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ABSTRACT  

PESHANI HERATH:  Calculating Liquefaction Potential of Northern Mississippi Using 

Shear Wave Data 

(Under the direction of Dr. Craig Hickey) 

 

 The potential for liquefaction can be determined using the Liquefaction Potential 

Index (LPI).  The LPI takes into account the thickness of the liquefiable layers and the 

factors of safety with respect to depth.  This study creates a hybrid method for 

determining the LPI for different locations in Northern Mississippi.  It calculates an 

average CSR for the region using existing borehole information. The CRR is then 

calculated using shear wave velocity profile data from a MASW survey.  The LPI 

obtained from this process is compared to LPI values calculated using CPT data and 

borehole shear wave data.  Surface shear wave velocity profiles are measured near two 

existing borehole locations, TNA013 and TNA012.  The sites near borehole TNA013 and 

TNA012 are both very highly liquefiable according to the MASW method, but are only 

highly liquefiable using the borehole shear wave method. The LPI value calculated using 

CPT data near borehole TNA013 is classified as highly liquefiable and the LPI value near 

borehole TNA012 is classified as having a low liquefaction potential.  The hybrid method 

gives a more conservative estimate of the liquefaction potential in the study area than the 

CPT method or borehole shear wave data.  
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1.0 Introduction  

 The Earth’s crust is continuously moving atop a plastic layer called the 

asthenosphere.  When this motion is hindered, strain can form in the lithosphere. This 

strain energy is released and manifests itself as an earthquake (Spall, 1977). Seismic 

activity can occur along plate boundaries (interplate) or in the interior of a tectonic plate 

(intraplate) (Lowrie, 1997). The majority of earthquakes originate from interplate seismic 

activity (Lowrie, 1997). 

 The seismic zones associated with interplate tectonics can be divided into those 

that follow mid-ocean ridges, continental plate boundaries, ocean-continent boundaries, 

and those caused by plates sliding by each other (Spall, 1977). 

 The processes that create intraplate earthquakes are more complex than those 

produced by plate boundaries and cannot be explained well through plate tectonics 

(Fillingim, 1999). One explanation for the existence of intraplate seismic activity is the 

zones of weakness in the Earth’s crust. Weaknesses can arise from previous tectonic 

activities like failed ancient rift zones and passive margins deformed due to the 

development of active spreading centers. Over time, these zones can become 

incorporated into the central portion of a plate and remain inactive for many years. In the 

presence of stresses, these zones can get reactivated.  

 According to the United States Geological Survey, compared to the rest of the 

state Mississippi, the northern portion is the most at risk from an earthquake. This is due 

to the intraplate activity caused by the New Madrid Fault Zone (United States Geological 



2 
 

Survey, 2012). The New Madrid Seismic Zone is a compilation of several thrust faults 

that stretch from Arkansas to Illinois (Central United States Earthquake Consortium, 

2016). It is the most active seismic area in the United States east of the Rocky Mountains 

(Missouri Department of Natural Resources, 2014). The New Madrid Seismic Zone 

encompasses northeastern Arkansas, southeastern Missouri, western Missouri, western 

Tennessee, southern Illinois, western Kentucky, southwestern Indiana, and northwestern 

Mississippi. 

An ancient failed rift called the Reelfoot Rift underlies the Mississippi 

Embayment with a thick section of sedimentary rock filling the graben, or fault blocks 

located between two major faults, associated with the rift. The New Madrid Seismic Zone 

is located at the center of the buried rift (Braile et al., 1986). The correlation of the 

earthquake epicenters with the buried rift complex indicates that the earthquakes in the 

New Madrid Seismic Zone are results of slippage along pre-existing zones of weakness. 

Contemporary stress fields going east to west in the New Madrid area reactivate these 

fault planes (Braile et al., 1986).   

 Due to the harder, colder, drier and less fractured nature of the rocks, earthquakes 

in the central or eastern United States have a larger impact than earthquakes with similar 

magnitude in the western United States. They shake and damage a region 20 times larger 

than earthquakes in California (Missouri Department of Natural Resources, 2014). The 

effects of the New Madrid earthquake on December 1811 could be felt thousands of 

miles from the epicenter (United States Geological Survey, 2012). Three very large 

earthquakes occurred in 1811 – 1812 that are referred to as New Madrid earthquakes after 

a town in Missouri. The first principle earthquake that occurred in northeast Arkansas 
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December 16, 1811 was a magnitude 7.7. This was followed by a second primary shock 

in Missouri on January 23, 1812 with a magnitude of 7.5. The third principle shock was a 

magnitude 7.7 that occurred on February 7, 1812 along the Reelfoot fault in Missouri and 

Tennessee. Four aftershocks, each ranging in magnitude from 6.0 to 6.5 also occurred 

during this period. A report by Otto Nuttli states that more than 200 moderate to large 

aftershocks occurred in the New Madrid region between December 16, 1811 and March 

15, 1812 (United States Geological Survey, 2012). 

 The primary cause of destruction in modern earthquakes is the collapse of 

manmade structures (Missouri Department of Natural Resources, 2014).In addition to the 

shaking from surface waves, damage to structures can occur when the foundation 

liquefies. Liquefaction is the tendency of an unconsolidated saturated soil to behave like a 

liquid when introduced to a shock, commonly an earthquake (Rauch, 1997). Liquefaction 

potential is related to the amount of subsurface ground water and its proximity to the 

surface, the soil type, and the magnitude and of the seismic activity at a given location. 

Liquefaction of soils is largely dependent on the Cyclic Stress Ratio (CSR), the measure 

of earthquake loading, and Cyclic Resistance Ratio (CRR), liquefaction resistance of the 

ground (University of Washington, 2016). 

 Liquefaction resistance of soils can be evaluated using several methods. The 

earliest and simplest method is based on the Standard Penetration Test (SPT). Later 

methods included the Cone Penetration Test (CPT), and small strain shear wave velocity 

(Vs) measurements (Andruset al., 2003). Because of the poor repeatability and inherent 

difficulties associated with the Standard Penetration Test, the CPT is used as a method to 

determining CRR for clean and silty sands (Robertson and Wride, 1998).  
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 The Cone Penetration Test (CPT) can be useful in characterizing sites with 

discrete stratigraphic horizons or discontinuous lenses. It is valuable in accessing 

subsurface stratigraphy associated with soft material, discontinuous lenses, potentially 

liquefiable material, and landslides. In this method, a 1.41 inch diameter 55° to 60° cone 

is pushed through the underlying ground at a rate of 1 to 2 centimeters per second 

(Rodgers, 2004). A computerized log of the tip and sleeve resistance, induced pore 

pressure behind the cone tip, pore pressure ratio, and a lithologic interpretation of every 

two centimeter interval are produced. The tip resistance of a cone is related to the 

undrained shear strength of a saturated cohesive material while the sleeve friction is 

related to the friction of the horizon being penetrated. The higher the tip resistance, the 

less likely liquefaction will occur (Robertson and Wride, 1998).  

 Seismic waves can also be measured during a CPT. As a borehole is created using 

this technique a cone with seismic capabilities, seismic cone, can detect shear waves 

(Song and Mikell, 2013).  The borehole shear wave velocity is an alternative method to 

determine liquefaction.  Unlike the penetration tests, this measurement is better in 

gravelly soils and capped landfills (Andrus et al., 2003). In addition to use in liquefaction 

studies, multiple studies have established that shear-waves in the upper 30 to 60 meters 

can greatly affect surface ground motion duration and amplification of an earthquake. 

The average shear wave velocity in the top 30 m, known as Vs30, is the metric obtained 

from the shear wave velocity profile to correlate with amplification (Odum, 2007). 

 A shear wave velocity profile can also be measured using surface refraction and 

multichannel analysis of surface waves, MASW, methods. Multichannel analysis of 

surface waves is becoming more popular in geotechnical studies and measures the speed 
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of the surface waves. The seismic waves are produced by impacting the ground with a 

sledgehammer. This energy is detected by a multiple channel recording system and a 

receiver array that is spread out over hundreds of meters. A dispersion curve (surface 

wave velocity versus frequency) is then calculated from this data and inverted to obtain a 

shear wave versus depth profile (Park, 2007). 

 The potential for liquefaction can be determined using the Liquefaction Potential 

Index (LPI).  The LPI takes into account the thickness of the liquefiable layers and the 

factors of safety with respect to depth.  The purpose of this study is to create a hybrid 

method for determining the LPI for different locations in Northern Mississippi.  The 

hybrid method uses an average CSR for the region calculated using existing borehole 

information.  The local CRR is calculated using a shear wave velocity profile obtained 

from a MASW survey.  This hybrid method would not require additional CPT or 

boreholes.  In order to evaluate the feasibility of this hybrid method, the LPI is calculated 

using CPT following the method of Song and Mikell (2013). Then, an average CSR is 

calculated using all the borehole data in the region and the LPI is recalculated using the 

average CSR. The viability between the two LPI values is less than ten percent. The LPI 

is then calculated using shear wave velocity from boreholes and compared to the CPT 

derived LPI.  There was no discernable pattern between the two calculations. The LPI 

values calculated using the borehole shear wave method are generally higher (more 

liquefiable) than the LPI values using CPT data. The LPI using shear wave velocity and 

Vs30 measured at the various boreholes are also compared.  These values correlated with 

low velocities indicating high liquefaction potentials.  Surface shear wave velocity 

profiles are measure at two borehole locations using the MASW survey method.  These 
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two shear wave profiles are used to calculate a LPI value using the average CSR as well 

as the Vs30 value.  The site near borehole TNA013 is very highly liquefiable according 

to the MASW method and highly liquefiable using the borehole shear wave method. It 

has a soil type of D according to Vs30 values. The site near borehole TNA012 is very 

highly liquefiable using MASW data and highly liquefiable using borehole shear wave 

data. It is classified as soil type E according to the Vs30 values.  
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2.0 Liquefaction 

 In general, liquefaction is used to refer to all the failure mechanisms due to pore 

pressure build-up during cyclic shear of undrained, saturated soil. When subjected to 

shearing stresses, loose saturated soil grains tend to be rearranged into to a denser 

packing. When this occurs, there is less space and the water in the pore space is forced 

out. However, the pore pressure will increase as the shear load increases if the drainage 

of the pore water is obstructed. This transfers the stress from the soil skeleton to the pore 

water, and can lead to the reduction of effective stress and shear resistance of the soil. 

When the shear resisting stress is less than the driving shear stress, the soil undergoes 

deformation, or liquefaction (Rauch, 1997). 

 When loose, or contractive soil, is sheared monotonically, it reaches peak shear 

strength and softens to a residual shear resistance (top Figure 1a). Liquefaction flow 

failure occurs when the static driving stress exceeds the residual shear resistance (Rauch, 

1997).When this same soil is sheared cyclically, excess pore pressure is generated with 

each load cycle (middle Figure 1a). Without pore water drainage, the pore pressure 

increases causing the system to move towards failure. If the static driving stress is greater 

than the shear strength, flow failure occurs and continues even after the cyclic load is 

removed. In order for liquefaction to occur where the shear resistance is overcome by the 

static driving load, a contracting saturated soil must undergo sufficient undrained stress 

for an adequate number of load cycles. A great amount of damage can be caused with this 
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process before equilibrium conditions are reestablished at the reduced shear strength 

(Rauch, 1997).  

 

 

Figure 1. Response of a) contractive b) dilative saturated sand to undrained shear.  

 

 When dense, or dilative, soil is sheared, some pore pressure will be produced with 

small strains. If the strain is large, however, the pore pressure will decrease. The soil 

grains will move on top of each other, increasing in volume, or dilating. Monotonic 

shearing in dense soils cause an increase in effective stress and shear resistance (Rauch, 
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1997). When the same soil is dynamically loaded, each load cycle will generate some 

pore pressure, resulting in deformation (middle Figure 1b). At a certain point, however, 

further strain is prevented by the tendency of the soil to increase in volume. Flow failure 

does not occur in undrained dilative soil during cyclic loading because the shear strength 

remains greater than the static diving shear stress. This behavior is called cyclic mobility 

(Rauch, 1997). 

 P. K. Robertson and C. E. Fear in 1996 suggested a classification system to define 

soil liquefaction. The two major categories are flow liquefaction and cyclic softening. 

Flow liquefaction is used for saturated, undrained flow of a contractive, or loose, soil 

when static residual stress exceeds the residual shear strength of the soil (Rauch, 1997). 

Cyclic softening is used for undrained dilating soils that experience large deformation 

during cyclic shearing due to pore pressure build up. This category can be further divided 

into cyclic liquefaction and cyclic mobility. Cyclic liquefaction describes the condition 

when cyclic shear stresses are greater than the initial static shear stress, creating a stress 

reversal. This can produce a stress reversal where a condition of zero effective stress can 

be present during which large deformation can occur (Rauch, 1997). Cyclic mobility is 

where deformation is accumulated in each cycle of shear stress where conditions of zero 

effective stress do not develop (Rauch, 1997). 

 Loose, saturated, shallow deposits of cohesionless soils that produce strong 

ground motion during large magnitude earthquakes are most susceptible to liquefaction 

(Rauch, 1997). Liquefaction and large deformation are more common with soils that are 

compressive as opposed to dilative that tend to experience cyclic softening and limited 
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deformation. Unsaturated soils do not experience liquefaction because pore pressure is 

not generated when the soil volume is decreased (Rauch, 1997).  

 Liquefaction causes soil grains to rearrange themselves. Anything that hinders 

this motion will increase the resistance of a soil to liquefaction. Factors related to the 

geologic formation of the deposit like particle cementation, soil fabric, and aging can 

hinder the process of rearranging grains (Rauch, 1997). The stress history of a soil can 

also affect the liquefaction potential. Deposits with uneven consolidation conditions, for 

example, are more resistant to pore pressure generation. Soils that have been over-

consolidated are less likely to experience liquefaction because they have been exposed to 

greater static pressure, reducing the likelihood of the grains rearranging themselves 

(Rauch, 1997). Soils buried deeper than approximately 15 meters are more resistant to 

liquefaction because the effective overburden pressure increases with depth. This is 

because the frictional resistance between the grains is proportional to the effective 

confining stress (Rauch, 1997).  

 The characteristics of the soil grains such as shape, size distribution, and 

composition also influence the liquefaction susceptibility. Generally, sands and silt are 

most susceptible to liquefaction, but there are records of gravel liquefying. Well graded, 

angular sand particles are less likely to experience liquefaction because the interlocking 

of the grains is more stable. Silty sand, however, are prone to liquefaction because they 

are deposited loosely. Rounded grains with uniform size distribution are most susceptible 

to liquefaction (Rauch, 1997).  

 Clays with measureable plasticity can hinder the movement of grains during 

cyclic shearing. This impedes the generation of pore pressure, reducing liquefaction. 
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Liquefaction is rarely observed in soils with a large quantity of plastic fines because the 

adhesion created between the grains impedes the larger particles from moving into a 

denser arrangement. Non-plastic fines, however, contribute to liquefaction because they 

are inherently collapsible and inhibit the drainage of excess pore pressure (Rauch, 1997).  

The permeability of the soil is another parameter controlling liquefaction. Soils 

that are less permeable cannot transport pore fluids and cause pore pressure to build up 

during cyclic loading. The permeability of the surrounding rock will also influence 

liquefaction susceptibility. Permeable layers above and below a saturated soil can help 

dissipate the excess pore water, decreasing pore pressure. This high permeability is why 

gravelly soils are less prone to liquefaction (Rauch, 1997).  

 Liquefaction does not occur in places at random; rather, they are controlled by a 

certain geologic and hydrologic environment (Greene and Youd, 1994). Relatively 

younger, looser soils deposited in an area with high ground water levels provides the 

optimum conditions for liquefaction. Areas with the ground water table within ten meters 

of the ground surface tend to be areas with the most abundant occurrences of liquefaction 

(Greene and Youd, 1994). The opportunity of liquefaction occurring is restricted by the 

frequency of earthquake occurrence and the intensity of seismic ground shaking. Seismic 

source zones must be taken into account if a liquefaction opportunity map is to be 

developed. Seismic motion is more intense the closer the site is to the source of the 

disturbance, and will increase the opportunity for liquefaction (Greene and Youd, 1994).   

 Even if the soil has the necessary characteristics for liquefaction to occur, it will 

not occur until the proper stress or ground motion from earthquakes is present. The 

primary factors controlling how the surface soil behaves in the presence of an earthquake 
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are shear wave velocity, depth to hard rock, and non-linear dynamic material properties 

(Silva, 2003).  

 Multiple studies (Borcherdt and Gibbs, 1976; Joyner et al., 1981; Seed et al., 

1988) have established that shear-waves in the upper 30 to 60 meters can greatly affect 

surface ground motion duration and amplification of an earthquake. Shallow Vs is 

referred to as Vs30 (Odum, 2007). The average Vs is calculated using velocity versus 

depth profile to a depth of 30 meters (Odum, 2007) using the equation, 

 𝑉𝑆30 =  
∑ 𝑑𝑖

𝑛
𝑖=1

∑
𝑑𝑖

𝑉𝑠𝑖

𝑛
𝑖=1

 (1) 

where Vsi is the velocity of the ith layer and di is the thickness of the ith layer between 0 to 

30 meters (Odum, 2007).  

 The velocity at which the soils transmit shear waves can contribute to the 

amplification of motion. Ground shaking is stronger when the shear wave velocity is 

lower. Table 1 shows the five soil types defined by the National Earthquake Hazards 

Reduction Program based on their shear wave velocities (USGS, 2012). High 

amplification can lead to liquefaction. Therefore, soils that have high amplification may 

also be susceptible to liquefaction.   

 The chart organizes soils ranging from least amount of amplification to the 

greatest amount of amplification. Soil type E will experience the strongest ground motion 

and soil type A will contribute least to ground motion amplification. S-waves travel faster 

in hard rock than in soft soil (Odum, 2007). Soft soils amplify shear waves, so the ground 

shaking in these areas are enhanced. Thin layers of soft soils that overlay stiffer soils or 

bed rock, however, will behave as if the site were lying on stiff soil. Areas that have 

endured earthquakes before will also experience greater ground motion during future 
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earthquakes. In order for the liquefaction of a site to be accurately evaluated the 

characteristics of the soil, the magnitude and intensity of the earthquake, the hydrology of 

the environment, and its proximity to an earthquake hazard zone must all be taken into 

account (USGS, 2012).      

 

Table 1. Classification of Soil Types Based on NEHRP Shear Wave Velocities 

Soil Type Shear Wave Velocity (m/s) Rock/Soil Description 

A > 1500 

Hard Rock (includes unweathered 

intrusive igneous rocks): do not 

contribute greatly to shaking 

amplification 

B 1500 - 750 
Bed Rock: do not contribute greatly to 

shaking amplification 

C 750 - 350 
Dense Soil/ Soft Rock(includes) 

mudstones, sandstones, and limestone 

D 350 - 200 

Stiff Soil (includes mud, sands, gavels 

ad silts): significant amplification of 

shaking 

E < 200 

Soft Soil (include water-saturated mud 

and artificial fill): the strongest 

amplification of shaking 

Source: United States Geological Survey. "Soil Type and Shaking Hazard in the San 

Francisco Bay Area." Soil Type and Shaking Hazard in the San Francisco Bay 

Area. U.S. Geological Survey, 2012. 

  

2.1 Calculating Liquefaction Potential   

 The potential for liquefaction can be determined using the Liquefaction Potential 

Index (LPI).  The definition of LPI as defined by Iwasaki et al. (1978) is a method to 

characterize liquefaction hazard (Holzer et al., 2009). Though other definitions for LPI 

were proposed, redefining it could alter the interpretations and the significance of an LPI 

value. The LPI takes into account the thickness of the liquefiable layers and the factors of 

safety with respect to depth.  In order to calculate the LPI, Iwasaki et al. (1978) assumed 
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that the severity of liquefaction is related to the total thickness of the liquefied layers, the 

depth of these layers (proximity to the surface), and how much less the liquefaction factor 

of safety (FS) is to one. The FS is a measure of the soil's capacity to resist liquefaction 

during an earthquake (Holzer et al., 2009).  The LPI is defined as, 

 𝐿𝑃𝐼 =  ∫ 𝐹𝐿 × 𝑤(𝑧)𝑑𝑧
20

0
 (2) 

 𝑤(𝑧) =  10 − 0.5𝑧 (3)  

 𝐹𝐿 = 1 − 𝐹𝑆        𝑓𝑜𝑟 𝐹𝑆 ≤ 1 (4) 

 𝐹𝐿 = 0       𝑓𝑜𝑟 𝐹𝑆 > 1 (5) 

where 𝑧 is the depth in meters and 𝑤(𝑧) is a weighting factor that can vary from ten at 

the surface to zero at 20 meters. Theoretically the value of the LPI can range from zero to 

100 (Holzer et al., 2009). Table 2 lists the soil classification in terms of the liquefaction 

potential index.  

 

Table 2. Liquefaction Potential Index  

Liquefaction Potential Index Value Liquefaction Potential Classification 

LPI≤2 Low 

2<LPI≤5 Moderate 

5<LPI≤15 High 

LPI>15 Very High 

 

Source: Song, C. R., and Mikell, N. "Earthquake and Piping Hazard Assessment for 

Desoto, Tunica, and Tate County, Mississippi." Department of Civil 

Engineering, University of Mississippi, 2013. 
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The liquefaction potential is quantified using the Cyclic Resistance Ratio (CRR) and 

Cyclic Stress Ratio (CSR). CRR represents dimensionless cyclic strength and CSR 

represents dimensionless cyclic stress induced by an earthquake. The likelihood of 

liquefaction occurring in terms of Cyclic Resistance Ratio for different ground layers is 

determined using the Factor of Safety equation (Song and Mikell, 2013), 

 FS =  
CRR

CSR
(MSF) (6) 

FS is the Factor of Safety and MSF is the earthquake Magnitude Scaling Factor. The 

MSF is determined using Table 3. 

 

Table 3. Magnitude Scaling Factor  

Earthquake Magnitude Magnitude Scaling Factor 

5.5 2.20 

6.0 1.76 

6.5 1.44 

7.0 1.19 

7.5 1.00 

8.0 0.84 

8.5 0.72 

 

Source: Song, C. R., and Mikell, N. "Earthquake and Piping Hazard 

Assessment for Desoto, Tunica, and Tate County, Mississippi." 

Department of Civil Engineering, University of Mississippi, 2013. 

 

When the FS is greater than or equal to one, liquefaction will not occur; if the FS is less 

than one, liquefaction can occur (Johari and Khodaparast, 2013).  
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 Liquefaction resistance of soils can be evaluated using the Standard Penetration 

Test (SPT), the Cone Penetration Test (CPT), and small strain shear wave velocity (Vs) 

measurements (Andrus et al., 2003). Each method has its advantages and disadvantages. 

The calculation of CSR, however, is the same for all three methods.  

 The Cyclic Stress Ratio (CSR) is calculated using the equation, 

 𝐶𝑆𝑅 = 0.65
𝑎𝑚𝑎𝑥

𝑔

𝜎𝑣0

𝜎𝑣0
    ′ 𝑟𝑑 (7)  

where 𝑎𝑚𝑎𝑥is the peak ground acceleration in percent g (g = 9.81 m/s), 𝜎𝑣0
′   is the 

effective vertical stress, 𝜎𝑣0is the total vertical stress, and 𝑟𝑑stress reduction factor. The 

𝑎𝑚𝑎𝑥value is obtained using the peak ground acceleration map (PGA) in Figure 2. "Peak 

ground acceleration is a measure of the maximum force experienced by a small mass 

located at the surface of the ground during an earthquake (USGS, 2014)."  It is an index 

to hazard for short stiff structures during an earthquake.  A PGA map is generated by 

assigning an annual probability of occurrence to a ground motion associated with a 

certain magnitude from a particular distance (USGS, 2015).  This study will use an 

𝑎𝑚𝑎𝑥value of 0.2g because the peak ground acceleration in the study is about 20 percent 

(Song and Mikell, 2013).  

The total vertical stress is calculated using the equation, 

 σv0 = ∑ γtz (8) 

where γ
t
 is the total unit weight of the soil and z is the depth in meters (Song and Mikell, 

2013).  For the Cone Penetration Test, the total unit weight is calculated using the 

equation, 

 γt = 11.46 + 0.33 log(𝑧) + 3.10 log(fs) +  0.70 log(qt) (9) 
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where z is the depth in meters, 𝑞𝑡 (kPA) is the tip resistance corrected for pore water 

pressure, and fs (kPA) is the local friction measured from the CPT (Song and Mikell, 

2013). The corrected tip resistance is calculated using, 

 𝑞𝑡 =  𝑞𝑐 +  𝑢2(1 −  𝑎𝑛) (10) 

where 𝑞𝑐is the tip resistance measured during the CPT, u2 is the pore pressure measured 

behind the cone, and 𝑎𝑛is the net area ratio. Typically, the 𝑎𝑛 value is between 0.7 and 

0.8. In sands, 𝑞𝑐 can be used in equation 10 instead of  𝑞𝑡. This study will be using 𝑞𝑐 

because the pore pressure behind the cone is unknown (Song and Mikell, 2013).    

Figure 2. Map of peak ground acceleration in percent g (Song and Mikell, 2013). 

 

The effective stress is calculated using the equation, 

 𝜎𝑣𝑜
′ = 𝜎𝑣0 − 𝑝 (11) 

where 𝑝 is the pore water pressure calculated using the equation, 

 𝑝 =  γ(𝑧 − 𝑧0) (12) 
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where 𝑧 is the depth in meters, 𝑧0is the depth of the water table, and γ is the unit weight 

of water (9.81 kN/m3). This study assumes the water table to be at one meter below the 

surface (Song and Mikell, 2013).    

 The stress reduction factor is evaluated using the following guide lines, 

 𝑖𝑓𝑧 ≤ 9.15𝑚𝑒𝑡𝑒𝑟𝑠         𝑟𝑑 = 1.0 − 0.00765𝑧 (13) 

 𝑖𝑓 9.15 < 𝑧 ≤ 23𝑚𝑒𝑡𝑒𝑟𝑠         𝑟𝑑 = 1.174 − 0.0267𝑧 (14) 

 𝑖𝑓 23 < 𝑧 ≤ 30𝑚𝑒𝑡𝑒𝑟𝑠         𝑟𝑑 = 0.744 − 0.008𝑧 (15) 

 𝑖𝑓𝑧 > 30𝑚𝑒𝑡𝑒𝑟𝑠         𝑟𝑑 = 0.5 (16) 

where 𝑧 is the depth in meters (Song and Mikell, 2013).  

 

2.1.1 Determining Factor of Safety Using the Standard Penetration Test (SPT) 

  In the SPT method, blows from a slide hammer are used to drive a standard 

thick-walled sample tube into the ground at the bottom of a deep narrow hole, borehole; 

the slide hammer has standard weights and fall distance. The sample tube is driven up to 

18 inches into the ground and the number of blows needed to penetrate every six inches is 

recorded (geotechdata.info, 2013). The SPT blow count value is the sum of the number of 

blows needed for the second and third six inches of penetration; it is also called the 

standard penetration resistance and the N-value. This value indicates the relative density 

of the subsurface soil and can be used to estimate the approximate shear strength 

properties of the soil (geotechdata.info, 2013). 

 The CRR for an earthquake with a 7.5 magnitude is obtained using SPT results 

by, 

 𝐶𝑅𝑅7.5 =  
1

34−𝑁1,60𝑐𝑠
+  

𝑁1,60𝑐𝑠

135
+  

50

(10𝑁1,60𝑐𝑠+45)2
−  

1

200
 (17) 
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𝑁1,60𝑐𝑠 is the clean sand equivalent of the overburden stress corrected SPT blow count, 

 𝑁1,60𝑐𝑠 = 𝑎 + 𝑏𝑁1,60 (18) 

𝑎 and 𝑏 are coefficients that account for the effects of the fines content (FC) (Johari and 

Khodaparast, 2013), 

 

 𝑎 = 0         FC ≤ 5% (19) 
 𝑎 = e [1.76 – (190/FC2)]               5% < FC < 35% (20) 
 𝑎 = 5.0         FC ≥ 35% (21) 
 
 𝑏 = 1FC≤5% (22) 
 𝑏 = [0.99 + (FC2/1000)]         5% < FC < 35% (23) 
 𝑏 = 1.2FC ≥35% (24) 
 

and 𝑁1,60is the corrected SPT blow count normalized to the effective overburden stress 

of 100 kPa.  

 

2.1.2 Determining Factor of Safety Using Cone Penetration Test (CPT)  

 CPT penetration resistance has been proposed as an alternative method to 

determining CRR for clean and silty sands due to the poor repeatability and inherent 

difficulties associated with the Standard Penetration Test (Robertson and Wride, 1998). 

The CPT uses data retrieved while the cone pushes through the underlying ground to 

calculate the liquefaction potential of a soil. The tip resistance (qc) of a cone and sleeve 

friction (fs) are used calculate the friction ratio (F). F is used to classify a soil based upon 

its reaction to the cone being forced through the soil. High ratios represent clayey 

material while low ratios represent sandy material. Sands typically have a ratio less than 

1% and most soils typically don’t exceed 20% ratio (Rodgers, 2004).  



20 
 

 Using CPT measurements, the Cyclic Resistance Ratio for a 7.5 magnitude 

earthquake is calculated using the expressions, 

 𝐶𝑅𝑅7.5 = 93 (
(𝑞𝑐1𝑁)𝑐𝑠

1000
)

3

+ 0.08,   𝑖𝑓 50 ≤ (𝑞𝑐1𝑁)𝑐𝑠 ≤ 160 (25) 

 𝐶𝑅𝑅7.5 = 0.833 (
(𝑞𝑐1𝑁)𝑐𝑠

1000
) + 0.05,   𝑖𝑓(𝑞𝑐1𝑁)𝑐𝑠 < 50 (26) 

where (𝑞𝑐1𝑁)𝑐𝑠 is the clean-sand equivalent normalized cone penetration resistance (Song 

and Mikell, 2013). It is calculated using the equation,  

 (𝑞𝑐1𝑁)𝑐𝑠 = 𝐾𝑐𝑄 (27) 

where 𝐾𝑐 is the correction factor for grain characteristics and 𝑄 is the normalized cone 

resistance (Song and Mikell, 2013).𝑄 is calculated with the following equation, 

 𝑄 =
(𝑞𝑐−𝜎𝑣𝑜)

100
𝐶𝑁 (28) 

where 𝐶𝑁 is the normalization factor for cone penetration resistance (CPR) (Song and 

Mikell, 2013). This factor is calculated using the equation, 

  𝐶𝑁 = (
100

𝜎𝑣0
′ )𝑛 (29) 

where 100 represents one atmospheric pressure in kPa and 𝑛 is an exponent that varies 

with soil type (Song and Mikell, 2013). Kc is calculated using the conditions, 

 𝑖𝑓𝐼𝑐 ≤ 1.64,     𝐾𝑐 = 1.0 (30) 

  𝑖𝑓 1.64 < 𝐼𝑐 < 2.36  𝑎𝑛𝑑 𝐹 < 0.5%, (31) 

 𝐾𝑐 = −0.403𝐼𝑐
  4 + 5.581𝐼𝑐

  3 − 21.63𝐼𝑐
  2 + 33.75𝐼𝑐 − 17.8  

 𝑖𝑓 1.64 < 𝐼𝑐 < 2.60, (32) 

 𝐾𝑐 = −0.403𝐼𝑐
  4 + 5.581𝐼𝑐

  3 − 21.63𝐼𝑐
  2 + 33.75𝐼𝑐 − 17.88 

 𝑖𝑓𝐼𝑐 ≥ 2.70      𝐶𝑅𝑅 = 0.053𝑄𝐾𝛼 (33) 
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where 𝐾𝛼 is a correction factor to account for shear stress (Song and Mikell, 2013).𝐼𝑐 in 

the above expression is calculated using the equation, 

 𝐼𝑐 = √[(3.47 − 𝑙𝑜𝑔𝑄)2 + (1.22 + 𝑙𝑜𝑔𝐹)2] (34) 

where 𝐹 is the normalization friction ratio. It is calculated using the equation, 

 𝐹 =
𝑓𝑠

(𝑞𝑐−𝜎𝑣𝑜)
100 (35) 

 The stress component n is calculated with respect to𝐼𝑐. The criteria for this value 

are expressed as, 

 𝑖𝑓𝐼𝑐 ≤ 1.64,     𝑛 = 0.5 (36) 

 𝑖𝑓 1.64 < 𝐼𝑐 < 3.30,     𝑛 = (𝐼𝑐 − 1.64)0.3 + 0.5 (37) 

 𝑖𝑓𝐼𝑐 ≥ 3.30,     𝑛 = 1.0 (38) 

 𝑖𝑓𝜎𝑣𝑜
′ > 300 𝐾𝑃𝑎     𝑛 = 1.0  (39) 

This system of equations must be iterated until the change in 𝑛 is less than 0.01 (Song 

and Mikell, 2013). 

 The left side of the Figure 3 is a graph of the CRR versus corrected CPT tip 

resistance for a magnitude 7.5 earthquake (Robertson and Wride, 1998). The filled in 

markers represent liquefaction while the blank markers represent no liquefaction. Soils 

susceptible to liquefaction tend to fall on the left side of the limiting shear strain line, and 

no liquefaction markers are denser on the right side of the line. The higher the tip 

resistance, the less likely liquefaction will occur. The right side of Figure 3 is the same 

graph different with soil types denoted. Silty sand to sandy silt is plotted on the far left, 

followed by silty sand and clean sand on the far right (Robertson and Wride, 1998). 
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Figure 3. CRR versus corrected CPT tip resistance for a magnitude 7.5 earthquake 

(Robertson and Wride, 1998). 

 

2.1.3 Determining Factor of Safety Using Shear Wave Velocity  

 Penetrating methods, however, may not be reliable in certain soils and cannot be 

conducted in areas such as landfills (Andrus et al., 2003). Shear wave velocity is "an 

engineering property that is directly related to small-strain shear modulus (Andrus et al., 

2003)." It is also necessary for the analysis of dynamic soil response. Due to the 

correlation between the density of a soil and the shear wave velocity of a medium, CRR 

and FS can be analyzed using shear wave velocity data (Song and Mikell, 2013).  

 The CRR is calculated using the equation, 

  𝐶𝑅𝑅 = 0.022(
𝑣𝑠1

100
)2 + 2.8 (

1

𝑣𝑠1
∗ −𝑣𝑠1

−
1

𝑣𝑠1
∗ ) (40) 

where 𝑣𝑠1 is the overburden-stress corrected shear wave velocity and 𝑣𝑠1
∗ is the limited 

upper value of 𝑣𝑠1 for liquefaction occurrence (Song and Mikell, 2013).The overburden-

stress corrected shear wave velocity is calculated using the equation, 
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 𝑉𝑠1 = 𝑉𝑠(
𝑃𝑎

𝜎𝑣𝑜′
)0.25 (41) 

where 𝑃𝑎is the atmospheric pressure, i.e. 100 kPa (Song and Mikell, 2013). 

 Figures 4a though 4c are CRR curves for a 7.5 magnitude earthquake in 

Holocene-age sands with FC < 5%. Figure 4a compares CRR with SPT blow count, 

Figure 4b compares CRR with the CPT tip resistance, and the Figure 4c compares CRR 

with shear-wave velocity (Andrus et al., 2003). The general shape of the curve produced 

by the SPT and CPT methods are similar. The curve generated by the SPT method is less 

conservative than the CPT and shear wave method between the blow count values eight 

and twenty (Andrus et al., 2003). The curve generated by the CPT method is less 

conservative than the SPT and shear wave method above a corrected CPT tip resistance 

value of 120 (Andrus et al., 2003). This study will further compare the results of the CPT 

method to the shear-wave velocity method by analyzing data from Northern Mississippi. 

 

 

Figure 4. Graphs of a) corrected SPT blow count, b) corrected CPT tip resistance, and  

c) corrected shear-wave velocity (Andrus et al., 2003).  
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3.0Northern Mississippi Delta Data 

A liquefaction susceptibility study of Desoto, Tunica, and Tate County, 

Mississippi was conducted by Dr. Chung R. Song and Nathan Mikell from the University 

of Mississippi Civil Engineering Department. This study will closely follow their report.  

The study area is located in the Mississippi Embayment (Guo, 2014). Figure 5 is a 

geologic map of the area. The gray area outlines the Mississippi Delta which consists of 

alluvium, consisting of loam, sand, gravel, and clay, deposited by the Mississippi River 

(MDEQ, 2011).  Tunica and part of Desoto County are within this boundary. The 

Kosciusko Formation is found in majority of Desoto and Tate County. The Kosciusko 

Formation consists of Tertiary bedded sand, clay, and some quartzite (MDEQ, 2011). The 

study area mainly consists of a sequence of unconsolidated sediments (Guo, 2014). 

 

 
 
 
 
 

 

 

 

 

 

 

Figure 5. Geologic map of North Mississippi (MDEQ, 2011). 
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The preliminary data of the study area showed a wide distribution of loose sand 

layers.   A sieve analysis test was conducted on sand boil samples. Depending on the 

gradation, this test can sometimes give clues to a soil’s liquefaction potential. A sieve 

analysis test is conducted by running samples through multiple sieves with a known 

screen size. The top sieve screen has the largest holes and the bottom most sieve has the 

smallest hole size. Figure 6 shows the graph of grain size distribution with the percent 

finer as the y-axis and the particle size in millimeters as the x-axis. The colored lines 

represent the size distribution of the three samples, the dashed lines represent liquefiable 

soil, and the solid black lines indicate the range typically associated with very liquefiable 

soil. All three samples fall within the very liquefiable range.  

 

 

Figure 6. Grain size distribution of samples and limits for liquefaction potential 

(Song and Mikell, 2013). 
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 Multiple test methods were used to evaluate the liquefaction potential. Song and 

Mikell (2013) used shear wave velocity and Cone Penetration Test to evaluate 

liquefaction potential. Figure 7 is a map of the borehole locations. The CPT logs from 60 

boreholes in Tate, Desoto, and Tunica County were analyzed (Figure 8). 

 

 

Figure 7. Borehole locations in Tate, Desoto, and Tunica County. 
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Figure 8. Sample data used in this study (Song and Mikell, 2003). 

 

 Song and Mikell (2013) created LPI maps using the approach described in section 

2.2 and 2.2.2 and 2.2.3. Figure 9 is a map of the liquefaction susceptibility for a 7.5 

magnitude earthquake using CPT data. Figure 10 is a map of the liquefaction 

susceptibility for a 7.0 magnitude earthquake using shear wave data. The scaling factor 

from Table 3 for a magnitude 7.0 earthquake is 1.19.  Song and Mikell (2013) reported 

the majority of the study area to be very high to highly liquefiable for both CPT and 

shear-wave methods.    
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Figure 9. Liquefaction susceptibility using CPT for a 7.5 magnitude earthquake (Song 

and Mikell, 2013)  

 

 

Figure10. Liquefaction susceptibility using shear wave for a 7.0 magnitude earthquake 

(Song and Mikell, 2013) 
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3.1 Reproduction of Results by Song and Mikell 

 This study reanalyzed and reproduced the results from the report by Song and 

Mikell (2013). The CSR is calculated using the method outlined in section 2.1, CRR is 

calculated by the method outlined in section 2.1.2 (CPT) and 2.1.3 (shear-wave velocity).  

The following assumptions were made while calculating the CSR: 

1. The water table is one meter as in the report by Song and Mikell. 

2. The total stress is calculated by integrating the unit weight over the depth.  

3. The amax value for North Mississippi is 0.2g, as determined by the PGA map 

(Figure A-2) in section 2.1. 

Song and Mikell used the flow chart in Figure 11 to calculate the CRR using the CPT 

method. The following deviations from Song and Mikell (2013) were made while 

calculating CRR. 

For 𝐼𝑐 greater than 2.7, the steps in the flow chart are modified to fall into the same 

category as those that fall in between an 𝐼𝑐value of 2.5 and 2.7. 𝐼𝑐 values that are above 

2.7 will be non-liquefiable whether the above expression or equation 33 from section 

2.1.2 is used. This assumption also generates larger 𝐾𝑐 values which in turn leads to larger 

(𝑞𝑐1𝑁)𝑐𝑠 values. Due to the anomalously larger (𝑞𝑐1𝑁)𝑐𝑠 values, equation 25 was 

modified to have no upper bound.   

 𝑖𝑓𝐼𝑐 ≥ 2.70,     𝐾𝑐 = 6 × 10−7𝐼𝑐
16.76 (42) 

 𝐶𝑅𝑅7.5 = 93 (
(𝑞𝑐1𝑁)𝑐𝑠

1000
)

3

+ 0.08,   𝑖𝑓 50 ≤ (𝑞𝑐1𝑁)𝑐𝑠 (43) 

 Figure 12 is a graph of the factor of safety versus the 𝐼𝑐  values. The assumption 

holds true for the boreholes in the graph with the exception of one point. 
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CPT 

qt, fs, σvo, σvo', Pa = 1 atm 

all same units as Pa 

Initial stress component: n = 1.0; Calculate Qtn, Fr, Ic 

𝑛 = 0.381(Ic) + 0.05
𝜎 ′

𝑣0

Pa

− 0.15 

n ≤ 1.0 

Iterate change until n2 Δn ≤ 0.01 

𝐶𝑁 = (
𝑃𝑎

𝜎𝑣0
′ )

𝑛

 

𝑄𝑡𝑛 =
(𝑞𝑐 − 𝜎𝑣𝑜)

100
𝐶𝑁       𝐹𝑟 =

𝑓𝑠

(𝑞𝑐 − 𝜎𝑣𝑜)
100 

𝐼𝑐 = √[(3.47 − 𝑙𝑜𝑔𝑄𝑡𝑛)2 + (1.22 + 𝑙𝑜𝑔𝐹𝑟)2] 

𝐼𝑓𝐼𝑐 ≤ 1.64,     𝐾𝑐 = 1.0 

When  1.64 < 𝐼𝑐 < 2.60, 

𝐾𝑐 = −0.403𝐼𝑐
  4 + 5.581𝐼𝑐

  3 − 21.63𝐼𝑐
  2 + 33.75𝐼𝑐 − 17.88 

If 1.64 < 𝐼𝑐 < 2.36  𝑎𝑛𝑑 𝐹 < 0.5%, 𝑠𝑒𝑡𝐾𝑐 = 1.0 

 

𝐾𝑐 = 6 × 10−7𝐼𝑐
16.76 

𝑄𝑡𝑛,𝑐𝑠 = 𝐾𝑐𝑄𝑡𝑛 

𝐶𝑅𝑅7.5 = 93 (
𝑄𝑡𝑛,𝑐𝑠

1000
)

3

+ 0.08 

 50 ≤ 𝑄𝑡𝑛,𝑐𝑠 ≤ 160 

𝐶𝑅𝑅7.5 = 0.053𝑄𝑡𝑛𝐾𝛼  

Ic ≤ 2.50 2.50 < Ic < 2.70 Ic ≥ 2.70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Flow chart to evaluate CRR using CPT method (Robertson, 2009).  
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Figure 12. FS versus 𝐼𝑐for borehole DSO002. 

  

The equations to calculate 𝐿𝑃𝐼, 𝑤(𝑧),  and the 𝐹𝐿 are modified in this report to, 

𝐹𝐿 = 1 − 𝐹𝑆𝑓𝑜𝑟𝐹𝑆 ≤ 1 (44) 

𝐹𝐿 = 0     𝑓𝑜𝑟𝐹𝑆 > 1 (45) 

𝐹𝐿 = 2.0 × 106 × 𝑒−18.427𝐹𝑆   𝑓𝑜𝑟 1.2 > 𝐹𝑆 ≥ 0.95 (46) 

𝑤(𝑧) = 20 − 2𝑧 (47) 

 𝐿𝑃𝐼 =  ∫ 𝐹𝐿𝑤(𝑧)𝑑𝑧
10

0
 (48) 

because the majority of the borehole data from Song and Mikell (2013) only went to a 

depth of ten meters.   
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 Figure 13 is a map depicting the liquefaction susceptibility of the study area. Blue 

represent low liquefaction, green represents medium liquefaction, yellow represents high 

liquefaction, and pink represents very high liquefaction. The blue circles varying in size 

indicate LPI values; the larger the circle, the higher the LPI. In this figure, the 

liquefaction potential mostly ranges from medium to high whereas in the map in Figure 8 

by Song and Mikell (2013), the liquefaction potential mostly ranges from high to very 

high. This difference may be due to calculating total stress by integrating the unit weight, 

which Song and Mikell (2013) did not do. By not integrating the unit weight, the 

resulting total stress will be smaller. Smaller total stress values mean the soil will be more 

liquefiable.  

 

 

Figure 13. Liquefaction susceptibility map for a magnitude 7.5 earthquake.  
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3.2 Calculating LPI Using Average CSR 

 The purpose of this study is to create a hybrid method for calculating the LPI. It 

aims to combine a non-invasive and more cost effective method of calculating the CRR 

using surface shear wave data with and an average CSR determined using CPT data from 

existing boreholes.  

 

3.2.1 Calculating Average CSR 

 The CSR versus depth using CPT data is calculated for all 60 boreholes. The CSR 

for each depth interval is averaged over all the boreholes. A standard deviation for the 

average CPR versus depth is calculated. Figure 14 displays the average CSR versus depth 

with the one standard deviation. Due to the low values of the standard deviation, this 

calculation indicates small viability between the individual CSR versus depth.  The 

viability is less than 10%. An 𝑎𝑚𝑎𝑥 value of 0.2g is used in calculating the CSR values 

because the borehole holes are located in Northern Mississippi. According to Figure 2, 

this area has a peak acceleration value of 20 percent. Using the average CSR works in 

this study appears feasible because the area is small enough that the 𝑎𝑚𝑎𝑥 is the same 

throughout. This also indicates that the geology is fairly consistent with depth. The 

inconsistency in Figure 14 after a depth of 20 meters is due to the limited amount of data 

available past this depth.    
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Figure 14. Graph of average CSR versus depth. 

 

 Calculations of LPI in section 2.1.2 and 2.1.3 were repeated by replacing the CSR 

calculated in section 2.1.1 with the average CSR. Figure 15 illustrates the LPI values 

calculated using the two methods. The data fits to a straight line with a slope of one, 

indicating the similarity in the data.  The liquefaction susceptibility using the average 

CSR only varies slightly. All LPI values with the exception of one predicted the same 

classification as those values generated using the detailed CSR calculation. 
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Figure 15. Comparison of LPI using detailed CPT calculation to generate CSR data 

and the average CSR. 

 

3.3 Reproducing Results by Song and Mikell Using Shear Wave Data  

 This study attempts to reproduce the results Song and Mikell (2013) reported 

using shear wave data in Figure 10.The LPI is calculated using the method outlined in 

section2.1.3.  

 Equation 40 is derived in Andrus et al. (2000) by graphing CSR or CRR versus 

the overburden-stress corrected shear wave velocity calculated from equation 41(Figure 

16).The lower bounding curve defines the limited upper value of 𝑉𝑠1. This figure is 

recreated using the average CSR values calculated in section 3.2.1 and the𝑉𝑠1 values 

calculated from equation 41 (Figure 17). 
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Figure 16. Graph of Cyclic Stress or Resistance Ratio versus the overburden stress-

corrected shear wave velocity. 

 

Figure 17. Graph of Cyclic Stress Ratio versus overburden stress-corrected shear wave 

velocity data of Northern Mississippi. 
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Equation 40 is modified to, 

 𝐶𝑅𝑅 = 0.1(
𝑣𝑠1

100
)0.5 + 2.8 (

1

𝑣𝑠1
∗ −𝑣𝑠1

−
1

𝑣𝑠1
∗ ) (49) 

in order to fit the data for this study area. 

 The black curve in Figure 17represents the bounding line between liquefiable and 

the non-liquefiable boreholes, i.e. where the factor of safety equals one. A𝑣𝑠1
∗  value of 

400 m/s is determined from this graph. Figure 18 shows the relationship of the LPI values 

calculated from CPT data and the LPI calculated using shear wave velocity data.  The 

LPI values calculated using shear wave data did not show a similar pattern to those 

calculated using CPT. Figure 19 is the frequency distribution of the LPI values. The blue 

bars represent the LPI using shear wave data and the red bar represents the LPI using 

CPT.  Further study is required to understand the differences in the predicted liquefaction 

due to shear wave velocity and CPT.  

 A study done by Elnashai et al. (2009) and Mullen (2011) in the region allocates 

the majority of the study area in Tate, Tunica, and Desoto County as having a 

liquefaction susceptibility ranging from high to very high. The liquefaction susceptibility 

map was created using the method described in Youd and Perkins (1978) and an  𝑎𝑚𝑎𝑥  

ranging from 0.2 to 0.39g (Elnashai et al., 2009).  Another study done by Desai et al. 

(2004) assesses earthquake damage and liquefaction potential for Mississippi using the 

SPT method.  A high potential of liquefaction is reported for Tunica and Desoto county 

using an earthquake magnitude of 7.0 (Desai et al., 2004). 
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Figure 18. Graph of the liquefaction potential index using cone penetration test data    

        versus the liquefaction potential index using shear wave velocity data. 

 

Figure 19. Frequency distribution of the liquefaction potentials using cone penetration 

test (red) versus using shear wave velocity (blue). 
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3.4Liquefaction Potential and Vs30 Data from Shear Wave Velocity Data  

 The Vs30 for each borehole in the study area is calculated using equation 1.These 

values were then compared to the LPI values calculated using shear wave velocity. Figure 

20 is a graph of LPI versus Vs30.It indicates that low velocities corresponds to higher 

LPI values (more liquefiable). As Table 1 indicates, low velocities in soils lead to a 

higher liquefaction potential.  

 

 

Figure 20. Liquefaction Potential Index using shear wave data versus Vs30.  
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4.0 Calculating Liquefaction Using Surface Shear Wave Velocity Method 

 Using the Multichannel Analysis of Surface Waves (MASW) method, surface 

wave velocity data was collected in Tunica, Mississippi. The sample sites were in 

proximity to boreholes TNA012 and TNA013 from the study of Song and Mikell (2013). 

Figure 21 shows the location of data acquisition near TNA013 and Figure 22 shows the 

location of data acquisition near TNA012.  

 

 

Figure 21. MASW survey near borehole TNA013. 
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Figure 22. MASW survey near borehole TNA012. 

 

 Surface shear waves were collected at both sites using 96, 10 Hz vertical 

component geophones in a linear array with one meter spacing. Wave energy was created 

by striking a metal plate with an eight pound hammer at a 12 meter spacing interval. The 

source location was moved from 48 meters away from the first geophone location to 48 

meters away from the final geophone.  The sample time interval was 0.125 ms and the 

record length was 2 seconds.   

 The data collected was analyzed to produce a series of dispersion curves and an 

average shear wave versus depth profile using the SeisImager program. Figure 23 shows 

a selection of different dispersion curves measured using different common mid-point 

gathers near borehole TNA013.  The average dispersion curve is used to calculate an 

average shear wave velocity profile and is shown in Figure 24 along with the shear wave 

profile for the borehole. The dispersion curve sand the average shear wave versus depth 

profile for the site near borehole TNA012 is shown in Figure 25 and 26, respectively.   
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Figure 23. Dispersion curves produced by data near borehole TNA013. 

 

 

Figure 24. Shear wave profile near borehole TNA013. 
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Figure 25.  Dispersion curves produced by data near borehole TNA012. 

 

 

Figure 26. Shear wave profile near borehole TNA012. 

 

 The shear wave velocity versus depth in Figures 24 and 26 along with the average 

CSR in Figure 14 are used to calculate the LPI at those two sites.  Table 4 compares the 
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Vs30 using borehole data and MASW with the LPI using the CPT method, shear wave 

method, and MASW for both sites. 

 

Table 4. Comparison of Vs30 and LPI methods between surveyed sites.   

Method Site #1 (near TNA013) Site #2 (near TNA012) 

Vs30 (MASW) 207 (m/s) (D) 186 (m/s) (E) 

Vs30 (borehole) 239 (m/s) (D) 234 (m/s) (D) 

LPI (CPT) 13.1 (H) 1.67 (L) 

LPI (borehole shear wave) 12.9 (H) 10.8 (H) 

LPI (MASW) 19.7 (VH) 20.5 (VH) 

 

 For the first site near borehole TNA013, the Vs30 calculated by MASW and 

borehole methods fall into the soil range D from Table 1. This soil type significantly 

amplifies shaking which can lead to liquefaction.  The LPI calculated using the borehole 

shear wave method and CPT both fall into a range that is highly liquefiable. The LPI 

calculated by the MASW, however, indicates that this soil is very highly liquefiable. For 

the second site near TNA012, the Vs30 calculated using the borehole data indicates a soil 

type D, the Vs30 calculated using MASW indicates type E soil. This type of soil has the 

strongest amplification to shaking and can therefore usually be classified as very highly 

liquefiable. The LPI values calculated using CPT indicates low liquefaction while the 

borehole shear wave data indicates high liquefaction. The LPI calculated using MASW 

indicates a highly liquefiable soil.  The variation in this borehole may be due to its 

location on the levee. The filler soil may have changed since the original CPTs were 
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collected. If the soil is newer and not as compacted, it would have a higher potential to 

liquefy. 
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5.0 Conclusion 

 Reproductions of the liquefaction potential maps did not match the original maps 

by Song and Mikell (2013).  The reproduced map using CPT data had a liquefaction 

potential range from medium to high whereas the map Song and Mikell (2013) generated 

using CPT data has a range from high to very high. This may be due to a difference in 

calculating total stress.  When calculating LPI using the CPT method, assuming 𝐼𝑐 values 

above 2.7 to follow the same calculation as 𝐼𝑐 values between 2.5 and 2.7 result in a non-

liquefiable assignment of the layer. Therefore, this assumption does not change the end 

result of the calculation.  The LPI values are similar when using the detailed CSR versus 

the regional CSR.  This may only hold for Northern Mississippi and not all regions. 

 The four methods, shear wave data, MASW, Vs30, and CPT, can give varying 

results for the same locations.  Though the CPT and shear wave methods do not agree 

with each other, the shear wave LPI and Vs30 methods do provide consistent descriptions 

of the site. Low velocities indicate high liquefaction potential. The LPI using CPT and 

shear wave data indicate the site near borehole TNA013 to be highly liquefiable. The 

VS30 from MASW and borehole shear waves for the soil at this site resulted in type D 

which is highly susceptible to amplification due to shaking which can lead to high 

liquefaction potentials.  The liquefaction potential for the site near borehole TNA012 

varied from low using CPT data to high and very high using borehole shear wave and 

MASW. The Vs30 using MASW corresponded to a soil type of E which is the strongest 

soil type to amplify shaking, leading to very highly liquefiable soil.  The LPI using 
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MASW provides a more conservative estimate that indicates this site is very highly 

liquefiable. The variation of the liquefaction potential near this borehole may be due to its 

location on the levee. The soil at the location may have changed since the time the CPTs 

used in the study by Song and Mikell (2013) were acquired. 

 Northern Mississippi with all methods, however, is mostly highly liquefiable.  

Liquefaction susceptibility using the LPI value can be calculated using several different 

methods. Though non-invasive methods such as refraction and MASW are cheaper, the 

LPI calculation is more conservative.  
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