

Given the compressed sensing measurements, y from Eqn. (4.1), and the measurement

matrix, Φ, the inverse of the projection x = Φ−1y is ill-posed and cannot be directly solved.

This is because the number of unknowns, N is far more than the number of observations, M .

Since there are an infinite number of coefficient vectors, x, that will produce the same set of

the measurement vector, y, the explore prior knowledge of the sparsity of x and incoherence

between Φ and Ψ, to recover the signal. The compressed sensing paradigm suggests that

the correct solution for x is the sparsest signal which maps to the measurements y. Thus,

it must be the solution to the following optimization problem:

minx ‖x‖0 , such that y = ΦΨ−1x (2.4)

Where, the sparsity is measured in the Ψ transform domain. However, the problem with

the l0-optimization problem in Eqn. (2.4) is that solving it directly is infeasible because it

is combinatorial and NP-hard. Fortunately, an l1 minimization works almost as well with a

sacrifice of accuracy. Also, it is usually assumed that CS measurements are accompanied by

some stochastic noise, n. Hence Eqn. (4.1) becomes

y = Φf + n (2.5)

Consequently, the l1 formulation can be given as follows

minx ‖x‖1 , such that
∥∥y − ΦΨ−1x

∥∥2
2
6 ε (2.6)

The convex optimization problem can then be conveniently converted to a linear pro-

gramming problem, which can be solved by linear programming techniques [28]. The most

prominent of these is the basis pursuit which gives best reconstruction results, but suffers

from computational complexity and long reconstruction time.

12



Another approach utilizes an iterative and greedy search for finding the sparsest x agree-

ing with the measurements y with lesser computational complexity. These include MP

(Matching Pursuit) [33], OMP (Orthogonal Matching Pursuit) [29], and COSAMP (Com-

pressive Sampling Matching Pursuit) [25]. Although, the rates of convergence of these

iterative methods are faster than that of the BP (Basic Pursuit), they are at the expense of

more measurements [30].

A simpler alternative to the greedy algorithms is the iterative hard thresholding (IHT)

which was proposed in [4]. iterative hard thresholding replaces the constrained optimization

formulation with an unconstrained optimization problem via a lagragian multiplier and

further relaxes the problem by loosening the equality constraint to an l2-distance penalty,

minx ‖x‖1 + λ
∥∥y − ΦΨ−1x

∥∥2
2

(2.7)

This algorithm recovers x by successive projection and thresholding operations. Let x[0]

be the initial approximation of the transform coefficients, then the solution can be calculated

as below;

x[i] = x[i] +
1

γ
ΨΦT

(
y − ΦΨ−1x[i]

)
(2.8)

x[i+1] =


x[i],

∣∣x[i]
∣∣ ≥ τ [i]

0 else

(2.9)

Where τ [i] is the threshold applied at the each iteration and γ is a scaling factor. [iht]

confirms the convergence of the algorithm provided ‖Φ‖2 < 1. This algorithm is a specific

instance of the projected Landweber and involves the use of Φ and ΦT once in each iteration.

Hence large Φ would result in computational bottle neck in terms of storage and compu-

tation time. However, the projected Landweber formulation offers the possibility of easily
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incorporating additional optimization criteria. [15] implemented a block based measurement

and incorporated a smoothing step in the reconstruction process, hence the name Smoothed

Projected Landweber (SPL). This approach shows significant reduction in computation time

for comparable accuracy compared to the linear programming methods. The algorithm for

the SPL reconstruction scheme is given below

Figure 2.1. SPL Reconstruction Process

Where x(0) = ΦTy and λ is the convergence factor with the use of hard thresholding for

all iterations.

2.3 Error Resiliency of CS

Images which are compressed using compressive sensing are naturally resilient to errors.

This is because the reconstruction algorithms for compressive sensing exploits the random-

ness within the measurement process. Therefore, the stochastic nature of wireless channel

disturbances do not hamper the performance of reconstruction algorithm at the decoder.

According to the decoder, this disturbances are indistinguishable from a priori lower sensing

rate. Since the reconstruction quality is only dependent on the number of samples which

are used to reconstruct the image, the quality of the image will decrease if there are a large

number of errors. However, If the corrupted samples are removed from the reconstruction
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process, the amount of distortion is directly proportional to the number of samples which

are corrupted, resulting in a structural similarity (SSIM) loss of about 1 to 2% for realistic

channels. Once the locations of these errors are found, compressed sensing images is recon-

structed like the corrupted samples had never been transmitted. This can be achieved with

a sophisticated error detection scheme and additional compressed sensing samples to replace

the corrupted samples. This is much more resiliency than observed in that of the traditional

compression technique (i.e. JPEG2000).

Distortion mainly comes from quantization and channel transmission. Since the quanti-

zation error can be kept very low, the main cause of reconstruction errors is the distortion

caused from channel noise. In this work, we implement an optimal error protection scheme

to the compressed sensing measurements and bits, to minimize the effect of the channel

noise and quantization noise simultaneously. This way, We minimize the number of addi-

tional samples needed to be transmitted for correct reconstruction after applying the error

detection scheme. Hence the improvement in the compressed sensing resiliency.

2.4 Blocking Operation in CS

Block-based operation has been implemented in many compression applications . It is

motivated by the fact that it allows efficient, adaptive, real-time and parallel processing

of images. Due to the multidimensionality of images, increase in the image size results in

a larger memory requirement for the measurement matrix Φ. Also, larger measurement

matrix leads to more computation at the encoder and decoder. The concern of this extra

memory and computation cost led to a number of works in block compressed sensing [15,

23, 14, 21, 27, 31] where compressed sensing is implemented within smaller blocks of data

that requires a smaller measurement matrix size. Reconstruction schemes (i.e. Smoothed

Projected Landweber (SPL) reconstruction) based on this block-based compressive sensing

paradigm was discussed in the decoder section.
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Usually the block operation is implemented within the spatial domain [15], which typ-

ically yields reduced reconstruction quality due to the fact that compressive sensing mea-

surement acquisition generally works better the more global it is. However [14] provided

best result among fellow block-based compressive sensing approaches based on our survey.

This is because the block operation was implemented in the transform domain where the

coefficients are global to the signal information. Also, [14] exploited the structure of the

transform basis (i.e wavelet) to further reduce the sampling rate. In this work, we adopted

the Multiscale block-based compressed sensing [14] which would be the focus of our analysis

in this thesis.
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Chapter 3

CS AND WIRELESS COMMUNICATION SYSTEM

Figure 3.1 shows the block diagram of a general wireless image communication sys-

tem. The model comprises a transmitter side that wirelessly transmits the image data and

a receiver side that receives the image data transmitted by the transmitter. Between the

transmitter and the receiver exists a wireless communication channel that is limited in avail-

able bandwidth and plagued by a high transmission error rate. These cons of the wireless

channel necessitate extra processing of the image at the transmitter and receiver side of

the communication system. Today, communication system uses the jpeg or the jpeg2000

standards for processing the image to bypass the harsh channel. These standards however

are computationally expensive, resulting in a complex encoder. A new paradigm called

compressed sensing is under study today to see the possibility of replacing the traditional

methods of processing the image before and after transmission. This thesis uses compressed

sensing method for image processing and the fundamentals have been discussed in the pre-

vious chapter. It can be noted that the data available at the decoder was assumed to have

infinite precision. In practical systems like the wireless communication system, some form

of quantization is always required.

3.1 Quantization

The quantizer is a very important part of the encoding process. It converts the infinite

precision values into values of finite precision using a non-revertible function Q(·). The

CS measurement process is very different from the orthogonal transforms such as the DCT
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Figure 3.1. Wireless Communication System

for JPEG or DWT for JPEG2000. The distribution of CS coefficients is directly related

to the measurement matrix used. Due to the need to satisfy the incoherence property of

the measurement matrix as described in the previous chapter, the i.i.d. Gaussian matrix

is often used. Thus we would expect the distribution of CS coefficients to be Gaussian.

The incorporation of quantization into image CS is largely underdeveloped till today. This

is due to the poor rate distortion performance of image CS after applying the uniform

scalar quantizer to maintain the simple encoder. An optimal quantizer like the Lloyd-

max quantizer is usually tailored to the signal concerned where distortions are iteratively

minimized. However, for practical reasons, fixed quantizers that are sub-optimal are always

used. Based on [20], quantization noise is just one of the sources of distortion that depends

on the quantizer. The other source of error is the channel noise which is severe when dealing

with wireless channels. Different quantizers possess different levels of error resilience in a

noisy environment regardless of the level of quantization error. In this thesis, we explored

the effects three different quantizers; the simple uniform scalar quantizer, the optimal Lloyd

max quantizer [17] and the CDF-based quantizer [34] in terms of both quantization noise

and channel noise. For simplicity, we do not implement entropy coding after quantization.

3.1.1 Uniform Scalar Quantization

This is the simplest among all quantization schemes. The decision boundaries of the

uniform scalar quantizer are equally spaced, so its decision intervals are all the same length,
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∆. Suppose we want to uniformly quantize the measurements with A decision intervals, the

endpoints/decision boundaries can be represented as

bq = ∆ · q + ymin, q = 0, 1, ..., A (3.1)

where the mean of a decision interval is often selected as the quantized value for that

interval, and the quantization interval, ∆ is given by

∆ = (ymax − ymin)/A (3.2)

Number of intervals, A = 2K , where K = Number of bits per measurement (bpm).

Each measurement, y is quantized to the quantization index q if and only if y falls into

the qth decision interval. For instance, if the measurement falls between boundaries bq and

bq+1, the index q is transmitted.

At the decoder, the quantized measurement can be reconstructed from the quantization

index using the following expression;

yqq = (∆ · q)− (∆/2) + ymin (3.3)

The quantization operation obviously causes much loss of information,the reconstructed

quantized value obtained in 3.3 is different than the input to the quantizer. The difference

between them is called the quantization error which is a random variable. The average loss

of information introduced by quantization may be characterized by average quantization

error. Among the many norms that may be used to measure this error, the L-2 norm is

usually used and is called the mean squared quantization error (MSQE).

σ2
q =

A∑
q=1

∫ bq

bq−1

(yq − y)2 P (y)dy (3.4)
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3.1.2 Lloyd Maxx Quantization

The placement of each individual decision boundary and quantized value play major roles

in the final MSQE. Given a fixed number of intervals, A, this quantizer finds the optimal

placement of decision boundaries and quantized values so that MSQE is minimized. The

quantized value for each interval is the centroid of the probability mass in the interval and

is expressed as below

yqq =

∫ bq
bq−1

yP (y) dy∫ bq
bq−1

P (y) dy
(3.5)

where the decision boundary, bq is simply the midpoint of the neighboring quantized values

as shown below

bq =
1

2

(
yq + yq+1

)
(3.6)

Assuming the first and last decision boundaries are known (i.e. b0 = ymin and bA = ymax),

solving (3.5) and (3.6) would give the optimal set of decision boundaries and quantized values

that minimizes MSQE. Unfortunately, to solve (3.5), bq−1 and bq are needed. Also, to solve

(3.6), yq, yq and yq+1 are needed. This problem is a little difficult and is solved iteratively

until the MSQE converges to the minimum.

3.1.3 CDF Based Quantization

This quantization method appears to be well suited for CS measurements because the

quantizer is based on the CDF of the measurements which is known from the Gaussian

measurement matrix implemented. As opposed to the Lloyd-maxx method, the CDF-based

quantizer is simple and easy to implement. Given the number of bits, K which would

provide A = 2K quantization intervals, the Cumulative Distribution Function (CDF) of the

measurement is divided uniformly into A intervals. This is also the same as dividing the

area under the PDF curve uniformly as shown in fig (3.2) below.
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Figure 3.2. PDF of Gaussian Measurement Partitioned into Equal Area Intervals

Mathematically, the boundary and reconstruction values can be determined as follows;

bq = CDF−1
( q
A

)
= µl + σl ∗Θ−1

( q
A

)
(3.7)

yqq = CDF−1
( q

2A

)
= µ+ σ ∗Θ−1

( q

2A

)
(3.8)

Where Θ−1 is the standard normal CDF,

µl is the mean of the measurements at level, l

σl is the standard deviation of the measurements at level, l

A is the number of quantization intervals, and q is the index (i.e. q = 1, .., A)

Just like in the case of the other quantizers discussed, there is information loss which

could be estimated based on Eqn (3.4). The channel error of the discussed quantizers

can be estimated based on the knowledge of the modulation scheme and channel used for

transmission within the communication system.

3.2 Modulation

The binary phase shift keying system was used for modulation of the bit stream. This

was achieved by transmitting a positive pulse for the symbol, ′1′ and a negative pulse for

the symbol, ′0′ as seen in the Fig. (5.5)
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Figure 3.3. BPSK Modulation

Each quantized sample is represented by a group of n binary pulses and transmitted

through the channel. At the demodulator/receiver, a matched filter is used for signal de-

tection where the received signal is compared with a threshold of zero. If greater than zero,

the symbol, ′1′ is interpreted. On the contrary, if the signal is less than zero, the symbol,

′0′ is interpreted. Because of channel noise, some of these pulses are incorrectly detected at

the receiver. Hence the decoded value at the receiver will differ from the quantized sample

that was transmitted. The probability of each bit being corrupted or flipped is dependent

on the channel model implemented

3.3 Wireless Channel Model

In this thesis, we assumed that the BPSK system was used for transmission through the

Additive White Gaussian Noise (AWGN) wireless channel. The AWGN channel model is

the most prevalent type on the bit error model of the wireless channel. It allows for real-

world noise conditions, and has a noise variance of N0/2, where N0 is the power spectral

density of white noise. The channel is assumed to be memoryless with each error occurrence

independent of each other. This channel model becomes an instance of the binary symmetric

channel (BSC) which is defined by a single parameter, Pε representing the probability that

a given bit is flipped from a one to a zero or vice-versa. This probability is dependent on

the average bit energy to noise ratio, (Eb/N0) based on equation below;

Pε = Q

(√
2Eb
N0

)
(3.9)
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where Q(z) =
∫ +∞
z

1√
2π
e−

x2

2 dx. The equation above shows that the bit energy to noise

ratio can be used to control the error probability of a bit. Conventionally, all bits of a

measurement is allocated equal energy for transmission through the channel, an approach

commonly referred to as equal error protection (EEP). This implies that all bits have equal

chance of getting corrupted regardless of their significance. However, the power can also be

allocated unequally thereby providing unequal error protection (UEP) as will be seen later

in the thesis.
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Chapter 4

MULTI-SCALE BCS AND QUANTIZATION

EFFECT

The huge increase in the use of multimedia technologies has necessitated the requirement

for greater image compression performance. In order to address this need in the specific area

of still image compression, a novel paradigm called compressed sensing is currently being

developed.

Compressed sensing is about acquiring and recovering a sparse signal in the most efficient

way possible (sub-sampling) with the help of an incoherent measurement matrix. When ap-

plied to 2-D images and their high resolution, CS faces several challenges like larger memory

requirement for the measurement matrix, and more computation at the encoder and de-

coder. As a solution to this problem, [15] proposed a BCS method to reduce the memory

requirement and computational cost. The original image is first divided into blocks which

are then sampled independently. This method is suitable for real-time sensing of natural

2D-images since it only requires storing a small measurement matrix and encoder does not

need to access the entire target at once. However, instead of implementing the block op-

eration and sampling in the original image space, a more efficient way is to implement the

block operation in the sparse domain (i.e. wavelet domain) and then obtain CS measure-

ments in that domain. The work of [14] proposed a Multiscale Block-based CS (MSBCS)

approach to perform sampling in the wavelet domain for natural images, which shows that

sampling in a transform domain is an efficient way to obtain CS measurements. MSBCS
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exploits the statistical models for wavelet coefficients in performing compressed sampling

and reconstruction. Here, the degree of subsampling was adapted to the wavelet decompo-

sition. The hierarchical structure of wavelet decomposition provides a better framework for

capturing global features from the signal/image. Compared to the current sampling schemes

for compressed image sampling, the proposed MSBCS sampling approach has the following

advantages

• Fewer number of necessary measurements required for image reconstruction

• Greater computational efficiency

• Lesser memory requirement

• real-time sensing

• Faster reconstruction

This chapter introduces the MSBCS system and explores the effect of quantization on

the performance. An optimal bit allocation method was proposed in order to mitigate the

quantization effects under the constraint of a fixed bit budget. A noiseless transmission is

assumed during the simulation of the communication system.

4.1 Introduction to MSBCS

The general structure of the MSBCS system is shown in block diagram in figure (4.1).

In the following subsections, the functionality of each block in the sectioned part of the

diagram will be described. The discussion here focuses on the encoder since the decoder has

been discussed previously in chapter 2.
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Figure 4.1. MSBCS Based Communication System

4.1.1 Wavelet Transform

Wavelet transform decomposes an image into several resolution levels and produce sub-

images whose statistical characteristics are much easier to compress than the original image.

The decomposition is achieved with the aid of a low-pass filter and a high-pass filter. The

transform decomposes the input image into approximation coefficients (from the low-pass)

and a number of detail coefficients (from the high-pass) according to the level of decomposi-

tion. A number of decomposition levels is attained by repeating the decomposition process

with the high and low pass filters after down-sampling as seen in the figure (4.2) below.

Figure 4.2. 2-level filter bank for 1D signal

Where h[n] and g[n] are the low and high pass filters respectively.

This decomposition can be done easily at low complexity using MATLAB program. First,

the signal is decomposed into low and high frequency components. Then the high frequency

components are then iteratively decomposed into low and high frequency components as

shown in 4.2. For 2D signals like images, the above decomposition process is applied in both
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horizontal and vertical directions to image signal to produce four subbands termed low-low

(LL), low-high(LH), High-Low (HL) and High-High (HH). In the case of two dimensions, only

the LL band is iteratively decomposed to obtain the decomposition of the two-dimensional

spectrum shown in figure 4.3 below. The lowest frequency coefficients are referred to as the

base-band coefficients and the other coefficients are termed sub-band coefficients.

Figure 4.3. 3-level Wavelet Decomposition for 2D image signal

The number of samples in each resulting subband is as implied by the diagram: the

critical sampling ensures that after each decomposition the resulting bands all have one

quarter of the samples of the input signal as shown in figure 4.4 below.

Figure (4.4) above shows how the each coefficient disintegrates with further decompo-

sition (i.e. coefficient B at l = 0 disintegrates into coefficients B1, B2, B3, B4 at l = 1).

This implies that the coefficients get smaller and smaller as the decomposition progresses

and consequently, the value/weight of each coefficient reduces with the decomposition level.

Therefore, the final result of the transform would have most of the signal information con-

centrated at the base-band (l = 0) while the information in the other sub-bands (l = 1, 2, 3)

will be sparse. Figure (4.5) depicts the resulting coefficients after each decomposition of a

3-level wavelet transform of a 512× 512 Lena image.

It can be observed that most of the detail coefficients are very small and can be com-
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Figure 4.4. Effect of Sampling After Each Decomposition Process

Figure 4.5. 3-Level Decomposition of a 512× 512 Lenna image

pressed. However, The approximate coefficients are seen to be large and in-compressible.

Therefore, compressed sampling is usually applied to the detail coefficients while the approx-

imate coefficients are encoded in their raw form as shown in figure (4.6). The block transform

was obtained by dividing each sub-band into a number of blocks with sizes Bl × Bl, where

variable block sizes was implemented based on the wavelet decomposition level. Larger block

sizes were used at higher decomposition level, while smaller block sizes were used at lower

decomposition level. Since the statistical characteristics of the containing subband will be

transmitted with each block, a large block size will minimize this overhead. In this work
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we implemented block sizes, Bl of 16, 32, and 64 at level l = 1, 2 and 3 respectively as a

compromise.

Figure 4.6. Separate Transmission of Approximate/Baseband Coefficients

Each of the blocks will be projected onto a small measurement matrix of a given sub-rate

(measurement/pixel) before being quantized and transmitted as will be seen in later sections.

The sampling and quantizing features of each block is adapted to the sampling, quantizing,

and transmitting features of the subband where the block is located. The next subsection

describes how MSBCS exploits the wavelet decomposition in acquiring CS measurements at

an optimal sub-rate that is dependent on the decomposition level of the wavelet transform.

4.1.2 Measurement Allocation

Given an N ×N image that has been transformed into wavelet coefficients as discussed

in the previous section, where each decomposition level, l has Nl coefficients. The size of

block within each level is given by Bl ×Bl which is then rasterized into a vector as 1×B2
l .

Therefore, the measurements obtained from block, j at level l can be expressed as follows;

yj,l = ΦlΨj,lx (4.1)

Where Φl is an MB,l × B2
l matrix, and MB is the number of measurements taken from

each block at level, l. Lets assume we are given the total number of measurements needed

to be acquired, M , or the overall subrate, S (measurements/pixel or mpp). The number
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of measurements needed to be acquired can be shared among the decomposition levels so

that Ml measurements are are acquired at decomposition level, l, with sub-rate Sl = Ml/Nl

and
∑L

l=0Ml = M . Each transform block at level, l can therefore be measured at a sub-

rate Sl. The transform coefficients at each level possess different weights relative to the

decomposition level as seen in fig. (4.4) above and thus each level is assigned different

subrate accordingly. For instance, the sub-rate of the base-band (LL) is usually set to full

sampling i.e. S0 = 1 and based on [14], the weights of each level is found relative to the

baseband weight as expressed as below;

Wl = 16L−l (4.2)

Where L is the number of wavelet decomposition levels. Therefore given an overall sub-

rate, S and the weight of each level,Wl the resulting MSBCS allocation of sub-rate across

each level can be described as follows:

Sl = WlS
′ (4.3)

Under the constraint that

S =
1

4L
S0 +

L∑
l=1

3

4L−l+1
WlS

′ (4.4)

Based on the formulations above, S is first obtained from Eqn. (4.4) and then substituted

in Eqn. (4.3) in order to obtain the sub-rate, Sl at each level. However if the result of the

sub-rate, Sl is greater than 1, the sub-rate is set to 1 and substituted back into Eqn.(4.4) to

obtain a new S as shown below.

S =
1

4L
S0 +

3

4L
S1 +

L∑
l=1

3

4L−l+1
WlS

′ (4.5)
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The above process prevents oversampling and ensures that the sub-rate of each sub-band,

Sl ≤ 1. Table (4.1) below shows the allocation of subrate given varying overall sub-rates

together with the resulting compression performance.
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Table 4.1. Measurement Allocation among sub-bands

S S1 S2 S3 PSNR

0.1 1.0000 0.1600 0.0100 31.55

0.2 1.0000 0.5867 0.0367 34.67

0.3 1.0000 1.0000 0.0667 36.67

0.4 1.0000 1.0000 0.2000 37.90

0.5 1.0000 1.0000 0.3333 39.01

The result above was obtained in [14] and it indicates a superior compression performance

compared with other block-based CS approaches. However, these results do not include

quantization and hence, the compression performance is based entirely on the overall sub-

rate. When quantization is considered, compression performance is usually based on the

bits per pixel (bpp). In our work, the bit rate can be expanded as follows;

bpp = Nm · S (4.6)

Where bit-rate (bpp) = Available bit budget/Total number of pixels

Average bits per measurement, Nm (bpm) = Available bit budget/Number of measurements

Overall sub-rate, S (mpp) = Total number of measurements/Total number of pixels

In the previous chapter, we examined different quantization schemes with the assumption

that the bits per measurement (bpm) was known. In the sections that follow, we would

explore different ways in which a given bit budget can be allocated and how these allocations

effect the compression performance of the MSBCS system.

4.2 Bit Allocation

Just like the measurement allocation within each sub-band was obtained given an overall

subrate, S, we would determine the allocation of the bits among the sub-bands given an

average bpm, Nm. The average bpm is equivalent to case of an equal allocation of the total

bits among the measurements so that Nm = K. By increasing the number of quantization

intervals, A or the bit rate , K (bpm) within both quantizers, we can reduce the amount of
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uncertainty or error caused by quantization. Assuming the total number of bits available,

NT and total measurements acquired, MT are known, the distribution of the bits among

the measurements can be obtained in two major ways; by simply allocating the bits equally

among the measurements (Equal bit allocation), or by distributing the bits to the mea-

surements based on the significance of the sub-band (Optimal bit allocation). The optimal

allocation scheme is performed under the constraint of a fixed average bpm, Nm. For a given

bit allocation scheme, a general representation that relates the bpm, Kj and measurements

Mj at each subband, j is shown below;

#SB∑
j=1

Kj ∗Mj = NT (4.7)

where Kj is the bits/measurement (bpm) in sub-band j, Mj is the number of measurements

acquired from sub-band j, #SB is the number of sub-bands, and NT is the total number of

bits available.

4.2.1 Equal Bit Allocation

This is the simplest and most direct approach to allocating bits among the measurements.

Based on equation 4.7, Kj is equal to a constant,K, regardless of the sub-band, as shown

below;

K ∗
#SB∑
j=1

Mj = NTotal (4.8)

Where K = NT/MT is also the average bpm, Nm. That is, using the same measurement

allocation result, equal bit and optimal bit allocation result can be compared under a fixed

average number of bits per measurements, Nm. The next section looks at how the total bits

can be optimally allocated across the sub-bands to improve performance while maintaining

the same average bpm, as the equal bit allocation.
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4.2.2 Optimized Bit Allocation

As opposed to the case of equal bit allocation, different number of bits is allocated

per measurement depending on the variance of the subband in which the measurement

is located. It can be observed in figure 4.4 and 4.5 that a large portion of the signal

energy is concentrated at the lowest subband (LL). Also, the signal energy reduces with

an increase in decomposition level. Hence, the higher levels contain smaller measurement

values and variances. Assuming, the measurement allocation within each subband is known

from sampling stage, and each sub-band has been assigned an appropriate quantizer with

a distortion Dj and rate Kj, the optimal bit allocation for the MSBCS system can be

formulated as a problem to minimize the global distortion. The global distortion is estimated

by the sum of the sub-band distortions after quantization. Hence, we have

Dtotal =

#SB∑
j=1

MjDj(Kj) (4.9)

Subject to the constraints of a given bit budget and a positive bit assignment

#SB∑
j=1

MjKj = NT (4.10)

−Kj ≤ 0 (4.11)

where Mj is the number of measurement taken from sub-band j,which was obtained in

previous section when given an overall sub-rate,S. Kj is the number of bits used to represent

a measurement in sub-band j, and NT is the total bit budget. It is well known that there

is usually a mismatch between theoretical formula and the actual rate-distortion curve, and

it is difficult to develop a closed form expression for the R-D function for the Gaussian

measurements. Therefore, in this work, we assume that the rate-distortion function for the

quantizer can be modeled generally by
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Dj(Kj) = γσ2
j2
−2Kj (4.12)

Where σ2
j is the variance of measurements in sub-band j, and γ is a constant that

depends on the distribution of the measurement. Since we are using Gaussian measurement

matrix to take CS measurements, we have a Gaussian distribution of measurements. The

corresponding constant for Gaussian distribution is chosen as 2.72 (from [17]).

The solution to the optimization problem can be found using the Lagrangian method.

Assuming that K∗ = [K1, K2, ....K#SB] minimizes the objective function while satisfy-

ing the constraints above. Then based on the KKT condition, there exists vector λ =

[λ1, λ2, ..., λ#SB] and µ such that

∇Dtotal +

#SB∑
j=1

λj∇gj (K∗) + µ∇h (k∗L) = 0 (4.13)

K∗j ≥ 0 λ∗j ≥ 0 λ∗jK
∗
j = 0, j = 1, 2, .....,#SB (4.14)

#SB∑
j=1

MjK
∗
j = 1, (4.15)

Based on the conditions above, λ = 0 for all i, therefore Eqn. (4.13) can be simplified as

follows

− 2γσ2
j2
−2Kj ln 2 + µ = 0 (4.16)

Therefore,

Kj =
lnσ2

j + ln(ln 4)− lnµ+ ln γ

ln 4
(4.17)

Substituting eqn.(4.17) into eqn.(4.15), the value of µ was obtained as follows;
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(a) Original Lenna image at 8 bpp (b) 1 bpp with 1dB channel (PSNR = 18.79dB)

(c) 1 bpp with 5dB channel (PSNR = 32.12dB) (d) 0.5 bpp with 5 dB channel (PSNR = 29.92dB)

(e) 0.25 bpp with 5 dB channel (PSNR = 28.41dB)

Figure 5.7. Transmission of 512 × 512 Lenna image
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Chapter 6

CONCLUSION AND FUTURE WORK

In this work, we have presented an optimal error protection scheme for transmitting

compressed sensing images over wireless channels using a combination of optimal bit and

power allocation for the compressed sensing measurements. We investigated the effect of

three quantizers (i.e. Uniform scalar quantizer, CDF-based Quantizer, and the Lloyd-maxx

quantizer) on the performance of compressed sensing. In the absence of channel noise, our

proposed optimal bit allocation improved the power signal-to-noise-ratio (PSNR) by up to

13 dB with the Lloyd-max quantizer yielding the least quantization error. The use of Lloyd-

maxx with incorporation of the optimized bit and power allocation schemes has been shown

to yield best performance at all channel conditions compared with the use of Uniform scalar

quantizer and CDF-based quantizer.

In the presence of channel, an optimal average number of bits per measurement exists

that adaptively combats quantization and channel noise based on channel condition. This

system represents a general framework for image transmission, which adaptively chooses the

optimal average number of bits per measurement and sub-rate based on the channel condi-

tion to simultaneously combat the quantization noise and the channel noise. The Lloyd-max

quantizer had best results with the optimal average number of bits per measurement, but

CDF-based quantizer outperformed Lloyd-max quantizer beyond the optimal average num-

ber of bits per measurement. In all cases regardless of the quantizer used, our proposed

optimal power allocation scheme improved the PSNR by up to 5 dB. Also, the implementa-

tion of our framework with both bit and power allocation offers better PSNR performance
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than that proposed in [34] especially at severe channel conditions.

Presently, we have succeeded in exploring and improving the performance of quantized

compressed sensing after transmission through an additive white gaussian noise channel.

Based on our results, we have been able to show that the number of bits and measure-

ments required for encoding given a fixed bit budget can be used to control how the channel

affects reconstruction and hence the robustness of quantized compressed sensing. This is

because we considered both the quantization and transmission explicitly during evaluation

of compressed sensing performance for pragmatic applications within a wireless image com-

munication system. Our work independently optimized the allocation of the quantization

bit and power budget. This work can be extended further by jointly optimizing the bit and

power budget based on our approach. In the future, more wireless channel effects like fading

and multi-path effects will be considered in addition to the noise as a source of distortion.

Also, for further improvements, an appropriate error detection mechanism can be designed

in addition to our algorithm to detect packets with bit errors. This way, the number of

packets needed to be discarded as packet loss can also be minimized. Although, our work

was limited to noisy channels, It is ultimately hoped that after considering the other wireless

channel effects, there would be room to improve the performance of compressed sensing to

surpass that of the JPEG standard while retaining the advantages of CS in terms of low

complexity, cost, power, and resource needed for implementation. Hence, applications like

the MRI and other yet unknown applications can become more time and resource efficient

with the implementation of the compressed sensing within their design.
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