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ABSTRACT 

 

In Part 1, I study the characteristics of short orders in stock markets. Fleeting orders are quick limit 

orders that remain on the limit order book for only a few seconds before being canceled, and are 

significantly different than more patient, static, limit orders that are added to the limit order book 

and await execution. I investigate the impact that fleeting orders have on spread and depth 

measures of market quality, and how fleeting orders differ from static orders. Attention is also 

given to the extent that total depth can be decomposed into the two components of fleeting and 

static depth. The results suggest that static orders have a positive impact on both spread and depth. 

However, fleeting orders have little impact on total liquidity. The results suggest that fleeting 

orders contribute noise to markets, and do not positively impact the spread and depth components 

of liquidity. This result is robust to the simultaneous issue that order submission strategies depend 

on current market quality conditions. In Part 2, I investigate the link between orders and trades in 

equity markets. A substantial body of research on limit order markets investigates the 

characteristics of orders and the characteristics of trades. However, there has been little research 

on how the characteristics of orders impact the characteristics of trades. I investigate the impact 

that marketable orders and limit orders have on the resulting trade characteristics. In addition, we 

test theoretical predictions on how market characteristics, like time of day and depth, impact order 

and trade characteristics. Lastly, in Part 3, I investigate the causes, and effects of intraday flash 

crashes. Breakdowns in financial markets occur when the market is not able to facilitate its 

principal responsibilities of liquidity provision and price discovery. In this paper we look at flash 

crashes, a special type of market breakdown. These crashes are generally non-fundamental in 

nature, and the market making responsibilities of liquidity and price discovery are only temporarily 

suspended for a short period before rebounding to pre-crash levels. This paper analyzes intraday 

flash crashes, primarily focusing on three aspects of flash crashes: crash frequency, crash triggers, 

and the impact on market quality once the crash has seceded. 
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I. INTRODUCTION 

 Exchanges and institutional traders devote considerable resources into decreasing the 

latency of transmitting market messages and increasing the speed of order placement (Gao, Yao, 

and Ye (2013)). Efforts to decrease latency include placement of traders’ proprietary trading 

computers next to exchange servers, known as co-location, as well as development of trans-city 

networks (Garvey and Wu (2010)). These networks include fiber optic cables, lasers, radio waves, 

and microwave towers used to connect traders in New York City and other cities such as Chicago 

and London.1 There is not a universally held opinion on whether these advances positively or 

negatively impact market quality (Jones (2013)). One externality of high speed markets is the 

increase in the order-trade ratio, which coincides with a decrease in the average duration of an 

order (Hasbrouck and Saar (2009), Hendershott, Jones, and Menkveld (2011)). Many orders are 

placed for microseconds and then quickly canceled, which are often referred to as fleeting orders. 

Quick, fleeting orders are receiving an increase in attention in the microstructure literature because 

of the potential impact on market quality (Hasbrouck (2013), Baruch and Glosten (2013)). Whether 

or not fleeting orders and low-latency orders improve market quality is the focus of this paper.  

 I compare the characteristics of fleeting orders against longer duration orders to study 

market quality in low-latency markets. Much of the literature on market quality in low-latency 

                                                           
1 Spread Networks has a fiber optic line that connects Chicago to New York City (Laughlin, Aguirre, Grundfest 

(2014)). Hibernia Networks manufactured a high capacity trans-Atlantic fiber optic path between New York and 

London. McKay Brothers offers microwave towers to connect traders across different locations around the world. 

Anova Technologies delivers high-frequency data through laser and radio networks. 
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markets looks at the type of traders placing the order (i.e. algorithmic and/or high frequency 

traders) rather than the characteristics of the order, leading to conflicting conclusions on whether 

to classify algorithmic and high frequency traders as helpful or harmful to financial markets. 

Studies such as Hendershott, Jones, and Menkveld (2011), Menkveld (2013), Hendershott and 

Riordan (2013), and Brogaard, Hendershott, and Riordan (2014) provide evidence that high 

frequency and algorithmic trading help improve market quality, while studies such as O’Hara 

(2011), McInish and Upson (2012), Kirilenko, Kyle, Sadami, Tuzun (2014), and Gerig (2015), 

provide examples of potential harmful effects. The question of interest regarding market quality is 

not who places the orders, rather what orders are being placed, since a class of traders can pursue 

different order strategies, which either benefit or harm markets, at different times. I take a different 

approach on the subject in that I look at the orders being submitted, irrespective of the trader, and 

investigate how the order type impacts market quality. The empirical tests look at not only top-of-

book measures (such as spread and price impact), but also depth measures, which may be more 

appropriate measure in high-frequency markets (O’Hara (2015)). In nearly all of the tests, static 

orders positively impact spread and depth, while fleeting orders have little or no positive impact 

on market quality and liquidity. 

Empirically, I separate fleeting orders, which only provide liquidity for two seconds or less 

(Hasbrouck and Saar (2009)), from static orders, which provide liquidity for greater than two 

seconds.2 Using order-level data from NASDAQ OMX, I recreate the limit order book for the 

NASDAQ exchange. In addition, and in an effort to disentangle the effects of fleeting orders from 

the effects of static orders, I also recreate two artificial limit order books, one that comprises 

                                                           
2 Two seconds is arguably too long of a cutoff of fleeting orders in a low-latency market. However, given the results 

of the paper, reducing the measure to one second, or even sub-seconds, would only strengthen the results and 

implications of the paper. 



4 

 

fleeting orders, and one that comprises patient orders. By artificially separating the limit order 

book into these two components, I am able to measure and compare market quality (i.e. depth, 

spread, price impact) of fleeting and static orders.  

This approach provides a number of contributions to the literature on liquidity, limit orders 

markets, and high frequency trading. First, separating the order types allows for a direct 

comparison of the market quality of fleeting orders, which provide liquidity only for a few seconds, 

against the market quality of static orders, which are submitted to the limit order book for longer 

durations. Since both human and algorithmic traders can pursue strategies of submitting static 

orders and fleeting orders, separating the two order types effectively tests the impact of the order 

type on market quality rather than the class of trader’s impact on market quality.  

 A second contribution of my study is that I show depth can be separated into two 

components, patient depth and fleeting depth, wherein each component has a unique and varying 

impact on total depth and liquidity. A partitioned view of depth is more appropriate in low latency 

markets. Traditionally, depth is defined as the total number of shares available to trade at prices at 

(or near) the best bid and offer at a specific point in time. This simple definition does not, however, 

distinguish between starkly different types of order and trading strategies. Limit order traders can 

trade patiently (e.g. Glosten (1994), Handa and Schwartz (1996), and Rosu (2009)), or 

aggressively, as shown by recent high frequency trading papers (e.g. Hasbrouck and Saar (2009) 

Menkveld (2013), Baruch and Glosten (2013)).  

 Although my study is the first to empirically decompose depth into fleeting and static 

components, the existing work on limit order markets suggest that depth is composed of orders 

from various types of traders. Theoretical literature suggests that limit order traders pursue a 

number of strategies. Glosten (1994) considers patient limit order traders to be uninformed 
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investors who make a market for impatient traders who submit market orders. Impatient traders 

may be either informed or noisy. In Glosten’s model, limit order traders are patient and supply 

liquidity to impatient traders. In a different setting suggested by Rosu (2009), in which all 

participants are informed traders, limit orders are also submitted by patient traders. However, Rosu 

assumes that each trader is a liquidity trader, and information is constant and known by all market 

participants. In this framework, all agents incur waiting costs. Limit orders are submitted by traders 

with low waiting costs, and traders with high waiting costs submit market orders. However, not 

all limit orders are assumed to be patient. In Rosu’s model, if depth in the limit order book is high 

and the spread is at a minimum, then impatient traders will either submit market orders, or submit 

quick, fleeting, limit orders. Fleeting orders are orders that are added and quickly canceled, which 

are starkly different than patient limit orders that supply liquidity. Theoretical work by Baruch and 

Glosten (2013) show that fleeting orders are the result of liquidity supplying traders preventing 

their stale prices from being picked off. To avoid pickoff risk, a liquidity providing trader will 

cancel stale quotes and replace them with newly priced quotes. Theories by Rosu, and Baruch and 

Glosten suggest that liquidity and depth are composed of both patient and fleeting orders. In related 

empirical work, Hasbrouck and Saar (2009) observe that one third of limit orders are canceled 

within two seconds. Further, Hasbrouck (2013) documents flickering and volatile best bid and best 

offer quote prices that may be the result of high frequency traders rapidly submitting and canceling 

nonmarketable orders. I build upon these studies by empirically showing the impact that patient 

orders and fleeting orders each have on total liquidity.  

 The third contribution of this study is that I investigate previously untested assumptions 

and implications from the theoretical literature on fleeting orders and low-latency limit order 

markets. A major obstacle in the analysis of fleeting orders is the difficulty in constructing the 
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limit order book, and the difficulty in distinguishing between the impact that a fleeting order and 

static order has on total depth, which the approach in this study overcomes. In Rosu’s (2009) 

model, traders may switch between limit orders and market orders depending on the state of the 

limit order book. Fleeting orders increase when the depth in the limit order book is high. I test 

Rosu’s model by looking at the structure of the limit order book and composition of fleeting and 

static orders. I also test theoretical predictions from Baruch and Glosten (2013), who provide a 

number of implications on flickering quotes. In their model, flickering quotes exhibit different 

properties depending on the number of traders in the market. They show that although there may 

be fleeting orders that lead to flickering quotes, when there are many traders submitting flickering 

quotes, depth will appear to be static.  

 Although some traders may not initially decide on whether to submit a fleeting or static 

order, in retrospect the majority of orders are fleeting. Due to the ex-post definition of fleeting 

orders, there is concern of endogeneity. Simultaneity issues may arise if a trader’s order 

submission strategy depends on current market conditions. A liquidity supplying trader who 

submits an order may be managing pick-off risk by monitoring the markets for information. As 

market conditions change, as evidenced by changes in the limit order book, the trader will 

dynamically respond to the new market conditions by deleting outstanding orders and submitting 

new, appropriately-priced orders. Theoretical work by Baruch and Glosten (2013) support this 

view. Additionally, empirical work shows that high speed traders have the ability to respond to 

changing market conditions (i.e. Hendershott and Riordan (2013)). The simultaneity issue is that 

current market quality is impacted by order submissions (which is true by construction), while at 

the same time market conditions may impact a trader’s order submission strategy. I use two-staged 

least squares (2SLS) regression to simultaneously model the two endogenous relations. The results 
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are robust, further strengthening the conclusions regarding the impact of fleeting and static orders 

on market quality. 

 The paper outline is as follows. I will first review the theoretical predictions of how fleeting 

and static orders should impact total liquidity. I then describe the data, and major empirical 

methods used. The fourth section compares the impact that fleeting and static orders have on total 

market quality. The fifth section tests theoretical predictions regarding fleeting orders and how 

they should behave. Finally I conclude.  
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II. BACKGROUND 

 Prior research does not explicitly define depth as being comprised of two separate 

components of static and fleeting depth. Previous studies do, however, suggest traders pursue 

multiple strategies when supplying liquidity. On one hand, theoretical work suggest limit order 

traders may patiently supply liquidity. These traders make a market for impatient traders by placing 

orders and waiting for execution (i.e. Glosten (1994), Foucault, Kadan, and Kandel (2005), Handa 

and Schwartz (1996)). On the other hand, limit order traders may also submit fleeting orders to 

increase the probability of execution when the limit order book is full (Rosu (2009)) or to manage 

undercutting exposure (Baruch and Glosten (2013)). These studies suggest depth in low-latency 

markets is not the composition of uniform orders. Rather, depth is composed of two categories of 

orders: static depth and fleeting depth. Static depth is defined as orders that are placed, and 

patiently await execution, while fleeting depth is defined as the depth that is provided by traders 

who submit and quickly cancel orders. Each type of depth has a different impact on total liquidity.  

 

STATIC DEPTH 

 Traditional theories of limit order markets assume patient liquidity providers place limit 

orders while marketable orders are placed by impatient liquidity demanders. In the model of 

Glosten (1994), limit order traders are risk averse market makers. These traders patiently place 

orders to provide liquidity. In the Foucault, Kadan, and Kandel (2005) framework, impatient 

traders submit market orders and patient traders submit limit orders, providing liquidity for the 
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impatient traders, suggesting that patient traders improve liquidity. In the Rosu (2009) model, all 

traders have waiting costs, and the aggressiveness of the trader is determined by whether the 

trader’s waiting costs are high or low. In equilibrium, impatient traders submit market orders, while 

patient traders submit limit orders and wait for execution from an impatient trader. Unless the limit 

order book is full, Rosu shows the new limit orders will be placed aggressively within the bid-ask 

spread.3 Orders that patiently await execution should be a positive component of depth, and orders 

that are placed inside the spread should improve liquidity measures such as quoted and effective 

spread.  These studies provide theoretical support that patient depth, which is composed of static 

orders, should be a positive component of liquidity. I refer to this as the static depth hypothesis. 

 Hypothesis 1: Static depth has a positive impact on total market liquidity 

 

FLEETING DEPTH 

 Fleeting orders are orders that are submitted and canceled almost immediately. Although 

fleeting orders are typically limit orders, the characteristics of these orders are different from limit 

orders in the traditional sense (Hasbrouck and Saar (2009)). Theoretical studies such as Rosu 

(2009) and Baruch and Glosten (2013) highlight a number of reasons that traders pursue fleeting 

order strategies. A special case of the Rosu theoretical model, when depth is high and the spread 

is at a minimum, traders will enter into a game of attrition where fleeting orders are used to entice 

the opposite side of the limit order book to submit a market order. Limit order traders only submit 

fleeting orders when the limit order book is full, and the orders are always submitted within the 

                                                           
3 Rosu (2009) defines the limit order book as being full when the bid-ask spread is at a minimum, nonzero tick size. 

The model also assumes that there is a maximum number of limit orders allowed on the limit order book, which is 

not true empirically. I consider a ‘full’ limit order book to be when the spread is low and depth is high.  
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spread. Empirically, this suggests that fleeting orders are more likely for limit order books 

experiencing high depth or low spreads.  

 Baruch and Glosten (2013) develop a model where fleeting orders are the result of 

competing liquidity supplying traders. In Baruch and Glosten’s model, traders submit competitive 

orders. However, limit order traders are exposed to time sensitive risk. To avoid time sensitive 

risk, traders withdraw outstanding orders and submit new orders quickly. The frequent adding and 

cancelling of orders will yield a flickering quote, but as the number of traders that pursue this 

strategy increase, the aggregate quotes in the market will have stable depth and appears to be static. 

Baruch and Glosten’s theory suggests that during periods when there is high depth and many 

fleeting orders, the best bid and offer should appear static. The cumulative depth provided by 

fleeting orders should yield constant, forecastable, depth.  

Both the theories by Baruch and Glosten (2013), and Rosu (2009) suggest that during 

periods of high depth and low spread, fleeting orders have a positive impact on total depth and 

liquidity. Rosu predicts that fleeting orders are price improving that are always submitted within 

the spread. Baruch and Glosten predict that fleeting orders are simply orders placed by liquidity 

supplying traders who are managing pick off risk. I refer to these theories collectively as the 

fleeting depth hypotheses.   

 Hypothesis 2: Fleeting depth has a positive impact on total market liquidity 

 Hypothesis 3: Fleeting orders are more likely when the spread is low and depth is high 

 Hypothesis 4: Fleeting orders are only placed within the bid-ask spread 
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III. DATA AND METHODS 

  

 The empirical analysis in this paper utilizes several different databases. Since measures of 

depth require construction of the limit order book, I use an order-level dataset, the NASDAQ 

TotalView-ITCH database, which includes order submissions, deletions, updates, and executions 

for orders placed on the NASDAQ exchange. With this order dataset I am able to reconstruct the 

limit order book. Additional stock information comes from the Center for Research and Securities 

Prices (CRSP) and daily trading characteristics come from the Securities and Exchange 

Commission (SEC) Midas database. The sample comprises the three months of trading days from 

August through October 2014. 

 A number of filters are employed. Since data for the exchange used in the study is owned 

by NASDAQ OMX, my sample includes only NASDAQ listed securities. On the NASDAQ 

exchange there are approximately 2,871 NASDAQ listed securities that trade during our sample 

period. In order to ensure that the liquidity measures used in this study provide meaningful results, 

additional filters eliminate stocks that do not trade at least 1,000 shares each day of the sample, as 

well as stocks that do not have a closing price of five dollars for each day of the sample (similar 

filters as Hendershott, Jones, and Menkveld (2011)), which leaves a sample of 1,186 actively 

traded securities. The limit order book is created dynamically so that every order, update message, 

and execution is implemented into the limit order book, which yields a best bid and offer that is 

accurate to the nanosecond. When creating the limit order book, I remove stub-quotes from the 

computations. Stub-quotes are orders that have an extremely low probability of execution 
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(Egginton, Van Ness, Van Ness (2014)). At the beginning of the trading day, the data reveals that 

many bid orders are priced at one penny, and sell orders may exceed $100,000. These orders have 

a low probability of execution, and may erroneously skew the measures of depth that are used in 

this study. For this reason I do not use orders that are less than three dollars, or orders that are 

greater than $5,000 when rebuilding the limit order book. 4 The created limit order book provides 

depth at the top of the book and beyond the top of the book when each new message during the 

trading day is received. Depth is accurate to the nanosecond. 

 Table 1 presents the characteristics of the stocks that are used in the sample. The average 

stock trades at a price of $37.26, has a market capitalization of $5.67 Billion, and has 626 trades 

totaling 1,120,198 shares traded per day. The average stock in the sample receives 18,734 fleeting 

orders and 16,115 static orders each day.   

 

SEPARATING THE LIMIT ORDER BOOK 

  One difficulty for studies of market quality in low-latency markets is isolating the effects 

of multiple sources of liquidity improvement. For example, if market quality improves (spread 

decreases or depth increases) following the increase in algorithmic trading, as in Hendershott, 

Jones, and Menvkeld (2011), the improved liquidity may be partially due to non-algorithmic 

traders responding to increased competition induced by the algorithmic traders.  

I employ a novel way to test the effects of multiple sources of liquidity improvement. I 

create three separate limit order books. The first limit order book is the ‘true’ limit order book, 

which represents the limit order book that traders see in real time. This limit order book includes 

all orders added, executed, updated, and deleted. I also create two artificial limit order books, a 

                                                           
4 The data filters for the study eliminate stocks that do not have a closing price of five dollars. However, orders may still 
come in at any price. The cutoff of three dollars is to eliminate stub quotes from depth measures. 
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‘fleeting’ limit order book, and a ‘static’ limit order book. The fleeting limit order book is 

comprised of only orders that supply liquidity for two seconds or less, while the static limit order 

book is comprised of only orders that provide liquidity for greater than two seconds. The argument 

for studying depth in this manner is that both fleeting and static orders have an impact on total 

liquidity, but it is uncertain which type of order is driving the characteristics of the actual limit 

order book. With three limit order books I am able to see at each moment what is the market quality 

(spread and depth) of fleeting and static orders. Using these three limit order books I am able to 

isolate and test the effects of short-duration and long-duration orders on total market liquidity.  

I present the characteristics of orders in Table 2. These statistics are averaged by stock by 

day, for each statistic used, and then descriptive statistics are taken from the average stock-day 

observations. The average order is for 202 shares, is on the limit order book for 9 minutes and 32 

seconds (572 seconds), and is placed 23 cents from the top of the limit order book. There are 

approximately 32 orders for every trade. Static orders are placed on the limit order book for an 

average of 15 minutes and 50 seconds (950 seconds), and are placed 35 cents from the top of the 

limit order book. Static orders have approximately 25 orders to every trade. Fleeting orders are 

considerably less patient and more aggressive in pricing. The average fleeting order is on the limit 

order book for 240 milliseconds, and is placed 9 cents from the top of the limit order book. 

Although fleeting orders are more aggressive in their pricing, there are approximately 67 fleeting 

orders submitted for every fleeting order that executes.  

Figure 1 reports the competiveness of fleeting and static orders. The first panel reports the 

ratio of fleeting orders to static orders at different price points away from the BBO. Negative 

numbers represent the distance from the best bid price for buy limit orders, and positive numbers 

represent the distance from the best offer for sell limit orders. The second panel reports the ratio 
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of total depth (computed by summing the shares available for each order) at price points away 

from the BBO. From the first two panels, it is apparent that in general, fleeting orders outnumber 

static orders, with the exception being at the top of the limit order book. The third and fourth panels 

report the total number of fleeting and static orders, and the total depth provided by fleeting and 

static orders respectively. From these two panels it appears that most of the fleeting depth is at the 

top of the limit order book. All figures and summary statistics numbers are first averaged by stock, 

and then averaged across stocks.  

 

LIQUIDITY MEAURES AND VARIABLES 

 A major focus of this paper is testing the differences in market quality provided by orders 

that are static against the market quality that is contributed from orders that are fleeting. To test 

the market quality of static and fleeting orders, I compute three spread measures used in Goyenko, 

Holden, Trzcinka (2009), as well as two additional depth measures, yielding five liquidity measure 

that are computed for each of the three limit order books described above. The limit order book 

computations yield a market quality measure for the nanosecond the limit order book is updated. 

For much of the empirical tests I average market quality measures to the minute. My full dataset 

yields the average spread and depth for each stock, each minute of the trading day for each of the 

limit order books computed.  

The first measure is the quoted spread, the difference between the best bid and offer for 

stock j at time t. Quoted spread is defined as 

𝑄𝑢𝑜𝑡𝑒𝑑 𝑆𝑝𝑟𝑒𝑎𝑑 = 𝑝𝑗𝑡,𝑎𝑠𝑘 − 𝑝𝑗𝑡,𝑏𝑖𝑑.  
(1) 

I compute the quoted spread using the true limit order book, as well as the quoted spread for the 

fleeting limit order book and the quoted spread for the static order book. Using each of the three 
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limit order books yields three different measures of quoted spread: the true quoted spread, the 

quoted spread of fleeting orders, and the quoted spread of static orders.  

 I compute the effective spread for all three limit order books as 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑟𝑒𝑎𝑑 = 2 ∗ |𝑝𝑗,𝑡 − 𝑚𝑗,𝑡|,  (2) 

where the effective spread is twice the absolute distance from the price of a trade at time t to the 

midpoint of the BBO for stock j. The third common measure of market quality I use is the price 

impact that a trade has on the limit order book. In a highly liquidity market a trade will have a low 

price impact. Using the method of computing the price impact for three limit order books, I am 

able to see how fleeting orders and static orders react to information contained in trades. The price 

impact identifies the change in the BBO from the time of a trade to the BBO five minutes after the 

trade execution, which is considered the permanent component of the spread (Goyenko, Holdern, 

Trzcinka (2009)). I express it as a percentage of the original midpoint for stock j at time t. Price 

impact is defined as  

𝑃𝑟𝑖𝑐𝑒 𝐼𝑚𝑝𝑎𝑐𝑡 = 2 ∗
|𝑚𝑗,𝑡−𝑚𝑗,𝑡+5|

 𝑚𝑗,𝑡
.  

(3) 

 Measuring market quality only at the top of book does not fully reflect the market quality 

of a security. Traders wishing to execute large number of shares may be more concerned about the 

number of shares available to trade, rather than the cost to trade at the top of the limit order book. 

Therefore, limit order book depth is used as an additional measure of market quality. I use two 

depth measures, the first is the cost of a round trip trade (CRT), and the second is the depth-

weighted average price (DWAP). The CRT is defined in Domowitz, Hansch, and Wang (2005), 

and reflects the ex-ante cost a trader would encounter by buying and selling q number of shares. I 

modify the notation of Domowitz et al. slightly, and express CRT as  

𝐶𝑅𝑇 =  
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[∑ 𝐷𝑗,𝑎𝑠𝑘 𝑃𝑗,𝑎𝑠𝑘
𝑘−1
𝑗=1 + (𝑞 − ∑ 𝐷𝑗,𝑎𝑠𝑘

𝑘−1
𝑗=1 )𝑃𝑘,𝑎𝑠𝑘] − [∑ 𝐷𝑗,𝑏𝑖𝑑𝑃𝑗,𝑏𝑖𝑑

𝑘′−1
𝑗=1 + (𝑞 −

 ∑ 𝐷𝑗,𝑏𝑖𝑑
𝑘′−1
𝑗=1 )𝑃𝑘,𝑏𝑖𝑑],   

(4) 

 

where k is the number of ticks that a sell order of q shares has to travel on the ask side of the limit 

order book before q shares are filled, k’ is the number of ticks a buy order of q shares has to travel 

before being completely filled. The depth and price of tick j is represented by Dj and Pj. The first 

term of equation (4) is the cost to sell q shares, while the second term is the cost to buy q shares. 

The difference between the first and second term represents the total cost to buy and sell q shares 

of a security simultaneously, or the cost of a round trip trade of size q. Although Domowitz et al. 

consider 10 values of q between 1 and 2,701 in their depth simulations, I only consider five values 

due to computational constraints.  I consider values of q equal to 100, 500, 1,000, 5,000 and 10,000 

shares. Much of the empirical portions of this paper will focus on q values of 1,000 and 5,000. I 

express the CRT on a per share basis, which I define as the CRTSPREAD, as 

𝐶𝑅𝑇𝑆𝑃𝑅𝐸𝐴𝐷 =
𝐶𝑅𝑇

𝑞
. (5) 

 

CRTSPREAD can be interpreted in the same manner as quoted spread, with the exception that 

CRTSPREAD reflects more than the number of shares at the top of the limit order book.  The CRT is 

computed for all the limit order books in the study. If static orders and fleeting orders have a 

positive impact on market quality, then the CRTSPREAD should be low.  

 DWAP is the second measure of limit order book market quality that I use in this study. I 

calculate DWAP similar to Johnson and Upson (2013) as 

𝐷𝑊𝐴𝑃 =
∑ 𝑃𝑖𝐷𝑖 𝐼

𝑖=1

∑ 𝐷𝑖
𝐼
𝑖=1

, 
(6) 
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where there are I ticks on a given side of the limit order book, with a price of Pi and depth of Di at 

tick i. I calculate the DWAP for both the bid and ask side of the limit order book, and take the 

difference to get the DWAPSPREAD. 

𝐷𝑊𝐴𝑃𝑠𝑝𝑟𝑒𝑎𝑑 = 𝐷𝑊𝐴𝑃𝑎𝑠𝑘 − 𝐷𝑊𝐴𝑃𝑏𝑖𝑑. (7) 

 In total, I have three spread measures for top of book market quality: quoted spread, 

effective spread and price impact, as well as two spread measures that reflect depth in the limit 

order book: CRT and DWAP. All five measures of market quality are computed for the true limit 

order book, the fleeting limit order book, and the static limit order book. After computing each of 

the five measures for each nanosecond, they are averaged to the minute level for much of the 

empirical analyses.  

 Panel A of Table 3 presents the liquidity measures for the average stock in my sample for 

the NASDAQ exchange. The average stock has a quoted spread of 6 cents, effective spread of 3 

cents, and a negligible price impact. The CRT100 is the per share cost that a trader can expect to 

pay in transaction costs from simultaneously buying and selling 100 shares, and reflects depth 

beyond the top of the book. If there is greater than 100 shares in depth at the best bid and best 

offer, then the CRT100 will equal the quoted spread. If there is less than 100 shares at the best bid 

and best offer, the CRT100 will be greater than the quoted spread. The average stock in the sample 

has a CRT100 of 7 cents. It is not always possible to complete a round trip trade due to illiquidity. 

A trader wishing to buy and sell 100, 500, 1,000, 5,000, and 10,000 shares can expect to pay 7, 12, 

20, 136, and 190 cents respectively. The average DWAPspread is 1,052 cents. The average 

CRT1000 is 3.22 times the quoted spread, the CRT5000 is 20.25 times the quoted spread, and the 

DWAP spread is 37.23 times the quoted spread.  
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In Panels B and C of Table 3 I report the liquidity measures for the fleeting and static limit 

order books. The quoted spread of the static limit order book is 7 cents, while the fleeting limit 

order book has an average quoted spread of 20 cents. A hypothetical roundtrip trade of 100 shares 

against the artificial static limit order book would cost an average of 8 cents per share, while the 

cost of a 100 share roundtrip executed against the artificial fleeting limit order book would cost 21 

cents per share. A trade of 1000 shares on the static limit order book would cost 3.63 times the 

quoted spread on average, while a 1000 share trade on the fleeting limit order book would cost 

3.87 times the quoted spread on average.  

In addition to the measures of liquidity, there are a number of other variables that I use in 

the study. Rosu (2009) makes predictions about the aggressiveness of an order. I define order 

aggressiveness similar to Griffiths, Smith, Turnball, and White (2000), who measure 

aggressiveness relative to the BBO. A buy order is most aggressive if it is higher than the ask price 

(i.e. crossing the market). A less aggressive order is placed within the BBO, and the least 

aggressive orders are placed less than the best bid. A similar scale of order aggressiveness is used 

for sell orders. I calculate minute volatility as the standard deviation of the midpoint at time t. 

Range is used as a measure of daily volatility, similar to O’Hara, Yao, and Ye (2014), which is the 

difference between the daily high and low price.  

 



19 

 

IV. THE IMPACT OF FLEETING AND STATIC DEPTH ON TOTAL LIQUIDITY

 

 The empirical tests are broken into three broad categories. The first and second groups of 

tests are reported in this section. The first tests identify the impact that static orders and fleeting 

orders have on total depth, specifically addressing the hypotheses on whether fleeting and static 

orders impact total liquidity. These tests also compare the differences of fleeting orders against 

static orders. The second group considers the simultaneity issue that orders impact depth, while at 

the same time fleeting orders may be a function of depth. The third group of tests, reported in the 

following section, investigates the theoretical predictions or fleeting orders.  

 

HOW DO FLEETING AND STATIC ORDERS IMPACT LIQUIDITY? 

 Many theoretical papers on limit order markets assume that patient liquidity providers 

improve liquidity by making a market for impatient traders who submit market orders (i.e. Glosten 

(1994), Foucault, Kadan, Kandel (2005)). These theories suggest that static orders should have a 

positive impact on total liquidity. Theory also suggests that fleeting orders, although less patient 

than static orders, may also have a positive impact on liquidity. Theory by Rosu (2009) and Baruch 

and Glosten (2013) consider fleeting orders to be price improving orders submitted by liquidity 

supplying traders. Rosu’s (2009) model predicts that fleeting orders are placed within the bid-ask 

spread, suggesting that the market quality of the fleeting limit order book should improve liquidity 

measures at the top of the limit order book like quoted spread, effective spread, and price impact. 

Theory by Baruch and Glosten (2013) suggest that fleeting orders are liquidity providing limit 



20 

 

orders placed by traders managing their pick-off risk. Although the orders may be fleeting, the 

trader will replace the order with a new order. If these traders are liquidity providing traders, then 

the cumulative market quality from fleeting orders should improve the market quality of the 

complete limit order book. 

In Table 4, I report nine different liquidity measures for the total limit order book, as well 

as for the fleeting limit order book and static limit order book. The three top of book measures 

include the quoted spread, effective spread, and price impact. For the complete limit order book 

these are respectively 6.92 cents, 3.27 cents, and 26 basis points. Using the methods described in 

the previous section, I form two subsets of the complete limit order book. Using only static orders 

I form a static limit order book, and using fleeting orders I form a fleeting limit order book. I 

compute the same market quality measures for the two artificial limit order books as I do for the 

total limit order book. The quoted and effective spread for the static limit order book are 

respectively 7.08 cents and 3.50 cents, and for the fleeting limit order book they are respectively 

21.18 and 7.43 cents. The price impact is negligible.  

One of the objectives of this paper is to test the extent that static and fleeting depth each 

impact total depth. To test whether static orders have a positive impact on total liquidity I compare 

the liquidity measures of the static limit order book against the liquidity measures of the complete 

limit order book. If the static and fleeting limit order book have positive impacts on the complete 

limit order book, the differences should be insignificant. From columns 4 and 5 of Table 4, the 

quoted spread of the static limit order book is 0.16 cents larger than the total limit order book, and 

the effective spread is 0.23 cents larger. Both are statistically significant, but economically small. 

I repeat the test for fleeting orders, where the quoted spread is 14.26 cents larger and the effective 

spread 4.16 cents larger. The average fleeting quoted spread is 14 cents higher than the static limit 
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order book, and the effective spread is 3.9 cents higher. These preliminary tests suggest that on 

average, the static limit order book contributes to a large portion of the total limit order book. Since 

the total spread measure is a form of a minimum function of static and fleeting orders, it is possible 

for the total spread measure to be less than either of the static or fleeting spread measure on 

average.  

 In Panel B I report the depth measures. In the analyses I focus on three main measures of 

depth. The first two measures are the cost of a round trip trade for a 1,000 share order and the cost 

of round trip trade for a 5,000 share order. Both of these measures can be interpreted in a similar 

way as the quoted spread. The difference being that the CRT measure reflects depth beyond the 

top of the limit order book. The third measure is the depth weighted average price spread 

(DWAPspread), which is the difference between the depth weighted bid price and the depth 

weighted ask price. I also express these measures as a ratio over the quoted spread. 

 Depth measures of liquidity are not as straight forward to interpret as the top of book 

measures of liquidity. Fleeting and static orders may selectively provide liquidity throughout the 

trading day, and as a result, at a given minute during the trading day there may not be enough 

fleeting or static depth to complete a trade. Therefore, interpretation of depth measures should be 

done in conjunction with the percentage of time when a round trip trade can be made. Panel B of 

Table 4 reports depth measures for the complete limit order book, static limit order book, and 

fleeting limit order book, while Panel C reports the percent of time during the day that a trader can 

successfully buy and sell q number of shares. From Panel B, the total limit order book depth reveals 

that a trader wishing to buy and sell 1,000 shares of the average stock can expect to pay 21.67 

cents per share. In addition, Panel C reports that a trader is able to complete a 1,000 share trade 

100% of the time for the average stock.  
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 Comparing fleeting and static orders yields interesting results. From Panel B, The cost to 

trade 1,000 shares using exclusively static orders would cost a trader 25.43 cents per share, while 

a trade using exclusively fleeting orders is 5.53 cents cheaper, at 19.91 cents per share. Comparing 

cost alone, however, is not sufficient. Panel C reveals that the static limit order book is able to 

provide 1,000 shares of depth at the bid and offer side of the limit order book 100% of the time for 

the average stock. The fleeting limit order book, however, can only accommodate a 1,000 share 

order at the bid and offer side of the limit order book 29% of the time for the average stock (Panel 

C, row 3). The results suggest that for the average minute, for the average stock, fleeting orders 

are priced competitively, but are used selectively for providing liquidity to the market.  

It is possible that some of these characteristics are driven by the time of the day, since 

markets are generally more active at the beginning and end of the trading day. Figure 2 presents 

some of the liquidity measures partitioned by time of day. Panel 1 shows that there are generally 

more orders submitted at open to close. The results in Panel B suggest that there is sufficient depth 

on the total limit order book and static limit order book to accommodate a 1000 share trade 

throughout the entirety of the trading day, but approximately only 30% of the time on the fleeting 

limit order book. The cost to trade, measured as the quoted spread and CRT1000 are highest in the 

morning, and significantly drop for the remainder of the trading day.  

 A concern these results is that fleeting orders are orders submitted primarily by algorithmic 

traders who primarily trade in large securities. 5 For example, Brogaard, Hendershott, and Riordan 

(2014) find that high frequency traders trade over $241 million in large capitalization securities, 

but only $4.8 and $0.48 million in medium and small capitalization securities. In Table 5, I report 

the CRT depth measures, partitioned by market capitalization quintiles. The CRT cost measure is 

                                                           
5 Hasbrouck and Saar (2013) find their measure of algorithmic trading, strategic runs, is highly correlated with HFTs 

from the NASDAQ HFT database. Strategic runs are fleeting orders lasting 100ms.  
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presented, along with the percentage of time available to complete the trade in brackets. The results 

show that fleeting orders do supply more liquidity in high capitalization securities, but the amount 

of time is still much lower than static orders.  

 Thus far I have considered fleeting and static orders as independent factors that impact total 

liquidity. The true limit order book that is displayed in real time is created by traders submitting 

both fleeting and static orders simultaneously. I address the simultaneous impact that fleeting and 

static orders have on total liquidity while controlling for other major influences like time of day, 

price, minute volatility, and stock volatility. The main regression estimates the effect that fleeting 

and static liquidity have on complete liquidity. I run cross-sectional minute regressions of the 

following form: 

𝑇𝑜𝑡𝑎𝑙𝑖,𝑡 = 𝛽0 + 𝛽1𝑆𝑡𝑎𝑡𝑖𝑐𝑖,𝑡 + 𝛽2𝐹𝑙𝑒𝑒𝑡𝑖𝑛𝑔𝑖,𝑡 + 𝛽𝑥𝑋𝑖,𝑡 + 𝜆𝑖 + 𝜆𝑡 + 𝜀𝑖,𝑡 (8) 

where Total is the liquidity measure for the total limit order book for firm i at minute t. I use both 

top-of-book liquidity measures (spread and price impact) and depth liquidity measures (CRT and 

DWAP). Static is the liquidity measure for the static limit order book, and Fleeting is the liquidity 

measure for the fleeting limit order book.  The regression results for top-of-book liquidity measures 

are reported in Table 6, and depth liquidity measures are reported in Table 7. Control variables are 

represented by the matrix X, and include the log of the market capitalization for firm i, log of the 

daily closing price, the price volatility for minute t and the daily price range. I also include fifteen 

minute time-of-day fixed effects and firm fixed effects.  

 Table 6 presents the results from estimating equation 8 using top of book liquidity 

measures. The dependent variable in models [1] through [3] is the quoted spread, in models [4] 

through [6] it is the effective spread, and I regress price impact in models [7] through [9]. The two 

key variables in all equations is the static and fleeting measure of liquidity, which is the same 
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liquidity measure as the dependent variable in each of the nine regressions. To account for minute 

volatility I include the volatility of the midpoint, and to capture daily volatility I use the stock’s 

range, which is the daily high price minus the daily low price. I also control for stock prices and 

market capitalization. Each liquidity measure is computed with the fleeting and static measure 

independently, as well as the measures regressed together.  

The results for top of book liquidity measures are fairly consistent. Both static and fleeting 

liquidity measures are usually positively associated with total liquidity. However, the static limit 

order book has a larger impact on total liquidity. On average, a one dollar increase in the fleeting 

quoted spread leads to a 12.11 cent increase in the total quoted spread (with the same holding true 

for a decrease in spread) while a one dollar increase in the static quoted spread leads to an 55.75 

cent increase in the total quoted spread (with the same holding true for a decrease in spread). The 

Wald statistics report that the coefficients for the static and fleeting liquidity measures are 

significantly different from each other. From column 6, a one dollar increase in the fleeting 

effective spread will increase the effective spread of the total limit order book by 0.55 cents, and 

a one dollar increase in the static effective spread will lead to a 49 cent increase in the total limit 

order book effective spread (again, the same holding true for a one dollar decrease). There are 

similar results for the effective spread and price impact for static depth, but fleeting depth does not 

have a significant impact on total liquidity. Finally, from column 9, it appears that a one percent 

increase in the price impact of static orders increases the price impact of the total limit order book, 

while fleeting orders have little effect. The top of book liquidity results in Table 6 show that static 

orders are positively impacting the total limit order book, which provides support for Hypothesis 

1, the static depth hypothesis. However, the fleeting limit order book has little impact on the total 
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limit order book, which does not support Hypothesis 2, the fleeting depth hypothesis. I now turn 

to measures that account for liquidity beyond the top of the limit order book.  

 Table 7 presents the results from estimating equation 8 using depth liquidity measures. The 

specifications are identical to the models in Table 6, where depth measures are used in place of 

top-of-book measures. The dependent variable include the CRT1000 in models [1] through [3], 

the CRT5000 in models [4] through [6] and the DWAP spread in models [7] through [9]. In models 

[3], [6], and [9], total depth is regressed on static and fleeting depth. The results presented in model 

[3] show that a one dollar increase in the cost to trade 1000 shares on the static limit order book 

leads to a 83 cent increase in the total limit order book (with the same holding true for a one dollar 

decrease), while fleeting depth has no impact on the total limit order book. The results in Column 

[6] are even stronger, suggesting a one dollar increase in the cost of a round trip trade of 5,000 

shares on the static limit order book will lead to nearly a 93 cent increase on the total limit order 

book. However, fleeting orders have little impact. Column 9 provides a marginal support that 

fleeting orders have an impact on liquidity, where a one dollar increase in the fleeting DWAP 

spread will lead to an increase in the total limit order book DWAP spread by 13.63 cents, which 

is significant at the 1% level.  

 The results displayed in tables 6 and 7 have interesting implications. Both the top-of-book 

and depth measures of liquidity show a consistent and strong relation between the static limit order 

book, which provides ample support for the static depth hypothesis, which states that static orders 

have a positive and significant impact on total liquidity. Static orders are consistently at the top of 

the limit order book, providing competitive prices for traders. Static orders also remain on the limit 

order book to allow traders to complete large roundtrip trades. Since there is a week and often 

insignificant relation between the fleeting limit order book and total limit order book, I find little 
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support for the fleeting depth hypothesis. Fleeting orders have a small impact on top of book of 

liquidity measures, and in most of the model specifications fleeting orders do not contribute 

significantly to the depth of the total limit order book. It is important to note that although there 

isn’t a strong positive relation, there isn’t a strong negative relation either. This would suggest that 

fleeting orders may more appropriately be described as contributing noise to the markets, rather 

than contributing to depth and liquidity.  

 

SIMULTANEITY OF FLEETING AND TOTAL LIQUIDITY 

The results of the tests so far are assume an exogenous relation between fleeting orders and 

current spread and depth, since fleeting orders are defined ex-post. However, there is concern of 

endogeneity due to simultaneity. By construction, fleeting and static orders impact limit order book 

depth, and the results presented so far address this relation. But, it is possible that the current state 

of the limit order book will directly impact the behavior of orders, in particular fleeting orders. 

Hendershott and Riordan (2013) find that when spreads are narrow, algorithmic and high 

frequency traders are less likely to cancel outstanding orders. If fleeting orders are submitted by 

computers and algorithms, then the number of fleeting orders should be lower when spreads are 

narrow and current liquidity is high. Additionally, one could argue that traders initially submit 

orders with no intent of the order being a fleeting order. However, as market parameters and the 

limit order book changes, traders will revise their orders by canceling their current order and 

submiting new orders reflecting new information. This view is in agreement with theory by Baruch 

and Glosten (2013). I therefore attempt to control for this possible endogeneity problem. 
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 This subsection reports two different approaches to test for potential endogeneity. The first 

robustness test I employ uses the prior period’s fleeting and static liquidity on the current period’s 

total liquidity. I run the following regression: 

𝑇𝑜𝑡𝑎𝑙𝑖,𝑡 = 𝛽0 + 𝛽1𝑆𝑡𝑎𝑡𝑖𝑐𝑖,𝑡−1 + 𝛽2𝐹𝑙𝑒𝑒𝑡𝑖𝑛𝑔𝑖,𝑡−1 + 𝛽𝑥𝑿𝑖,𝑡 + 𝜆𝑖 + 𝜆𝑡 + 𝜀𝑖,𝑡, (9) 

where Total is the measure of liquidity for the entire limit order book. Static and Fleeting are the 

liquidity measures for the static and fleeting limit order book for the one minute period prior. The 

logic of this test is that fleeting orders from the previous minute are a function of the complete 

limit order book at that time period. Using lagged measures of Static and Fleeting liquidity 

eliminates contemporaneous correlation, since there is no feasible mechanism for the prior period 

fleeting orders to be impacted by current period liquidity. Column 1 of Table 8 reports the results 

for the top of book measure, quoted spread. Column 2 report the results for the depth measure CRT 

1000. The results for the quoted book are similar to the results displayed in Table 6, where a one 

dollar increase in the static spread increase the total spread by 33 cents, and the fleeting spread has 

little impact. The depth measures do not show any significant relation in this specification.  

 The second test I employ attempts to model the simultaneous impact of fleeting orders on 

depth, and the impact of depth on fleeting order submission strategies. In order to alleviate 

concerns regarding an endogeneity bias, I estimate the simultaneous equation using two-stage least 

squares (2SLS).6 The system of equations estimated is:  

                                                           
6 For robustness I regress the entire system of equations in a 3SLS framework. The magnitude and significance of 

the coefficients are virtually identical. For brevity only 2SLS results are reported.  
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1st Stage: 𝐹𝑙𝑒𝑒𝑡𝑖𝑛𝑔𝑖,𝑡 = 𝛽0 + 𝛽1𝐹𝑙𝑒𝑒𝑡𝑖𝑛𝑔𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 + 𝛽2𝑇𝑜𝑡𝑎𝑙𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1

+ 𝛽3𝐹𝑙𝑒𝑒𝑡𝑖𝑛𝑔𝐷𝑒𝑝𝑡ℎ𝑖,𝑡−1 + 𝛽4𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑝𝑡ℎ𝑖,𝑡−1 + 𝛽𝑥𝑋𝑖,𝑡 + 𝜆𝑖

+ 𝜆𝑡 + 𝜀𝑖,𝑡 

(10) 

2nd Stage: 𝑇𝑜𝑡𝑎𝑙𝑖,𝑡 = 𝛽0 + 𝛽1𝑆𝑡𝑎𝑡𝑖𝑐𝑖,𝑡 + 𝛽2𝐹𝑙𝑒𝑒𝑡𝑖𝑛𝑔𝑖,𝑡
̂ + 𝛽𝑥𝑋𝑖,𝑡 + 𝜆𝑖 + 𝜆𝑡 + 𝜀𝑖,𝑡, 

 

(11) 

where equation (10) is the first stage of the system estimated. In this system I regress the current 

period measure of fleeting order liquidity on the prior period liquidity measures of fleeting order 

and total limit order book liquidity. I use both spread and depth as exogenous variables. Since there 

is no economic mechanism in which prior period liquidity can be impacted by current period 

liquidity, and they are highly correlated with current period fleeting order strategies, all four 

variables satisfy necessary conditions to be used as instrumental variables. In addition to the four 

instruments, I include the matrix of control variables X.  

The predicted value for fleeting liquidity is then used as on exogenous variable in the 

second stage of the regression, as shown in equation (11). In this stage I regress total liquidity on 

static orders and fleeting orders.7 The results are presented in columns 3 through 9 of Table 8. I 

use multiple depth measures to test for robustness. A number of interesting results are presented 

when controlling for the possibility of fleeting orders responding to current liquidity 

characteristics. The strong impact of static liquidity on total market liquidity remains for both top 

of book measures (columns [3] through [5]) and depth measures (columns [6] through [9]). 

However, fleeting orders provide mixed results. There is evidence that fleeting order have a 

marginal positive impact on liquidity, which is evident in the effective spread, and the DWAP 

                                                           
7 Static orders do not have the same concern of endogeneity that fleeting orders do. Economic and theoretical 

reasoning do not suggest that static orders constantly revise their order submission strategies in the way that fleeting 

orders do.  
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ratio, and there is evidence of a negative impact in price impact and the cost to trade 5000 shares. 

The remaining models show an insignificant relation between fleeting orders and the market 

quality of the limit order book. In general, the results and the implications are similar to those from 

Tables 6 and 7, which is that fleeting orders do not have a significant positive impact on liquidity. 

I therefore conclude that the results are not subject to simultaneity issue of traders adjusting their 

orders depending on the current market liquidity. 
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V. THEORETICAL IMPLICATIONS OF FLEETING LIQUIDITY

 

 In this section I test the theoretical predictions on fleeting orders. Rosu (2009) predicts that 

fleeting orders only occur when the spread is low, and depth is high. Rosu also predicts that fleeting 

orders are only submitted within the bid-ask spread. Baruch and Glosten (2013) predict that when 

there are a many fleeting orders, the depth provided by fleeting orders should be static and constant.  

 First, I test the prediction of Rosu (2009) that fleeting orders only occur when the limit 

order book is full (spread is at a minimum nonzero tick size). Empirically it is unlikely for a limit 

order book to ever be classified as full, since this would require the exchange to set a cap on the 

number of orders allowed on the limit order book. Therefore I test this theory by comparing 

fleeting orders during periods of high depth relative to periods of low depth. I partition fleeting 

orders for a given stock-day into depth quintiles. I test Rosu’s theory by comparing the ratio of 

fleeting orders to static orders during the minutes that experienced the highest depth against the 

minutes that experience the lowest depth. Panel A and B in Table 9 display the results for sorting 

on the cost of a round trip trade, while Panel C reports the results for sorting based off of quoted 

spread.  

When partitioning depth according to the CRT1000, there are 1,981 more fleeting orders 

submitted during periods with high liquidity relative to low liquidity. The same holds true for static 

orders, where there are 2,095 more static orders submitted during periods of high liquidity. 

Comparing number of orders alone doesn’t effectively test the theory, since by construction, there 

are more order submitted during periods of higher depth. Therefore, in order to better test the 
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theory we look at the ratio of fleeting to static orders, since the theory suggests that traders will 

switch from patient orders to impatient static orders during periods of high depth. The third row in 

Table 9 shows that during periods of high liquidity there are approximately .74 fleeting orders to 

every static orders, but during low liquidity there are 1.09 fleeting orders to every static order. The 

difference is highly significant. These results are consistent when partitioning by CRT5000, and 

by spread. Since fleeting orders provide a larger proportion of order flow when depth is low, there 

is no support for Hypothesis 3. The results from Table 9 provide little evidence supporting the 

prediction of Rosu (2009) that fleeting orders only occur when depth is high.  

A second prediction of Rosu (2009) is that fleeting orders are only submitted within the 

bid-ask spread, which is identified as Hypothesis 4 in this study. To test this theory I separate all 

orders into one of three categories: orders that improve the BBO (submitted within the spread), 

orders that match the BBO, and orders behind the BBO. I calculate the number of fleeting, static, 

and total orders that fit into these three categories. I also calculate the percent of fleeting orders, 

static orders, and total orders that are in these categories. Table 10 reports the results.  

Approximately 14% of fleeting orders, and 9% of static orders are submitted within the bid-ask 

spread, making 11% of total orders being price improving orders. In addition, over 39% of fleeting 

orders match the BBO. Static orders are a little less with 31% of the orders matching the BBO. 

Finally, 47% of fleeting orders are behind the BBO while 60% of static orders are behind the BBO. 

All differences are all significant at the 1% level. The results do not provide strong evidence for 

Rosu (2009), which is admittedly a strong prediction. Although not all of fleeting orders are 

submitted within the spread, over half of fleeting orders are competitive orders, with 53% being 

priced at the top of the book or better. The results from Table 10 provide marginal support for 

Hypothesis 4 that fleeting orders are priced within the bid-ask spread.  
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  The final theoretical prediction I test is from Baruch and Glosten (2013), who predict that 

fleeting orders may lead to forecastable and constant depth. The theory suggests that when there 

are only a few traders submitting fleeting orders, quotes will flicker and depth will not be constant. 

However, as the number of traders submitting fleeting orders increase, depth will be constant and 

quotes will appear static.  I test this theory by partitioning stock-days into three fleeting order 

partitions based on the number of fleeting orders. In each partition I calculate the volatility of the 

total quoted spread, the static quoted spread, and the fleeting quoted spread. If depth is constant 

and forecastable when there are many fleeting orders, then the volatility of the fleeting quoted 

spread should be low, and indifferent from the total quoted spread in the highest tercile of fleeting 

orders. 

 Table 11 reports the results of this test. Column 1 displays the lowest tercile of fleeting 

orders during a stock day. In the lowest tercile of fleeting orders, the quoted spread is 0.53 cents. 

However, during periods when there are large numbers of fleeting orders, the quoted spread 

increases to 3.25 cents. The theory of Baruch and Glosten (2013) suggests that the top of book 

depth and spread should be more constant when there are high numbers of fleeting orders and 

flickering quotes, however we find that depth becomes less forecastable and less constant. These 

results further support the notion that fleeting orders introduce noise into financial markets.  
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VI. CONCLUSION

 

This paper investigates market quality in low latency markets. One of the externalities of 

low-latency markets is fleeting orders, which are orders that only provide liquidity for a few 

seconds before being canceled. I compare the characteristics of fleeting orders against longer 

duration orders to study market quality in low-latency markets. Theory by Rosu (2009) and Baruch 

and Glosten (2013) suggest that liquidity providing traders may submit fleeting orders and static 

orders, and should have a positive impact on market liquidity. Empirically, I separate short 

duration (fleeting) orders from long duration (static) orders to isolate the impact that each type of 

order has on market quality. In addition to comparing fleeting orders against static orders, I 

determine how much each type of order contributes on total liquidity.  

The results suggest that static orders have a large and significant impact on total liquidity. 

The best bid and best offer prices are largely determined by static orders. Additionally, static orders 

significantly contribute to the total depth in the market. I find little support that fleeting orders 

positively impact liquidity. Fleeting orders have little to no impact on the best bid and offer, and 

do not provide depth for traders submitting large trades. The results suggest that fleeting orders 

provide more noise than liquidity.  

There is concern that fleeting orders and total market liquidity are endogenous. Fleeting 

orders by construction impact market liquidity, however, if fleeting orders are submitted by traders 

who monitor current market activity, then there is a simultaneity issue. I employ two-stage least 

squares to model the endogeneity. The results are robust to any issues of simultaneity.  



34 

 

  This paper also tests previously untested implications of the theoretical literature on 

fleeting orders. Rosu (2009) predicts that fleeting orders are more likely when depth is high and 

spread is low. I find that there are more fleeting orders submitted when depth is high, as well as 

more static orders. However, the ratio of fleeting orders to static orders is higher when depth is 

low. Rosu (2009) also predicts that fleeting orders are only submitted within the bid-ask spread. I 

find that approximately 15% of fleeting orders are submitted within the bid-ask spread, which is 

not statistically different than the number of static orders submitted within the bid-ask spread. 

These results only partially support the theory by Rosu. Baruch and Glosten (2013) predict that 

large numbers of fleeting orders should have constant and forecastable depth. I find that during 

periods of high fleeting order activity, volatility of the best bid and offer for the total limit order 

book and fleeting limit order book increase, which does not support the theory by Baruch and 

Glosten, and adds to the notion that fleeting orders are introducing noise to financial markets.
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Table 1: Firm Summary Statistics 

This table presents summary statistics for the data used in the study. The firm summary statistics 

include price, trades, shares traded, and market capitalization, which are respectively the closing 

price, number of daily trades, number of shares traded, and the market capitalization for the 

average firm in our sample. Fleeting orders are the number of orders on the limit order book for 

two seconds or less, and static orders are the number of orders that provide liquidity for greater 

than two seconds for the average firm in our sample on the NASDAQ exchange. Data comes from 

CRSP, the SEC MIDAS dataset, and the NASDAQ Total-View ITCH order-level dataset. 

  Mean Median St. Dev. Min Max 

Panel A: Firm level daily summary statistics 

Price   37.26  25.76  59.34  5.00  1,309.42 

Trades   626   266   1,355   13   71,735  

Shares Traded   1,120,198   303,593   4,026,127   12,489   233,883,264  

Market Cap (000s)   5,666,771   1,068,623   26,593,012   54,764   618,546,679  

Fleeting Orders   18,734   5,413   48,408   221   911,343  

Static Orders   16,115   7,506   23,304   732   234,066  
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APPENDIX 2: ORDER CHARACTERISTICS 
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Table 2: Order Characteristics 

This table looks at the characteristics of orders. All orders are the characteristics of all orders 

collectively, while static orders are orders on the limit order book greater than two seconds, and 

fleeting orders are orders that are on the limit order book for less than or equal to two seconds. The 

statistics in each panel is first averaged by stock day, and then the descriptive statistics are taken 

from the average daily observation. Order size is the average size of orders added, duration is the 

time between an order being added and deleted from the limit order book. Distance is the difference 

between the order price and the top of the limit order book. Execution rate is the number of orders 

that execute divided by total orders. Order-trade ratio is the number of orders added divided by the 

number of orders executed. Averages are calculated by stock, and then averaged across stocks. 

Data comes from CRSP, the SEC MIDAS dataset, and the NASDAQ Total-View ITCH order-

level dataset. 

 Firms Mean Median St. Dev. Min Max 

All Orders       

Order Size  1,186  202.01 120.40 460.38 44.28 12751.76 

Duration (Seconds)  1,186  572.06 399.72 626.96 38.18 7103.52 

Distance  1,186  0.23 0.16 0.25 0.02 2.88 

Execution Rate  1,186  0.04 0.04 0.02 0.00 0.11 

Order-Trade Ratio  1,186  32.01 26.30 29.50 9.16 688.10 

       

Static Orders       

Order Size  1,186  199.02 120.99 267.81 43.70 4523.87 

Duration (Seconds)  1,186  950.15 677.63 946.21 107.88 9113.05 

Distance  1,186  0.35 0.24 0.39 0.03 4.78 

Execution Rate  1,186  0.05 0.05 0.03 0.01 0.16 

Order-Trade Ratio  1,186  24.88 20.06 17.03 6.13 176.12 

       

Fleeting Orders       

Order Size 1,186  191.61 116.83 559.43 44.76 16151.78 

Duration (Seconds) 1,186 0.24 0.23 0.11 0.02 1.18 

Distance 1,186 0.09 0.05 0.14 -0.16 2.25 

Execution Rate 1,186  0.03 0.02 0.01 0.00 0.11 

Order-Trade Ratio* 1,185  67.67 43.43 264.76 8.96 8611.50 
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APPENDIX 3: DEPTH SUMMARY STATISTICS  
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Table 3: Depth summary statistics 

This table presents summary statistics for the liquidity measures employed in the study. Panels A, 

B, and C report limit order book (LOB) summary statistics at the minute level for the average firm 

in our sample. Panel A is depth for the complete, or ‘real’, LOB. Panels B and C are two artificial 

LOBs, where Panel B reports the depth contributed from static limit orders, and Panel C reports 

the depth from fleeting limit orders. The depth measures include three top of book measures 

(quoted spread, effective spread, and price impact) and nine depth measures. Depth measures 

include the ex-ante per-share cost to buy and sell q number of shares (the cost of a round trade, 

CRT) and the difference between the depth-weighted average offer and the depth weighted average 

bid price (DWAP-spread). These depth measures are also reported as a ratio over the quoted 

spread. Data comes from CRSP, the SEC MIDAS dataset, and the NASDAQ Total-View ITCH 

order-level dataset. 

Panel A: Complete limit order book minute level liquidity summary statistics 

  Mean Median St. Dev. Min Max 

Top of book liquidity 

Quoted Spread  0.06 0.03 0.38 0.00 518.31 

Effective Spread  0.03 0.01 0.15 0.00 197.56 

Price Impact  0.00 0.00 0.09 0.00 47.48 

Depth Liquidity 

CRT100  0.07 0.03 0.39 0.00 519.79 

CRT500  0.12 0.06 0.23 0.00 84.68 

CRT1000  0.20 0.09 0.37 0.00 111.24 

CRT5000  1.36 0.38 2.63 0.00 185.43 

CRT10000  1.90 0.68 3.38 0.00 239.23 

DWAP-Spread  10.52 7.30 14.47 0.10 521.24 

CRT1000/Quoted  3.22 2.56 2.99 1.00 3497.18 

CRT5000/Quoted  20.25 11.00 29.16 1.00 4470.76 

DWAP/Quoted  37.23 40.37 10.67 1.00 50.00 
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 No 

Obs. 

Mean Median St. Dev. Min Max 

Panel B: Static limit order book minute level liquidity summary statistics 

Top of book liquidity 

Quoted Spread  0.07 0.04 0.13 0.00 48.33 

Effective Spread  0.03 0.01 0.15 0.00 265.98 

Price Impact  0.00 0.00 0.01 0.00 2.00 

Depth Liquidity 

CRT100  0.08 0.04 0.15 0.00 49.09 

CRT500  0.15 0.07 0.27 0.01 80.91 

CRT1000  0.24 0.12 0.44 0.01 112.63 

CRT5000  1.59 0.51 2.95 0.01 190.27 

CRT10000  2.08 0.83 3.53 0.01 206.14 

DWAP-Spread  10.70 7.39 14.47 0.01 423.48 

CRT1000/Quoted  3.63 2.87 3.36 1.00 3,566.83 

CRT5000/Quoted  22.80 13.21 31.61 1.00 4,411.69 

DWAP/Quoted  35.16 38.10 11.48 1.00 50.00 

Panel C: Fleeting limit order book minute level liquidity summary statistics 

Top of book liquidity 

Quoted Spread  0.20 0.10 1.30 0.01 1030.91 

Effective Spread  0.07 0.03 0.36 0.00 271.35 

Price Impact  0.00 0.00 0.00 0.00 0.63 

Depth Liquidity 

CRT100  0.21 0.10 1.33 0.01 1030.91 

CRT500  0.18 0.10 1.45 0.01 956.05 

CRT1000  0.19 0.11 1.52 0.01 1081.63 

CRT5000  0.13 0.07 0.53 0.00 66.96 

CRT10000  0.22 0.07 1.06 0.01 31.94 

DWAP-Spread  0.48 0.28 1.83 0.01 1030.91 

CRT1000/Quoted  3.87 2.75 9.45 0.99 3504.19 

CRT5000/Quoted  6.51 4.71 15.84 1.00 5651.43 

DWAP/Quoted  4.78 3.22 4.33 0.01 50.00 
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APPENDIX 4: FLEETING AND STATIC DEPTH AGAINST TOTAL DEPTH 



47 

 

Table 4: Fleeting and Static depth against total depth 

This table reports the differences of liquidity measures from the fleeting and static LOBs against 

total liquidity from the complete LOB. The total LOB includes all orders, while the static and 

fleeting LOBs are subsets of the complete LOB. The fleeting LOB is comprised of only limit 

orders that provide liquidity for two seconds or less, whereas the static LOB is only comprised of 

limit orders providing liquidity greater than two seconds. Columns [1] through [3] report the 

liquidity measures for the total, static and fleeting LOB respectively. Column [4] is the difference 

between the static and total LOB, while column [5] reports the difference between the fleeting and 

total LOB. Column 6 reports the differences between the fleeting and static LOB.  

 Total 

LOB 

Static 

LOB 

Fleeting 

LOB 

Total - 

Static 

Total - 

Fleeting 

Diff-in-

Diff 

 [1] [2] [3] [4] [5] [6] 

Panel A: Top of book liquidity measures 

Quoted Spread 0.0692 0.0708 0.2118 -0.0016 -0.1426 0.14 

    15.4 409.62 -424.78 

Effective Spread 0.0327 0.035 0.0743 -0.0023 -0.0416 0.039 

    29.4 268.46 -247.51 

Price Impact 0.0026 0.0002 0.0002 0.0024 0.0024 0.00 

    -75.31 -73.65 -7.08 

Panel B: Depth liquidity measures 

CRT1000 0.2167 0.2543 0.19907 -0.03766 0.0176 -0.0553 

    258.26 -41 124.82 

CRT5000 1.4926 1.6686 0.13732 -0.17601 1.3553 -1.5313 

    173.55 -418.58 429.54 

CRT1000 / Quoted 3.3566 3.7066 3.96038 -0.34995 -0.6038 0.2538 

    311.43 215.91 -87.28 

CRT5000 / Quoted 21.6723 23.5775 6.90505 -1.90528 14.7672 -16.6725 

    173.48 -412.5 434.84 

DWAP spread 11.1085 11.0191 0.49331 0.08936 10.6152 -10.5258 

    -17.09 -2500.2 2523.85 

DWAP / Quoted 37.5195 35.3364 4.79554 2.18308 32.724 -30.5409 

    -172.38 -6848.8 6576.41 

Panel C: Percentage of minutes able to buy and sell q shares 

q=100 1.00 1.00 0.99 0.00 0.01 -0.01 

    -5.82 -53.37 53.27 

q=500 1.00 1.00 0.42 0.00 0.58 -0.58 

    -15.15 -282.69 282.51 

q=1000 1.00 1.00 0.29 0.00 0.71 -0.71 

    -15.29 -354.44 353.59 

q=5000 1.00 0.98 0.04 0.02 0.95 -0.94 

    -25.14 -1052.30 870.62 

q=10000 0.81 0.78 0.02 0.03 0.79 -0.76 

    -11.18 -424.68 387.16 
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APPENDIX 5: COST AND PERCENT OF TIME TO COMPLETE A ROUND TRIP TRAD 
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Table 5: Cost and percent of time to complete a round trip trade. 

This table reports the cost of a round trip trade for trades of size q, separated by market 

capitalization quintiles. The percent of time a trader is able to complete a round trip trade is 

reported in brackets. The data are partitioned by market capitalization quintiles, where Q1 

represents the smallest 20% of securities in the sample and Q5 represents the largest 20%. Column 

[6] reports the difference between the largest 20% and smallest 20%. * represents significance at 

the 1% level. 

 
Q1 

Small 

Q2 

 

Q3 

 

Q4 

 

Q5 

Large 

Q5 – Q1 

 

 

 [1] [2] [3] [4] [5] [6] 
Test 

Statistic 

Panel A: Total Limit Order Book 

q=100 0.06 0.08 0.09 0.08 0.07 0.01 -8.84 

 [1.00] [1.00] [1.00] [1.00] [1.00] [0.01] -2.95 

q=500 0.11 0.15 0.17 0.13 0.11 0.00 -0.03 

 [1.00] [1.00] [1.00] [1.00] [1.00] [0.02] -0.74 

q=1,000 0.17 0.25 0.28 0.22 0.17 0.58 -10.09 

 [1.00] [1.00] [1.00] [1.00] [1.00] [0.00] 0.00 

q=5,000 0.91 1.66 2.12 1.96 0.93 0.00 -0.97 

 [1.00] [0.99] [1.00] [1.00] [1.00] [0.00] 0.00 

q=10,000 1.66 2.62 3.76 3.61 2.24 0.00 -6.01 

 [0.82] [0.73] [0.71] [0.82] [0.97] [0.15] -36.26 
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 Q1 

Small 

Q2 

 

Q3 

 

Q4 

 

Q5 

Large 

Q5 – Q1 

 

 

 [1] [2] [3] [4] [5] [6] Test 

Statistic 

Panel B: Static Limit Order Book 

q=100 0.06 0.09 0.10 0.08 0.08 0.02* -8.99 

 [1.00] [1.00] [1.00] [1.00] [1.00] [0.00]* [-3.16] 

q=500 0.12 0.18 0.20 0.16 0.13 0.01* -2.79 

 [1.00] [1.00] [1.00] [1.00] [1.00] [0.00]* [-8.24] 

q=1,000 0.20 0.29 0.33 0.27 0.20 0.01 -1.04 

 [1.00] [1.00] [1.00] [1.00] [1.00] [0.00]* [-8.21] 

q=5,000 1.01 1.82 2.42 2.28 1.15 0.14* -3.86 

 [0.98] [0.97] [0.98] [0.98] [0.99] [0.02]* [-9.61] 

q=10,000 1.72 2.68 3.83 3.76 2.47 0.75* -11.92 

 [0.79] [0.70] [0.68] [0.78] [0.95] [0.17]* [-36.21] 

Panel C: Fleeting Limit Order Book 

q=100 0.20 0.27 0.28 0.24 0.22 0.02 -2.72 

 [0.99] [0.99] [0.99] [0.99] [1.00] [0.01] [-16.35] 

q=500 0.32 0.68 0.57 0.57 0.39 0.07 -3.09 

 [0.21] [0.31] [0.35] [0.54] [0.78] [0.57] [-113.59] 

q=1,000 0.57 1.37 0.81 1.02 0.49 -0.07 1.64 

 [0.09] [0.16] [0.21] [0.38] [0.67] [0.58] [-111.47] 

q=5,000 0.24 0.21 0.07 0.07 0.09 -0.15 13.44 

 [0.00] [0.01] [0.02] [0.07] [0.13] [0.13] [-42.61] 

q=10,000 1.04 0.67 0.08 0.06 0.07 -0.97 24.35 

 [0.00] [0.00] [0.00] [0.03] [0.05] [0.05] [-26.14] 
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APPENDIX 6: THE CONTRIBUTION OF FLEETING AND STATIC TOP-OF-BOOK 

LIQUIDITY ON TOTAL TOP-OF-BOOK LIQUIDITY



 

 

  

5
2

 

Table 6: The contribution of fleeting and static top-of-book liquidity on total top-of-book liquidity 

This table relates the static and fleeting limit order book to the complete limit order book. The dependent variable in models 1 to 3 is 

the quoted spread, models 4 to 6 is the effective spread, and models 7 to 9 is price impact for stock i and time t, averaged to the minute. 

The two key variables in all equations is the static and fleeting measure of liquidity (quoted spread, effective spread, and price impact). 

I include midpoint price volatility for minute t to capture minute volatility, daily price range to capture stock volatility, the log of the 

daily closing price, and the market capitalization, as control variables. Estimates are obtained by ordinary least squares, I report test-

statistics computed with robust standard errors clustered at the firm level in parentheses. All models include firm fixed effects, as well 

as minute dummy variables to control for time of day liquidity patterns. Wald tests are conducted to check if fleeting and static liquidity 

is identical in its contribution to total liquidity, with f-tests reported at the bottom of the table. ***, **, and * indicate significance at the 

1%, 5%, and 10% levels respectively.   
Dependent Variable Quoted Spread  Effective Spread  Price Impact 

 [1] [2] [3]  [4] [5] [6]  [7] [8] [9] 

Intercept -0.00 0.41* 0.01  0.07 0.22*** 0.09***  -0.04 -0.04 -0.04 

 (-0.057) (1.959) (0.036)  (1.441) (4.607) (3.908)  (-0.713) (-0.688) (-0.693) 

Static  0.92***  0.56**  0.74***  0.49***  0.40***  0.39*** 

 (23.079)  (2.459)  (4.987)  (38.861)  (6.573)  (6.350) 

Fleeting  0.13* 0.12   0.01*** 0.01***   -0.04 -0.03 

  (1.804) (1.514)   (4.517) (3.645)   (-0.884) (-0.585) 

Minute Volatility -0.00 -0.00 -0.00  0.00** 0.00 0.00  0.00*** 0.00*** 0.00*** 

     (-1.336) (-0.670) (-1.522)  (2.231) (1.070) (0.750)  (7.885) (7.419) (7.377) 

Range -0.00 -0.00 -0.00  0.00 0.00*** 0.00**  0.00*** 0.00*** 0.00*** 

 (-1.258) (-0.565) (-1.455)  (0.160) (3.739) (2.058)  (3.949) (3.951) (3.968) 

Log Price 0.00 0.06*** 0.01  0.01 0.03*** 0.01***  -0.01 -0.01 -0.01 

 (0.009) (3.061) (0.658)  (1.274) (6.483) (5.461)  (-1.189) (-1.190) (-1.168) 

Market Cap 0.00 -0.03* -0.00  -0.01 -0.02*** -0.01***  0.00 0.00 0.00 

 (0.139) (-1.801) (-0.055)  (-1.361) (-4.196) (-3.575)  (0.870) (0.852) (0.848) 

            

Fixed Effects Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

F-test   582***    194***    16*** 

N 1071 1071 1071  1071 1071 1071  1071 1071 1071 

R-Squared 0.0715 0.1619 0.1797   0.5432 0.0256 0.8889   0.0022 0.0021 0.0021 
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APPENDIX 7: THE CONTRIBUTION OF FLEETING DEPTH AND STATIC DEPTH ON 

TOTAL DEPTH
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Table 7: The contribution of fleeting depth and static depth on total depth 

This table relates the static and fleeting limit order book to the complete limit order book. The dependent variable in models 1 to 3 is 

the cost to buy and sell 1000 shares, 4 to 6 is the cost to buy and sell 5000 shares, and 7 to 9 is depth weighted average spread for stock 

i and time t, averaged to the minute. I include the daily range, the log of the closing price, and the market capitalization, as control 

variables. Estimates are obtained by ordinary least squares, test-statistics computed with robust standard errors clustered at the firm level 

are in parentheses. All models include firm fixed effects, as well as minute dummy variables to control for time of day liquidity patterns. 

Wald tests are conducted to check if fleeting and static liquidity is identical in its contribution to total liquidity, with f-tests reported at 

the bottom of the table. ***, **, and * indicate significance at the 1%, 5%, and 10% levels respectively.   
Dependent 

Variable 

CRT 1000  CRT 5000  DWAP Spread 

 [1] [2] [3]  [4] [5] [6]  [7] [8] [9] 

Intercept -0.43 1.51*** -2.52*  -4.92 -0.46 -0.42  22.49*** 63.74*** 25.62*** 

 (-0.647) (2.879) (-1.784)  (-1.301) (-1.079) (-1.587)  (2.685) (2.723) (2.741) 

Static 0.82***  0.83***  0.88***  0.92***  0.67***  0.64*** 

 (48.344)  (17.393)  (110.69)  (56.817)  (11.309)  (12.758) 

Fleeting  0.02*** 0.00**   0.01 0.00   0.18*** 0.14*** 

  (7.228) (2.069)   (1.392) (1.519)   (4.867) (3.277) 

            

Minute Volatility 0.00*** 0.00*** 0.00*  0.00*** -0.00** -0.00***  -0.00*** -0.00*** -0.00*** 

 (5.853) (4.316) (1.904)  (3.646) (-2.188) (-3.506)  (-2.656) (-6.746) (-3.755) 

Range 0.00*** 0.01*** -0.00  0.00* -0.02 -0.00  -0.01 0.17 -0.02 

 (3.650) (3.056) (-1.361)  (1.756) (-0.246) (-1.570)  (-0.189) (0.910) (-0.452) 

Log Price -0.06 0.15*** -0.23*  -0.49 -0.01 -0.04**  1.75** 7.10*** 2.08*** 

 (-0.865) (3.336) (-1.847)  (-1.307) (-0.465) (-2.014)  (2.385) (3.398) (2.697) 

Market Cap 0.05 -0.12*** 0.22*  0.46 0.04 0.03  -1.70** -5.22** -1.95** 

 (0.725) (-2.760) (1.794)  (1.315) (1.130) (1.647)  (-2.398) (-2.576) (-2.527) 

Fixed Effects Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

F-test    170***    1433***    6** 

N 1,089 1,089 1,089  1,089 576 576  1,089 1,089 1,089 

R-Squared 0.8572 0.0855 0.8234  0.9465 0.1910 0.9714  0.5394 0.0189 0.5126 
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APPENDIX 8: Endogeneity and simultaneity of depth and fleeting orders  
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Table 8: Endogeneity and simultaneity of depth and fleeting orders 

This table reports the estimates for models controlling for the simultaneity issues of fleeting and total depth. Fleeting liquidity may be 

determined by contemporaneous total liquidity, leading to endogeneity due to the simultaneous concern. Models 1 and 2 regress total 

liquidity on lagged fleeting and static orders, while Models 3 through 9 address the simultaneity issue through 2SLS. The first stage 

(unreported) regresses the fleeting and static liquidity measures for the current period and lagged period. The predicted estimates are 

then used in the second stage as an instrument for total liquidity. Test-statistics computed with robust standard errors clustered at the 

firm level are in parentheses. All models include firm fixed effects, as well as minute dummy variables to control for time of day liquidity 

patterns. ***, **, and * indicate significance at the 1%, 5%, and 10% levels respectively.  

 Lagged Cross Sectional   2SLS Model 

Dependent 

Variable 

Total 

Quoted 

Total  

CRT 1000 

 Total 

Quoted 

Total  

Effective 

Total Price 

Impact 

Total  

CRT 1000 

Total  

CRT 5000 

Total CRT 

1000 Ratio 

DWAP 

Ratio 

 [1] [2]  [3] [4] [5] [6] [7] [8] [9] 

Lagged  0.33*** -0.00         

     Static (11.11) (-0.034)         

Lagged  -0.01*** -0.00         

     Fleeting (-4.40) (-1.23)         

Static    1.13*** 0.48*** 0.23*** 0.82*** 0.92*** 0.85*** 0.69*** 

     Liquidity    (7.860) (62.582) (2.849) (39.773) (120.068) (15.612) (201.267) 

Predicted    -0.06 0.25*** -5.96*** 0.00 -0.23*** -0.10 13.79*** 

     (2nd stage)    (-1.090) (3.333) (-11.733) (0.504) (-2.596) (-1.188) (74.187) 

Minute  0.00*** 0.00***  0.00** -0.00 0.00*** 0.00** -0.00*** 0.00 -0.00*** 

     Volatility (7.800) (6.946)  (2.471) (-1.632) (22.447) (2.019) (-4.014) (1.199) (-26.848) 

Range 0.00*** 0.00***  0.00 -0.00*** 0.00*** -0.00*** 0.00** 0.04** -1.30*** 

 (4.379) (3.421)  (0.802) (-2.718) (21.726) (-2.932) (2.269) (2.120) (-34.130) 

Log Price 0.0539*** 0.14***  -0.0144 0.0010 -0.01*** -0.23*** 0.15** -1.43*** -1.71 

 (2.765) (4.209)  (-1.106) (0.279) (-3.752) (-28.363) (1.982) (-40.863) (-1.340) 

Market Cap -0.02 -0.11***  0.01 0.00 0.00** 0.21*** -0.13** 1.36*** -0.15 

 (-1.486) (-3.443)  (0.927) (1.295) (2.174) (27.036) (-2.021) (13.701) (-0.124) 

           

Fixed Effects Yes Yes  Yes Yes Yes Yes Yes Yes Yes 

N 1,071 1,071  1,061 1,070 1,071 1,057 344 1,057 1,062 

R-Squared 0.2745 0.0761  0.7998 -0.3528 -0.0197 0.8015 0.9206 0.5040 -9.9634 
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APPENDIX 9: DEPTH AND VOLUME QUINTILES  
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Table 9: Depth in volume quintiles 

This table displays the number of fleeting and static orders at depth quintiles. Depth is first ranked 

at the minute level within a stock, and then averaged across stocks. Panel A ranks are formed 

according to the trading costs to simultaneously buy and sell 1000 shares of a stock. Panel B ranks 

are formed according to the cost to buy and sell 5000 shares of a stock. Panel C ranks are formed 

according to the DWAP spread, which is the difference between the depth-weighted average offer 

price and the depth-weighted average bid price. Q1 represents low levels of CRT and 

DWAPspread, which is indicative of high depth, while Q5 represents low depth. Column [6] 

reports the differences. * represents significance at the 1% level.  

 

Q1 

High 

Depth 

Q2 

 

Q3 

 

Q4 

 

Q5 

Low 

Depth 

Q5 – Q1 

 [1] [2] [3] [4] [5] [6] 

Panel A: Total CRT1000 Depth 

Fleeting Orders 4,524.63 4,541.41 4,065.35 2,952.98 2,543.19 -1,981.40 

      -25.66 

Static Orders 3,807.76 3,472.36 2,957.45 2,175.07 2,095.62 -1,712.10 

      51.82 

Fleeting/Static 

Orders 

0.74 0.76 0.82 0.93 1.09 0.35 

      39.95 

Panel B: Total CRT5000 Depth 

Fleeting Orders 19.44 2,720.43 5,682.65 4,924.82 5,285.06 5,265.60 

      56.78 

Static Orders 35.45 2,677.60 4,534.64 3,882.17 3,388.14 3,352.70 

      110.91 

Fleeting/Static 

Orders 

0.54 0.79 0.78 0.81 1.02 0.48 

      18.53 

Panel C: Spread 

Fleeting Orders 3,468.93 4,546.67 5,498.84 4,050.46 1,282.04 -2,186.90 

      33.33 

Static Orders 3,648.84 4,041.18 3,926.39 2,173.30 929.68 -2,719.20 

      83.68 

Fleeting/Static 

Orders 

0.60 0.71 0.89 1.28 1.46 0.86 

      84.08 
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APPENDIX 10: ARE FLEETING ORDERS ONLY SUBMITTED WITHIN THE SPREAD?  
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Table 10: Are fleeting orders only submitted within the spread? 

This table reports the average daily aggressiveness of orders submitted in the limit order book. 

Order aggressiveness is separated into one of three categories, orders that improve the BBO, orders 

that match the BBO, and orders that are placed behind the best bid and offer. The best bid and 

offer are computed from the limit order book using NASDAQ Total-View Itch data. * indicates 

statistical significance at the 1% level.  

 Improve 

BBO 

Match BBO Behind BBO Difference Test-

statistic 

 [1] [2] [3] [1] – [3]  

# Fleeting Orders 1,298.13 8,466.71 7,181.76 -5,883* 79.61 

# of Static Orders 763.95 3,742.62 8,894.91 -8,131* 135.58 

# of All Orders 2,062.10 1,2211.43 16,078.59 -14,016* 110.15 

% Fleeting Orders 0.14 0.39 0.47 -0.33* 354.73 

% Static Orders 0.09 0.31 0.60 -0.50* 763.12 

% All Orders 0.11 0.35 0.54 -0.42 576.81 

%Fleeting – % Static 0.05* 0.07* -0.13*   

Test-statistic 89.48 66.14 131.10   
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APPENDIX 11: DO FLEETING ORDERS CREATE CONSTANT FORECASTABLE DEPTH  
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Table 11: Do fleeting orders create constant forecastable depth? 

This table reports the volatility of the best bid and offer for the total limit order book, static limit 

order book, and fleeting limit order book. Terciles are formed within each stock, where days 

experiencing low fleeting order activity are in the first tercile, and days experiencing high fleeting 

order activity are in the third tercile. For consistency, ranks are formed within stocks and not cross-

sectionally. * indicates significance at the 1% level. 

 Low 

Fleeting 

Orders 

Medium 

Fleeting 

Orders 

High 

Fleeting 

Orders 

Difference Test-

statistic 

 [1] [2] [3] [1] – [3]  

Total BBO Std. Dev      0.0053       0.0119       0.0325  0.0272 27.60 

Static BBO Std. Dev      0.0054       0.0123       0.0302  0.0248 93.94 

Fleeting BBO Std. 

Dev 

     0.0765       0.0814       0.1087  0.0322 16.10 

Fleeting – Static 0.0711 0.0691 0.0784   

Test-statistic 75.60 87.64 52.14   
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APPENDIX 12: FLEETING AND STATIC ORDER PRICE COMPETIVENESS
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Figure 1: Fleeting and Static order price competiveness 

This figure presents the number of fleeting and static orders at price points relative to the Best Bid 

and Offer. Negative numbers represent the average distance of buy limit orders to the best bid, and 

positive numbers represent the average distance of sell limit orders to the best offer. The top panel 

presents the average raw number of fleeting and static orders relative to the BBO, at prices between 

50 cents above and below the BBO. The bottom figure presents the ratio of fleeting and static 

orders at prices between 150 cents above and below the BBO.  
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APPENDIX 13: FLEETING AND STATIC LIMT ORDER BOOK BEHAVIOR 

THROUGHOUT THE TRADING DAY
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Figure 2: Fleeting and Static limit order book behavior throughout the trading day 

This figure presents characteristics of fleeting and static orders for the average stock by 30 minute 

periods throughout the trading day. The top left panel presents the number of fleeting and static 

orders submitted. The top right panel represents the percent of time able to buy and sell 1000 share 

trades for each of the limit order books. The bottom left is the quoted spread, and the bottom right 

is the cost to buy and sell 1000 shares. 
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PART 2: ORDER AND TRADE CHARACTERISTICS IN EQUITY MARKETS
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I. INTRODUCTION

 

Many major U.S. exchanges and electronic trading networks are order driven markets. 

Traders place orders into one of two broad classes: limit orders, which are given priority following 

guidelines established by exchanges (i.e. price-visibility-time priority), or marketable orders, 

which execute at the prevailing prices set by limit orders. A trade-print is reported when a 

marketable order executes against an existing limit order. Many microstructure studies examine 

the properties of trades, and the characteristics orders.8,9  However, given the extensive amount of 

research regarding orders and trades, it is uncertain how trade prints obtain their information and 

properties. Trades, in and of themselves, do not produce any information. Rather, properties of 

trades must stem from one of the two orders in which the trade originates. Marketable orders and 

limit orders are each submitted by independent agents with differing sets of information. The 

liquidity supplying trader will submit a limit order according to her beliefs regarding the asset’s 

value, while a liquidity demanding trader (with an independent set of beliefs) will submit a 

marketable order. Therefore, if trades contain information or exhibit properties and patterns, the 

characteristics must be represented in either the limit order, market order, or both.  

As an example, one documented characteristic of trade prints is the size of the trade. A 

number of studies make inferences regarding trading behavior based on the size of trade prints. 

Alexander and Peterson (2007) find that trades tend to have a higher than expected tendency to 

                                                           
8 Barclay and Werner (1993), Chakravarty (2001), Alexander and Peterson (2007), O’Hara, Yao, and Ye (2014), etc.  
9 Biais, Hillion, and Spatt (1995), Foucault (1999), Chung, Van Ness, Van Ness (1999), etc.  
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occur on round numbers, and that these round trades have large price impacts. More recently, 

O’Hara, Yao, and Ye (2014) find that small, odd-lot trades contain a large amounts of price 

contribute, which they also suggest is evidence that informed traders strategically choose the trade 

size. One omission of studying trade prints alone, however, is that the trade print size is not 

exogenous, and information does not originate from the trade alone. The trade print size is merely 

an artifact of the union between a marketable order and a limit order, and is therefore some function 

of the size of the limit order and the size of the incoming market order. If an incoming market 

order is less than the posted depth at the NBBO, then the trade print will be equal to the size of the 

market order. However, if the market order size is greater than the posted depth, inferring 

information from trade print sizes become uncertain and unreliable.  

Trade prints are simply a mechanical process, where market participants have no choice in 

choosing the characteristics of trades. Rather, market participants have control over the 

characteristics of the order they submit, and must make multiple simultaneous decisions when they 

submit their order. At the time of submission, they choose price, which ranges from marketable 

orders to passive limit orders, and they choose the size of the order. If traders submit limit orders, 

they also choose whether to wait for an incoming order, or to delete their existing order and 

resubmit a new order. Multiple order submission choices yield many different order classes. Prior 

studies look at different order classes including aggressive orders (Griffiths, Smith, Turnball, and 

White (2000), fleeting orders (Hasbrouck and Saar (2009)), and order sizes (O’Hara,  Yao, and Ye 

(2014)). However, it is unknown if the characteristics between these order classes are similar.   

The aim of our study is twofold. First, we compare the characteristics of trades against 

orders. Since trades result from the union of a marketable order executing against a posted limit 

order, characteristics of trades must stem from one of these two order types. We investigate which 



70 

 

of the two order types has the larger impact trade characteristics. The second focus of our study is 

to look at how market conditions impact the prevalence and behavior of the different order classes.   
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II. HYPOTHESES

 

ORDER AND TRADE PRINT CHARACTERISTICS 

Under normal market conditions, trade prints are the result of marketable orders executing 

against posted limit orders. The limit order is the supplier of liquidity, and the marketable order is 

the initiator of the trade. Therefore, the price, size, and information content of a trade must stem 

from one of the two orders from which it originated. The first question of our study is whether it 

is the trade initiating marketable order, or the liquidity supplying limit order, that primarily impacts 

the characteristics of trades. Theoretical models (e.g. Foucault, Kaden, and Kandel (2005) and 

Rosu (2009)) generally assume that limit order traders are risk neutral, which implies their orders 

execute is of little interest to them. However, recent empirical work suggests that limit order trades 

have a much larger role in the trading decision. Hasbrouck and Saar (2009) find that one third of 

limit orders are added and cancelled within two seconds, providing some evidence that limit order 

traders are aggressive in their strategies. We conjecture that if limit orders are aggressive and 

dynamic in their strategies, they are likely to have a large role on the resulting trades. Additionally, 

Johnson and Upson (2015) find that odd-lot trades usually are the result of odd-lot size limit orders. 

They also find evidence that limit orders are placed by fast, sophisticated traders.  

 H1: Limit orders primarily shape the characteristics of trades   

We next turn our attention to how classes of orders compare against each other. Orders that 

are submitted by market participants do not neatly fall into the two order categories of marketable 

orders and limit orders. A trader is exposed to a number of decisions when placing an order, 
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including the price to place the order, how long to let the order stand if does not execute, and how 

large of an order to submit. With regards to price, a trader may place the order aggressively by 

submitting a marketable order, or, if immediate execution isn’t required the trader may place a 

limit order (Biais, Hillion, and Spatt (1995). However, even limit orders may be submitted with 

varying degrees of aggressiveness. A limit order’s price may improve the current limit order book 

spread by being placed within the best bid and ask. A limit order may also match the best prices 

by being placed at the best bid (for buy orders) and best offer (for sell orders), or it may be placed 

deeper in the limit order book queue at inferior prices. Griffiths, et al. (2000) find that aggressive 

orders behave differently than less passive orders. They find that marketable orders that cross and 

lock the market have a high probability of execution, greater than 85% and as high as 99.85% 

depending on order size (see Griffiths et al.’s Table 1). With regards to time, recent evidence by 

Hasbrouck and Saar (2009) shows that some traders behave aggressively by submitting short-lived 

limit orders that are on the limit order book, which they refer to as fleeting orders.  Fleeting orders 

are limit orders that are added, and quickly cancelled. Hasbrouck and Saar (2009) find that fleeting 

orders share similarities with liquidity demanding marketable orders. These many classes of orders 

highlight that traders with different expectations may behave differently.  

We test to see if orders across different classifications are similar. Given that traders can 

place their orders aggressively with regards to both price and time duration, we hypothesize that 

aggressively priced orders (marketable orders and limit orders that result in execution) should be 

similar to orders that are aggressive in their timing strategies. We test this both by looking at size 

characteristics, as well as the fill rates of these orders.  

H2: Fleeting orders, Executed limit orders, and marketable orders have similar 

characteristics 
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H3: Aggressive limit orders, and fleeting orders have higher fill-rates and order sizes 

compared to less-aggressive limit orders.  

 

THE IMPACT OF MARKET CONDITIONS ON ORDER CLASSES 

Theory suggests that the market environment impacts when traders will place their orders, 

as well as which orders to submit, highlighting that all orders are not uniformly distributed 

throughout the trading day. Traders will choose what type of order to submit depending on the 

nature of the limit order book. Parlour (1998) models a limit order market where the strategies of 

the market participants is dependent on the state of the limit order book. Limit orders that are added 

to a thick order book have a lower probability of execution, leading traders to submit more 

marketable orders. When depth is high at one side of the book, the likelihood of a limit order being 

submitted decreases on the same side of the book but increases on the opposite side of the book. 

We thus expect that more limit orders are submitted to the side of the limit order book with less 

depth. Foucault (1999) develops a dynamic theory on the trader’s decision to submit limit and 

marketable orders. Foucault’s theory predicts that the proportion of limit orders increases when 

volatility increases, and that the aggressiveness of orders will decreases with volatility. We expect 

to see a higher number of limit orders during episodes of heightened volatility.  

H4: Traders submit limit orders when volatility is high, depth is low, and the spread 

is wide. 

In the model developed by Foucault, Kadan, and Kandel (2005), all traders incur waiting 

costs; impatient traders have high waiting costs and patient traders have low waiting costs. 

Consequently, the impatient traders submit marketable orders and the patient traders submit limit 

orders. As the limit order book grows thick, the time to execution for limit orders increases and 
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the probability of execution decreases. Traders that have a low tolerance for the cost of delaying 

execution will either submit more aggressive limit orders or submit marketable orders to reduce 

waiting times. Rosu (2009) also predicts that when the limit order book is thick, traders will either 

submit a quick fleeting order or a marketable order.  

H5: Aggressive orders, market orders, and fleeting orders are more prevalent when 

volatility is low and depth is high.  

Foucault, Kadan and Kandel (2005) predict that traders become more impatient over the 

course of the trading day. One of the costs traders are exposed to is the cost of delayed execution. 

Traders that have high costs of delayed execution are sensitive to the time of day and are aware of 

the time remaining until trading ends. Traders with high sensitivity to waiting costs will submit 

market orders, while traders with low sensitivity to waiting costs submit limit orders. Foucault, 

Kadan and Kandel predict that there is an increase in spreads and trading frequency toward the 

end of the day. We therefore expect an increase in aggressive limit orders, and a higher number of 

market orders relative to trades at the end of a trading day. Empirical literature, such as Chung, 

Van Ness, and Van Ness (1999) show that limit orders are increasing through the trading day, and 

drop of at the end of the day. We expect an increase in aggressive limit orders and an increase in 

marketable orders at the end of the trading day.  

H6: Limit orders are more aggressive, and traders submit more market orders at the end of 

the trading day relative to limit orders. 
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III. DATA AND METHODS 

 

DATA SOURCES 

 This paper uses data from several different sources. Our primary dataset is NASDAQ OMX 

TotalView-ITCH dataset. The dataset includes messages for orders that are added, deleted, 

updated, and executed on the NASDAQ exchange. Additional stock information for this study 

comes from the Center for Research and Securities Prices (CRSP). Since theories tested in this 

paper rely on measures of depth, we reconstruct the limit order book for each of the datasets. The 

limit order book is recreated by implementing the information from all add orders into a dynamic 

database. The database then automatically sorts the orders on price-time priority. When each order 

is added, the database reports the best bid, best offer, and depth of the limit order book for that 

security. As orders are updated, deleted, or executed, the database incorporates the new 

information according to the message type.  

Our sample period includes the trading days from the months of August 2014 through 

October 2014. Since we use NASDAQ order level data, we filter our sample to only included 

NASDAQ listed securities. During our time period there are 2,871 NASDAQ listed securities. To 

adequately test our hypotheses, we reconstruct the limit order book and compute measures of depth 

(described in the next section). Many of the variables break down for illiquid securities, and as a 

result we employ a number of additional filters to ensure that the measures we employ are reliable. 

We require the securities in our sample to have closing prices above five dollars each day, and we 

eliminate from our sample stocks that do not trade at least 1,000 shares each day, which leaves a 
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final sample of 1,187 stocks. When recreating the limit order book, we remove stub quotes, which 

are non-competitive orders placed on the limit order book. We classify stub-quotes as orders less 

than one dollar and greater than $10,000 (the minimum closing price in our study is $5 and the 

highest closing price is just over $1,000).  

 

VARIABLE MEASURES AND METHODS 

A majority of the analysis rests on comparing limit orders against marketable orders. The 

data in its original form only contains information for limit orders as they enter the limit order 

book, and then reports which limit orders executed and cancel. There are no entries for marketable 

orders. Following the method of Johnson, McInish, and Upson (2015), we sum all trade-prints that 

occur for the same stock in the same nanosecond, to gather information on the size of the 

marketable order.  

Theory by Foucault (1998) and Foucault, Kadan, and Kandel (2005) both make 

assumptions that rely on the thickness of a limit order book (LOB). Measuring depth for a security 

in a concise manner is difficult. Unlike spread, which can be represented by a single number, depth 

is more indefinite. There is no single number that is universally used to represent the depth of a 

security. In order to test the theories of Foucault (1998) and Foucault, Kadan, and Kandel (2005) 

we construct two different measures of LOB thickness. The first measure of LOB thickness we 

construct makes use of the ex-ante cost of a round trip trade (CRT) defined in Domowitz, Hansch, 

and Wang (2005). This measure is the trading cost a trader will pay to buy and sell an order of q 

shares. Using similar notation as Domowitz, Hansch, and Wang the CRT is expressed as 

𝐶𝑅𝑇 = 

[∑ 𝐷𝑗,𝑎𝑠𝑘 𝑃𝑗,𝑎𝑠𝑘
𝑘−1
𝑗=1 + (𝑞 − ∑ 𝐷𝑗,𝑎𝑠𝑘

𝑘−1
𝑗=1 )𝑃𝑘,𝑎𝑠𝑘] − [∑ 𝐷𝑗,𝑏𝑖𝑑𝑃𝑗,𝑏𝑖𝑑

𝑘′−1
𝑗=1 +

(𝑞 −  ∑ 𝐷𝑗,𝑏𝑖𝑑
𝑘′−1
𝑗=1 )𝑃𝑘,𝑏𝑖𝑑].   

 

(1) 
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In equation (1), k is the number of ticks that a sell order of q shares has to travel on the offer side 

of the book before fully filling and k’ is the number of ticks a buy order of q shares has to travel 

before completely filling. Dj is depth at a tick j and Pj is the price at tick j. The first term in equation 

(1) is the cost to sell q shares, and the second term is the cost to buy q shares. The difference is the 

total cost to buy and sell q shares. Although Domowitz, Hansch, and Wang consider 10 values of 

q between 1 and 2,701 in their depth simulations, computational constraints limit me to five values. 

We compute the CRT for values of q of 100, 500, and 1,000, 5,000 and 10,000 shares. Our results 

are similar for all measures of q, for brevity we only report results using a value of 1,000 for q. 

The CRT is the ex-ante cost to buy and sell q number of shares, and the CRTSPREAD is the 

per share ex-ante cost to buy and sell q number of shares. A trader who wishes to trade q shares 

would not look only at the quoted spread, rather the trader would look at the shape of the limit 

order book. If the number of shares being traded, q, is less than or equal to depth at the top of the 

book then the trader can expect to pay the quoted spread for each share of the order. If the order 

of size q is greater than the top of the book, the actual spread the trader will anticipate paying is 

greater than the quoted spread.  

We separate the limit orders into various order classes to perform our analysis. Traders 

may pursue a number of different strategies when submitting limit orders, including the price to 

submit, as well as the how long to let the order stand before deleting. For convenience, we report 

all of the order classes used in our study in Table 1. The first three variables are common variables 

that are used in Microstructure studies. A trade-print is what is reported to traders on the 

consolidated tape, and is produced from a marketable order executing against a limit order. 

Marketable orders are liquidity demanding orders that are submitted by traders for immediate 

execution. A marketable order and a trade print will not always be the same. Although every trade 
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print does stem from a marketable order, a single marketable order may execute against multiple 

limit orders, which would produce multiple trade prints. Limit orders are all liquidity supplying 

orders that are submitted to the limit order book. This broad class includes all the subsets of limit 

orders. We break down limit orders into five subsets (which may overlap in their classification). 

Executed limit orders are the subset of limit orders that result in execution. This subset excludes 

all limit orders that never execute. Fleeting limit orders are limit orders that are on the limit order 

book for less than two seconds, and may be removed either through deletion or execution. The 

remaining three limit orders are mutually exclusive. Improving limit orders are limit orders that 

are priced within the bid-ask spread. Matching limit orders are limit orders that are priced at the 

top of the limit order book. Passive limit orders are priced behind the top of the limit order book.  

 

DESCRIPTIVE STATISTICS 

Table 2 presents descriptive statistics of the orders and trades in the study. The average 

security has a closing price of $45.71, a market capitalization of $5.67 billion, and has a daily 

range (daily high minus daily low) of 92 cents. For each day in our sample, the average stock has 

2,356 trade prints, which originate from 987 marketable orders, and 1,464 limit orders. The 

average total number of orders per stock, including orders that do not execute, is 33,150 per day, 

of which 18,632 are submitted for less than two seconds. We also include the average order and 

trade sizes. The average trade print, which is the union of a marketable and limit order, is 96.34 

shares. The average marketable order is 168.40 shares, and the average size of executed limit 

orders is 118.81 shares. The average executed volume is 227,112 shares. The total number of order 

volume received for the average stock is just over seven million shares. The final summary statistic 

reported is the standard deviation of order and trade prices. Trades, marketable orders, and 
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executed limit orders have low standard deviations, while all limit orders and fleeting orders have 

wide standard deviations.  

In Figure 1 we present the intraday patterns of orders and trades averaged to the minute 

level. Panel A reports the number of orders and trade prints. Early in the trading day the average 

minute stock will receive approximately 100 trade prints, while throughout the trading day there 

are less than 20 trade prints. Marketable orders and executed limit orders follow a similar pattern. 

Early in the trading day there are approximately 140 limit orders submitted in a one minute period 

for the average security in our sample, and drops to about 60 steadily drops to about 60 midday. 

Panel B reports the trade print sizes and order sizes averaged to the minute. All order sizes, 

including limit orders, executed limit orders, and marketable orders all display consistent order 

sizes throughout the trading day of approximately 150-200 shares, with the exception of the final 

closing period of the trading day, where order sizes jump above between 200-500 shares per order. 

Trade prints are much smaller, with the average trade-print size being approximately 100 shares, 

and jumping to over 200 shares at the end of the trading day.  
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IV. RESULTS 

 

 In this section we test the hypotheses regarding the characteristics of orders and trades. We 

separate our analysis into two subsections. The first subsection tests the first three hypotheses. 

These tests identify how order characteristics impact trade characteristics, as well as how different 

classes of orders compare against one another. The second subsection investigates how market 

liquidity impacts the characteristics and order submission strategies of market participants.  

 

COMPARING CHARACTERISTICS OF ORDERS AND TRADES 

We begin our analysis by identifying the extent that the characteristics of marketable orders 

and limit orders each impact the characteristics of trades. The first hypothesis suggests that limit 

orders primarily shape the characteristics of trades. Our analysis focuses on two testable 

characteristics of orders and trades, the first is size and the second is price volatility. We 

hypothesize that trade print sizes are mostly determined by limit orders, and that any volatility that 

is present in the trade print price will also stem from the volatility of the original limit order price. 

Table 3 reports summary statistics and correlations of these major order and trade characteristics. 

Panel A reports summary statistics of the size and price volatility of marketable orders, as well as 

three classes of limit orders. There is approximately one marketable order for every two trades, 

and approximately one limit order that executes to every two trades. The average trade print is 

96.37 shares, while the average size for marketable and executed limit orders is 168 and 118 

respectively. One explanation for trade prints to be smaller than both marketable and limit order 
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sizes is that orders at the top of the book cascade. A cascade occurs when the available liquidity at 

the top of the limit order book is smaller than the size of an incoming marketable order. The 

marketable order will consume all the liquidity from the order at the top of the limit order book, 

and then partially execute against the next best order in the limit order book. The order to trade 

ratio for marketable orders and executed limit orders also support this explanation. These results 

are similar to those found by Johnson, McInish and Upson (2015) who find that odd lot trade prints 

on the ticker tape stem from larger marketable orders.  

Panel B of Table 3 reports the size correlations of trades, marketable orders, and multiple 

classes of limit orders. The size of trade prints are highly correlated with marketable limit orders 

and executed limit orders, however limit orders placed deeper in the limit order book have a weaker 

size correlation with trade prints. In Panel C of Table 3 we report the correlations of standard 

deviations. One of the characteristics of trade prints is volatility. Similar to size, the standard 

deviation of trade prints is highly correlated with marketable orders and executed limit orders, but 

has little correlation with limit orders placed deeper in the limit order book. Another interesting 

result is that limit orders which executed have little correlation with limit orders placed deeper in 

the limit order book, which may indicate that traders are more active in pricing at the top of the 

limit order book.   

We continue the analysis in a multivariate framework, which is reported in Table 4. We 

regress trade characteristics on each of the separate order characteristics. Models [1] through [4] 

focus on size characteristics, and the remaining four models investigate the determinants of trade 

price volatility. In models [1] through [4] the independent variables include the size of marketable 

orders, limit orders, executed limit orders, aggressive limit orders, price matching limit orders, and 

passive limit orders, as well as control variables. In models [5] through [8] the independent 
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variables of interest include the price standard deviation of marketable orders, limit orders, 

executed limit orders, aggressive limit orders, price matching limit orders, and passive limit orders, 

as well as four control variables. All variables are averaged by stock and day, leaving us with over 

162,000 stock day observations. In all our models we include stock fixed effects.  

Our most simple specification tests the characteristics of marketable orders and limit 

orders. For trade size this is expressed in columns 1 and 2 of Table 4, and for trade price standard 

deviation it is expressed in columns 5 and 6. Limit orders that execute primarily trade the 

characteristics of trade size, while trade price standard deviation is almost entirely driven by 

marketable order prices. We provider further tests by looking at subsets of limit orders, partitioned 

into three pricing categories, where an order may improve the BBO, match the BBO, or be placed 

behind the BBO. These specifications are shown in columns 3 and 4 for trade and order size, and 

columns 7 and 8 for trade and order price standard deviation. We find similar results, where trade 

print sizes are driven by limit orders which executed, and trade print price standard deviations are 

driven by marketable orders. In sum, we find mixed support for our first hypothesis which states 

that limit orders have a significant impact on the characteristics of trades.  

The second and third hypotheses compare the characteristics of classes of limit orders and 

marketable orders with each other. Studies such as Hasbrouck and Saar (2009) and Griffiths et al. 

(2000) suggest that aggressive orders and marketable orders should have similar characteristics. 

We test to see if fleeting orders, limit orders which executed, and marketable orders, have similar 

characteristics. Table 5 reports the estimates for comparing the characteristics of order classes. 

Columns 1-4 reports our investigation of how different order classes compare in order size. The 

independent variable is order size, and the dependent variables include four indicator variables 

equal to one if an order fits the classification, zero otherwise. The indicator variables include 
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marketable order, executed limit order, fleeting order, and aggressive limit order. In each 

specification we omit one of the indicator variables, which allows us to make comparisons of order 

size among order classifications. In each column, the coefficients of the non-omitted indicator 

variables are compared against the omitted classification. To test our second hypotheses, order 

classes that are similar to each other will have insignificant coefficients.  

In column 1, we omit marketable orders. The average marketable order size, as indicated 

by the intercept, is 169 shares. The average size of executed limit orders is 50 shares smaller, and 

fleeting orders are 22 shares smaller. Aggressive limit orders appear to be insignificantly different, 

which provides evidence that marketable orders and aggressive limit orders, orders that improve 

the best bid an offer, have similar characteristics. We repeat the analysis, omitting executed limit 

orders in column 2. We find that limit orders which executed are significantly different than the 

other order classifications. In column 3 we omit fleeting orders, and in column 4 we omit 

aggressive limit orders. We repeat the analysis in columns 5-8, where order price volatility is the 

dependent variable, and the independent variables again include the four indicator variables of 

order classifications. Marketable orders and limit orders which executed have very similar price 

standard deviations. Although statistically different, the economic significance is low between the 

two order classifications. The greatest difference is among fleeting orders, which in all 

specifications much larger price standard deviations than the other three classifications of orders. 

Overall, the results from Table 5 provide mixed support for hypothesis 2. We find that marketable 

orders and aggressively priced limit orders are similar in size, marketable orders and executed limit 

orders are similar in pricing standard deviations, and that fleeting orders are priced very differently 

than the remaining order classes.  
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The third hypothesis we test in this subsection suggests that aggressive limit orders and 

fleeting orders should have higher fill-rates when compared to limit orders that are priced less 

aggressively in the limit order book. To test this hypothesis, we regress fill rates on four limit order 

classification indicator variables. We model this four different ways, where in each specification 

we omit a different order classification variable. The coefficients of the remaining indicator 

variables will then be relative to the omitted indicator variable. If one of the coefficients of an 

order classification indicator variable is insignificant, then it can be determined that it is similar to 

the omitted variable. This setup is similar to that of the previous hypothesis, which results were 

displayed in Table 5.  

The results for these tests are presented in Table 6. Since the hypothesis addresses limit 

orders only, we do not include marketable orders in this specification, and we include all limit 

order classifications, which include limit orders that are fleeting, limit orders that improve the 

BBO (Aggressive order), limit orders that match the BBO (Matching Order), and limit orders that 

are behind the BBO (Passive Order). We calculate fill rate as the number of shares that execute 

for an order class, divided by the total number of shares submitted in that order class. In column 1 

we omit fleeting orders. As expressed in the intercept, fleeting orders have a fill rate of 3.95%. 

Aggressive limit orders have a fill rate that is 10.76 percent higher, matching orders have a fill rate 

that is 2.06% higher than matching orders, and passive orders have a fill rate that is 4.16% lower 

than fleeting orders. All differences are statistically different. We omit aggressive orders in column 

2, matching orders in column 3, and passive orders in column 4. In all specifications, the results 

suggest that each limit order classification has a significantly significant fill rate. These results do 

not support hypothesis 3, which states that fleeting orders and aggressive orders have similar fill 

rates. We additionally test this hypothesis by looking at order size, which is presented in columns 
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5 through 8 of Table 6. The average fleeting order size is approximately 150 shares, aggressive 

limit orders are 26 shares larger, matching orders are 18 shares smaller, and passive orders are 14 

shares larger. All differences are statistically different, again which does not support our third 

hypothesis that aggressive limit orders and fleeting order characteristics are similar.  

 

MARKET BEHAVIOR AND ORDER CHARACTERISTICS 

The second subsection looks at how market behavior will impact order submission 

strategies. Our fourth hypothesis deals with the submission of limit orders, and states that traders 

submit limit orders when volatility is high, depth is low, and spread is wide. Parlour (1998) 

suggests that traders submit limit orders when volatility is high, depth is low, and the spread is 

wide. To test this hypothesis, we split each stock-day observation into fifteen minute periods. We 

then rank each fifteen minute period into one of five quintiles based on the liquidity ranking for 

that period. We perform the rankings three for three different liquidity variables; spread, depth, 

and volatility. Quintile 1 represents a fifteen minute period that experiences high depth as 

evidenced by low quoted spreads, a low CRT 1000, and low volatility during the trading day, while 

quintile five represents period of low liquidity, evidenced by high spread, high CRT 1000, and 

high volatility. All rankings are performed for each stock day. We test the hypothesis by 

identifying the number of orders submitted during periods of low liquidity against periods of high 

liquidity.  

We regress the number of limit orders on five indicator variables representing the five 

quintiles of liquidity, as well as control variables. The first quintile, representing high liquidity, is 

omitted. By omitting quintile 1 we can compare the remaining four quantiles against the quintile 

with the highest liquidity. In all models we employ panel regression methods and include firm 
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fixed effects. We display the results for this test in Table 7. Column 1 displays the results when 

partitioning by spread. In the periods that experience the lowest spread, there are approximately 

3,064 limit orders submitted in the fifteen minute period. The fifteen minute period with the highest 

spread during a stock day has an additional 744 limit orders submitted, for a total of 3,808 limit 

orders submitted for the average stock, average day, during periods of high spread. These results 

are in agreement with the Parlour (1998). When we partition by depth, measured by CRT1000, the 

fifteen minute period with the highest depth has approximately 3,272 limit orders submitted for 

the average stock average day, while the periods with the lowest depth have 3,813 limit orders 

submitted. When we support by volatility, the fifteen minute period with the lowest volatility has 

approximately 3,313 limit orders submitted for the average stock average day, while the fifteen 

minute periods with the highest volatility have 4,092 limit orders submitted. Together, all the 

results from Table 7 support hypothesis 4, which is that limit orders are submitted more during 

periods of low depth.  

It is possible that there is a degree of endogeneity when testing limit order submissions and 

periods of depth. Measuring order submissions during the same period that liquidity is measured 

makes it uncertain whether the new orders being submitted are responding to market conditions, 

or whether the market conditions reflect the order behavior. As an additional measure of 

robustness, we repeat the analysis by replacing the current period quintile dummy variables with 

dummy variables that represents the liquidity rankings of the prior one minute period. This 

specification addresses whether more orders are submitted depending on the market conditions of 

the prior one minute period, which addresses the issue of causality. We report these tests in the 

appendix. These results show that following a one minute period of high spread, approximately 

222 new limit orders are submitted. During periods of low spread, there are approximately 235 
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orders submitted. The difference is significant at the 1% level. During periods of high depth, 

measured by CRT1000, there are approximately 218 limit orders submitted, and during periods of 

low depth, there are approximately 234 limit orders submitted, again significant at the 1% level. 

The final column of the appendix Table shows that following a period of low volatility, there are 

214 limit orders submitted, however following periods of high volatility there are approximately 

302 limit orders submitted.  

Foucault, Kadan, and Kandel (2005), and Rosu (2009) predict that market conditions 

impact the prevalence of more aggressive orders. Following the predictions of these theoretical 

studies, our fifth hypothesis posits that when liquidity is high (indicated by low volatility, low 

spread, and high depth), traders will submit more aggressive limit orders, more marketable orders, 

and more fleeting orders. Following the methods for testing the fourth hypothesis, we separate 

stock days into fifteen minute periods, ranked by liquidity. The rankings are done within a stock, 

and not across stocks. We perform three separate rankings, including by spread, by depth, and by 

volatility. We regress the number of orders on each of the quintile indicator variables. Quintile 1 

represents fifteen minute periods of high liquidity, while quintile 5 represents periods of high 

liquidity. These results are displayed in Table 8. Columns 1 through 3 regress aggressive orders 

on each of the three periods, where column 1 is ranked by spread, column 2 is ranked by depth, 

and column 3 is ranked by volatility. For the average stock day, the fifteen minute periods with 

the lowest spreads receive approximately 132 aggressive limit orders that improve the BBO. 

During the period of low liquidity, there are approximately 199 aggressive limit orders submitted. 

Approximately 140 aggressive limit orders are submitted during periods of high depth, and 199 

limit orders are submitted during periods of low depth. From column 3, there are approximately 

157 price improving limit orders submitted during periods of low volatility, and 223 aggressive 
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limit orders submitted during periods of high volatility. We perform additional tests with 

marketable orders in columns 4 through 6, and fleeting limit orders in columns 7 through 9. During 

periods of low spread there are approximately 50 marketable orders submitted and 1,366 fleeting 

limit orders submitted. During periods of high spread, there are 53 marketable orders submitted 

and 1,878 fleeting limit orders submitted. We find similar results when ranking by depth and 

volatility. In general, the results suggest that when liquidity is high, traders submit less marketable 

orders, less aggressive orders, and less fleeting orders compared to when liquidity is low. We 

therefore reject the fifth hypothesis.  

These results are also sensitive to possible endogeneity concerns, since it is uncertain 

whether the orders are being submitted in response to current market conditions, or whether the 

current market conditions reflect the orders being submitted. We perform an additional robustness 

test, similar to the previous robustness test for hypothesis 4. In this test we regress current period 

order submissions on indicator variables for the one minute period prior to when the current orders 

being submitted. By regressing on the prior period quintile variables, we are able to separate the 

direction of the market response, since the orders in the current one minute period are responding 

to the liquidity in the one minute period prior. In columns 1 through 3 of the appendix Table 8, we 

find that there are approximately 13 to 14 aggressive limit orders submitted during the one minute 

periods following high depth, and there are approximately 17-20 aggressive limit orders submitted 

following periods of low depth. Columns 4-6 show that when ranking on spread and depth, there 

are more limit orders submitted during periods of low high depth, and columns 7-9 show that more 

fleeting orders are submitted during periods of high depth. The robustness tests in appendix table 

8 generally support the results of Table 8, which find little support that aggressive orders, 
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marketable orders, and fleeting orders are prevalent when volatility is low and depth is high. We 

therefore reject our fifth hypothesis.   

The sixth and final hypothesis we test addresses whether traders are more impatient 

towards the end of the trading day. In the model of Foucault, Kadan and Kandel (2005), traders 

are aware of the time to execution, and towards the end of the trading day they will submit more 

aggressive orders to assume any positions that were not completed during the trading day. 

Impatient traders would be evidenced by more aggressively priced limit orders and more 

marketable orders in general. We test this hypothesis by looking at the proportions of aggressive 

orders and marketable orders. The proportion of aggressive limit orders is computed as the number 

of spread improving limit orders submitted within a fifteen minute period divided by the total 

number of limit orders submitted within the same fifteen minute period.  We calculate the 

proportion of marketable orders by summing all marketable orders in a fifteen minute period and 

dividing by the total number of orders submitted in the same period (all orders being all marketable 

and all limit orders). Figure 2 displays the proportion of aggressive orders and the proportion of 

marketable orders throughout the trading day. Consistently throughout the trading day aggressive 

limit orders compose approximately 10 percent of total limit orders submitted. At the end of the 

trading day this proportion jumps to approximately 45%. Marketable orders compose 3-5% 

through most of the trading day, but jump to approximately 10% at the end of the trading day. 

These results suggest that traders become aggressive at the end of the trading day.  

In addition, we regress the proportional order rates on indicator variables representing 

different time periods throughout the trading day, as well as control variables. The time of day 

indicator variables include Open (9:30-10:00), Morning (10:00-12:00), Midday (12:00-13:00), 

Afternoon (13:00-15:30), and close (15:30-16:00). To test for time differences we omit Open in in 
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columns 1 and 3. The coefficients of the remaining variables can be compared to the open time 

period, which allows us to identify changes in the proportion of orders. In columns 2 and 4 we 

omit the midday variable, where the coefficients of the remaining indicator variables can be 

compared to the omitted midday variable. We report these tests in Table 9. During the opening 

period, 10 percent of limit orders are aggressively priced, while in the afternoon the proportion of 

aggressive limit orders increases to 20 percent. The proportion of orders that are marketable orders 

in the opening is 1 percent, and then rises by 4 percent at the end of the trading day. The results 

from Table 9 support the model of Foucault, Kadan and Kandel (2005), where we find a higher 

proportion of both aggressive limit orders, and marketable orders at the end of the trading day 

compared to the beginning of the trading day. These results support hypothesis 6.  
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V. CONCLUSION 

 

 In this study we investigate the characteristics of orders and trades. Traders place orders 

into one of two broad classes: limit orders, which are given priority following guidelines 

established by exchanges, or marketable orders, which execute at the prevailing prices set by limit 

orders. A trade-print is reported when a marketable order executes against an existing limit order. 

Since trade prints are a simply a mechanical process in which market participants do not directly 

choose the characteristics of the resulting trade, the characteristics of trade prints must stem from 

one of the two orders from which the trade originated. The first focus of our paper is to this end. 

We investigate which type of order primarily drives the characteristics of trades. Our results 

suggest that limit orders primarily drive trade print size, while the trade print volatility is driven 

by marketable orders. 

The second contribution of our study identifies how market conditions impact the 

prevalence and behavior of the different order classes. Our results suggest that when liquidity is 

low, traders will submit more limit orders, and when liquidity is high, the fill rates of aggressive 

and marketable orders increase. Finally, our results do find that trader are more aggressive at the 

end of the trading day, evidenced by more marketable orders and aggressively priced limit orders. 
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APPENDIX 1: DEFINITIONS OF TRADE PRINTS AND ORDER CLASSIFICATIONS
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Table 1: Definitions of trade prints and order classifications 

Definition and description of Order and Trade Types 

Trade Print 
Trade prints occur when a marketable order executes against a limit 

order that is standing on the limit order book.  

Marketable Order 
Marketable orders are calculated by summing all trades that occur 

for the same stock, at the same price, in the same nanosecond. 

Limit Order 
All non-marketable order that are added to the limit order book. 

These orders may later execute, be updated, or be deleted.  

Executed Limit Order 
These orders are the subset of limit orders that will end up being 

executed during the trading day.   

Fleeting Order 

These orders are a subset of limit orders, which are added to the 

limit order book and subsequently executed or deleted within 2 

seconds.  

Aggressive order 
These orders are a subset of limit orders, and are submitted within 

the current best bid and offer. 

Price-Matching order 

These orders are a subset of limit orders, and are submitted at the 

current best prices (best bid for buy orders, best offer for sell 

orders). 

Passive order 

These orders are a subset of limit orders, which are submitted 

behind the current best prices (best bid for buy orders, best offer for 

sell orders).  
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APPENDIX 2: DAILY SUMMARY STATISTICS 
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Table 2: Daily Summary Statistics 

This table presents stock-day summary statistics for the securities in our sample. Panel A reports 

the daily summary statistics of the firm, while Panel B reports the characteristics of orders and 

trades, averaged at the daily level. The order classes include marketable orders, limit orders, as 

well subsets of limit orders which includes limit orders that execute, limit orders that are fleeting 

(added and deleted/executed within 2 seconds). Data is gathered from the NASDAQ Historical 

TotalView ITCH database, and covers the three months from August to October 2014. 

 No. 

Obs. 

Mean Median St. Dev. Min Max 

Panel A: Firm level daily summary statistics 

Price 41,664 45.71 30.79 66.37 5.14 1,899.64 

Market 

Capitalization 

(000s) 

41,664 5,666,771 1,068,623 26,593,012 54,764 618,546,679 

Range 41,664 0.92 0.60 1.38 0.02 75.08 

       

Panel B: Order and Trade Characteristics 

 Trades 41,664 2,356 983 5,249 34 281,231 

Marketable 

Orders 

41,664 987 484 1,893 6 113,698 

Executed Limit 

Orders 

41,664 1,464 595 3,395 7 184,963 

Limit Orders 41,664 33,150 14,403 67,541 294 2,905,789 

Fleeting Orders 41,664 18,632 6,188 49,271 16 2,585,543 

       

Trade Size 41,664 96.34 85.92 48.30 9.70 1,938.95 

Market Order 

Size 

41,664 168.40 117.96 196.73 17.50 4,259.46 

Executed Order 

Size 

41,664 118.81 101.21 69.29 19.66 2,215.45 

Limit Order Size 41,664 145.66 110.60 276.65 31.84 12,950.47 

Fleeting Order 

Size 

41,664 146.33 106.67 366.98 30.15 16,796.91 

       

Trade Volume 41,664 227,112 66,184 721,806 765 42,391,021 

Limit Order 

Volume 

41,664 7,089,756 1,700,838 43,333,047 62,794 2,096,399,369 

Fleeting Order 

Volume 

41,664 4,359,592 684,304 33,243,210 1947 1,601,934,053 

       

Trade Std. 41,664 0.01 0.01 0.01 0.00 0.50 

Market Order 

Std. 

41,664 0.01 0.01 0.01 0.00 0.51 

Executed Order 

Std. 

41,662 0.02 0.01 0.04 0.00 2.25 

Limit Order Std.  41,664 19.86 0.20 105.64 0.02 6,641.26 

Fleeting Order 

Std. 

41,664 15.43 0.09 129.76 0.00 6,148.48 
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APPENDIX 3: ORDER AND TRADE CHARACTERISTICS AND CORRELATIONS 
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Table 3: Order and Trade characteristics and correlations 

This table reports the characteristics of trades and orders. Trade prints occur when a marketable 

and limit order intersect. The orders analyzed include marketable and limit orders. Limit orders 

are further partitioned into limit orders that execute, limit orders that are aggressive (submitted 

within the BBO), limit orders that are matching (submitted at the BBO), and orders that are passive 

(submitted inferior to the BBO). Panel A reports the mean order to trade ratio for each of the order 

classes, as well as the mean size and mean price volatility of each of the order and trade classes. 

Panel B displays the size correlations of the order classes, and Panel C covers the correlations of 

price standard deviations of the order classes. Data is gathered from the NASDAQ Historical 

TotalView ITCH database, and covers the three months from August to October 2014.  

Panel A: Mean order and trade characteristics 

 Trade 

prints 

Marketable 

Orders 

Executed 

Limit 

Orders 

All Limit 

Orders 

Aggressive 

Orders 

Order-Trade 

Ratio 

n/a 0.4931 0.4980 7.2977 0.9863 

Size 96.37 168.40 118.89 145.51 173.19 

Volatility 0.0095 0.0109 0.0193 19.6087 0.0364 
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Panel B: Size correlations 

 Trade 

prints 

Marketable 

Orders 

Limit 

Orders 

Executed 

Limit 

Orders 

Aggressive Matching Passive 

Trade 

Prints 

       

Marketable .8705*       

Limit .4105* .3015*      

Executed 

Limit 

.9158* .7403* .3809*     

Aggressive .5637* .5554* .8320* .5007*    

Matching .3805* .2355* .9371* .3438* .8716*   

Passive .3252* .2079* .9719* .3082* .7492* .8733*  

        

Panel C: Standard deviation correlations 

 Trade 

prints 

Marketable 

Orders 

Limit 

Orders 

Executed 

Limit 

Orders 

Aggressive Matching Passive 

Trade 

Prints 

       

Marketable .9969*       

Limit .0572* .0574*      

Executed 

Limit 

.9218* .9151* .0661*     

Aggressive .5326* .5743* .0304* .4819*    

Matching .1309* .1335* .0047 .1105* .1901*   

Passive .0388* .0399* .9713* .0472* .0237* .0043  

*Statistically different at 1% level
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APPENDIX 4: DETERMINANTS OF TRADE CHARACTERISTICS 
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Table 4: Determinants of Trade Characteristics 

This table presents the estimates for cross sectional panel regressions. The dependent variables include two characteristics of trades, size 

and volatility. In models [1] through [4] the independent variables include the size of marketable orders, limit orders, executed limit 

orders, aggressive limit orders, price matching limit orders, and passive limit orders, as well as four control variables. In models [5] 

through [8] the independent variables include the price standard deviation of marketable orders, limit orders, executed limit orders, 

aggressive limit orders, price matching limit orders, and passive limit orders, as well as four control variables. The control variables 

include market capitalization, the daily closing price, daily trading volume, and the daily range as a proxy for stock volatility.  

Dependent 

Variable 

Trade Size Trade Size Trade Size Trade Size Trade Price 

Std. Dev 

Trade Price 

Std. Dev 

Trade Price 

Std. Dev 

Trade Price 

Std. Dev 

 [1] [2] [3] [4] [5] [6] [7] [8] 

Intercept 58.1232*** 37.9621*** 59.0712*** 38.5321*** -0.0007*** -0.0005*** -0.0007*** -0.0005*** 

 (14.454) (12.721) (13.684) (14.235) (-3.902) (-4.490) (-3.916) (-4.499) 

Marketable 0.2199*** 0.1412*** 0.2194*** 0.1434*** 0.9004*** 0.8831*** 0.9005*** 0.8831*** 

  (8.790) (10.435) (8.271) (11.042) (90.769) (63.929) (90.624) (63.856) 

Limit Order 0.0222 0.0043   0.0000*** 0.0000**   

 (1.468) (1.277)   (2.939) (2.558)   

Executed Limit  0.3144***  0.3168***  0.0151***  0.0151*** 

    Order  (14.810)  (14.532)  (3.625)  (3.627) 

Aggressive   0.0026 -0.0061   -0.0001 -0.0000 

   (0.221) (-1.362)   (-0.601) (-0.284) 

Matching Order   0.0122** 0.0102***   0.0000 0.0000 

   (2.010) (4.410)   (1.177) (1.249) 

Passive Order   0.0026 -0.0052   0.0000* 0.0000* 

   (0.387) (-1.128)   (1.948) (1.740) 

Market Cap -0.0000** -0.0000** -0.0000** -0.0000** -0.0000 -0.0000 -0.0000 -0.0000 

 (-2.159) (-2.365) (-2.138) (-2.056) (-1.602) (-1.127) (-1.602) (-1.126) 

Price -0.0491 -0.0813** -0.0502 -0.0833** 0.0000 -0.0000 0.0000 -0.0000 

 (-1.229) (-2.375) (-1.244) (-2.421) (0.631) (-0.023) (0.633) (-0.023) 

Daily Volume 0.0000** 0.0000 0.0000** 0.0000 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

 (2.537) (1.077) (2.470) (0.792) (4.231) (4.174) (4.226) (4.170) 

Range 1.1856*** 0.6896*** 1.1882*** 0.6856*** 0.0004*** 0.0002*** 0.0004*** 0.0002*** 

 (3.367) (3.280) (3.372) (3.291) (10.937) (7.873) (10.917) (7.896) 
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Table 4 continued       

Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

N 1,089 1,089 1,089 1,089 1,089 1,089 1,089 1,089 

Observations 162,356 162,356 162,356 162,356 162,354 162,354 162,354 162,354 

R-Squared 0.4825 0.7256 0.4815 0.7272 0.4258 0.5486 0.4304 0.5520 

*** Statistically different at 1% level 

 ** Statistically different at 5% level 

    *Statistically different at 10% level 
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APPENDIX 5: CHARACTERISTICS OF AGGRESSIVE ORDERS 
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Table 5: Characteristics of aggressive orders 

This table investigates how different order classifications compare to each other. The dependent variable is the order characteristic, 

while the main independent variables are indicator variables to identify the order classification. To test the hypothesis fleeting orders, 

executed orders, and market orders have similar characteristics, we run the regression while omitting an order class, enabling a 

comparison of order characteristics against the omitted order class.  

Dependent Variable Order Size Order Size Order Size Order Size Price Std. 

Dev 

Price Std. 

Dev 

Price Std. 

Dev 

Price Std. 

Dev 

 [1] [2] [3] [4] [5] [6] [7] [8] 

Intercept 169.39*** 119.81*** 147.24*** 174.11*** -0.79 -0.79 14.57*** -0.77 

 (29.929) (19.512) (16.738) (23.140) (-0.683) (-0.676) (10.411) (-0.661) 

Market Order  49.51*** 22.08** -4.79  -0.01*** -15.37*** -0.03*** 

  (11.490) (2.076) (-0.528)  (-13.021) (-14.035) (-31.068) 

Executed Limit -49.51***  -27.44*** -54.30*** 0.01***  -15.36*** -0.02*** 

    Order Indicator (-11.490)  (-2.690) (-5.296) (13.021)  (-14.028) (-20.822) 

Fleeting -22.07** 27.43***  -26.87*** 15.37*** 15.36***  15.35*** 

    Order Indicator (-2.076) (2.690)  (-3.978) (14.035) (14.028)  (14.013) 

Aggressive Limit  4.78 54.30*** 26.87***  0.02*** 0.02*** -15.35***  

    Order Indicator (0.528) (5.296) (3.978)  (31.068) (20.822) (-14.013)  

Market Cap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 (0.676) (0.676) (0.676) (0.676) (0.469) (0.469) (0.469) (0.469) 

Price -0.18 -0.18 -0.19 -0.19 -0.03 -0.03 -0.03 -0.03 

 (-1.507) (-1.507) (-1.507) (-1.507) (-1.093) (-1.093) (-1.093) (-1.093) 

Daily Volume 0.00** 0.00** 0.00** 0.00** 0.00 0.00 0.00 0.00 

 (2.130) (2.130) (2.130) (2.130) (1.568) (1.568) (1.568) (1.568) 

Range 0.91** 0.90** 0.91** 0.91** 1.89*** 1.89*** 1.89*** 1.89*** 

 (2.209) (2.209) (2.209) (2.209) (2.599) (2.599) (2.599) (2.599) 

Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

N 1,089 1,089 1,089 1,089 1,089 1,089 1,089 1,089 

Observations 162,356 162,356 162,356 162,356 162,354 162,354 162,354 162,354 

R-Squared 0.0120 0.0120 0.0120 0.0120 0.0112 0.0112 0.0112 0.0112 

*** Statistically different at 1% level 

 ** Statistically different at 5% level 

    *Statistically different at 10% level 
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APPENDIX 6: FILL RATES AND ORDER SIZES OF LIMIT ORDERS
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Table 6: Fill rates and order sizes of limit orders 

This table investigates the similarities of fleeting aggressive orders, marketable orders, and passive orders. We test the differences in fill 

rates and the differences in order size of these order classes. The dependent variable is the fill rates of limit orders in columns 1 through 

4, and is the order size in columns 5 through 8. To test the hypothesis of limit order fill rates, we run each regression while omitting a 

single order class, enabling a comparison of order characteristics against the omitted order class. 

Dependent Variable Fill Rate Fill Rate Fill Rate Fill Rate Order Size Order Size Order Size Order Size 

 [1] [2] [3] [4] [5] [6] [7] [8] 

Intercept 0.03*** 0.14*** 0.06*** -0.00 150.66*** 177.52*** 131.90*** 165.21*** 

 (9.289) (31.840) (14.241) (-0.504) (19.785) (27.081) (24.642) (19.393) 

Fleeting Order  -0.11*** -0.02*** 0.04***  -26.86*** 18.75*** -14.55*** 

  (-39.209) (-37.894) (65.293)  (-3.978) (4.061) (-4.877) 

Aggressive Order 0.11***  0.08*** 0.14*** 26.86***  45.62*** 12.31* 

   (39.209)  (32.677) (55.506) (3.978)  (9.140) (1.676) 

Matching Order 0.02*** -0.09***  0.06*** -18.75*** -45.62***  -33.30*** 

 (37.894) (-32.677)  (82.383) (-4.061) (-9.140)  (-5.821) 

Passive Order -0.04*** -0.15*** -0.06***  14.55*** -12.30* 33.30***  

 (-65.293) (-55.506) (-82.383)  (4.877) (-1.676) (5.821)  

Market Cap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 (1.499) (1.499) (1.499) (1.499) (0.669) (0.669) (0.669) (0.669) 

Price 0.00 0.01 0.00 0.00 -0.24 -0.24 -0.24 -0.24 

 (0.984) (0.984) (0.984) (0.984) (-1.462) (-1.462) (-1.462) (-1.462) 

Daily Volume 0.00*** 0.00*** 0.00*** 0.00*** 0.00 0.00 0.00 0.00 

 (3.106) (3.106) (3.106) (3.106) (1.090) (1.090) (1.090) (1.090) 

Range 0.00*** 0.00*** 0.00*** 0.00*** 0.81** 0.81** 0.81** 0.81** 

 (5.920) (5.920) (5.920) (5.920) (2.105) (2.105) (2.105) (2.105) 

         

Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

N 1,089 1,089 1,089 1,089 1,089 1,089 1,089 1,089 

Observations 162,334 162,334 162,334 162,334 162,356 162,356 162,356 162,356 

R-Squared 0.5360 0.5360 0.5360 0.5360 0.0120 0.0120 0.0120 0.0120 

*** Statistically different at 1% level 

   ** Statistically different at 5% level 

      *Statistically different at 10% level 
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APPENDIX 7: PREVALENCE OF LIMIT ORDERS DURING FIFTEEN MINUTE PERIODS 

OF HIGH DEPTH AND LOW VOLATILITY
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Table 7: Prevalence of limit orders during periods of high depth and low volatility 

The dependent variable is the number of orders submitted for a given fifteen minute period, where 

the first three columns look at aggressive orders submitted, the second three look at the number of 

marketable orders submitted, and the final three columns look at the number of fleeting orders 

submitted. The trading day for a stock is split into fifteen minute periods, where each of the periods 

are partitioned into liquidity quintiles, where low values are placed in Rank 1, and high values are 

placed in Rank 5.  

Dependent Variable # Limit Orders # Limit Orders # Limit Orders 

Ranking Variable Quoted Spread CRT 1000  

(Depth) 

Trade Price 

Volatility 

 [1] [2] [3] 

Intercept 3,064.5898*** 3,272.87*** 3,313.3303*** 

 (7.275) (7.86) (8.258) 

Q1t (High Liquidity)    

    

Q2 t 184.36*** 100.84*** 40.64*** 

 (11.59) (9.07) (6.61) 

Q3 t 334.07*** 215.35*** 207.61*** 

 (14.00) (10.98) (22.89) 

Q4 t 522.40*** 367.82*** 473.06*** 

 (15.97) (12.63) (16.40) 

Q5 t (Low Liquidity) 744.69*** 541.23*** 779.55*** 

 (16.41) (14.9) (16.54) 

Market Capitalization -0.00** -0.00** -0.00** 

 (-2.36) (-2.36) (-2.36) 

Price -10.94 -10.94 -10.71 

 (-1.32) (-1.32) (-1.30) 

Volume 0.00*** 0.00*** 0.00*** 

 (5.13) (5.13) (5.12) 

Range 157.23*** 157.23*** 153.46*** 

 (2.84) (2.84) (2.82) 

    

Fixed Effects Yes Yes Yes 

N 1,089 1,089 1,089 

Observations 1,087,350 1,087,350 1,087,350 

R-squared 0.1710 0.1683 0.1783 

  *** Statistically different at 1% level 

    ** Statistically different at 5% level 

       *Statistically different at 10% level 
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Panel B    

Dependent Variable # Limit Orders # Limit Orders # Limit 

Orders 

Ranking Variable Quoted Spread CRT 1000  

(Depth) 

Trade Price 

Volatility 

 [1] [2] [3] 

Intercept 222.47*** 218.77*** 214.44*** 

 (7.506) (7.402) (7.545) 

Q1t-1 (High 

Liquidity)    

    

Q2 t-1 -3.85*** 1.75** 8.37*** 

 (-3.613) (2.015) (7.876) 

Q3 t-1 6.76*** 6.63*** 24.83*** 

 (11.399) (5.065) (18.394) 

Q4 t-1 12.05*** 11.68*** 42.95*** 

 (14.690) (7.597) (18.716) 

Q5 t-1 (Low 

Liquidity) 12.23*** 16.25*** 88.71*** 

 (7.666) (8.785) (13.966) 

Market Capitalization -0.00** -0.00** -0.00** 

 (-2.399) (-2.399) (-2.393) 

Price -0.75 -0.75 -0.73 

 (-1.322) (-1.322) (-1.287) 

Volume 0.00*** 0.00*** 0.00*** 

 (5.135) (5.135) (5.064) 

Range 10.92*** 10.92*** 9.75*** 

 (2.839) (2.839) (2.705) 

    

Fixed Effects Yes Yes Yes 

N 1,089 1,089 1,089 

Observations 15,358,037 15,358,037 15,358,037 

R-squared 0.09 0.09 0.11 
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APPENDIX 8: THE PREVALENCE OF AGGRESSIVE, FLEETING, AND MAKRETABLE 

ORDERS DURING FIFTEEN MINUTE PERIODS OF HIGH DEPTH AND LOW 

VOLATILITY 
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Table 8: The prevalence of aggressive, fleeting, and marketable orders during periods of high depth and low volatility 

The dependent variable is the number of orders submitted for a given fifteen minute period, where the first three columns look at 

aggressive orders submitted, the second three look at the number of marketable orders submitted, and the final three columns look at 

the number of fleeting orders submitted. The trading day for a stock is split into fifteen minute periods, where each of the periods are 

partitioned into liquidity quintiles, where low values are placed in Rank 1, and high values are placed in Rank 5.  

Dependent  Aggressive 

Orders 

Aggressive 

Orders 

Aggressive  

Orders 

Market 

Orders 

Market 

Orders 

Market 

Orders 

Fleeting 

Orders 

Fleeting 

Orders 

Fleeting 

Orders 

Ranking Spread Depth Volatility Spread Depth Volatility Spread Depth Volatility 

 [1] [2] [3] [4] [5] [6] [7] [8] [9] 

Intercept 132.6*** 140.7*** 157.8*** 49.9*** 47.6*** 36.4*** 1,366.7*** 1,529.8*** 1,592.0*** 

 (7.168) (7.604) (8.566) (4.699) (4.422) (3.363) (4.910) (5.594) (6.065) 

Q2 t 10.97*** 11.76*** 6.37*** -0.74 -1.10*** 3.52*** 120.03*** 65.86*** 10.50** 

 (23.67) (26.43) (17.74) (-1.62) (-3.42) (24.55) (10.36) (8.46) (2.50) 

Q3 t 21.44*** 20.59*** 16.68*** 0.55 -0.22 7.02*** 215.84*** 138.54*** 105.69*** 

 (29.22) (29.63) (31.71) (0.90) (-0.47) (38.24) (11.97) (9.66) (17.68) 

Q4 t 36.18*** 32.10*** 32.75*** 2.07** 1.40* 13.45*** 339.47*** 236.85*** 265.16*** 

 (28.48) (25.74) (29.05) (2.20) (1.86) (21.36) (13.23) (10.65) (13.02) 

Q5 t 67.14*** 59.75*** 66.72*** 3.35** 5.80*** 24.36*** 512.13*** 352.00*** 454.48*** 

    (29.07) (28.18) (27.27) (2.51) (5.10) (17.51) (13.61) (12.32) (13.98) 

Market Cap -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00** -0.00** -0.00** 

 (-0.57) (-0.57) (-0.58) (-0.45) (-0.45) (-0.45) (-2.42) (-2.42) (-2.42) 

Price -0.69* -0.69* -0.67* -0.14 -0.14 -0.14 -3.40 -3.40 -3.27 

 (-1.68) (-1.68) (-1.64) (-0.63) (-0.63) (-0.62) (-0.63) (-0.63) (-0.61) 

Volume 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

 (3.11) (3.11) (3.11) (4.99) (4.99) (4.99) (4.56) (4.56) (4.55) 

Range 22.94*** 22.94*** 22.64*** 9.53*** 9.54*** 9.47*** 73.31** 73.31** 71.20** 

 (3.82) (3.82) (3.83) (3.93) (3.93) (3.93) (2.31) (2.31) (2.27) 

Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

N 1,089 1,089 1,089 1,089 1,089 1,089 1,089 1,089 1,089 

R-squared 0.14 0.14 0.16 0.24 0.24 0.25 0.17 0.17 0.17 
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Panel B          

Dependent 

Variable 

Aggressive 

Orders 

Aggressive 

Orders 

Aggressive  

Orders 

Market 

Orders 

Market 

Orders 

Market 

Orders 

Fleeting 

Orders 

Fleeting 

Orders 

Fleeting 

Orders 

Ranking 

Variable 

Spread Depth Volatility Spread Depth Volatility Spread Depth Volatility 

 [1] [2] [3] [4] [5] [6] [7] [8] [9] 

Intercept 14.09*** 13.21*** 14.54*** 8.25*** 8.91*** 6.91*** 121.24*** 118.96*** 117.49*** 

 (8.595) (8.108) (8.919) (5.770) (6.242) (4.840) (6.222) (6.135) (6.347) 

Q2 t-1 -0.28*** 0.51*** 0.54*** 0.44*** -0.75*** 0.23*** -2.13*** 1.32** 3.27*** 

 (-5.770) (11.683) (6.162) (11.715) (-20.747) (3.586) (-2.966) (2.260) (4.146) 

Q3 t-1 0.42*** 0.97*** 1.43*** -0.05*** -0.88*** 0.56*** 4.09*** 4.27*** 11.88*** 

 (15.339) (14.946) (13.305) (-2.739) (-17.372) (7.756) (9.812) (4.660) (11.599) 

Q4 t-1 0.97*** 1.54*** 2.60*** -0.11*** -0.96*** 1.04*** 7.58*** 7.49*** 23.31*** 

 (16.711) (14.998) (22.980) (-2.714) (-12.472) (27.667) (11.843) (6.627) (14.305) 

Q5 t-1 2.11*** 3.01*** 6.31*** -0.35*** -0.99*** 2.64*** 8.15*** 10.63*** 53.10*** 

 (19.274) (18.691) (22.883) (-3.680) (-7.935) (12.807) (7.076) (7.424) (11.365) 

Market Cap -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00** -0.00** -0.00** 

 (-0.550) (-0.550) (-0.542) (-0.402) (-0.402) (-0.391) (-2.443) (-2.444) (-2.440) 

Price -0.05 -0.05 -0.05 -0.01 -0.01 -0.01 -0.24 -0.24 -0.22 

 (-1.570) (-1.569) (-1.525) (-0.652) (-0.649) (-0.645) (-0.639) (-0.638) (-0.605) 

Volume 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

 (3.031) (3.031) (3.000) (4.840) (4.840) (4.807) (4.563) (4.563) (4.513) 

Range 1.51*** 1.51*** 1.44*** 0.69*** 0.69*** 0.66*** 5.09** 5.09** 4.44** 

 (3.551) (3.551) (3.521) (3.361) (3.360) (3.334) (2.307) (2.307) (2.128) 

          

Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

N 1,089 1,089 1,089 1,089 1,089 1,089 1,089 1,089 1,089 

R-squared 0.05 0.05 0.06 0.12 0.12 0.13 0.09 0.09 0.10 

*** Statistically different at 1% level 

  ** Statistically different at 5% level 

     *Statistically different at 10% level 
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Table 9: Order aggressiveness by time of day 

This table identifies if order become more aggressiveness at the end of the trading day. The first 

two columns look at the proportion of aggressive orders, which is calculated as the number of limit 

orders submitted within the BBO divided by the total number of limit orders submitted. The second 

two columns report the estimates for regressing the proportion of market orders, which is 

calculated as the number of market orders submitted divided by the total number of orders 

submitted (limit orders + marketable orders). The main independent variables are time of day 

identifiers, with the variable of interest being the indicator variable close.  

Dependent Variable Aggressive 

Order 

Proportion 

Aggressive 

Order 

Proportion 

Market Order 

Proportion 

Market 

Order 

Proportion 

 [1] [2] [3] [4] 

Intercept 0.10*** 0.09*** 0.01*** 0.02*** 

 (15.969) (15.009) (6.612) (9.545) 

Opening  0.01***  -0.01*** 

  (5.585)  (-22.301) 

Morning -0.01*** -0.00*** 0.01*** -0.00*** 

 (-13.794) (-11.268) (22.995) (-10.554) 

Midday -0.01***  0.01***  

 (-5.585)  (22.301)  

Afternoon -0.01*** -0.00*** 0.01*** 0.00*** 

 (-6.200) (-3.533) (34.657) (30.156) 

Close 0.10*** 0.11*** 0.04*** 0.03*** 

 (81.161) (90.330) (72.768) (71.254) 

Market 

Capitalization 

-0.00 -0.00 0.00 0.00 

 (-0.871) (-0.871) (1.503) (1.503) 

Price 0.00 0.00 0.00*** 0.00*** 

 (1.554) (1.554) (2.795) (2.795) 

Volume 0.00** 0.00** 0.00*** 0.00*** 

 (2.058) (2.058) (3.146) (3.146) 

Range 0.00*** 0.00*** 0.00*** 0.00*** 

 (4.040) (4.040) (6.149) (6.149) 

     

Fixed Effects Yes Yes Yes Yes 

N 1,089 1,089 1,089 1,089 

Observations 1,072,755 1,072,755 1,028,214 1,028,214 

R-squared 0.13 0.13 0.13 0.13 

*** Statistically different at 1% level 

  ** Statistically different at 5% level 

     *Statistically different at 10% level 
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APPENDIX 10: INTRADAY ORDER AND TRADE CHARACTERISTICS  
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Figure 1: Intraday order and trade characteristics 

This figure reports the number of orders and trades averaged to the minute, for the average stock 

day in our sample. Panel A reports intraday order and trade print frequencies, while panel B reports 

intraday patterns of order sizes and trade print sizes.  
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APPENDIX 11: ORDER AGGRESSIVENESS THROUGHOUT THE TRADING DAY



    

121 
   

 

 

 Figure 2: Order aggressiveness throughout the trading day 

This Figure presents intraday patterns for the proportion of aggressive limit orders and marketable 

orders. The proportion of aggressive orders is calculated as the number of price improving limit 

orders expressed as a ratio over all limit orders, while the proportion of marketable orders is 

calculated as the number of marketable orders divided by all orders received. Statistics are 

computed for the average one minute period for the average stock in our sample.  
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 PART 3: BREAKDOWNS IN FINANCIAL MARKETS: FLASH CRASHES AND 

LIQUIDITY CRISES
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I. INTRODUCTION 

 

 Financial markets facilitate trading by providing a venue for buyers and sellers to exchange 

securities. A liquid market contains a sufficient number of shares available to buyers and sellers, 

and the security’s price is considered fair and accurate (O’Hara 2003). Liquid markets promote 

investor confidence (Chordia, Roll, and Subrahmanyam (2001)), while illiquid markets impede 

trading and price discovery. Markets may experience liquidity crises when depth evaporates, and 

the asset price is driven from its true value, causing a suspension in the price dissemination process 

and often causing investors to lose confidence (Greenwald and Stein (1991)). Liquidity crises may 

be the result of fundamental events (such as economic changes and market news) or non-

fundamental events (like the May 2010 flash crash, and the April 2013 Associated Press Twitter 

hack). In the case of fundamental events, a tangible shock to the market disrupts trading. Liquidity 

is suppressed while the information is processed. When the shock secedes, the information is 

incorporated into the price of the security and regular trading resumes. In the case of non-

fundamental events, a shock disrupts trading, but no essential news is transmitted. During the 

crash, liquidity is suppressed and minimal trading occurs. When it is discovered that no 

fundamental event transpired, markets rebound and liquidity returns to the market (Gabaix, 

Gopikrishnan, Plerou and Stanley (2006); Bernardo and Welch (2004)). Short, non-fundamental 

liquidity crises are frequently referred to as flash crashes. Liquidity crises vary in duration. During 

the crash of October 1987, illiquidity and suppressed prices spanned multiple trading days (Carlson 
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(2007)). The May 2010 flash crash, in contrast, only lasted 36 minutes and experienced illiquidity 

caused by thin depth and suppressed prices (Kirilenko, Kyle, Samadi, Tuzun (2014)).  

Our focus in this paper is intraday liquidity crises and flash crashes. Using nanosecond 

exchange data for the NASDAQ exchange, we detect short-term flash crashes that have direct 

impacts on market quality, which go undetected using datasets with less precise timestamps. The 

events in our study are shocks to the market that disrupt trading, but contain no fundamental 

information. Theoretical studies suggest non-fundamental crashes may be due to liquidity concerns 

(Bernardo and Welch (2004)), or heavy trading when the market is experiencing waning depth 

(Gabaix, Gopikrishnan, Plerou, and Stanley (2006)). Flash crashes interrupt the trading process 

and degrade investor confidence. We study the impact that flash crashes and liquidity crises have 

on financial markets. Specifically, we address crash frequency, crash triggers, and the resulting 

market quality once markets resume normal trading.  

Flash crashes and liquidity crises are related to trading halts and market crashes, and as a 

result we draw from those streams of literature. The first stream of literature studies market crashes 

(Bhattacharya and Spiegel (1998); Grossman (1992); Gabaix, Gopikrishnan, Plerou, and Stanley 

(2006)). The crashes in these studies may be fundamental in nature, or non-fundamental. Although 

the events in our study are short-term intraday events, there is overlap in the theoretical causes of 

a crash. Flash crashes also draw from the stream of literature regarding trading halts, where trading 

halts are periods when the price discovery process is hindered (Lee, Ready, and Seguin (1994); 

Goldstein and Kavajecz (2004); Greenwald and Stein (1991)). There are two reasons flash crashes 

relate to trading halts. First, as evidenced by the May 2010 flash crash, liquidity crises can trigger 

trading halts and circuit breakers (Kirilenko, Kyle, Samadi, Tuzun (2014)). Therefore, we are 

careful in our analysis to control for instances of trading halts that occur simultaneously with flash 
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crashes. Second, liquidity crises are interruptions to the price discovery process. In this sense, 

market crashes can also be viewed as trading halts in that they disrupt efficiency, liquidity, and 

price discovery.  

How frequent are flash crashes? To what extent was the May 2010 flash crash an isolated 

event? Bhattacharya and Spiegel (1998) find that approximately every day from 1974-1988, four 

stocks on the NYSE have a market failure that results in a trading suspension. Gao and Mizrach 

(2013) find that market quality breakdowns are common in equity markets. In their sample, 1993-

2011, there are approximately 44 breakdowns each day in the TAQ database, with the post Reg 

NMS period having fewer breakdowns than the pre Reg NMS period. Golub, Keane, and Poon 

(2012) find that Reg NMS and intermarket sweep orders (ISOs) contribute to mini-flash crashes. 

From these studies it is clear that mini-flash crashes are common in financial markets, and that the 

May 2010 flash crash was not an isolated event. Our study compliments the existing work by 

identifying crashes in a nanosecond framework. In fast and automated markets, computers respond 

to market conditions at incredible speeds. Studies at lower latencies may miss potential crashes. In 

addition, our methodology does not rely on the automated quote feed to determine crashes, since 

we use order level data to calculate crashes that would be revealed to traders in real-time. Our 

paper also studies the depth implications of flash crashes. As O’Hara (2014) has pointed out, 

studies regarding high speed markets should look at other measures of liquidity beyond spread and 

top of book depth. We find that flash crashes are frequent events. In our sample period of three 

months, over 40% of the securities experienced at least one crash.  

What triggers flash crashes? The flash crash of May 2010 is partially attributed to a large 

trade that was initiated during a period of high volatility and thin depth (CFTC-SEC (2010)), which 

is consistent with the theory of Gabaix, Gopikrishnan, Plerou, and Stanley (2006). There are two 
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components of liquidity crises: price deviations and low depth. Price deviations are instances of 

the price discovery process being impeded due to large swings away from a security’s fundamental 

price. Low depth is associated with a market not being able to facilitate trading since there is an 

insufficient number of shares from traders supplying liquidity for traders demanding liquidity. 

These two components are related, where causality may flow in either direction. A sudden decrease 

in a security’s price may lead traders to withdraw shares from the market due to increased 

uncertainty and volatility, resulting in a severe decrease in depth. Alternatively, the flash crash 

may be liquidity caused. If depth for a security is thin, a large marketable order may remove all 

available liquidity causing wide swings in prices depending on the structure of depth on the limit 

order book. We analyze both scenarios in this study. Our results provide evidence that crashes are 

due to thin depth, and high trading on one side of the limit order book. We find little evidence that 

short selling constraints cause flash crashes.  

Do flash crashes have a lingering impact on market quality? Our analysis also investigates 

the post-breakdown effects of flash crashes. Flash crashes are a disruption in the information flow 

of asset prices, and are similar to trading halts. Drawing inferences from the trading halt literature, 

markets may react to a crash in one of two ways. Once news is disseminated to traders that no 

fundamental event has occurred, and the crash is non-fundamental in nature, normal trading 

resumes and market quality stabilizes (Greenwald and Stein (1991)). It is also possible, however, 

that after the event transpires, market participants may be reluctant to enter a volatile market. Post-

breakdown market quality will remain high due to increased uncertainty (Lee, Ready, and Seguin 

(1994); Christie, Corwin, and Harris (2002)). Using a difference-in-difference approach, we find 

flash crashes in our sample have little impact on spread, but do have a negative impact on the depth 

of the security.  
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Related to the flash crash effects on market quality, do breakdowns have a contagion 

effect? Jiang, McInish, and Upson (2009) find that trading halts have an impact on related 

securities that do not experience a trading halt. Related securities experience an increase in spread 

and price impact. Their results are in support of informed trading theories by Tookes (2008). The 

CFTC-SEC (2010) joint report finds that the flash crash of May 2010 spread from the futures 

market to the equities market. We also investigate the contagion effects of mini-flash crashes. We 

find that the depth of related securities that do not experience a flash crash are negatively impacted. 

 



    

128 
   

 

II. BACKGROUND AND HYPOTHESES 

 

 Exchanges and markets facilitate trading, where the principal function of the market is to 

provide price discovery and liquidity (O’Hara (2003)). The recent May 6, 2010 Flash crash is a 

highly publicized example of liquidity crisis in both aspects, liquidity was thin and the price 

discovery process was hindered. The CFTC-SEC joint report (2010) attributes a large, E-mini 

(S&P 500 futures) trade at approximately 2:32 p.m. EST to triggering the flash crash.  This trade 

was placed during a period of waning depth as a hedge against an equity position already 

established. Following the trade, computer algorithms exacerbated the volatility and magnitude of 

the crash, and spread the crash into other financial markets like the equities market. Nearly 13 

minutes after the beginning of the flash crash, the Chicago Mercantile Exchange (CME) 

implemented a five second trading halt. Following the halt, prices stabilized, and by 3:08 p.m. the 

prices returned to their pre-crash levels. We look to see if the events of the May 2010 flash crash 

apply to all flash crashes. We specifically look at the triggers of flash crashes, and the lasting 

impact of flash crashes. 

 

WHAT TRIGGERS LIQUIDITY CRISES? 

Theoretical studies on market crashes highlight a number of potential triggers of market 

failures. We apply these theories to flash crashes. Market failures are associated with a decrease 

in available depth to trade, and a large fluctuation in the price of a security. In Gabaix, 

Gopikrishnan, Plerou and Stanley (2006), large spikes in return and volatility may be due to a large 
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trade by an institutional investor during a period if thin liquidity. Even though the large trade does 

not carry any news, the conditions of the market lead to a severe fluctuation in prices. The events 

of the flash crash are consistent with this hypothesis. Liquidity crises may occur when the depth 

on the limit order book is thin, and large market orders consume available depth. We are careful 

in our analysis to determine causality. In our data we are able to detect market orders, and whether 

liquidity dries-up before an incoming order, or whether large orders consume available liquidity. 

We thus expect flash crashes in our sample to occur due to large traders during periods of thin 

depth.  

Hypothesis 1: Liquidity crashes occur following large trades 

Hypothesis 2: Liquidity crashes occur during times when depth is thin 

Flash crashes may also be caused by investor fears and herding behavior. In a modern 

market, herding may not necessarily be traders reacting to each other, rather, herding may be 

algorithms responding to changes in market conditions. In the model by Bernardo and Welch 

(2004), investors rush to buy or sell an asset due to the fear of a future liquidity shock, even though 

current liquidity is adequate. This rush to trade will trigger price pressure and a cascade of buy or 

sell trades, which in turn creates the market failure. In this model, investor fear of illiquidity is the 

cause of illiquidity. The implication for our study is that intense pressure on one side of the limit 

order book will consume all available liquidity, driving the price of the asset down. Intense selling 

pressure will cause a large price decrease, and intense buying pressure will cause a price increase. 

Hong and Stein (2003) develop a model in which market crashes are due to short selling 

constraints. If investors are constrained from short selling, then their negative information will not 

be incorporated into stock prices until stock prices begin to drop. 

Hypothesis 3: Liquidity crashes occur due intense pressure on the limit order book 
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Hypothesis 4: Liquidity crashes occur due to short-selling constraints 

 

HOW DO FLASH CRASHES IMPACT LIQUIDITY? 

Flash crashes interrupt the price discovery mechanism of markets. This interruption may 

continue to affect market quality once normal trading resumes. Flash crashes are breaks in trading, 

and in this aspect they are similar to trading halts. The trading halt literature finds that following 

an interruption in trading, market quality is impacted. Lee, Ready, and Seguin (1994) find that 

volume and volatility are high following halts. A related study by Christie, Corwin, and Harris 

(2002) show that there is substantial volume and volatility lingering after the trading halt has 

passed. These results relate to flash crashes. Although normal trading may resume following a 

quick drop and rebound in prices, uncertainty regarding future prices and volatility may remain. 

Hypothesis 5: Liquidity crises have a negative impact on post-crash market quality 

 

DO FLASH CRASHES HAVE A CONTAGION EFFECT? 

In Hong and Stein’s (2003) model, they define crashes to be market-wide events that 

contain a considerable amount of cross-sectional correlation. In their model, short selling is 

constrained and negative information is only released during sharp downturns. Securities will build 

up negative information until a large trading event is triggered, and all negative information is 

released. The sharp decrease in one security’s price will trigger the built up negative information 

in another security’s price. Hong and Stein predict that contagion will be high during market down 

turns.  This leads us to our final hypothesis.  

Hypothesis 6: Negative flash crashes contain significant contagion 
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III. DATA AND METHODS 

 

 In this study we primarily use order level data for the NASDAQ exchange. Each of the 

exchange datasets contain messages for orders added, deleted, updated, and executed. We draw on 

theories by Gabaix, Gopikrishnan, Plerou and Stanley (2006) and Bernardo and Wlech (2004) for 

much of the analysis in our paper, which have theoretical predictions based on the depth of the 

limit order book. Therefore, an accurate study of intraday flash crashes cannot look at top of book 

liquidity alone, and must look at the structure of the limit order book to identify true liquidity 

crises. We therefore construct the limit order book for all four of the exchanges in our data. The 

limit order book is created by inserting add order messages into a dynamic dataset. The dataset 

sorts on price and time to find the single order at the top of the book with price-time priority, which 

yields a best bid and best offer for that security. We are also able to capture depth at the best bid 

and best offer, as well as depth in the remainder of the limit order book. The dynamic limit order 

book dataset will appropriately adjust for incoming delete, execute, and update messages. When a 

new message is incorporated into the dataset, a new output for best bid, best offer, depth at the top 

of the book, and depth beyond the top of the book is recorded. We gather additional stock 

information like daily closing prices, volume, and share outstanding from the Center for Research 

and Securities Prices (CRSP).  

The sample spans the three trading months from August 2014 through October 2014. Since 

the data in our study comes from the NASDAQ exchange, we only consider NASDAQ listed 

securities. We apply additional filters to remove securities that do not trade at least 1,000 shares 
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each day of the sample. Securities that do not have a closing price above five dollars for each day 

of the sample are also removed. These filters reduce our sample from approximately 2,700 stocks 

down to 1,186 NASDAQ listed securities. When calculating depth measures we do not include 

stub quotes. We filter stub quotes as orders below one dollar (Since all the securities in our sample 

have closing prices above five dollars), and orders that are greater than $50,000.  

Gabaix, Gopikrishnan, Plerou and Stanley (2006) predict that market crashes occur during 

periods of thin liquidity and following large market orders. We therefore need a measure of a thin 

markets, and a method to detect large market orders. Since a thin market is determined by the 

shape and structure of the limit order book, we use two depth measures, the depth-weighted 

average price (DWAP) and the cost of a round trip trade (CRT), to identify when a security is 

experiencing thin depth. The depth-weighted average price is the average price of the limit order 

book, weighted by depth in the limit order book. We follow Johnson and Upson (2015) and express 

DWAP as 

𝐷𝑊𝐴𝑃 =
∑ 𝑃𝑖𝐷𝑖 𝐼

𝑖=1

∑ 𝐷𝑖
𝐼
𝑖=1

, 
(1) 

where the price and depth of tick i are expressed as Pi and Di. We compute the DWAP for both the 

bid and offer side of the limit order book. Taking the difference of the DWAP bid and the DWAP 

ask yields the DWAPSPREAD.  

The CRT measure of limit order book thickness identifies how expensive it is for a trader 

to buy and sell q number of shares. The intuition being that if depth is concentrated at the top of 

the book, the investor can expect trading costs close to the quoted spread. If a trader wishes to buy 

and sell q shares of a security, and q is less than depth at the top of the book, then the ex-ante per 

share trade price should be the quoted spread.  If q is greater than the top of the book, the ex-ante 

per share trade price will be greater than the quoted spread. The cost of a round trip trade is 
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formally identified in Domowitz, Hansch, and Wang (2005). Using similar notation as Domowitz 

et al., we define the CRT as 

𝐶𝑅𝑇 = 

[∑ 𝐷𝑗,𝑎𝑠𝑘 𝑃𝑗,𝑎𝑠𝑘
𝑘−1
𝑗=1 + (𝑞 − ∑ 𝐷𝑗,𝑎𝑠𝑘

𝑘−1
𝑗=1 )𝑃𝑘,𝑎𝑠𝑘] − [∑ 𝐷𝑗,𝑏𝑖𝑑𝑃𝑗,𝑏𝑖𝑑

𝑘′−1
𝑗=1 +

(𝑞 −  ∑ 𝐷𝑗,𝑏𝑖𝑑
𝑘′−1
𝑗=1 )𝑃𝑘,𝑏𝑖𝑑],   

 

(2) 

 

which we extend to be expressed on a per share basis. We define the CRTSPREAD as 

𝐶𝑅𝑇𝑆𝑃𝑅𝐸𝐴𝐷 =
𝐶𝑅𝑇

𝑞
. (4) 

 

This measure is interpreted equivalently as ThinDWAP. High measures indicate that the limit order 

book is relatively thin, and low measures represent thick limit order books. Using both the DWAP 

and CRT measures we can identify when the market is experiencing thinning liquidity. 

To identify when large orders are executed, we calculate market orders using a method 

similar to Johnson, McInish, and Upson (2015). To compute the size of a marketable order we sum 

the size of all trades for a given stock during the same nanosecond. Johnson, McInish, and Upson. 

find that this method of calculating marketable orders is highly accurate.  

Hong and Stein (2003) make predictions that market crashes are more likely during periods 

of restricted short-selling. The data in our study identify Rule 201 short selling periods, and is 

similar to the data used in Davis, Jurich, Roseman, Watson (2015). Rule 201 is triggered when the 

price of a security moves away from its previous day’s closing national best bid (NBB) by ten 

percent. Rule 201 prohibits short sales at prices below the last price. Our sample uses order level 

data that identifies when short sell restrictions occur. A short sell restriction occurs on the day a 

price drops, and remains in effect for the remainder of the current day and the entirety of the day 

following the initial price drop. We are able to see to the nanosecond when short selling is 
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restricted. In our sample of 1,186 NASDAQ securities, 247 have a Rule 201 short selling restriction 

at least once during the sample period.  

 

IDENTIFYING CRASHES AND SUMMARY STATISTICS 

Our method of identifying temporary flash crashes is as follows. We first identify jumps in 

the BBO as changes greater than 3% from the previous BBO. Our choice of three percent is to 

avoid events that would truncate our sample. For example, Level 1 circuit breakers are triggered 

at 7%, and Short sell restrictions are triggered at 10% deviations. Although Clearly Erroneous 

Executions may occur at 3% for highly priced stocks, the impact should be minimal on our study.  

Every time an order is added, executed, or deleted from the limit order book we compute 

the change in the BBO by comparing against the most recent BBO (which may be only 

nanoseconds prior). Identifying flash crashes in this manner allows us to identify the specific order 

and reason (deleted depth or large execution) the jump occurred, as well as the nanosecond in 

which it occurred. This methodology is different than Bhattacharya and Spiegel (1998) who 

identify market failures as trading suspensions, but is similar to Gao and Mizrach (2013) who 

identify crashes as changes in the BBO. The difference between our methodology and Gao and 

Mizrach is our use of order-level data rather than TAQ quote data. With order level data we can 

determine the cause of the crash, rather than just when the crash occurred. We also differ in 

methodology from Golub, Keane, and Poon (2012), who identify mini-flash crashes as ten 

consecutive downticks (or upticks) before an uptick (or downtick) occurs. In our sample of three 

trading months from August 2014 through October 2014 there are 13,460 separate jumps that are 

greater than three percent.  
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Our analysis is concerned about flash crashes, which would require that the jumps are only 

temporary price changes, which therefore must revert to the pre-jump price. We define a flash 

crash as two separate jumps, one jump away from the current price, followed by a price-reverting 

jump. For buy orders the jump away would be a negative decrease, and the returning jump would 

be positive, while the opposite is true for sell orders. If a flash crash indeed occurs, then the sum 

of the two jumps (one away and one reverting) should be approximately zero. To identify flash 

crashes in our sample, we sum all price jumps for each stock on each day of the sample. If the sum 

of all jumps does not approach zero then it is removed from the sample. This eliminates permanent 

jumps that never revert to the pre-jump price. In Panel I of Figure 1, we report an example of a 

jump that does not revert to the pre-jump price. Permanent jumps are not included in the sample.   

We apply one final filter to ensure that the jumps in our sample are indeed flash crashes. 

The definition for a flash crash is an event where liquidity decreases. Some of the jumps in the 

data are temporary improvements in the spread, where the best bid increase (or best offer 

decreases) temporarily increases before reverting. We remove all temporary jumps that improve 

the BBO, since we are concerned with jumps away from the BBO. In Panel B of Figure 2 we report 

two examples of temporary jumps. Panel II shows a temporary jump that improves the spread, 

which are not included in the sample, and Panel III shows a temporary jump that does not improve 

the spread, which we classify as a flash crash, and is subsequently included in the final sample. 

We are left with a sample of 949 flash crashes. Although our filters may not capture every flash 

crash that occurs, we manually inspect each crash to ensure that each jump in our sample can be 

identified as a flash crash.  

Table 1 reports the summary statistics of the securities in our sample. Panel A reports the 

summary statistics for the total 1,186 securities in our sample that meet the filtering criteria, while 
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panel B reports the statistics of the 412 securities that experience a flash crash during our sample 

period. The average stock in our sample trades at $37.26, compared to the trade price of $26.85 

for securities that experience a flash crash. The average market capitalization for NASDAQ 

securities in our sample is nearly $5.7 billion, while the market capitalization of NASDAQ 

securities that experience flash crash is much lower at $777 million. Flash crash securities trade 

nearly half as often as the average NASDAQ security in our sample (382 vs 626), totaling one fifth 

of the volume (201,824 vs 1,120,198). The order volume is much lower, where the average 

NASDAQ security receives over 34,000 orders, while the average flash-crash security is receives 

much less order flow with less than 10,000 orders each day. 
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IV. RESULTS 

 

 In this section we answer three questions regarding flash crashes. How frequent are flash 

crashes? Prior work that studies crashes in a pre-HFT period suggest that multiple breakdowns 

occur every day. What is the cause of flash crashes? Theory suggests that large orders during 

periods of thin depth cause crashes, as well as short selling constraints may trigger a crash. And 

finally, what is the post-crash impact on market quality? Theory suggests that breakdowns are an 

interruption in the price discovery process, which impacts post-crash liquidity negatively, and that 

there is a contagion effect.  

 

HOW FREQUENT ARE FLASH CRASHES? 

We report flash crash event summary statistics in Table 2. There are 949 crashes in our 

sample, of which 614 are on the bid side of the limit order book. Bid crashes are associated with a 

sudden price drop, followed by a sudden increase. The remaining 335 are ask-side crashes, which 

are sudden price increases, subsequently followed by a reverting price drop. The majority of 

crashes are between 3-5%. In our sample, only 20 are greater than 5% away from the pre-crash 

BBO. Of the 1186 securities in our sample, 412 experience at least one crash in the three trading 

months from August 2014 through October 2014, leaving 774 stocks that never experience a crash. 

Panel B reports the statistics of the crashes. On average, a stock experiences 0.0362 flash crashes 

each day, or one crash every 27 days. The average crash occurs at 9:35 in the morning, and occurs 



     
 

138 
 

for 10 seconds. During the crash there are 1.86 trades and 9 orders submitted. Before and after the 

crash, the spread is approximately 63 cents, but during the crash the spread is 164 cents.  

 

WHAT CAUSES FLASH CRASHES? 

What causes flash crashes? Our first hypothesis states that flash crashes occur following 

large trades, and the second hypothesis states that flash crashes occur when depth is thin. In the 

model of Gabaix, Gopikrishnan, Plerou, and Stanley (2006), crashes are due to large trades 

entering a market that is experiencing thin depth. This large trade will consume the available 

liquidity, which in turn triggers a crash. We test this theory by looking at the number of crashes 

that are due to trades and deleted orders. From Panel A of Table 3, the majority of crashes are 

triggered by an order being deleted. Only 60 of the 949 crashes are triggered due to a trade 

executing. Further, the average trade size of the marketable order that initiates the crash is 190.85 

shares. This signifies that it is not a large marketable order executing against thin depth, rather it 

is a normal size trades that initiated the crash. We reject Hypothesis 1 since the majority of the 

crashes are not due to trades.  

To test whether thinning depth is a major contribution of the crash, we look at the average 

spread and depth during the 60 second period prior to the crash. In Panel A of Table 4 we present 

liquidity measures for the 60 seconds prior to, and including the crash period. We use a control 

sample as a comparison, which includes the five trading days prior to the crash, for the same stock 

that experienced the crash. The control period is time of day matched to the nanosecond to alleviate 

any time of day driven results in market quality. We report the control sample in Panel B. The 

differences between the crash period and control period are reported in Panel C. For the stock 

experiencing a crash, the average spread is approximately 42 cents 60 seconds prior to the crash, 
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and for the control period the spread is 48 cents prior to the faux crash period. This difference is 

insignificant. In the 10 seconds prior to the crash, the crash period spread is 51 cents, while the 

faux crash is 46 cents, which is also insignificantly different. Looking at spread alone does not 

indicate a crash. However, spread is only one of the aspects of market quality. Equally important 

is the amount of depth available to trade on the limit order book. To measure depth, we use the 

cost a trader will pay to simultaneously buy and sell 1000 shares, the CRT1000, to measure how 

much depth is available. If depth is weighted towards the top of the book then the CRT1000 will 

be close to the quoted spread, however if there is little depth available, then the CRT1000 will be 

larger than the quoted spread. A larger value of this variable indicates less depth, since it costs 

more to trade. During the crash period the cost to simultaneously buy and sell 1000 shares would 

cost 185 cents, compared to 132 cents during the crash period. In the 10 seconds prior to the crash, 

the CRT1000 is 184 cents which is significantly higher than the faux crash which is 120 cents. As 

an additional check to understand the behavior during the 60 seconds prior to the crash, we look 

at the number of orders submitted and executed. We find trading activity is insignificantly different 

between the crash period and faux period, however there are slightly less orders submitted during 

the crash period compared against the faux period.  The results presented in Table 4 do provide 

some evidence supporting the theory of Gabaix, Gopikrishnan, Plerou, and Stanley. Although we 

do not find that trade executions trigger the flash crash, we indeed find that during the 60 seconds 

prior to the flash crash there is significantly less depth on the limit order book. The results of thin 

depth prior to the flash crash support hypothesis 2.  

Bernardo and Welch (2004) develop a model where buying and selling pressure will trigger 

market breakdowns. We apply this to flash crashes by looking to see if high trading activity for a 

security increases the likelihood of a stock experiencing a crash. Our third hypothesis states that 
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flash crashes are due to pressure on the limit order book. Additionally, Hong and Stein (2003) 

predict that short selling restrictions will also trigger flash crashes. Our fourth hypothesis stems 

from this model, which is that crashes occur due to short-selling constraints. We test these 

hypotheses in a multivariate logit setting, where the dependent variable is an indicator variable 

equal to one if a security experiences a flash crash during a 10 second period. The sample for the 

model includes the crash day of the security along with the 5 trading days prior to the crash. The 

period also includes the 60 seconds prior to the crash, the time of the crash, and the 60 seconds 

following the crash, which is time of day matched for the control dates. We partition the sample 

into 10 second periods, and identify the 10 second period that experiences a crash with an indicator 

variable equal to 1. We regress the following model for the crash that occurs for stock i at time t: 

𝐶𝑟𝑎𝑠ℎ𝑖,𝑡 = 𝛼 + 𝛽1𝑇𝑟𝑎𝑑𝑒𝑠𝑖,𝑡−1 + 𝛽2𝑂𝑟𝑑𝑒𝑟𝑠𝑖,𝑡−1 + 𝛽3𝑄𝑢𝑜𝑡𝑒𝑑𝑖,𝑡−1 + 𝛽4𝐶𝑅𝑇1000𝑖,𝑡−1

+ 𝛽5𝑝𝑟𝑖𝑐𝑒𝑖,𝑡 + 𝛽6𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡−1 + 𝛽7𝑟𝑎𝑛𝑔𝑒𝑖,𝑡 + 𝛽8𝑚𝑎𝑟𝑘𝑒𝑡𝑐𝑎𝑝𝑖,𝑡

+ 𝛽9𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑𝑖,𝑡 +  𝜆𝑖 + 𝜆𝑡 + 𝜀𝑖,𝑡 

(1) 

where crash is an indicator variable equal to one if a crash occurs during the ten second period at 

time t. We include trading and market quality statistics which includes Trades, the number of 

trades submitted during the period, Orders, the number of orders submitted during the period, 

Quoted, the quoted spread during the period, and CRT1000, which is the depth during the period. 

We include several control variables, including Price, the closing price for the security, Volatility, 

which is measured as the midpoint volatility, Range, which is the daily high price minus the daily 

low price, and captures the general volatility of the stock, marketcap, which is the securities market 

capitalization, and restricted, which is an indicator variable equal to one if the security is currently 

under a Rule 201 short sale restriction.  
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We present the results for this test in Table 5. In models 1 and 2 we keep orders and trades 

aggregated, while in mdels 3 and 4 we separate orders and trades into whether they are on the same 

side of the crash or the opposite side of the crash. Following the model of Bernardo and Welch, 

and our third hypothesis, we would expect trading activity to have a significant impact on the 

probability of a flash crash. We find that when orders and trades are aggregated, there is little 

evidence that orders and trades increases the likelihood of a flash crash. However, when we 

partition orders and trades into whether they occur on the same side or the opposite side of the 

crash we find that that an increase in trades on the same side of the limit order book is a strong 

predictor of the likelihood of a flash crash, which supports hypothesis 3.  

Our control variables also add to the discussion. We find that when the spread is wide, the 

probability of a flash crash is low, however when depth is low (indicated by a high value of 

CRT1000), the probability of a flash crash increases. Lower priced stocks also have an increased 

probability of a flash crash. These results support the model of Bernardo and Welch. The final 

variable included in Table 5, Restricted, is an indicator variable equal to one if the period is under 

a Rule 201 short selling restriction. In both specifications this model is insignificant, which 

suggests that short sale bans do not impact the likelihood of a flash crash, providing little support 

for the model of Hong and Stein. We reject hypothesis 4.  

 

WHAT IS THE EFFECT OF FLASH CRASHES? 

The final concern regarding flash crashes is whether there are detrimental effects as a result 

of the flash crash. We identify the effects in two ways. We first test hypothesis 5, which looks at 

the market quality of the security that experienced the flash crash. The second way to identify the 

effects of a flash crash is to test hypothesis 6, which states that there is a contagion effect of flash 
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crashes. According to our hypothesis, which follows Hong and Stein’s (2003) model, a flash crash 

in one security will have a negative impact on market quality of related securities.  

To investigate the effects of market quality following the crash, we compare market quality 

measures for the 60 seconds following the crash against the 60 seconds prior to the crash. Since 

many of our crashes occur early in the trading day, there are likely time of day driven results. To 

eliminate these results we then conduct a difference in difference test, where our control sample is 

the market quality for the 5 days prior to the crash day, for the same stock during the exact same 

time period as the flash crash. Conducting a difference in difference test in this manner should 

eliminate any results that are driven by changing market quality conditions.  

We present the results for this test in Table 6. The first test looks at the quoted spread, 

where one minute prior to the flash crash the quoted spread is 42 cents, and following the crash 

the spread is 39 cents. When we average the before and after period, we find that the one minute 

after period has a spread that is 11 cents narrower than before the spread. We then compare this 

11 cent difference against the control sample, where the control sample spread is narrowed by 3 

cents. The difference between the control sample and crash sample is insignificant, which suggests 

that there is no difference in spread before and after the crash. We investigate depth by looking at 

the cost of a round trip trade of 1000 shares. One minute before the crash, a trader would pay 

approximately 185 cents to buy and sell 1000 shares simultaneously, however after the crash depth 

improves and a trader would pay 121 cents. The control sample is much narrower, where the 

CRT1000 is 132 cents before and 99 cents after. When we look at the difference-in-difference, we 

find that on crash days the depth is abnormally low, indicated by a higher CRT1000. As an 

additional insight into trading activity, we look at orders and trades in Panels C and D respectively. 

We find that following the flash crash, there is an abnormally high amount of orders being 
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submitted, however there is no difference in trading activity. The results from Table 6 provide 

some support for Hypothesis 5. Although the spread remains narrow following the crash, the 

amount of depth available to traders is significantly lower, indicating degradation in at least one 

aspect of market quality.  

To test our final hypothesis, we identify how a flash crash impacts the market quality of 

related securities. The theoretical model of Hong and Stein (2003) predicts that crashes are market-

wide events. When negative information is released during a crash in one security, related 

securities will also be affected. To test whether there is a contagion affect, we construct a one-to-

many matched sample by identifying securities within the same 3-digit SIC code that have a market 

capitalization within 10% of the security that experienced a flash crash. The summary statistics of 

the matched sample are reported Table 7. Our matched sample includes 211 securities, of which 

the average closing price is $120.51. Both the average and median daily trading volume is lower 

in the matched sample although there are more trades and orders on average in the matched sample.  

To test market quality we regress market quality measures on ten second time indicator 

variables for the minute following the crash. The dependent variables are measures for the control 

sample, and include the spread, CRT1000, Number of orders submitted, and number of trades 

executed. The entire period of the test includes the 60 seconds prior to and following the crash. 

We regress a model of the following form: 

𝑀𝑘𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑖,𝑡

= 𝛼 + 𝛾1𝐶𝑟𝑎𝑠ℎ𝑖,𝑡 + ∑ 𝛾𝑗

7

𝑗=2
𝑇𝑒𝑛𝑆𝑒𝑐𝑜𝑛𝑑𝑠𝑗 + 𝛽1𝑝𝑟𝑖𝑐𝑒𝑖,𝑡

+ 𝛽2𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡−1 + 𝛽3𝑟𝑎𝑛𝑔𝑒𝑖,𝑡 + 𝛽4𝑚𝑎𝑟𝑘𝑒𝑡𝑐𝑎𝑝𝑖,𝑡 + 𝛽5𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑𝑖,𝑡

+  𝜆𝑖 + 𝜆𝑡 + 𝜀𝑖,𝑡 

(2) 
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where the indicator variables of interest include an indicator variable equal to one if a 10 second 

period has a flash crash, zero otherwise, and six indicator variables equal to one for each ten second 

period for the minute following the flash crash. We include control variables as well as firm and 

time of day fixed effects. The results for this test are presented in Table 8. We find that during the 

crash period, there is very little effect on matched control samples. However, each of the indicator 

variables following presents interesting results. Following the crash the spread narrows and depth 

increases. The number of orders and number of trades immediately increase. It appears that, in 

general, there is very little to suggest that there is a significant negative impact on market quality, 

rather it appears that market quality remains unharmed, providing little support for the contagion 

theory from Hong and Stein (2003). Since we find no evidence of a change in market quality, we 

reject hypothesis 6.  
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V. CONCLUSION 

 

 Financial markets facilitate trading by providing a venue for buyers and sellers to exchange 

securities. A liquid market provides a venue for liquidity, and also allows for price discovery. A 

flash crash is a period where both price discovery and liquidity are impeded. During flash crashes, 

the price of a security temporarily jumps away from the current price, only to shortly revert back 

to pre-crash levels.  

This paper studies intraday flash crashes using nanosecond exchange data for the 

NASDAQ exchange. Our paper provides meaningful insight into these flash crashes, in that we 

answer three direct questions. How frequent are flash crashes? What causes flash crashes? And 

what is the market impact of flash crashes? We find that flash crashes are rather frequent events, 

where approximately 40% of the securities in our sample experience at least once flash crash. In 

our sample of 1,186 securities, there are a total of 949 crashes. Approximately two thirds of the 

crashes in our sample occur on the bid side of the limit order book, and one third are on the ask 

side.  

What causes flash crashes? Flash crashes are almost always triggered by a liquidity 

supplying order at the BBO being deleted, which will widen the bid-ask spread by greater than 

3%. Only 6% of the crashes in ours study are triggered by executions consuming all available 

depth. Our findings support the theoretical models, which suggest that crashes occur as a result of 

non-fundamental events and liquidity concerns (Bernardo and Welch (2004)) and thin depth 
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(Gabaix, Gopikrishnan, Plerou, and Stanley (2006)). We do not find any evidence that flash 

crashes occur during short sell restrictions, as predicted.  

What are implications of flash crashes? The trading halt literature suggests that 

interruptions in the trading process may degrade investor confidence. In this sense, a flash crash is 

a disruption in trading flow. We investigate this by looking at idiosyncratic market quality, as well 

as by looking at any contagion affects in related securities. When looking at market quality for 

securities that experience a flash crash, we find that depth is significantly decreased. However, in 

related securities of the same 3 digit SIC code, and a similar market capitalization, there is virtually 

no negative impact on market quality. 
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APPENDIX 1: SUMMARY STATISTICS OF SECURITIES EXPERINCING A FLASH 
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Table 1: Summary Statistics of securities experiencing a flash crashes 

This table presents summary statistics for our sample of securities. Panel A presents 

statistics of the entire sample of securities that meet our filtering criteria described 

in the data section. Panel B presents statistics summary statistics for the securities 

that experience a flash crash. Data comprises order level data for the three trading 

months from August 2014 through October 2014 on the NASDAQ exchange. 

 

Panel A: Summary statistics of average NASDAQ listed stocks 

 Mean Median Min Max 

Price 37.26 25.76 5.00 1,309.42 

Market Capitalization 

(000s) 

5,666,771 1,068,623 54,764 618,546,679 

Daily Volume 1,120,198 303,593 12,489 233,883,264 

Daily Trades 626 266 13 71,735 

Daily Orders 34,849 12,919 953 1,145,409 

Panel B: Summary statistics of NASDAQ listed stocks experiencing a crash 

Price 26.85 23.06 5.00 144.38 

Market Capitalization 

(000s) 

771,210 602,394 27,886 5,701,465 

Daily Volume 201,824 123,544 17,395 4,245,643 

Daily Trades 382 285 49 5,660 

Daily Orders 9,814 7,582 881 103,784 
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APPENDIX 2: SUMMARY STATISTICS OF FLASH CRASHES 
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Table 2: Summary Statistics of Flash Crashes 
This table presents summary statistics for the flash crashes that occur in our 

sample. Panel A reports the frequency and major causes of the crashes, while 

panel B reports on the statistics before and during the crash. Data comprises 

order level data for the three trading months from August 2014 through 

October 2014 on the NASDAQ exchange. 

 

Panel A: Frequency     

Crashes 949    

Bid Crashes 614    

Ask Crashes 335    

3-5% 927    

5-7% 20    

>7% 0    

Stocks in Sample 1186    

Stocks w/crash during sample   412    

Panel B: Intraday crash summary statistics 

 Mean Median Min Max 

Crashes per stock-day 0.0362 0 0 49 

Trades During Crash 1.86 1.00 1.00 14.00 

Orders During Crash 9.09 1.00 1.00 334.00 

Spread Before Crash ($) 0.63 0.46 0.01 5.34 

Spread During Crash ($) 1.64 1.36 0.02 7.93 

Spread After Crash ($) 0.64 0.45 0.00 6.00 

Duration of Crash (seconds) 10.02 0.03 0.00 1919.48 

Time of Crash 9:35:00 9:30:18 9:30:01 15:55:34 
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APPENDIX 3: TRIGGERS OF FLASH CRASHES 



    

156 
   

 

Table 3: Triggers of flash crashes 

This table reports the market event that triggers flash crashes. Panel A 

reports the number of crashes that are due to a limit order being deleted or 

due to an execution. Panel B reports the average order size of trade 

triggered crashes. Data comprises order level data for the three trading 

months from August 2014 through October 2014 on the NASDAQ 

exchange. 

 

Panel A: Crashes to due cancelled orders and executions 

Total Crashes: 949   

Crashes caused by executions: 60   

Crashes caused by order deletions: 889   

     

Panel B: Size of traders that trigger crashes 

 Mean Median Min Max 

Marketable Order 190.85 100 1 2000 

Limit Order 205.61 100 1 2000 
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APPENDIX 4: LIQUIDITY BEFORE AND DURING THE CRASH 
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Table 4: The liquidity before and during the crash. 

This table reports the liquidity measures before and during the crash. We report the 

liquidity measures for the stock day that experiences a crash in Panel A. We include a 

control period, which includes a time of day matched sample for the same stock during 

the five days prior to the crash date.  Panel A reports the liquidity measures leading up 

to, and including the crash period. Panel B reports the liquidity measures for the control 

stock. Panel C reports the differences of the crash period against the control period. 

Data comprises order level data for the three trading months from August 2014 through 

October 2014 on the NASDAQ exchange. 

 

 Spread CRT1000 Orders Executions 

Panel A: Crash Period 

t-60, t-50  0.42 1.85 0.58 0.02 

t-50, t-40  0.51 1.99 0.55 0.00 

t-40, t-30  0.59 1.87 0.61 0.00 

t-30, t-20  0.53 1.84 0.56 0.01 

t-20, t-10  0.55 1.92 0.56 0.01 

t-10, t  0.51 1.84 0.56 0.02 

Crash Period 0.64 1.75 0.55 0.03 

     

Panel B: Control Period 

t-60, t-50  0.48 1.32 0.58 0.01 

t-50, t-40  0.48 1.34 0.61 0.02 

t-40, t-30  0.45 1.27 0.60 0.01 

t-30, t-20  0.46 1.25 0.60 0.01 

t-20, t-10  0.44 1.28 0.62 0.02 

t-10, t  0.46 1.20 0.64 0.02 

Faux Crash 

Period 

0.46 1.17 0.66 0.02 

     

Panel C: Differences between control period and crash period 

 Diff T-test Diff T-

test 

Diff T-test Diff T-

test 

t-60, t-50  -0.06 -0.75 0.53* 1.88 0.00 0.17 0.01 0.88 

t-50, t-40  0.04 0.35 0.65** 2.08 -0.06 -1.58 -0.02 -1.28 

t-40, t-30  0.14 1.32 0.59** 2.07 0.00 0.14 -0.01 -1.34 

t-30, t-20  0.07 0.63 0.59** 2.05 -0.03 -1.10 0.00 -0.31 

t-20, t-10  0.11 1.10 0.64** 2.29 -0.06 -1.69 -0.01 -1.01 

t-10, t  0.06 0.62 0.64** 2.49 -0.08** -2.88 0.00 0.21 

Faux Crash 

Period 

0.18* 1.86 0.58** 2.20 -

0.12*** 

-3.89 0.01 1.39 
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Table 5: Trade pressure and flash crashes 

This table reports logit regression estimates for whether a 10 second time period 

experiences a flash crash. The dependent variable is an indicator equal to one of a 10 second 

period experiences a flash crash, zero otherwise. The independent variables include the 

number of trades and orders from the 10 second period prior to the crash. Theory states that 

crashes are due to intense pressure on the limit order book. We also separate orders and 

trades into whether they are on the same side or opposite side of the limit order book that 

the crash occurs. Data comprises order level data for the three trading months from August 

2014 through October 2014 on the NASDAQ exchange. 

 

Dependent Variable Crash 

Indicator 

Crash 

Indicator 

Crash 

Indicator 

Crash 

Indicator 

 [1] [2] [3] [4] 

Intercept -0.69*** -0.61** -0.97*** -0.82*** 

 (-3.118) (-2.087) (-5.419) (-2.686) 

Trades t-1 0.02 0.04   

 (0.353) (0.604)   

Orders t-1 0.00** 0.00***   

 (2.123) (2.704)   

SameTrades t-1   0.29*** 0.24** 

   (2.582) (2.037) 

OppositeTrades t-1   -0.16 -0.17 

   (-1.321) (-1.284) 

SameOrders t-1   0.00 0.00 

   (0.301) (0.457) 

OppositOrders t-1   0.01 0.01 

   (1.015) (1.126) 

Quoted t-1 -1.79*** -1.74***  -1.79*** 

 (-3.568) (-3.527)  (-3.532) 

Crt1000 t-1 0.53*** 0.91***  0.85*** 

 (3.497) (4.288)  (4.067) 

Price t-1  -0.07***  -0.05* 

  (-2.940)  (-2.076) 

Volatility  -0.00  -0.00 

  (-0.461)  (-0.262) 

Range  0.75**  0.58 

  (2.080)  (1.564) 

Marketcap  0.00*  0.00 

  (1.736)  (0.971) 

Restricted  -0.08  -0.54 

  (-0.051)  (-0.322) 

     

Fixed Effects Yes Yes Yes Yes 

N 259 259 259 259 

Likelihood Ratio Chi-squared 16.38 24.92 17.17 34.87 
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APPENDIX 6: LINGERING IMPACT OF FLASH CRASHES 
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Table 6: Lingering impact of flash crashes 

This table identifies whether liquidity degrades following flash crashes. The sample includes all stock days that experience 

a flash crash. Panel A reports the results for liquidity the 60 seconds before and the 60 seconds following a crash. Panel B 

reports depth measures, panes C and D report the number of orders and trades received on the average 10 second period. 

Column 13 tests the difference of the 60 seconds after against the 60 seconds before. Data comprises order level data for the 

three trading months from August 2014 through October 2014 on the NASDAQ exchange. 

 

 t-60 t-50 t-40 t-30 t-20 t-10  t+10 t+20 t+30 t+40 t+50 t+60 After - 

Before 

t-stat 

 [1] [2] [3] [4] [5] [6]  [7] [8] [9] [10] [11] [12] [13] [14] 

Panel A: Quoted Spread             

Crash 0.42 0.51 0.59 0.53 0.55 0.51  0.43 0.43 0.39 0.42 0.39 0.39 -0.11*** 3.04 

Control 0.48 0.48 0.45 0.46 0.44 0.46  0.45 0.43 0.43 0.44 0.41 0.42 -0.03 0.94 

Difference              -0.08 1.58 

                

Panel B: CRT 1000              

Crash 1.85 1.99 1.87 1.84 1.92 1.84  1.40 1.40 1.38 1.44 1.33 1.21 -0.52*** 4.77 

Control 1.32 1.34 1.27 1.25 1.28 1.20  1.02 0.97 0.99 0.97 0.92 0.99 -0.30*** 3.77 

Difference              -0.22* 1.72 

                

Panel C: Orders              

Crash 0.58 0.55 0.61 0.56 0.56 0.56  0.61 0.65 0.65 0.63 0.61 0.62 0.11*** 3.04 

Control 0.58 0.61 0.60 0.60 0.62 0.64  0.62 0.63 0.63 0.64 0.63 0.62 0.02** -2.05 

Difference              0.09** 2.04 

                

Panel D: Trades              

Crash 0.02 0.00 0.00 0.01 0.01 0.02  0.01 0.00 0.00 0.01 0.00 0.00 -0.01** 2.46 

Control 0.01 0.02 0.01 0.01 0.02 0.02  0.03 0.02 0.00 0.02 0.02 0.01 -0.00 0.33 

Difference              0.01 1.10 

*** Statistically different at 1% level 

  ** Statistically different at 5% level 

     *Statistically different at 10% level 
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APPENDIX 7: MATCHED SAMPLE 
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Table 7: Matched Sample 

This table reports the summary statistics of our matched sample. The matched 

sample is constructed by identifying firms within the same 3-digit SIC code that 

have a market capitalization within 10% of a firm experiencing a flash crash. Panel 

A reports the number of stocks in the crash sample and the matched sample, while 

Panel B reports statistics for the matched sample. Data comprises order level data 

for the three trading months from August 2014 through October 2014 on the 

NASDAQ exchange.  

 

Panel A: Number of Matched stocks 

Stocks Experiencing a Crash 

Stocks in Matched Sample 

247 

211 

 

Panel B: Summary statistics of Matched Sample 

 Mean Median Min Max 

Price 120.51 87.54 3.49 2,687.70 

Market Capitalization (000s) 766,606 624,664 80,473 3,707,209 

Daily Volume 105,775 40,038 942 2,167,433 

Daily Trades 722 388 14 10,199 

Daily Orders 15,532 8,411 230 514,265 
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APPENDIX 8: CONTAGION OF FLASH CRASHES IN MATCHED SAMPLE  
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Table 8: Contagion of Flash Crashes in matched sample 

 

This table reports the impact of flash crashes on a matched sample of controls 

stocks. The matched sample is constructed by finding stocks in the same 3-digit SIC 

code, and a market capitalization within 10%. The matched sample period is during 

the exact same time-frame as the flash crash sample. The dependent variables 

include the spread, CRT 1000, number of orders, and number of trades for the 10 

second periods during the 60 seconds surrounding the flash crash. The main 

independent variables include crash, a variable equal to 1 if the reference security 

experiences a flash crash, zero otherwise, and a variable equal to one for the 10 

second period following the end of the crash. Control variables include market cap, 

price, range volume, as well as crash fixed effects, stock fixed effects, and minute 

fixed effects for each minute of the trading day. Data comprises order level data for 

the three trading months from August 2014 through October 2014 on the NASDAQ 

exchange. 

 

Dependent Variable Spread CRT 1000 Orders Trades 

Intercept 0.12 -0.14 596.85 9.58 

 (0.451) (-0.299) (1.214) (0.962) 

Crash Period -0.01 0.04 -22.82 1.29 

 (-0.333) (0.460) (-0.380) (0.843) 

Crash Ends – t+10 -0.02* -0.02 34.11** 1.64*** 

 (-1.824) (-1.113) (2.520) (2.686) 

T+10 – t+20  -0.03** -0.08*** 37.45** 1.05** 

 (-2.541) (-3.378) (2.364) (2.221) 

T+20 – t+30  -0.04** -0.10*** 8.85 0.53 

 (-2.367) (-3.389) (0.690) (1.014) 

T+30 – t+40  -0.05*** -0.13*** 25.25 0.47 

 (-3.351) (-4.219) (1.499) (0.828) 

T+40 – t+50  -0.06*** -0.13*** 20.36 0.42 

 (-2.952) (-3.753) (0.941) (0.793) 

T+50 – t+60  -0.04** -0.11*** 45.69* 1.32* 

 (-2.278) (-3.143) (1.772) (1.695) 

Controls Yes Yes Yes Yes 

Fixed Effects Yes Yes Yes Yes 

N 885 885 885 885 

R-Squared 0.25 0.32 0.92 0.97 

*** Statistically different at 1% level 

   ** Statistically different at 5% level 

      *Statistically different at 10% level 
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APPENDIX 9: BBO PRICE JUMPS 
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Figure 1: BBO Price Jumps 

This figure presents the three types of pricing jumps encountered in the sample. Permanent price 

jumps are changes in either the best bid or best offer, which never revert to pre-jump levels, and 

are removed from our sample. Temporary jumps may occur for two different reasons. First, a 

temporary jump may narrow the spread before reverting to pre-jump levels. These jumps do not 

qualify as flash crashes and are removed from our sample. The second temporary jump is a change 

in the BBO that widens the spread temporarily before reverting to the pre-jump level. We classify 

these jumps as flash crashes and are the primary focus of our study. The data for Panels A, B, and 

C are jumps from Woodward, Inc. (Oct 21, 2014), SciQuest, Inc. (Sep 25, 2014), and Ultratech, 

Inc. (Sep 8, 2014) respectively.  
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