
University of Mississippi University of Mississippi 

eGrove eGrove 

Electronic Theses and Dissertations Graduate School 

2012 

Tensor Products Of Vector Seminormed Spaces Tensor Products Of Vector Seminormed Spaces 

John William Dever 
University of Mississippi 

Follow this and additional works at: https://egrove.olemiss.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Dever, John William, "Tensor Products Of Vector Seminormed Spaces" (2012). Electronic Theses and 
Dissertations. 669. 
https://egrove.olemiss.edu/etd/669 

This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for 
inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, 
please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F669&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=egrove.olemiss.edu%2Fetd%2F669&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/669?utm_source=egrove.olemiss.edu%2Fetd%2F669&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


TENSOR PRODUCTS OF VECTOR SEMINORMED SPACES

A Thesis
presented in partial ful�llment of requirements

for the degree of Master of Science
in the Department of Mathematics

The University of Mississippi

by

JOHN WILLIAM DEVER

June 2012



Copyright c© 2012 by John William Dever

All rights reserved.



ABSTRACT

A vector seminormed space is a triple consisting of a vector space, a Dedekind com-

plete Riesz space, and a vector valued seminorm, called a vector seminorm, de�ned on the

vector space and taking values in the Riesz space. The collection of vector seminormed

spaces with suitably de�ned morphisms is shown to be a category containing �nite prod-

ucts. A theory of vector seminorms on the tensor products of vector seminormed spaces is

developed in analogy with the theory of tensor products of Banach spaces. Accordingly,

a reasonable cross vector seminorm, or simply tensor seminorm, is de�ned such that a

vector seminorm is a tensor seminorm if and only if it is in between the injective and

projective vector seminorms, in analogy with the theory for normed spaces. Moreover,

a theory of the complexi�cation of a vector seminormed space is developed in analogy

with the theory of compelexi�cation of a Banach lattice, and a class of vector seminorms,

called admissible vector seminorms, is de�ned and shown to be equivalent to the class of

reasonable cross vector seminorms on the complexi�cation. Finally, the theory is applied

to Dedekind complete Riesz spaces to demonstrate uniqueness of the complexi�cation

modulus, in the process yielding multiple formulae for the modulus.

ii



CONTENTS

1 Background 1

2 Preliminary Considerations 4

3 Tensor Seminorms 11

4 The Complexi�cation of a Vector Seminormed Space 22

5 An Application to the Complexi�cation of a Riesz Space 31

Bibliography 36

Vita 37

iii



I. BACKGROUND

The de�nitions of all terms about Riesz spaces can be found in [1] or [9]. Any

category theoretic terms and concepts that are used can be found in any standard

reference on category theory such as [4]. We assume familiarity with standard

properties of the algebraic tensor product. Reference may be found in [7]. It is

useful but not essential to have some knowledge of the concept of a reasonable

cross norm on a vector space and to be familiar with the injective and projective

reasonable cross norms. Reference for these concepts may be found in [7].

If E is a Riesz space, by E+ we mean the positive cone of E. By a positive map

we mean any map between Riesz spaces that maps positive elements to positive

elements. By a positive bilinear map we mean a bilinear map from a product of

two Riesz spaces, considered a Riesz space under the canonical product ordering,

to another Riesz space such that the map is positive.

The Fremlin tensor product (E⊗̄F, ⊗̄), where ⊗̄ : E × F → E⊗̄F is positive

and bilinear, of two Archimedean Riesz spaces E and F was originally de�ned

in [2]. In addition to the positivity of ⊗̄, we shall only make explicit use of its

following universal property (see [2]): For any uniformly complete Riesz space G

and any positive bilinear map T : E×F → G, there exists a unique positive linear

map T ⊗̄ : E⊗̄F → G such that T ⊗̄⊗̄ = T .

The concept of a vector valued norm taking values in a vector lattice was

introduced originally by L.V. Kantorovich in the 1930s along with the concept of

a linear operator that is dominated by a positive operator. 1 However, aside from

the core concepts and de�nitions, the bulk of the existing theory had not been

1See the foreword and preface to [3] for more background information.
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developed until relatively recently, largely by the work of A.G. Kusraev and many

of his students. It should be noted that in much of the existing literature on the

subject, what would be called here a vector normed space is often called a lattice

normed space.

Tensor products of vector normed spaces have been considered, to my knowl-

edge, only in a paper by Shotaev ([8]). In that paper a categorical tensor product is

developed using the projective vector norm where the Riesz spaces are assumed to

be re�exive and Dedekind complete. Also a completeness property is assumed for

the codomain of the dominated bilinear map for the universal property, and that

map is assumed to have a least order continuous dominant. Moreover, Shotaev

gives a de�nition of a vector cross norm that is equivalent to our de�nition, ex-

cept of course that we do not assume norms throughout but seminorms. In this

paper we do not require that the tensor product satisfy a universal property

in the category of vector seminormed spaces. Rather, given vector seminorms

p : X → E, q : Y → F where X, Y are vector spaces and E,F Dedekind complete

Riesz spaces, we focus on ways to de�ne seminorms on the algebraic tensor product

X ⊗ Y taking values in the Dedekind completion of the Fremlin tensor product

E⊗̄F such that, in addition to being reasonable vector seminorms, they satisfy an

additional condition analogous to the dual space condition (See [7](p.127) or the

de�nition of a reasonable cross norm in [6]) required for reasonable cross norms in

the theory of tensor products of normed spaces. In this case we call such vector

seminorms reasonable cross seminorms or tensor seminorms.

Van Neerven, in [6], de�nes an admissible norm on the complexi�cation of a

Banach lattice. Van Neerven de�nes the following two admissible norms on the

complexi�cation of a Banach lattice X.

‖x+ iy‖∞ := sup{‖x cos θ + y sin θ‖ | θ ∈ [0, 2π)},
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‖x+ iy‖1 := inf{
n∑
1

|λk|‖xk‖ |
n∑
1

λk ⊗ xk = x+ iy, λk ∈ C, xk ∈ X}.

Van Neerven goes on to prove that ‖.‖∞ and ‖.‖1 are equal to the injective and

projective, respectively, reasonable cross norms on the complexi�cation of X. We

shall arrive at analogous results for vector seminormed spaces.

If E is an Archimedean Riesz space, C⊗E (or E + iE) is called the complex-

i�cation of E if the supremum

|x+ iy| := sup
θ
|Re((x+ iy)e−iθ)| = sup

θ
|x cos θ + y sin θ|

exists in E for any x, y ∈ E (see [9]). If it exists, |.| de�nes an extension of the

absolute value on E and is called the modulus of complexi�cation. It is shown in

[9] (Theorem 13.4) that it is enough to require for E to be uniformly complete to

ensure that the modulus exists. Paralleling the analysis of Van Neerven, we shall

identify the above modulus with the injective tensor seminorm and in doing so

discover that there are other potential formulae. Mittelmeyer and Wol� in [5], by

axiomatizing a complex Riesz space, prove that the modulus is the unique exten-

sion of the absolute value on a Riesz space to a complex homogenous seminorm on

the algebraic complexi�cation (also see [6]). We show uniqueness of the modulus

by viewing the complexi�cation of a Dedekind complete Riesz space as a special

case of the complexi�cation of a vector seminormed space.
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II. PRELIMINARY CONSIDERATIONS

We begin by de�ning our principal objects of consideration.

De�nition 1. If X is a vector space and E is a Dedekind complete Riesz space,

then p : X → E is called a vector seminorm if it satis�es the following three

properties:

p(X) ⊂ E+, (S1)

∀α ∈ R ∀x ∈ X [p(αx) = |α|p(x)], (S2)

∀x, y ∈ X [p(x+ y) ≤ p(x) + p(y)]. (S3)

De�nition 2. A vector seminormed space (VSS) is a triple (X,E, p), written

EX
p , where X is a vector space, E is a Dedekind complete Riesz space, and p :

X → E is a vector seminorm.

If in addition p satis�es the property that p−1(0) = {0} then p is called a

vector norm, and EX
p is called a vector normed space. 1

For example a seminormed vector space (X, p) can also be considered as the

vector seminormed space RX
p . So in particular normed vector spaces are examples

of vector seminormed spaces. Moreover if E is a Dedekind complete Riesz space,

then since the absolute value |.| : E → E has properties (S1)-(S3), E can be

considered as the VSS EE
|.|. Hence Dedekind complete Riesz spaces constitute

another ready source of examples of vector seminormed spaces.

1Such spaces, only assuming that the Riesz space is Archimedean, are also often called 'lattice
normed spaces' (see the de�nition of lattice normed space in [3]). However, we avoid the term
'lattice (semi)norm', and, concomitantly 'lattice (semi)normed space' because the term 'lattice
norm' is widely used to describe a real valued norm on a Riesz space which has the property of
being isotonic on the positive cone (see, for example, the de�nition of lattice norm in [1]).
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De�nition 3. Let EX
p and F Y

q be vector seminormed spaces. For T : X → Y a

linear map and T̄ : E → F a positive map, T̄ dominates T (with respect to p

over q) if

qT ≤ T̄ p. (1)

Moreover, in this situation we say that T is dominated by T̄ or that T is a

dominated operator and that T̄ is a dominant of T (see [3]).

De�nition 4. We de�ne a VSS morphism between two vector seminormed

spaces EX
p and F Y

q to be a pair (T, T̄ ) where T : X → Y is a linear map and

T̄ : E → F is a positive map such that T̄ dominates T with respect to p over q.

From the above de�nition of morphism, it follows that the collection of all vector

seminormed spaces forms a category VSS. For clarity we verify that morphisms

compose. Let (T, T̄ ) : EX
p −→ F Y

q and (S, S̄) : F Y
q −→ GZ

r be morphisms of vector

seminormed spaces. Then clearly ST is linear and S̄T̄ is positive. It remains to

show that ST is dominated by S̄T̄ . Indeed, because S and T are both dominated

by positive operators,

r(ST ) ≤ (S̄q)T = S̄(qT ) ≤ S̄(T̄ p) = (S̄T̄ )p.

Hence VSS forms a category. We now learn how to recognize isomorphic objects

in the category. To this end we have the following proposition.

Proposition 5. Let EX
p , F

Y
q be vector seminormed spaces. Then EX

p is isomorphic

to F Y
q if and only if the following conditions hold: there exist VSS morphisms

(T, T̄ ) : EX
p → F Y

q and (S, S̄) : F Y
q → EX

p such that S and T are inverses in the

category of vector spaces, S̄ and T̄ are inverses in the category of Riesz spaces with

positive morphisms, and p and q are related by T̄ pS = q.

Proof. Suppose EX
p
∼= F Y

q . Then there exist VSS morphisms (T, T̄ ) : EX
p → F Y

q

and (S, S̄) : F Y
q → EX

p such that (S, S̄)(T, T̄ ) = (idX , idE) and (T, T̄ )(S, S̄) =
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(idY , idF ). This means precisely that S and T are inverses in the category of

vector spaces and S̄ and T̄ are inverses in the category of Riesz spaces with positive

morphisms. Now since S̄ dominates S we have pS ≤ S̄q. By applying T̄ on the

left to both sides, using that it is positive, we have

T̄ pS ≤ T̄ S̄q = idF q = q.

But also T̄ dominates T , and by applying S to the right on both sides of qT ≤ T̄ p,

we have

q = qidY = qTS ≤ T̄ pS.

Hence q = T̄ pS.

Conversely, assuming the conditions stated in the theorem, if q = T̄ pS, then

applying S̄ to both sides on the left gives that S̄ dominates S, and applying T on

the right of both sides gives that T̄ dominates T . So (T, T̄ ), (S, S̄) are in fact VSS

morphisms. It is then clear that they are isomorphisms and inverses of each other.

�

Corollary 6. If EX
p is a VSS, Y is a vector space isomorphic to X under the

linear isomorphism T : X → Y , and F is a Riesz space isomorphic to E under

the positive isomorphism T̄ : E → F , then T̄ pT−1 is a vector seminorm making

F Y
T̄pT−1

∼= EX
p .

Proof. Follows immediately from the previous proposition. �

We next show that VSS contains products and then develop the notion of a

VSS bimorphism. We then propose a class of vector seminormed spaces that each

behave similar to a tensor product.
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Products

We show that VSS contains �nite products. Indeed, if E1
X1
p1

and E2
X2
p2

are vector

seminormed spaces then we demonstrate that (E1 × E2)X1×X2
p1×p2 is the product of

E1
X1
p1

and E2
X2
P2

in VSS. First note that p1 × p2 is easily seen to be a vector

seminorm and that E1 × E2 is Dedekind complete. Let πi : X1 × X2 → Xi and

π̄i : E1×E2 → Ei be the canonical projections. Then it is clear that π̄i dominates

πi because the diagram

X1 ×X2 Y1 × Y2

Xi Yi

p1×p2

πi

pi

π̄i

commutes by de�nition of p1 × p2. Let G
Z
r be another VSS and (fi, f̄i) : GZ

r −→

EXi
pi

be morphisms. Then because vector spaces and Dedekind complete Riesz

spaces form categories containing products with respect to linear and positive

maps, respectively, there exist unique maps P : Z → X1 ×X2 and P̄ : G →

E1 × E2, linear and positive, respectively, such that πiP = fi and π̄iP̄ = f̄i. Then

it only remains to show that P̄ dominates P . However, since f̄i dominates fi, we

have

(p1 × p2)P = (p1π1P, p2π2P ) = (p1f1, p2f2) ≤ (f̄1r, f̄2r) = (π̄1P̄ r, π̄2P̄ r) = P̄ r,

which is the desired inequality. Hence (P, P̄ ) is the unique VSS morphism making

the diagram

7



GZ
r

(E1 × E2)X1×X2

p1×p2E1
X1
p1

E2
X2
p2

(f1, f̄1) (f2, f̄2)
(P, P̄ )

(π1, π̄1) (π2, π̄2)

commute. Therefore VSS contains �nite products, and

(E1 × E2)X1×X2
p1×p2 = E1

X1
p1
× E2

X2
p2
.

Bimorphisms and cross seminorms

Having introduced products of vector seminormed spaces, we introduce some new

vocabulary relating to them.

De�nition 7. Let EX
p , F

Y
q , G

Z
r be vector seminormed spaces. Then a pair (T, T̄ )

is called a VSS bimorphism if T : X × Y → Z is bilinear, T̄ : E × F → G is

positive bilinear, and T̄ dominates T in the sense that

rT ≤ T̄ (p× q). (2)

Let X⊗Y be the vector space tensor product of X and Y and E⊗̄F the Fremlin

tensor product of E and F . Let (E⊗̄F )δ be the Dedekind completion of E⊗̄F .

Let ⊗ : X × Y → X ⊗ Y be the canonical bilinear map and ⊗̄ : E × F → E⊗̄F

be the canonical positive bilinear map, and, for convenience, also let ⊗̄ denote

the composition E × F → E⊗̄F ↪→ (E⊗̄F )δ of the embedding of E⊗̄F into its

Dedekind completion following the canonical positive bilinear map.

De�nition 8. A vector seminorm t: X⊗Y → (E⊗̄F )δ is called cross or a cross

(vector) seminorm 2 if

t⊗ = ⊗̄(p× q). (C)

2An equivalent de�nition, assuming norms rather than seminorms, may be found in [8].
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We often write p ⊗ q for an arbitrary cross vector seminorm. Then, using

this notation and looking at the equality pointwise, (C) may be written more

suggestively as follows:

∀(x, y) ∈ X × Y [ (p⊗ q)(x⊗ y) = px⊗̄qy] .

Not quite a tensor product

Having introduced the above notions we are then led to consider (E⊗̄F )δ
X⊗Y
p⊗q . We

show that ⊗̄ dominates ⊗ with respect to any cross vector seminorm p ⊗ q. By

de�nition of a cross vector seminorm, we have that the diagram

X × Y E × F

X ⊗ Y (E⊗̄F )δ

p× q

⊗

p⊗ q

⊗̄

commutes. Hence ⊗̄ dominates ⊗ with respect to p ⊗ q, as desired. We are thus

led to consider (E⊗̄F )δ
X⊗Y
p⊗q as the natural codomain of the bimorphism (⊗, ⊗̄) :

EX
p × F Y

q → (E⊗̄F )δ
X⊗Y
p⊗q . Now let (T, T̄ ) : EX

p × F Y
q → GZ

r be a bimorphism.

Then because T is linear and T̄ is positive, by the de�nition of X ⊗ Y and E⊗̄F ,

respectively, there exists a unique linear map T⊗ : X ⊗ Y → Z and there exists a

unique positive map T̄ ⊗̄ : E⊗̄F → G such that the following diagrams commute:

X × Y Z

X ⊗ Y ,

⊗
T⊗

T
E × F G

E⊗̄F .

⊗̄
T̄ ⊗̄

T̄

Now since E ⊗ F is a majorizing vector subspace of its Dedekind completion, we

have by the Kantorovich Extension Theorem (see Theorem 2.8 in [1]) that there

exists a positive extension [T̄ ⊗̄] of T̄ ⊗̄ to all of (E⊗̄F )δ. Now the question arises as

9



to whether [T̄ ⊗̄] dominates T⊗ with respect to p⊗ q over r. In general we cannot

expect this to occur since we were not careful in our choice of cross seminorm p⊗q,

dominant T̄ of T, or Kantorovich extension [T̄ ⊗̄] of T̄ ⊗̄. Even making such choices

may not be enough. For instance, in [8], Shotaev is able to achieve a categorical

tensor product by placing further restrictions on the Riesz spaces E and F , as well

as requiring the existence of a least order continuous dominant. However, even

without making further such choices and assumptions, we may prove the following

result: The positive operator [T̄ ⊗̄] dominates T⊗ with respect to p ⊗ q over r on

the set of simple tensors {x⊗ y | (x, y) ∈ X × Y } ⊂ X ⊗ Y , i.e.

∀(x, y) ∈ X × Y [ rT⊗(x⊗ y) ≤ [T̄ ⊗̄](p⊗ q)(x⊗ y) ].

Indeed, let (x, y) ∈ X × Y . Then

rT⊗(x⊗ y) = rT⊗ ⊗ (x, y) = rT (x, y)

≤ T̄ (p× q)(x, y) = T̄ (px, qy) = T̄ ⊗̄⊗̄(px, qy)

= T̄ ⊗̄(px⊗̄qy) = T̄ ⊗̄(p⊗ q)(x⊗ y)

= [T̄ ⊗̄](p⊗ q)(x⊗ y),

where we have used that T̄ dominates T with respect to p×q over r, the de�nitions

of T⊗, T̄ ⊗̄ and cross vector seminorm, and that [T̄ ⊗̄] extends T̄ ⊗̄. Note that We

have not yet demonstrated that (E⊗̄F )δ
X⊗Y
p⊗q is a VSS because we have not yet

demonstrated the existence of any cross vector seminorm p ⊗ q. Let us now turn

to this problem.
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III. TENSOR SEMINORMS

For X, Y, Z vector spaces, let L (X, Y ) be the set of all linear mappings from X

to Y and B(X × Y, Z) be the set of all bilinear mappings from X × Y to Z.

De�nition 9. Let EX
p be a VSS. The p-unit ball, B(EX

p ), is the following subset

of L (X,E):

B(EX
p ) := {f ∈ L (X,E) | ∀x ∈ X [ |f(x)| ≤ px ]},

where |.| is the absolute value on E.

That is the p-unit ball is the set of all operators from X to E dominated by

the identity on E with respect to p over |.|. Hence it consists of all the f such that

(f, idE) : EX
p → EE

|.| is a VSS morphism. Also since f is linear and p(x) = p(−x),

f being dominated by idE only occurs if f ≤ p. So we also have

B(EX
p ) := {f ∈ L (X,E) | f ≤ p }.

Now we have the following immediate corollary of the Hahn-Banach-Kantorovich

Theorem (see Theorem 2.1 in [1]).

Lemma 10. Let EX
p be a VSS and let x0 ∈ X. Then ∃ϕ ∈ B(EX

p ) [ϕ(x0) = px0 ].

In particular we have that px0 = sup{ϕ(x0) | ϕ ∈ B(EX
p )}

Proof. If x0 = 0 then take ϕ ≡ 0. Otherwise suppose x0 6= 0. Then de�ne

ϕ0 : Rx0 → E by ϕ0(λx0) := λp(x0) for λ ∈ R. Then ϕ0 ≤ p on Rx0. Since E is

Dedekind complete, by the Hahn-Banach-Kantorovich Theorem

∃ϕ ∈ L (X,E) [ ϕ ≤ p & ϕ|Rx0 = ϕ0 ].

11



Hence ϕ ∈ B(EX
p ) and ϕ(x0) = p(x0), as desired. The second statement now

follows trivially. �

Let us now again turn our attention to the construction of particular examples

of cross vector seminorms. Let EX
p , F

Y
q be VSS. Then for u =

∑n
1 xk⊗yk ∈ X⊗Y ,

de�ne

ε(u) := sup{
n∑
1

ϕ(xk)⊗̄ψ(yk) | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )}.

This de�nition seemingly depends on choice of representation of u. We show that

this is not the case and that ε takes well de�ned values in (E⊗̄F )δ. More generally,

we show that this is an example of a cross seminorm.

Theorem 11. If EX
p , F

Y
q are vector seminormed spaces, then ε, as de�ned above,

is a cross seminorm ε : X ⊗ Y → (E⊗̄F )δ.

Proof. We organize the proof in three steps.

Step 1 . We show that ε is well de�ned, that is it does not depend on a chosen

representation of u and that ε(u) de�nes a speci�c value in (E⊗̄F )δ for each u ∈

X ⊗ Y . With this in mind, let η : X × Y → B(L (X,E)×L (Y, F ), (E⊗̄F )δ) be

de�ned by η(x, y)(ϕ, ψ) := ϕ(x)⊗̄ψ(y) for (x, y) ∈ X×Y and (ϕ, ψ) ∈ L (X,E)×

L (Y, F ). Then because each ϕ, ψ is linear and ⊗̄ is bilinear, we have that η is

also bilinear as claimed. Then by the de�nition of the vector space tensor product,

∃!L : X ⊗ Y → B(L (X,E) ×L (Y, F )) such that L⊗ = η. So since for simple

tensors x ⊗ y we have L(x ⊗ y) = η(x, y), we must have for u =
∑n

1 xk ⊗ yk =∑m
1 xk

′ ⊗ yk ′ ∈ X ⊗ Y and (ϕ, ψ) ∈ L (X,E)×L (Y, F ) that

L(u)(ϕ, ψ) = L(
n∑
1

xk ⊗ yk)(ϕ, ψ) =
n∑
1

L(xk, yk)(ϕ, ψ) =
n∑
1

η(xk, yk)(ϕ, ψ)

=
n∑
1

ϕ(xk)⊗̄ψ(yk) =
m∑
1

ϕ(x′k)⊗̄ψ(y′k)

=
m∑
1

η(x′k, y
′
k)(ϕ, ψ) =

m∑
1

L(x′k, y
′
k)(ϕ, ψ) = L(

m∑
1

x′k ⊗ y′k)(ϕ, ψ).

12



This shows that the de�nition of ε does not depend on the representation of u as

a �nite sum of simple tensors. Let ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q ). Then because ⊗̄ is

positive,
∑n

1 ϕ(xk)⊗̄ψ(yk) ≤
∑n

1 p(xk)⊗̄q(yk) ∈ (E⊗̄F )δ. Then ε(u) represents a

supremum of a set that is bounded above in the Dedekind complete space (E⊗̄F )δ.

So ε(u) ∈ (E⊗̄F )δ as claimed. Hence ε : X ⊗ Y → (E⊗̄F )δ is well de�ned.

Step 2. We demonstrate that the vector seminorm axioms hold for ε. In-

deed, let u =
∑n

1 xk ⊗ yk ∈ X ⊗ Y . Since ϕ ∈ B(EX
p ) ⇐⇒ −ϕ ∈ B(EX

p ),

we have that ε(u) is a supremum over a set for which
∑n

1 ϕ(xk)⊗̄ψ(yk) and

−
∑n

1 ϕ(xk)⊗̄ψ(yk) are both members. So |
∑n

1 ϕ(xk)⊗̄ψ(yk)| ≤ ε(u), and hence

ε(u) = sup{|
∑n

1 ϕ(xk)⊗̄ψ(yk)| | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )}. Then from this it is

clear that ε(X ⊗ Y ) ⊂ ((E⊗̄F )δ)+.

Let α ∈ R. Then, using α(x⊗ y) = αx⊗ y for (x, y) ∈ X ⊗ Y ,

ε(αu) = ε(
n∑
1

αxk ⊗ yk) = sup{|
n∑
1

ϕ(αxk)⊗̄ψ(yk)| | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )}

= sup{|α‖
n∑
1

ϕ(xk)⊗̄ψ(yk)| | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )}

= |α| sup{|
n∑
1

ϕ(xk)⊗̄ψ(yk)| | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )} = |α|ε(u).

Finally, if u =
∑n

1 xk ⊗ yk, u′ =
∑m

1 x
′
k ⊗ y′k then

ε(u+ u′) = sup{
n∑
1

ϕ(xk)⊗̄ψ(yk) +
m∑
1

ϕ(x′k)⊗̄ψ(y′k) | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )}

≤ sup{
n∑
1

ϕ(xk)⊗̄ψ(yk) | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )}

+ sup{
m∑
1

ϕ(x′k)⊗̄ψ(y′k) | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )} = ε(u) + ε(u′).

Step 3. Lastly we show that ε is a cross seminorm, that is ε(x⊗ y) = px⊗̄qy

for simple tensors x ⊗ y. To this end, let x ⊗ y be a simple tensor. Clearly

ε(x ⊗ y) ≤ px⊗̄qy since ⊗̄ is positive and by de�nition of the unit ball for each

13



VSS involved. But by Lemma 10, there exist ϕ ∈ B(EX
p ) and ψ ∈ B(F Y

q ) such

that ϕ(x) = p(x) and ψ(y) = q(y). Hence px⊗̄qy ≤ ε(x⊗y). So ε(x⊗y) = px⊗̄qy,

as desired. Therefore ε is a cross vector seminorm. �

De�nition 12. Let EX
p , F

Y
q be vector seminormed spaces. The (p,q)-unit ball,

B(EX
p , F

Y
q ), is the following subset of B(X × Y, (E⊗̄F )δ):

B(EX
p , F

Y
q ) := {ψ ∈ B(X × Y, (E⊗̄F )δ) | ∀(x, y) ∈ X × Y [|ψ(x, y)| ≤ px⊗̄qy]}.

We next relate the p-unit ball and the q-unit ball to the (p,q)-unit ball. We

begin by de�ning a map from L (X,E) × L (Y, F ) to B(X × Y, (E⊗̄F )δ). Let

ϕ ∈ L (X,E), ψ ∈ L (Y, F ). Then de�ne ϕ⊗̄ψ : X × Y → (E⊗̄F )δ by

(ϕ⊗̄ψ)(x, y) := ϕ(x)⊗̄ψ(y).

Then since ϕ, ψ are linear and ⊗̄ is bilinear, ϕ⊗̄ψ is bilinear. The following lemma

then relates the p-unit ball and the q-unit ball to the (p,q)-unit ball.

Lemma 13. Let ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q ). Then ϕ⊗̄ψ ∈ B(EX
p , F

Y
q ).

Proof. It is clear that ϕ⊗̄ψ is bilinear. Moreover, since ϕ, ψ are in the p-unit and

q-unit balls, respectively, and since ⊗̄ is positive, we have that

(ϕ⊗̄ψ)(x, y) = ϕ(x)⊗̄ψ(y) ≤ px⊗̄qy.

Hence ϕ⊗̄ψ ∈ B(EX
p , F

Y
q ). �

This leads us to the de�nition of another candidate for a cross vector seminorm

on X ⊗ Y taking values in (E⊗̄F )δ. For u =
∑n

1 xk ⊗ yk, de�ne

π(u) := sup{
n∑
1

ψ(xk, yk) | ψ ∈ B(EX
p , F

Y
q )}.

14



Then, as with ε, we show that this de�nition is independent of representation of

u as a �nite sum of simple tensors and that it de�nes a well-de�ned cross vector

seminorm π : X ⊗ Y → (E⊗̄F )δ.

Theorem 14. If EX
p , F

Y
q are vector seminormed spaces, then π, as de�ned above,

is a cross seminorm π : X ⊗ Y → (E⊗̄F )δ.

Proof. We organize the proof in three steps.

Step 1. We show that π is well de�ned, meaning that it does not depend on a

chosen representation of u and that π(u) de�nes a speci�c value in (E⊗̄F )δ for each

u ∈ X ⊗ Y . With this in mind, let γ : X × Y → L (B(X × Y, (E⊗̄F )δ), (E⊗̄F )δ)

be de�ned by γ(x, y)(ψ) := ψ(x, y) for (x, y) ∈ X × Y and ψ ∈ B(X × Y, (E⊗̄F ).

Then because each ψ is bilinear, we have that γ is also bilinear as claimed. Then

by the de�nition of the vector space tensor product, ∃!J : X ⊗ Y → L (B(X ×

Y, (E⊗̄F )δ), (E⊗̄F )δ) such that J⊗ = γ. So since for simple tensors x⊗y we have

J(x⊗ y) = γ(x, y), we must have for u =
∑n

1 xk⊗ yk =
∑m

1 xk
′⊗ yk ′ ∈ X ⊗Y and

ψ ∈ B(X × Y, (E⊗̄F )δ) that

J(u)(ψ) = J(
n∑
1

xk ⊗ yk)(ψ) =
n∑
1

J(xk, yk)(ψ) =
n∑
1

γ(xk, yk)(ψ)

=
n∑
1

ψ(xk, yk) =
m∑
1

ψ(x′k, y
′
k)

=
m∑
1

γ(x′k, y
′
k)(ψ) =

m∑
1

J(x′k, y
′
k)(ψ) = J(

m∑
1

x′k ⊗ y′k)(ψ).

This shows that the de�nition of π does not depend on the representation of

u as a �nite sum of simple tensors. Let ψ ∈ B(EX
p , F

Y
q ). Then by de�nition

of the (p,q)-unit ball,
∑n

1 ψ(xk, yk) ≤
∑n

1 p(xk)⊗̄q(yk) ∈ (E⊗̄F )δ. Then π(u)

represents a supremum of a set that is bounded above in the Dedekind complete

space (E⊗̄F )δ. So π(u) ∈ (E⊗̄F )δ, as claimed. Hence π : X ⊗ Y → (E⊗̄F )δ is

well de�ned.

Step 2. We establish that the vector seminorm axioms hold for π. Let u =
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∑n
1 xk⊗yk ∈ X⊗Y . Since ψ ∈ B(EX

p , F
Y
q ) ⇐⇒ −ψ ∈ B(EX

p , F
Y
q ), we have that

π(u) is a supremum over a set for which
∑n

1 ψ(xk, yk) and −
∑n

1 ψ(xk, yk) are both

members. So |
∑n

1 ψ(xk, yk)| ≤ π(u), and hence π(u) = sup{|
∑n

1 ψ(xk, yk)| | ψ ∈

B(EX
p , F

Y
q )}. Then from this it is clear that π(X ⊗ Y ) ⊂ ((E⊗̄F )δ)+.

Let α ∈ R. Then, using α(x⊗ y) = αx⊗ y for (x, y) ∈ X ⊗ Y ,

π(αu) = π(
n∑
1

αxk ⊗ yk) = sup{|
n∑
1

ψ(αxk, yk)| | ψ ∈ B(EX
p , F

Y
q )}

= sup{|α‖
n∑
1

ψ(xk, yk)| | ψ ∈ B(EX
p , F

Y
q )}

= |α| sup{|
n∑
1

ψ(xk, yk)| | ψ ∈ B(EX
p , F

Y
q )} = |α|π(u).

Finally, if u =
∑n

1 xk ⊗ yk, u′ =
∑m

1 x
′
k ⊗ y′k then

π(u+ u′) = sup{
n∑
1

ψ(xk, yk) +
m∑
1

ψ(x′k, y
′
k) | ψ ∈ B(EX

p , F
Y
q )}

≤ sup{
n∑
1

ψ(xk, yk) | ψ ∈ B(EX
p , F

Y
q )}

+ sup{
m∑
1

ψ(x′k, y
′
k) | ψ ∈ B(EX

p , F
Y
q )} = π(u) + π(u′).

Step 3. Lastly we must show that π is a cross seminorm, that is π(x ⊗ y) =

px⊗̄qy for simple tensors x⊗ y. To this end, let x⊗ y be a simple tensor. Clearly

π(x ⊗ y) ≤ px⊗̄qy by de�nition of the (p,q)-unit ball. But by Lemma 10, there

exist ϕ ∈ B(EX
p ) and ψ ∈ B(F Y

q ) such that ϕ(x) = p(x) and ψ(y) = q(y). Then

we have that

(ϕ⊗̄ψ)(x, y) = ϕ(x)⊗̄ψ(y) = px⊗̄qy.

Moreover, by the previous lemma, ϕ⊗̄ψ ∈ B(EX
p , F

Y
q ). Hence px⊗̄qy ≤ π(x⊗ y).

So π(x⊗ y) = px⊗̄qy, as desired. Therefore π is a cross vector seminorm. �

Let EX
p , F

Y
q be VSS. Let ϕ ∈ L (X,E), ψ ∈ L (Y, F ). Then, as noted above,
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ϕ⊗̄ψ : X × Y → (E⊗̄F )δ is bilinear. Moreover, if in addition we require that

ϕ, ψ ∈ B(EX
p )× B(F Y

q ) then ϕ⊗̄ψ ∈ B(EX
p , F

Y
q ). Now, in either case, since ϕ⊗̄ψ

is bilinear, by the de�nition of the vector space tensor product, there exists a

unique linear map ϕ⊗ ψ : X ⊗ Y → (E⊗̄F )δ with (ϕ⊗ ψ)⊗ = ϕ⊗̄ψ.

De�nition 15. A vector seminorm t : X ⊗ Y → (E⊗̄F )δ is called reasonable if

∀(ϕ, ψ) ∈ B(EX
p )×B(F Y

q ) [ϕ⊗ ψ ∈ B((E⊗̄F )δ
X⊗Y
t )]. (R)

De�nition 16. A vector seminorm t : X ⊗ Y → (E⊗̄F )δ is called a tensor

seminorm or a reasonable cross seminorm if it is both reasonable and cross.

So a vector seminorm X ⊗ Y → (E⊗̄F )δ is a reasonable cross seminorm if

and only if it satis�es both (R) and (C). As per de�nition, we shall use the terms

tensor seminorm and reasonable cross seminorm interchangeably.

The reader may be aware of the notion of reasonable cross norm in the theory

of tensor products of Banach spaces (see [7]). Using that R⊗̄R ∼= R, it is not

di�cult to show that when we restrict our attention to Banach spaces, the two

de�nitions of reasonable cross norm align.

The following de�nitions further suggest analogy with the theory of tensor

products of normed spaces.

De�nition 17. Let EX
p and F Y

q be vector seminormed spaces. Then the vector

seminorm ε : X ⊗ Y → (E⊗̄F )δ de�ned on each u =
∑n

1 xk ⊗ yk ∈ X ⊗ Y by

ε(u) := sup{
n∑
1

ϕ(xk)⊗̄ψ(yk) | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )}

is called the injective vector seminorm and (E⊗̄F )δ
X⊗Y
ε (up to VSS isomor-

phism) is called the injective tensor product of EX
p and F Y

q .
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De�nition 18. Let EX
p and F Y

q be vector seminormed spaces. Then the vector

seminorm π : X ⊗ Y → (E⊗̄F )δ de�ned on each u =
∑n

1 xk ⊗ yk ∈ X ⊗ Y by

π(u) := sup{
n∑
1

ψ(xk, yk) | ψ ∈ B(EX
p , F

Y
q )}.

is called the projective vector seminorm and (E⊗̄F )δ
X⊗Y
π (up to VSS isomor-

phism) is called the projective tensor product of EX
p and F Y

q .

De�nition 19. Let EX
p , F

Y
q be VSS. Then if t : X ⊗ Y → (E⊗̄F )δ is a tensor

seminorm, we write EX
p ⊗t F Y

q for any VSS that is isomorphic (in the category

of vector seminormed spaces) to (E⊗̄F )δ
X⊗Y
t and call such a space a t-tensor

product of EX
p and F Y

q .

Moreover, as a point of notation, if GZ
r is a t-tensor product of EX

p and F Y
q

then we shall write EX
p ⊗t F Y

q = GZ
r .

We have de�ned two seminorms ε and π that we know to be cross. However,

in the case of Banach spaces these are also reasonable cross norms. We shall �nd

that this holds in our more general case as well, i.e., ε and π will be shown to

also satisfy (R). As a consequence, the injective and projective tensor products of

vector seminormed spaces EX
p and F Y

1 , as we have already de�ned them, really are

the ε-tensor product and π-tensor product, respectively. So our de�nitions will be

shown to be consistent.

The following theorem, in addition to showing that ε and π are reasonable

cross seminorms, further develops our analogy with the theory of tensor products

of normed spaces by characterizing possible reasonable cross vector seminorms by

means of ε and π.

Theorem 20. We have that ε ≤ π and ε, π are reasonable cross seminorms.

Moreover, a seminorm t : X ⊗ Y → (E⊗̄F )δ is a reasonable cross seminorm if

and only if ε ≤ t ≤ π.
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Proof. We organize the proof in 5 steps.

Step 1. We show ε ≤ π. Let u =
∑n

1 xk⊗ yk ∈ X⊗Y . Then consider the sets

αu := {
n∑
1

ϕ(xk)⊗̄ψ(yk) | ϕ ∈ B(EX
p ), ψ ∈ B(F Y

q )},

βu := {
n∑
1

ψ(xk, yk) | ψ ∈ B(EX
p , F

Y
q )}.

So ε(u) = supαu, and π(u) = sup βu. Let
∑n

1 ϕ(xk)⊗̄ψ(yk) ∈ αu, where (ϕ, ψ) ∈

B(EX
p ) × B(F Y

q ). Then, by Lemma 13, we know that since (ϕ, ψ) ∈ B(EX
p ) ×

B(F Y
q ), we have that ϕ⊗̄ψ ∈ B(EX

p , F
Y
q ). So

∑n
1 ϕ(xk)⊗̄ψ(yk) ∈ βu. Hence

αu ⊂ βu. Therefore ε(u) ≤ π(u). So ε ≤ π.

Step 2 . We show that t ≤ π. Let t : X ⊗ Y → (E⊗̄F )δ be a vector seminorm.

For one implication, suppose t is a reasonable cross seminorm. Let u =
∑n

1 xk ⊗

yk ∈ X ⊗ Y . Then by Lemma 10 there exists ϕ ∈ B((E⊗̄F )δ
X⊗Y
t ) such that

ϕ(u) = t(u). But also if ϕ ∈ B((E⊗̄F )δ
X⊗Y
t ) then ϕ(u) ≤ t(u). Hence

t(u) = sup{ϕ(u) | ϕ ∈ B((E⊗̄F )δ
X⊗Y
t )}

= sup{
n∑
1

ϕ(xk ⊗ yk) | ϕ ∈ B((E⊗̄F )δ
X⊗Y
t )}

= sup{
n∑
1

(ϕ⊗)(xk, yk) | ϕ ∈ B((E⊗̄F )δ
X⊗Y
t )}.

Recall the de�nitions of αu and βu from earlier. Similarly, de�ne

γu,t := {ϕ(u) | ϕ ∈ B((E⊗̄F )δ
X⊗Y
t )}.

Now if ϕ(u) =
∑n

1 (ϕ⊗)(xk, yk) ∈ γu where ϕ ∈ B((E⊗̄F )δ
X⊗Y
t ), then ϕ⊗ :

X × Y → (E⊗̄F )δ is bilinear, as a linear map composed with a bilinear map.
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Moreover for (x, y) ∈ X × Y we have that

(ϕ⊗)(x, y) = ϕ(x⊗ y) ≤ t(x⊗ y) = px⊗̄qy.

So ϕ⊗ ∈ B(EX
p , F

Y
q ). Hence γu,t ⊂ βu. Then t(u) = sup γu ≤ π(u) = sup βu.

Hence t ≤ π. Note that we only needed that t is cross for this half of the inequality.

Step 3. We show that ε and π are reasonable cross seminorms. To this end,

note that we have already shown that they are cross. So it su�ces to show that

they satisfy (R). However, this means that for (ϕ, ψ) ∈ B(EX
p )× B(F Y

q ) and u =∑n
1 xk⊗yk ∈ X⊗Y , that (ϕ⊗ψ) ∈ B((E⊗̄F )δ

X⊗Y
ε ) and (ϕ⊗ψ) ∈ B((E⊗̄F )δ

X⊗Y
π ).

But we have shown that ε ≤ π. So

B((E⊗̄F )δ
X⊗Y
ε ) ⊂ B((E⊗̄F )δ

X⊗Y
π ).

So it su�ces only to show that (ϕ ⊗ ψ) ∈ B((E⊗̄F )δ
X⊗Y
ε ). That is, it su�ces to

show that for all u =
∑n

1 xk ⊗ yk ∈ X ⊗ Y we have that (ϕ ⊗ ψ)(u) ≤ ε(u). But

for such a u ∈ X ⊗ Y ,

(ϕ⊗ ψ)(u) =
n∑
1

ϕ(xk)⊗̄ψ(yk) ∈ αu.

Hence (ϕ ⊗ ψ)(u) ≤ ε(u), which is the desired inequality. Therefore ε and π are

both reasonable cross seminorms.

Step 4. We show that ε ≤ t. Let
∑n

1 ϕ(xk)⊗̄ψ(yk) ∈ αu, where (ϕ, ψ) ∈

B(EX
p )×B(F Y

q ). Then since we assumed t to be a reasonable cross seminorm, we

have by (R) that ϕ ⊗ ψ ∈ B((E⊗̄F )δ
X⊗Y
t ). Hence (ϕ ⊗ ψ)(u) ∈ γu,t. Therefore

ε ≤ t. So

ε ≤ t ≤ π,

as claimed.
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Step 5. Lastly we show that any vector seminorm between ε and π is a reason-

able cross seminorm. Suppose that t is an arbitrary vector seminorm satisfying

ε ≤ t ≤ π. Now since ε, π are themselves cross seminorms, they satisfy (C). Then

because ε and π are equal on simple tensors and since ε ≤ t ≤ π, we have

∀(x, y) ∈ X × Y [ ε(x⊗ y) = t(x⊗ y) = π(x⊗ y) = px⊗̄qy ].

So t satis�es (C). Now let (ϕ, ψ) ∈ B(EX
p )×B(F Y

q ). Then ϕ⊗ψ ∈ B((E⊗̄F )δ
X⊗Y
ε )

because ε is reasonable. So

∀u ∈ X ⊗ Y [ (ϕ⊗ ψ)(u) ≤ ε(u) ≤ t(u) ].

Therefore ϕ ⊗ ψ ∈ B((E⊗̄F )δ
X⊗Y
t ). So t satis�es (R) as well. Hence t is a

reasonable cross seminorm, completing the proof. �
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IV. THE COMPLEXIFICATION OF A VECTOR SEMINORMED

SPACE

Consider C as a real vector space isomorphic to R2. Then since R is Dedekind

complete, RC
|.| is a VSS where |.| : C→ R is the standard Euclidean norm on C.

Let EX
p be a VSS. It is well known that the real vector space C ⊗ X can be

considered as the algebraic complexi�cation of X and allows us to consider C⊗X

as a complex vector space by de�ning scalar multiplication as α(λ⊗ x) := αλ⊗ x

where α, λ ∈ C and x ∈ X. Also, since any
∑n

1 λk ⊗ xk ∈ C ⊗X can be written

as 1⊗ x+ i⊗ y for suitable x, y ∈ X, we have C⊗X is complex linear isomorphic

to the formal direct sum X + iX under the identi�cation x+ iy ↔ 1⊗ x+ i⊗ y.

As with modules, we also de�ne the complexi�cation of a vector seminormed

space EX
p as a tensor product with C, where C is here considered as the normed

vector space RC
|.|. However, since we have a choice of tensor seminorm, there are

many possible complexi�cations. Note that since E is Dedekind complete and

R⊗̄E ∼= E, we may identify (R⊗̄E)δ with E.

De�nition 21. For EX
p a VSS and t : C ⊗ X → E a tensor seminorm, the

t-complexi�cation of EX
p is the t-tensor product EX

p ⊗t RC
|.|.

So in particular EX
p ⊗t RC

|.| = EC⊗X
t , after making the identi�cation (R⊗̄E)δ ∼=

E. Similarly, since every element of C ⊗ X can be written uniquely in the form

1⊗ x+ i⊗ y for some x, y ∈ X, the identi�cation x+ iy ↔ 1⊗ x+ i⊗ y induces

a (complex) linear isomorphism T : C ⊗ X → X + iX, and, by Corollary 6,

idEtT
−1 : X + iX → E is a vector seminorm, and (T, idE) : EC⊗X

t
'−→ EX+iX

idEtT−1 is
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a VSS isomorphism. Hence

t(u) = t(1⊗ x+ i⊗ y) = tT−1(x+ iy)

, where u ∈ C ⊗ X and Tu = x + iy for x, y ∈ X. Since we choose to identify

1⊗ x+ i⊗ y with x+ iy, we shall simply identify t and idEtT
−1. Hence EC⊗X

t
∼=

EX+iX
t in VSS, and so we also have EX

p ⊗t RC
|.| = EX+iX

t .

Let EX
p be a VSS. Consider the injective vector seminorm ε on C⊗X ∼= X+iX

taking values in the Dedekind complete Riesz space E. Then we write

ε(x+ iy) = sup{ |ϕ(1)ψ(x) + ϕ(i)ψ(y)| | ϕ ∈ B(RC
|.|), ψ ∈ B(EX

p )},

because we may make the identi�cations x + iy ↔ 1 ⊗ x + i ⊗ y and α⊗̄x ↔ αx

for x, y ∈ E,α ∈ R, due to the isomorphisms mentioned above.

Now let us de�ne a new candidate for a reasonable cross seminorm on the

complexi�cation. Set

‖x+ iy‖∞ := sup{p(x cos(θ) + y sin(θ)) | θ ∈ [0, 2π)}.

Theorem 22. Let EX
p be a VSS. Then ‖.‖∞ is the injective vector seminorm ε on

X + iX. That is, for x, y ∈ X, we have that

ε(x+ iy) = sup{ |ϕ(1)ψ(x) + ϕ(i)ψ(y)| | ϕ ∈ B(RC
|.|), ψ ∈ B(EX

p )}

= sup{p(x cos(θ) + y sin(θ)) | θ ∈ [0, 2π)} = ‖x+ iy‖∞.

Proof. First note that

ϕ ∈ B(RC
|.|) ⇐⇒ ∀λ = λ1 + iλ2 ∈ C [|ϕ(λ1 + iλ2)| = |ϕ(1)λ1 + ϕ(i)λ2| ≤ |λ|]

⇐⇒ ∀λ ∈ C, |λ| ≤ 1 [|ϕ(1)λ1 + ϕ(i)λ2| ≤ 1]

⇐⇒
√

(ϕ(1))2 + (ϕ(i))2 ≤ 1.
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So for x, y ∈ X,

ε(x+ iy) = sup{ |ϕ(1)ψ(x) + ϕ(i)ψ(y)| | ϕ ∈ B(RC
|.|), ψ ∈ B(EX

p )}

= sup{
√
a2 + b2(

aψ(x)√
a2 + b2

+
bψ(y)√
a2 + b2)

) | a2 + b2 ≤ 1, ψ ∈ B(EX
p )}

= sup{ψ(x) cos(θ) + ψ(y) sin(θ) | θ ∈ [0, 2π), ψ ∈ B(EX
p )}.

Let θ ∈ [0, 2π). Now since EX
p is a VSS, by the second statement of Lemma 10,

p(x cos(θ) + y sin(θ)) = sup{ψ(x cos(θ) + y sin(θ)) | ψ ∈ B(EX
p )}

= sup{ψ(x) cos(θ) + ψ(y) sin(θ) | ψ ∈ B(EX
p )}.

Therefore, putting it all together, we have

‖x+ iy‖∞ = sup{p(x cos(θ) + y sin(θ)) | θ ∈ [0, 2π)}

= sup{sup{ψ(x) cos(θ) + ψ(y) sin(θ) | ψ ∈ B(EX
p )} | θ ∈ [0, 2π)}

= sup{|ψ(x) cos(θ) + ψ(y) sin(θ)| | θ ∈ [0, 2π), ψ ∈ B(EX
p )}

= sup{ |ϕ(1)ψ(x) + ϕ(i)ψ(y)| | ϕ ∈ B(RC
|.|), ψ ∈ B(EX

p )} = ε(x+ iy),

as desired. �

Let E be a Dedekind complete Riesz space. Then, since E is Dedekind com-

plete, the complexi�cation E+ iE is well known to have a modulus h : E+ iE →

E, de�ned, for x, y ∈ E, by the equation

h(x+ iy) := sup{|x cos(θ) + y sin(θ)| | θ ∈ [0, 2π)},

and satisfying properties (S1)-(S3). So h is a vector seminorm 3 However, since

EE
|.| is a VSS where |.| is the absolute value on E, it is clear that h = ‖.‖∞. So by

the previous theorem h is the injective tensor seminorm on the complexi�cation.

3It also satis�es h−1(0) = 0 and is thus a vector norm on E + iE. See Theorem 13.5 in [9].
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Therefore we have the following corollary of the previous theorem.

Corollary 23. Let E a Dedekind complete Riesz space. We have the following

formula for the complexi�cation, where h is the complexi�cation modulus:

EE
|.| ⊗ε RC

|.| = EE+iE
h .

Proof. Clearly h = ‖.‖∞. Now apply the previous theorem. �

In the theory of complexi�cation of Banach lattices there is the concept of

admissible vector seminorm (see [6]). We extend this concept to vector seminormed

spaces in the following way.

De�nition 24. Let EX
p be a VSS and r : C ⊗X → E a vector seminorm. Then

r is called admissible4 if the following two conditions hold:

∀λ ∈ C ∀x ∈ X [r(λ⊗ x) = |λ|r(x)], (A1)

∀x, y ∈ X [p(x) ∨ p(y) ≤ r(x+ iy) ≤ p(x) + p(y)]. (A2)

Proposition 25. Let t be a tensor seminorm on the complexi�cation of EX
p . Then

t is admissible.

Proof. Let t be a tensor seminorm on the complexi�cation of EX
p . Clearly px, py ≤

sup{p(x cos(θ)+y sin(θ)) |θ ∈ [0, 2π)}. Since we have already shown ε = ‖.‖∞ and

ε ≤ t, we have that

px ∨ py ≤ ε(x+ iy) ≤ t(x+ iy).

Let λ ∈ C and x ∈ X. Now since t is cross, t(λ ⊗ x) = |λ|p(x) after making the

identi�cation (R⊗̄E)δ ∼= E. In particular, t|X = p. So t(λ⊗ x) = |λ|t(x), which is

4See [6].
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(A1). We also have, by the triangle inequality and because t extends p, that

t(x+ iy) ≤ t(x) + t(iy) = t(x) + t(y) = p(x) + p(y).

Therefore

px ∨ py ≤ t(x+ iy) ≤ px+ py.

So (A2) holds for t as well. Hence t is admissible. �

Let us de�ne a new potential admissible seminorm on X + iX as follows.

‖x+ iy‖1 := inf{
n∑
1

|λk|p(xk) | λk ∈ C, xk ∈ X, x+ iy =
n∑
1

λk ⊗ xk}.

By taking real and imaginary parts of each representation
∑n

1 λk ⊗ xk of x + iy,

we also have

‖x+ iy‖1 := inf{
n∑
1

|(ak + ibk)|p(xk) | x =
n∑
1

akxk, y =
n∑
1

bkxk},

where ak, bk ∈ R, xk ∈ X

Theorem 26. ‖.‖1 is an admissible seminorm.

Proof. We organize the proof in 4 steps.

Step 1. We show ‖.‖1 is well de�ned and takes values in the positive cone

of E. Let x, y ∈ X and αx,y := {
∑n

1 |λk|p(xk) | x + iy =
∑n

1 λk ⊗ xk} where

λk ∈ C, xk ∈ X. Clearly 0 is a lower bound for αx.y and αx,y ⊂ E, where E is a

Dedekind complete Riesz space. So ‖x + iy‖1 = inf αx,y ∈ E+. Hence ‖.‖1 is well

de�ned and takes values in the positive cone of E.

Step 2. We show (S1)-(S3) and (A1) hold for ‖.‖1. Let x1, x2, y1, y2 ∈ X.

Let x1 + iy1 =
∑n

1 λ
1
k ⊗ x1

k, x2 + iy2 =
∑m

1 λ
2
k ⊗ x2

k, where λ
j
i ∈ C, xji ∈ X. Then
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(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) =
∑n

1 λ
1
k ⊗ x1

k +
∑m

1 λ
2
k ⊗ x2

k. Hence

‖(x1 + x2) + i(y1 + y2)‖1 ≤
n∑
1

λ1
k ⊗ x1

k +
m∑
1

λ2
k ⊗ x2

k.

Now since
∑n

1 λ
1
k⊗x1

k,
∑m

1 λ
2
k⊗x2

k were arbitrary representations of x1+iy1, x2+iy2,

respectively, we have that

‖(x1 + x2) + i(y1 + y2)‖1 ≤ ‖x1 + iy1‖1 + ‖x2 + iy2‖1.

Let γ = γ1 + iγ2 ∈ C. We may assume that γ 6= 0, because clearly ‖0‖1 = 0. Then,

by de�nition,

‖γ(x+ iy)‖1 = inf{
n∑
1

|λk|p(xk) | γ(x+ iy) =
n∑
1

λk ⊗ xk}.

But γ(x+ iy) =
∑n

1 λk ⊗ xk ⇐⇒ x+ iy =
∑n

1 γ
−1λk ⊗ xk. So

‖γ(x+ iy)‖1 = inf{
n∑
1

|λk|p(xk) | x+ iy =
n∑
1

γ−1λk ⊗ xk}

= inf{
n∑
1

|γλk|p(xk) | x+ iy =
n∑
1

λk ⊗ xk}

= |γ| inf{
n∑
1

|λk|p(xk) | x+ iy =
n∑
1

λk ⊗ xk} = |γ|‖x+ iy‖1.

Therefore (S1)-(S3) and (A1) hold.

Step 3. We show ‖.‖ is a cross seminorm whose restriction to X is p. Let λ ∈

C and x ∈ X. Then clearly ‖λ⊗x‖1 ≤ |λ|p(x). Now let (ϕ, ψ) ∈ B(RC
|.|)×B(EX

p )

with ϕ(λ) = |λ|, ψ(x) = p(x). Let
∑n

1 λk ⊗ xk = λ⊗ x. Then

|λ|p(x) = (ϕ⊗ ψ)(λ⊗ x) = (ϕ⊗ ψ)(
n∑
1

λk ⊗ xk)

=
n∑
1

ϕ(λk)ψ(xk) ≤
n∑
1

|λk|p(xk).
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Hence, since
∑n

1 λk ⊗ xk is an arbitrary representation of λ ⊗ x, we have that

|λ|p(x) ≤ ‖λ⊗ x‖1. So

∀λ ∈ C ∀x ∈ X [ ‖λ⊗ x‖1 = |λ|p(x) ].

Therefore, given the isomorphism E ∼= (R⊗̄E)δ, ‖.‖1 satis�es (C), and is therefore

a cross seminorm. In particular we have that the restriction of ‖.‖1 to X is p

because ‖x‖1 = px for x ∈ X.

Step 4. We show that ‖.‖1 is admissible. Using similar reasoning we may

show that ‖.‖1 satis�es (R) in addition to (C), and is therefore a reasonable cross

seminorm. Indeed, let (ϕ, ψ) ∈ B(RC
|.|)×B(EX

p ) and x, y ∈ X. Let
∑n

1 λk ⊗ xk =

x+ iy. Then

(ϕ⊗ ψ)(x+ iy) =
n∑
1

ϕ(λk)ψ(xk) ≤
n∑
1

|λk|p(xk).

Hence, since
∑n

1 λk ⊗ xk is an arbitrary representation of x+ iy, we have that

(ϕ⊗ ψ)(x+ iy) ≤ ‖x+ iy‖1,

which is the desired inequality. Therefore ‖.‖1 is a tensor seminorm. Hence it is

admissible by the previous proposition. �

Theorem 27. Let EX
p be a VSS and r : X + iX → E an admissible seminorm.

Then r extends p and ‖.‖∞ ≤ r ≤ ‖.‖1

Proof. By (A2), if x ∈ X then px = px ∨ 0 = px ∨ p0 ≤ rx ≤ px + p0 = px.

So p = r|X . As for the second assertion, note that since X + iX is a direct sum,

there are two projections, Re, Im : X + iX → X de�ned by Re : x + iy 7→ x and

Im : x + iy 7→ y, where x + iy ∈ X + iX is sent to its real and imaginary parts,
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respectively. Then since r extends p and by (A1) and (A2),

‖x+ iy‖∞ = sup{r(x cos(θ) + y sin(θ)) | θ ∈ [0, 2π)}

= sup{r(Re(e−iθ(x+ iy))) | θ ∈ [0, 2π)} ≤ r(x+ iy).

(3)

Now let x, y ∈ X and
∑n

1 λk ⊗ xk = x+ iy. Then

r(x+ iy) = r(
n∑
1

λk ⊗ xk) ≤
n∑
1

r(λk ⊗ xk) =
n∑
1

|λk|p(xk).

Hence, since
∑n

1 λk ⊗ xk is an arbitrary representation of x + iy, we have that

r(x+ iy) ≤ ‖x+ iy‖1. Therefore

‖x+ iy‖∞ ≤ r(x+ iy) ≤ ‖x+ iy‖1,

as desired. �

Theorem 28. A seminorm on the complexi�cation of a VSS EX
p is admissible if

and only if it is a tensor seminorm.

Proof. We already have shown that tensor seminorms on the complexi�cation are

admissible. So it only remains to show that admissible seminorms are also tensor

seminorms. To this end let r be an admissible seminorm on the complexi�cation

of EX
p . Then the (A1) condition coupled with the fact that r|X = p implies that

r is cross. Indeed, let λ ∈ C, x ∈ X. Then

r(λ⊗ x) = |λ|r(x) = |λ|p(x),

which shows that r is cross.
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As for (R), if x, y ∈ X,ϕ ∈ B(RC
|.|), ψ ∈ B(EX

p ), then

(ϕ⊗ ψ)(x+ iy) = (ϕ⊗ ψ)(1⊗ x+ i⊗ y) = (ϕ⊗ ψ)(1⊗ x) + (ϕ⊗ ψ)(i⊗ y)

= ϕ(1)ψ(x) + ϕ(i)ψ(y) ≤ ‖x+ iy‖∞ ≤ r(x+ iy),

(4)

which is (C). So r is a tensor seminorm, completing the proof. �

We have already shown that ε = ‖.‖∞ on the complexi�cation of a VSS. The

previous theorem gives us another proof of this result as well as the additional

result that π = ‖.‖1 on the complexi�cation. We state this as a corollary.

Corollary 29. On the complexi�cation of a VSS EX
p we have that ε = ‖.‖∞ and

π = ‖.‖1.

Proof. By the previous theorem a vector seminorm on a complexi�cation is admis-

sible ⇐⇒ it is a tensor seminorm. Moreover we know any admissible seminorm,

hence tensor seminorm, r satis�es ‖.‖∞ ≤ r ≤ ‖.‖1 where ‖.‖∞, ‖.‖1 are admissible,

hence tensor, seminorms. So ‖.‖∞, ‖.‖1 are the smallest and largest, respectively,

tensor seminorms. But we have already shown that ε and π are the smallest and

largest, respectively, tensor seminorms. The stated equalities follow immediately.

�
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V. AN APPLICATION TO THE COMPLEXIFICATION OF A

RIESZ SPACE

It is a remarkable fact that there is a unique tensor (admissible) seminorm on the

complexi�cation of a Dedekind complete Riesz space. Hence, if E is a Dedekind

complete Riesz space, we may unambiguously call RC
|.| ⊗h EE

|.| the complexi�cation

of the Riesz space E where h, called the complexi�cation modulus, is any tensor

seminorm. We devote the remainder of this section towards the proof of this fact.

Let E,F be Riesz spaces. To simplify the notation of what follows, when no

confusion is likely to result, we shall often simply write E even when thinking of E

in its capacity as the vector seminormed space EE
|.|. Similarly we will often simply

write C when thinking of C in its capacity as the normed space RC
|.|. Hence, under

this convention we would write B(E), B(E,F ) instead of B(EE
|.|), B(EE

|.|, F
F
|.| ) for

respective unit balls and C ⊗t E instead of RC
|.| ⊗t EE

|.| for the complexi�cation of

E with tensor seminorm t.

We shall prove that all tensor seminorms on the complexi�cation of a Dedekind

complete Riesz space are equal by demonstrating that ‖.‖∞ = ‖.‖1. To do this

we shall need the following version of Freudenthal's Spectral Theorem for the

complexi�cation of a Riesz space, as found in Theorem 36.1 of [9].

Theorem 30. (Zaanen) Let E be a Dedekind σ-complete Riesz space and let e ∈

E+ and u = x + iy with x, y ∈ E satisfy ‖u‖∞ ≤ e. Then for any real number

ε > 0 there exist disjoint components e1, ..., en of e and complex numbers λ1, ...λn

with |λk| ≤ 1 such that

‖u−
n∑
1

λk ⊗ ek‖∞ ≤ εe & |‖u‖∞ −
n∑
1

|λk|ek| ≤ εe.
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Proof. See Zaanen ([9] (p.234-235)). �

Corollary 31. Let E be a Dedekind complete Riesz space and let u = x+ iy with

x, y ∈ E. Then for any real number ε > 0 there exist disjoint components e1, ..., en

of ‖u‖∞ and complex numbers λ1, ...λn with |λk| ≤ 1 such that
∑n

1 |λk|ek ≤ ‖u‖∞

and

‖u−
n∑
1

λk ⊗ ek‖∞ ≤ ε‖u‖∞ & |‖u‖∞ −
n∑
1

|λk|ek| ≤ ε‖u‖∞.

Proof. Dedekind complete Riesz spaces are Dedekind σ-complete. Moreover, we

may take e = ‖u‖∞ ∈ E+. Then the hypotheses of the previous theorem are met.

Hence all we need to show is that
∑n

1 |λk|ek ≤ ‖u‖∞. However, we have at most

that
∑n

1 ek = ‖u‖∞, and we know that |λk| ≤ 1. Hence

n∑
1

|λk|ek ≤
n∑
1

ek ≤ ‖u‖∞,

which is the desired result. �

Lemma 32. ‖.‖1 ≤ 2‖.‖∞ on the complexi�cation of a Dedekind complete Riesz

space E.

Proof. Let x, y ∈ E. Then because all admissible seminorms on C⊗E are equal

when restricted to E, ‖x‖1 = ‖x‖∞ ≤ ‖x+ iy‖∞ and similarly ‖y‖1 ≤ ‖x+ iy‖∞.

So

‖x+ iy‖1 ≤ ‖x‖1 + ‖y‖1 ≤ 2‖x+ iy‖∞.

Hence ‖.‖1 ≤ 2‖.‖∞, as desired. �

We are now in a position to prove that all tensor seminorms are equal on the

complexi�cation of a Dedekind complete Riesz space.

Theorem 33. There is a unique admissible seminorm (tensor seminorm) on the

complexi�cation of a Dedekind complete Riesz space.
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Proof. Let E be a Dedekind complete Riesz space. We shall demonstrate that

‖.‖1 = ‖.‖∞, from which the theorem follows. To this end let u = x + iy for

x, y ∈ E and let ε ∈ R with ε > 0. Then by the Corollary 31 there exist disjoint

components e1, ..., en of ‖u‖∞ and complex numbers λ1, ...λn with |λk| ≤ 1 such

that
∑n

1 |λk|ek ≤ ‖u‖∞ and

‖u−
n∑
1

λk ⊗ ek‖∞ ≤
ε

2
‖u‖∞ & |‖u‖∞ −

n∑
1

|λk|ek| ≤
ε

2
‖u‖∞.

Then since

‖u‖1 = inf{
n∑
1

|λk||xk| | λk ∈ C, xk ∈ E, x+ iy =
n∑
1

λk ⊗ xk},

∑n
1 |λk|ek ≤ ‖u‖∞ implies that

‖
n∑
1

λk ⊗ ek‖1 ≤ ‖u‖∞.

Moreover by the previous lemma

‖u−
n∑
1

λk ⊗ ek‖1 ≤ 2‖u−
n∑
1

λk ⊗ ek‖∞ ≤ ε‖u‖∞.

Hence, putting it all together, we have that

‖u‖1 ≤ ‖u−
n∑
1

λk ⊗ ek‖1 + ‖
n∑
1

λk ⊗ ek‖1 ≤ ε‖u‖∞ + ‖u‖∞.

Therefore

|‖u‖1 − ‖u‖∞| = ‖u‖1 − ‖u‖∞ ≤ ε‖u‖∞.

But since ε > 0 was arbitrary and E is Archimedean since it is Dedekind complete,

we must have

‖u‖1 = ‖u‖∞.
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Hence ‖.‖∞ = ‖.‖1, as desired. �

In light of this result, if E is a Dedekind complete Riesz space, for notational

simplicity, we shall simply write |.| for the unique admissible seminorm on C⊗ E

and call it the the modulus of the complexi�cation of E. The previous theorem

then has the following useful corollary.

Corollary 34. Let E be a Dedekind complete Riesz space and u = x + iy where

x, y ∈ E. Then we have that

|u| = sup{x cos(θ) + y sin(θ) | θ ∈ [0, 2π)}

= inf{
n∑
1

|λk||xk| | λk ∈ C, xk ∈ E, x+ iy =
n∑
1

λk ⊗ xk}

= sup{ψ(1, x) + ψ(i, y) | ψ ∈ B(C, E)}.

Proof. All are examples of formulae for tensor seminorms evaluated at u on the

complexi�cation of E and are thus equal by the previous theorem. �

We summarize our results on the complexi�cation with the following theorem,

which is essentially another corollary of Theorem 33.

Theorem 35. Let E be a Dedekind complete Riesz space. Let t be any tensor

seminorm C ⊗ E → E. Then the complexi�cation of E is the t-complexi�cation,

C⊗t E, of E. Moreover, C⊗t E is a vector normed space.

Proof. The modulus is well known to satisfy |u| = 0 ⇐⇒ u = 0 for u ∈ C ⊗ E

(see, for instance, Theorem 13.5 in [9]). Clearly the complexi�cation of E with

modulus |.| is the |.|-complexi�cation, C⊗|.| E, of E considered as a VSS. But, by

Theorem 33, t = |.|. The result follows. �
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