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ABSTRACT 

In this study the propagation and dispersion characteristics of plate acoustic waves 

(PAW) in electronic materials are investigated experimentally. Plate acoustic waves are elastic 

waves that travel along a plate with thickness comparable to the wavelength of the waves. Lamb 

waves, a type of plate acoustic wave, have particle motion in the direction of propagation and 

normal to the plate. Unlike an infinite medium, plates support two sets of Lamb wave modes 

(symmetric and anti-symmetric) with unique velocities which depend on the relationship 

between the wavelength and the thickness of the plate. Out of this, two zero order modes (so and 

ao) in several electronic material plates are studied here. This kind of study has practical 

applications particularly in non-destructive testing. 

Lamb waves are propagated through plates of glass, brass, aluminium and lithium 

niobate. The delay of propagation of Lamb waves through the plates is measured and the group 

velocities of the so and ao modes are then computed and plotted against the frequency and the 

thickness of the plate. These results compare well with the theoretical results obtained from 

published work. Group velocities of PAW in all of them are found to be similarly dispersive. The 

so mode has a low dispersion when the product of frequency and thickness is lower than 

approximately 1MHz-mm whereas the ao mode is less dispersive when the same product is 

higher than about 1MHz-mm, a characteristic which is usually exploited in industry. Thus it can 

be concluded that the experimental work matches well with the theory and the analysis can be 

useful in industrial applications such as testing the uniformity of materials and defect detection. 
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CHAPTER 1 

BASICS OF PHYSICAL ACOUSTICS IN SOLIDS 

1.1 Introduction 

1.1.1 Tensors 

Scalars are physical quantities that can be represented by numerical values whereas 

vectors are associated with a direction while also having a magnitude. Tensors are geometric 

objects that describe linear relations between scalars, vectors and other tensors. They are 

essential in describing the correspondence between two geometrical vectors in anisotropic media 

and even in isotropic media when coming across quantities with three components. A scalar is a 

tensor of rank zero while a vector is a tensor of rank one. Although a tensor is represented in 

matrix form it is actually a real physical quantity. A tensor is also defined by the way it 

transforms under coordinate transformation. 

 

1.1.2 Strain Tensor 

 

              

 

       Longitudinal strain            Shear strain 

Fig. 1.1: Deformation when longitudinal or shear strain is applied to a cube 
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Strain tensor is used to describe the deformation caused by forces applied in solids. If the 

displacement is from position vectors  ⃑ to   ⃑⃑⃑, the displacement vector is  ⃑⃑      ⃑⃑⃑⃑  –  ⃑  or in tensor 

notation       
  –     . If the displacement of two points nearby due to deformation is dl before 

and dl  after [1], 

           
   

   
          

   

   
 
   

   
           

This can be written as, 

                         (1.2) 

Where, 

     
 

 
 (

   

   
  

   

   
  

   

   
 
   

   
)       is the strain tensor.   (1.3) 

If strains are small this becomes, 

     
 

 
 (

   

   
  

   

   
)      (1.4) 

Diagonal terms in the stress tensor correspond to compression or expansion along the 

three axes. Non-diagonal terms correspond to the deformation of the plane perpendicular to the z 

axis. The change in angle of the two sides of a rectangle is proportional to the Shear strain Sxy. 

Any symmetric tensor can be diagonalised at a point by the choice of appropriate axes, then the 

non-diagonal terms become zero. The trace of a symmetric tensor is invariant under the change 

of coordinates. 

∑                       (1.5)  

If the micro-volumes before and after the deformation are dV and dV' respectively, 
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                                  (1.6)  

where S
(1)

, S
(2)

 and S
(3)

 are diagonal components. 

                              (1.7) 

This becomes, 

                   (1.8) 

As seen, Sii refers to the relative change in the volume under deformation. This is the 

same as the dilatation, which is the change in volume per unit volume. 

 

1.1.3 Stress Tensor 

A solid body in static equilibrium (figure 1.2) is considered. External forces acting on this 

object are assumed to cause a deformation rather than a translation or rotation. This deformation 

can be described by the strain tensor. The stress created by this is generally not uniformly 

distributed. Consequently the stress applied at a point is different from the stress over the whole 

area. 

In three dimensions, this applied stress has a vector in the direction of the surface normal 

and the direction of the force. Thus the stress at a specific point in the object is defined by a 

second rank tensor which is called the stress tensor, in which the first index gives the direction of 

the force and the second gives the direction of the normal to the surface which it acts upon. 
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        z 

            Tzz + δTzz 

                       Tyz + δTyz 

                Txz + δTxz       Tzy + δTzy  

                        Tzx      Tyx         Tyy+δTyy    

             Txx         Txy+δTxy              y 

 

 

                 x 

Fig. 1.2: Components of the stress tensor acting on a cube 

The force applied will generally be at an arbitrary direction. The components of this force 

can be separated in to two major classes. The normal component to the face which gives rise to 

compressive and tensile stresses and the tangential components which gives rise to shear stresses.  

Due to the static equilibrium of the object, tensile stresses along any axis must balance to 

avoid acceleration and so does the shear stresses in order to avoid rotation. These lead to three 

independent diagonal and three off-diagonal stresses respectively. 

For comparison, in the case of a liquid where pressure is uniform in all directions, the 

force on a surface element dA is, 

                           (1.9) 

where, 

p – pressure 

    – Kronecker delta 
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            = stress tensor 

     (

    
    
    

) 

The non-diagonal elements, which correspond to shear stresses, are zero because liquids 

cannot support them. 

 

1.1.4 Thermodynamics of deformation 

Slow and small deformations are assumed so that the processes are elastic and also 

reversible. For hydrostatic compression, the work done on the system, 

                      (1.10)  

Then the thermodynamic identity becomes, 

                   (1.11) 

The Helmholtz free energy can be expressed as, 

            (1.12) 

                      (1.13) 

So, 

     (
  

    
)

 
      (1.14) 

Piezoelectricity is the accumulation of electric charge in response to an applied 

mechanical stress. Piezoelectric constitutive relations are written as one dependent variable 
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depending on two independent variables, of which one is an electrical quantity and the other 

mechanical. They are broken into four pairs of equations with each pair containing a different 

combination of the two variables as follows, 

a) T and E are independent            
              (1.15) 

              
    

b) T and D are independent            
             (1.16) 

                     

c) S and E are independent          
               (1.17) 

               
    

d) S and D are independent          
              (1.18) 

                        

where, 

D – electric displacement 

E – electric field 

e – piezoelectric stress constant 

 – dielectric impermeability 
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     (
  

  
)

 
  (

  

  
)
 
  

     
  

  
              

    ( 
  

  
)
 

 ( 
  

  
)
 

                        

    ( 
  

  
)

 
 (

  

  
)

 
                    

The receiver constant g, determines the potential drop across a transducer for an applied 

stress. It can be expressed as, 

   
 

        (1.19) 

where, 

   (
  

  
)

 
 is a proportionality constant. 

Transmitting constant h, gives the electric field needed to produce a certain strain. It can 

be expressed as, 

   
 

  
      (1.20)  

 

1.1.5 Hooke’s law 

Hooke’s law states that for small elongations of an elastic system, the stress is 

proportional to the applied strain. For an isotropic solid, Hooke’s law can be approached in terms 

of the Helmholtz free energy (F), which can be expanded at constant temperature as [1], 
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  ∑    

 
     ∑    

 
       (1.21) 

where    and    are the Lamé coefficients that describes the elastic properties of an isotropic 

solid. 

Since the strain tensor is symmetric and the trace of any tensor is independent of any 

coordinate system, the most complete coordinate-free decomposition of a symmetric tensor is to 

represent it as the sum of a constant tensor and a traceless symmetric tensor, 
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    ∑    

 
     (1.22) 

The first term is pure shear deformation and the second is hydrostatic compression. Now 

the Helmholtz free energy becomes, 

     (     
 

 
        )

 

  
 

 
      

 
   (1.23) 

 - modulus of rigidity 

K =  + 2/3 modulus of compression 

These two moduli determine the velocities of longitudinal and shear modes. At a given 

temperature, Helmholtz energy is a minimum when a system is in thermal equilibrium. Pure 

compression and shear deformation give rise to stress components proportional to K and 

respectively. 

Compressibility can be expressed as, 

   
 

 
    

 

 
 (

  

  
)

 
     (1.24) 

Then it can be shown that, 
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            (1.25)  

In another approach to the Hooke’s law, the stress tensor is Taylor expanded around Skl, 

which yields, 

                  (1.26) 

Where cijkl is the elastic stiffness tensor or elastic constant tensor (cIJ is the reduced notation) 

which is given by, 

       (
    

    
)
     

            (1.27) 

I, J = 1, 2, 3, 4, 5, 6 

Also, for an isotropic solid, 

                                    (1.28) 

cijkl is the proportionality constant of the Hooke’s law in three dimensions. It links two 

second rank tensors so it is a forth rank tensor and it is also symmetric like the other two. This 

symmetry reduces the number of independent constants, in isotropic solids there are only two 

independent elastic constants. By Hooke’s law and the isotropic form of cijkl, extensional stress 

can be written as, 

       (              )              (1.29) 

And the tangential stress, 

            (i ≠ j)     (1.30) 
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Young’s modulus (Y) is the ratio of axial stress to axial strain which can be expressed 

using the equations above, 

   
         

    
      (1.31) 

Poisson’s ratio ( is the ratio of the lateral contraction to the longitudinal extension, 

again expressed using the equations above, 

   
 

          
      (1.32) 

Bulk modulus or the modulus of compression is given by, 

    
 

 
      (1.33) 

And compressibility is its reciprocal, 

    
 

 
(
  

  
)      (1.34) 

The above two are usually specified as to whether the conditions are adiabatic or 

isothermal.        

                x

               A     F 

     l 

Fig. 1.3: Deformation due to an applied strain 

Rigidity modulus or the shear modulus () is the ratio of shear stress to the shear strain. 

   
   

    
      (1.35) 
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Just as longitudinal waves are related to the Young’s modulus, rigidity modulus plays a 

role in shear waves. 

 

1.2 Acoustic waves in solids 

1.2.1 Phase and Group velocities 

Phase velocity is the speed at which a particular phase of any frequency component of a 

wave travels. So any given phase of a component will travel at the phase velocity. It is expressed 

as, 

    
 

 
  

 

 
      (1.36) 

Where  is the wavelength of the wave, T is the period,  is the angular frequency and k is the 

wave number. 

Group velocity of a certain wave is the speed at which the overall shape of the amplitudes 

of the waves (envelope) propagates. It is written as, 

    
     

  
     (1.37) 

The function (k) is the dispersion relation which relates the frequency to the wave 

number. If it’s a straight line then the group and the phase velocities of the wave are equal. 

Otherwise the envelope of the wave will take a certain shape and move with the group velocity. 

This is called the group velocity dispersion. In dispersive media, waves of different frequencies 

travel at different phase velocities giving rise to a changing pulse shape making the group 

velocity hard to be defined. When the envelope of the wave packet distorts, different frequency 
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components move with different speeds meaning faster ones move towards the front and slower 

ones to the back making the wave packet stretch out. 

Group velocity is usually the speed at which the energy is transferred along a wave unless 

there’s absorption in the medium. Group velocity can be zero when the pulse is stopped or 

negative when it appears to propagate in the opposite direction. However Phase velocity can 

even be bigger than the speed of light in vacuum. 

A difference in amplitude or frequency of a wave with time is called the modulation. It 

represents the signal content of a wave. Because each amplitude envelope contains a group of 

internal waves, the speed at which envelopes propagate is called the group velocity. Group 

velocity can be equal to phase velocity only when the refractive index of a medium is constant. If 

the phase velocity varies with the frequency, these two differ and this type of a medium is called 

dispersive.  

Group velocity can be derived from the phase velocity by using (1.36) and (1.37) as 

follows, 
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      (1.38) 

 

1.2.2 Reflection and transmission of ultrasonic waves at interfaces 

 

 

  pi      pr   k1 

 

                 Interface 

         

       pt    k2 

          x 

Fig. 1.4: Reflection and transmission of ultrasonic waves at normal incidence at a well-

defined interface 

Due to the difference in acoustic properties between the two media partial transmission 

and reflection occurs.  The incident, transmitted and reflected waves can be represented by [1], 

                     (1.39)  

                       (1.40) 

                       (1.41) 

Where, 

Rp – Pressure reflection coefficient 

Tp – Pressure transmission coefficient 



 

14 

By the definition of acoustic impedance, the pressure transmission and reflection 

coefficients for normal incidence can be written as [1],  

    
   

      
      (1.42) 

    
        

      
     (1.43) 

where Z1 and Z2 are characteristic acoustic impedances of the two media. 

In terms of pressure, 

    
  

  
     (1.44) 

    
  

  
     (1.45)  

Intensity transmission coefficients are given by, 

  

  
  

  

  
 |  |

 
     (1.46) 

  

  
  |  |

 
     (1.47) 

Using this it can be shown that the law of conservation of energy is satisfied, 

               (1.48) 

The transmitted intensity is symmetric with respect to the incident medium whereas 

pressure and particle velocity are not. 

 

 



 

15 

1.2.3 Acoustical Standing Waves 

Two waves with same frequency and mode but travelling in opposite directions cause 

standing waves. This static pattern of nodes and antinodes has no propagation of energy. 

Formation of standing waves is due to the total reflection of the plane wave at a perfectly 

reflecting interface.  At the rigid boundary there is a displacement node and a pressure anti-node. 

It’s the opposite if there is a free surface or interface.  Now the pressure is the total of the 

incident and reflected wave [1]. 

              (1.49) 

which gives, 

       (     )       (     )             (1.50) 

At rigid boundaries (Rp = 1), 

                  (1.51) 

At free surfaces (Rp = -1), 

                        (1.52) 

Travelling waves are usually a propagation of a disturbance and take the form f(t – kx) 

= 0 and standing waves take the form f(t) g(kx) which shows that the spatial and temporal form 

are separated. This helps categorizing free and standing waves. However if the reflection 

coefficient is not unity the amplitudes at the nodes are no longer zero. This is called standing 

wave ratio (SWR) as it’s a mix of a standing wave and a traveling wave and is given by, 

     
         

     
   

     

     
     (1.53) 
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The power flow can be described by the acoustic Poynting vector, the acoustic power per 

unit area transmitted across a surface. 

 ⃑           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     
 

 
             (1.54)  

where    is the particle velocity. 

For standing waves the particle displacement and velocity are in phase. Average acoustic 

intensity is zero meaning that there is no propagation of acoustic energy. 
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CHAPTER 2 

ACOUSTIC WAVES IN BOUNDED MEDIA 

Important physical features of the modes of propagation are frequency dependence of 

phase velocities, group velocities, displacement distributions, mode coupling and selective 

attenuation. 

Vector differential equation for small elastic motions in an elastic isotropic medium can 

be written as [2], 

                                       
   

       (2.1) 

where, 

u – displacement vector 

Solutions to (2.1) can be formed from vector potential function     and scalar potential 

function     such that, 

                      (2.2) 

Velocity of a longitudinal wave (VL) and a shear wave (VS) in an infinite elastic medium 

can be obtained by substituting (2.2) into (2.1), 

             √
    

 
      (2.3)  
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    √
 

 
      (2.4) 

A plate of thickness 2b (bounded by planes at x = ±b) and infinite along y and z is 

considered. When elastic properties are not specified in terms of  and , frequency equations 

can be written using VS, Poisson’s ratio , dimensionless angular frequency b/VS and 

dimensionless propagation constant b. The solutions to frequency equations are usually in the 

form of a series of continuous curves or branches. For a given mode of propagation there is a 

branch relating the dimensionless frequency and the propagation constant. Then the 

dimensionless phase velocity can be defined as (b/VS)/b and similarly the group velocity. This 

group velocity is related to the slope of the mode curve. The cut off frequency of a mode is the 

lowest frequency at which free propagation can occur. In other words, it is the lowest frequency 

that the propagation constant would have a real value for a given mode. Usually it is a frequency 

of zero group velocity or zero propagation constant. Modes can be classified as four families, 

longitudinal, flexural, symmetrical shear and anti-symmetrical shear. In shear waves or SH 

waves the displacement is transverse to the direction of propagation. In longitudinal modes 

particle displacement vectors are symmetrically arranged with respect to the median plane 

whereas they are anti-symmetrically arranged in flexural modes. 
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2.1 SH modes 

2.1.1 Symmetric (s) and anti-symmetric (a) SH modes 

                  

 

Fig. 2.1: Plate vibration of symmetric (left) and anti-symmetric (right) modes 

The lowest anti-symmetrical SH mode is designated as ao and the lowest symmetric SH 

mode so. For all a and s modes, the phase and group velocities are functions of frequency which 

tells that they are dispersive modes of propagation. For imaginary propagation constants, 

displacements decay exponentially in z while for real b, displacements are sinusoidal. The 

decay is not due to losses in the medium and rather because energy being stored in space and not 

propagating freely. Another explanation is that the stress and particle velocity are 90
0
 out of 

phase making energy flux zero. 

For so mode, b = b/VS, resulting in the group and phase velocities being independent of 

frequency and therefore being the only non-dispersive SH mode. Only one elastic constant, the 

shear modulus, is involved in SH modes whereas two are involved in longitudinal and flexural 

modes. For a given frequency a finite number of freely propagating SH modes occur, which are 

the solutions in real b of the frequency spectrum. In imaginary b, there are an infinite number 

of solutions which forms an arbitrary stress distribution. This physically means an arbitrary SH 

excitation of a plate results in having elastic energy stored in non-propagating modes and elastic 

energy travel into the plate in propagating modes.  
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2.1.2 Waveguide equation for SH modes 

There is only one direction of polarization in SH modes and they are decoupled from the 

other modes, so there is no mode conversion or reflection. The displacement is perpendicular to 

the plane of the plate. The principle of transverse resonance states that resonance occurs at 

multiples of /2, which can be written as [1], 

  

 
        (2.5) 

Where, 

n - an integer 

 - wavelength 

b - plate thickness 

Then the transverse wave number kt can be written as, 

    
  

 
     (2.6)  

 

Fig. 2.2: Partial waves of SH modes used for guided wave analysis [1] 



 

21 

As shown in figure 2.2, incident and reflected waves have a wave vector  in the 

propagation direction. From this, the waveguide equation can be obtained as, 

    (
 

  
)
 

  (
  

 
)
 

      (2.7)  

Where, 

VS - Shear wave velocity 

 – Angular frequency 

In a waveguide as the frequency is increased, the transverse component of a given mode 

decreases. For frequencies below transverse resonance frequency, the partial waves move off the 

slowness curve and  becomes imaginary making the wave evanescent or non-propagating. At 

transverse resonances for even modes, there is even symmetry (symmetric mode) about the 

median plane whereas there is odd symmetry (anti-symmetric mode) for odd modes. 

 

2.2 Lamb Waves 

Lamb waves are elastic waves that propagate in solids whose particle motion lies in the 

plane containing the direction of propagation and the plate normal. Solid plates support two 

infinite sets of modes whose velocities depend on the wavelength and the plate thickness. Lamb 

waves are constrained by the elastic properties of the plate or surface they are guided by. Lamb 

waves have practical application mainly in non-destructive testing of materials. 

In Lamb waves the partial wave modes are composed of longitudinal and transverse 

components in the sagittal plane. Unlike Rayleigh waves, Lamb waves occur in a plate having a 
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finite thickness. Lamb waves are dispersive, so the phase and group velocities vary with 

frequency. Velocity fields of incident and reflected partial waves are defined as [1], 

         
       ⃗       

        
       ⃗     (2.8) 

        
       ⃗ 

        
       ⃗ 

Where, 

‘v’ s are the velocity fields, ‘A’ s and ‘B’ s are the amplitudes, l and s refer to longitudinal and 

shear waves respectively and i and r refer to incident and reflected waves. 

 

2.2.1 Longitudinal and flexural modes 

There are two families of waves, one whose motion is symmetrical about the mid plane 

of the plate and the other whose motion is anti-symmetric about the mid plane of the plate, as 

shown in figure 2.3. In the low frequency range the zero order modes of these are called the 

extensional mode and the flexural mode respectively. The elliptical particle motion for the 

symmetrical extensional mode is mainly in the plane of the plate whereas it is perpendicular to 

the plane of the plate in the asymmetric flexural mode. The extensional mode usually has a 

higher velocity and a lower amplitude whereas the flexural mode is more easily excited and often 

carries most of the energy. These two modes exist at all frequencies and carry more energy than 

higher order modes in most practical situations.  
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Fig. 2.3: Deformation of particle planes and retrograde elliptical motion at the plate surface 

of symmetric (top) and anti-symmetric (bottom) modes of Lamb waves [1] 

 

        Symmetric 

           Anti-symmetric 

Fig. 2.4: The actual particle motion, shown in arrows, of symmetric (top) and anti-symmetric 

(bottom) Lamb wave modes 

At low frequencies the zero order symmetrical mode or the extensional mode as it is 

called, propagates at the plate velocity with the plate stretching in the direction of propagation 

and contracting correspondingly in the perpendicular direction. As the frequency increases (when 
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the wavelength becomes comparable to the plate thickness), the phase velocity drops smoothly 

while the group velocity drops steeply and at high frequencies they converge towards the 

Rayleigh wave velocity. 

The zero order anti-symmetric mode, also called the flexural mode, is highly dispersive at 

low frequencies. At these frequencies for very thin plates, the phase and group velocities are 

proportional to the square root of the frequency and the group velocity is twice the phase 

velocity. At higher frequencies these are not valid and the phase velocity rises slowly and 

converges towards the Rayleigh wave velocity while the group velocity goes through a 

maximum before converging towards the Rayleigh wave velocity.  

Longitudinal modes are specified as L(p) and flexural modes as F(q), where L(0) and 

F(0) would be the lowest longitudinal and flexural modes respectively. Frequency equations for 

these modes are given by the Rayleigh-Lamb frequency equations. 

For longitudinal modes [1,2], 

     

     
    

              

              
     (2.9) 

For flexural modes, 

     

     
    

              

              
    (2.10) 

where and  are constants. 

By solving these equations for group and phase velocities in terms of the frequency, 

dispersion curves for a specific material can be obtained. These are transcendental equations and 

can only be simplified as far as, 
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 )      (2.11) 

Where, 

VP – phase velocity 

VL – longitudinal velocity 

f – frequency   

Traction free boundaries of the plate couple uncoupled shear waves (SV) and longitudinal 

waves (L). Partial conversion from one type to another occurs upon reflection at a free surface 

whereas in shear waves it doesn’t. There are symmetric and anti-symmetric displacements 

though, just like in SH waves. If coupling did not occur, circles, ellipses, hyperbolae and lines of 

the frequency spectrum would be characteristic in wave motions in plates. 

Among the phase velocities, Rayleigh velocity (VR) is the high frequency limiting 

velocity for both first longitudinal and first flexural modes in a plate. It can be obtained in terms 

of elastic parameters using [2], 
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 )         (2.12) 

Then the Lame velocity (VLm) is the velocity of pure SV waves in plates. This can be 

expressed as, 

    √
  

 
   √         (2.13) 
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Plate velocity (VP) is the low frequency limiting velocity in the first longitudinal mode 

which is given as, 

      √
 

    
      (2.14) 

There are two ways to present dispersion curves of plate waves. The first one uses phase 

velocity along the y-axis and the product of frequency and plate thickness along the x-axis as 

shown in figure 2.5. The second approach uses the dimensionless parameters 
  

   
 along the y-axis 

and b along the x-axis as shown in figure 2.6. 

 

 

Fig. 2.5: Phase velocities of Lamb wave modes in an aluminium plate as a function of frequency 

x thickness of plate [10] 
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Fig. 2.6: Frequency spectrum of PAW in lithium niobate plotted against a dimensionless 

parameter (here Vt = VS and  = wave vector) [4] 

 

2.3 Partial wave analysis 

The potential method can only be used for isotropic materials, but as most acoustic 

waveguides are made out of anisotropic materials, partial wave analysis comes in handy. The 

basic idea of the partial wave method is to consider the different components of the plane wave 

solutions separately. These components or partial waves are usually SH or sagittal wave modes 

which are oriented in such a way that they have a common wave vector in the direction of 

propagation. The transverse components of the wave vector are real or imaginary depending on 

the frequency of the wave. The transverse resonance determines the possible modes in the 

waveguide leading to low frequency cutoffs and many higher order modes. Along with the 

partial wave method and transverse resonance, slowness curves are also useful in describing 

waveguide applications. 
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2.4 Rayleigh waves 

Rayleigh waves are a type of surface acoustic wave travelling through solids. They are 

guided to propagate confined to within approximately a single wavelength, along a surface. The 

longitudinal and shear motions are coupled together in Rayleigh Waves and they travel at a 

common velocity but there is a phase difference between these two component motions. As the 

distance from the surface to the propagation layer increases, the amplitude decreases as the 

inverse square root of the radial distance from the surface. Rayleigh waves are produced in 

various ways such as localized impacts, piezoelectric transduction and by earthquakes. In 

isotropic solids, Rayleigh waves cause surface particles to move elliptically in planes 

perpendicular to the surface and parallel to the direction of propagation. At shallow depths from 

the surface this motion is retrograde. Rayleigh waves have a speed slightly less than shear waves 

depending on the elastic properties of the material. 

Rayleigh waves are used in modern microelectronics in the form of filters, delay lines, 

inter-digital transducers and in many electro-acoustic functions. They are also used in non-

destructive testing for detecting defects. Also, in seismology these are the most important type of 

surface waves. 

  z 

                

             surface displacement 

 

            Solid 

          x   

Fig. 2.7: Displacement of the surface of a plate due to Rayleigh wave propagation 
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Shown above is a wave propagating in the x direction along a surface which has a normal 

in the z direction. The displacement and velocity components are in the x and z directions. Just 

like with bulk waves, scalar and vector potentials are [1], 

  ⃑⃑⃑⃑     ⃑⃑⃑⃑⃑⃑    ⃑⃑⃑     ⃑⃑     (2.15) 

where and are the potentials for longitudinal and transverse wave components respectively. 

The corresponding wave equations can be written as, 

   

     
   

      
          (2.16) 

   

     
   

      
         (2.17) 

Where, 

    √
 

    
      √

 

 
  are bulk wave numbers. 

As the longitudinal and shear components are coupled together in Rayleigh waves, they 

have a common wave number. In order to determine the potentials the displacements with z, 

surface wave velocity and then propagation constant () needs to be found. At the free surface 

(z=0) the normal and tangential stresses are zero. The displacements and stress components take 

the form, 

    
  

  
  

  

  
      (2.18)  
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      (
   

   
  

   

    
   

   

   
)   (2.21) 

Then the potentials become, 

                       (2.22) 

                         (2.23) 

Where, 

  
         

  

  
         

  

are the variations of displacements with z. 

Then from characteristic equation,  

                
         (2.24) 

Then the Rayleigh equation can be written, 

                                (2.25) 

Where, 

   
  

 
 

   
  

  
 

The waves travel along a layer of thickness approximately in the order of one wavelength 

because both components have a decay constant similar to Rayleigh wavelength. Surface 
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particles move elliptically because the two components are in phase. Displacements even at the 

surface are tiny and with depth, power of the wave decreases rapidly. 

 

Fig. 2.8: Configuration for partial wave analysis of Rayleigh waves [1] 

 

In a sufficiently thick plate, Rayleigh wave solution can be obtained by considering 

partial waves for one of the two surfaces. Transverse resonance condition for Rayleigh waves 

can be obtained as, 

              (
  

  
)              (2.26) 

Where, 

VS – Shear wave velocity 

VL – Longitudinal wave velocity 

Then the dispersion equation can be written as, 

   
             

     
       (2.27) 
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2.5 Love waves 

 

Fig. 2.9: Love waves in a semi-infinite substrate [1] 

In isotropic media, SH modes are not coupled with sagittal modes. Love waves are these 

horizontally polarized shear waves guided by an elastic layer. For a shear wave mode to be 

trapped in a layer, shear wave velocity in the layer should be lesser than that of the substrate. The 

partial waves in the substrate are [1], 

             ̂             

            ̂             (2.28) 

            ̂         

Where i, r and t refer to incident, reflected and transmitted respectively and A, B and C 

are constants. 

In a plate at low frequencies, phase velocity of Love waves tends to the wave velocity in 

the substrate due to the high wavelength compared to the layer thickness. At high frequencies, 

Love modes behave as bulk shear waves in the layer and the phase velocity approaches the bulk 
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shear velocity. Also they penetrate deep in to the substrate at low frequencies but are confined to 

the layer as frequency increases. 

In Love waves, because of the finite thickness of the layer there is a finite length scale of 

wavelength making them dispersive. Further the nature of the modes depends on the layer to 

substrate ratios. To obtain the nature of the modes, partial wave analysis and the waveguide 

equation with transverse resonance are used. 

The layer is said to stiffen the substrate when the shear wave velocity in the layer is 

higher than in the substrate. For vanishing layer thicknesses, the velocity is the Rayleigh wave 

velocity for the substrate. For higher thicknesses the partial wave leaks into the substrate making 

the mode a pseudo bulk wave. 

The layer is said to be loading the substrate when the shear wave velocity in the layer is 

lesser than in the substrate. When the layer thickness increases, the velocity decreases due to the 

effect of the low velocity material. When the layer thickness is infinite the velocity approaches 

the Rayleigh velocity. Here Rayleigh modes are excited because of transverse resonance as much 

as Love waves. At low frequencies these leak into the substrate. The lowest of the Rayleigh 

modes is useful in seismology and device physics. 
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2.6 Stoneley waves 

 

      interface 

 

Fig. 2.10: Stoneley wave propagation along a boundary in between two solids 

A Stoneley wave is a wave propagating along the interface between two solids that is also 

evanescent in both media. The intensity of the wave decreases as you go away from the interface. 

Stoneley wave velocity lies in between the velocities of Rayleigh waves and shear waves. 

Stoneley waves are useful in estimating rock properties. Permeability can make Stoneley waves 

be partly reflected at sharp impedance contrasts, change the wave velocity of it inducing 

dispersion and also cause attenuation. 

 

2.7 Waveguide configurations 

Beam spread due to diffraction, having a single orientation, inability to turn corners and 

the inability to go from one layer device to another are a few reasons that prompted the use of 

acoustic waveguides. Waveguides suppress the beam spread reducing the width down to an order 

of a wavelength and the guide can be oriented. It also allows high power densities. When 

designing a waveguide the degree of field of confinement or the rate of decay of the acoustic 

field in the substrate is controlled according to the application. Due to the intrinsic length scale 

involved in the thickness of guides, dispersion usually occurs. Generally a dispersionless or low 

dispersion bandwidth is designed. There are several different approaches to waveguides. 

Solid 

Solid 
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Fig. 2.11: Several acoustic waveguide configurations [1]; (a), (b), and (c) are flat overlay 

waveguides, (d) and (e) are topographic waveguide configurations and (f) and (g) are two types 

of circular fiber waveguides 

Overlay waveguides have a film or films deposited on the substrate to lower the sound 

velocity. This can lead to evanescent decay of the mode in the substrate. The material of the 

overlay is chosen depending on the acoustic loading of the substrate underneath. The strip guide 

(figure 2.11 (a)) is dispersive and as the frequency increases the wave velocity decreases towards 

the Rayleigh velocity and the wave becomes confined to the strip. 

The slot waveguide guides (figure 2.11 (b)) the wave along the bare substrate with the 

help of strip on either side. The material is chosen as to stiffen the Rayleigh velocity of the 

substrate so that the acoustic wave is trapped. The phase velocity increases with frequency and at 

higher frequencies it is equal to the Rayleigh velocity of the substrate and the acoustic wave is 

confined to the slot. 
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Shorting strip waveguides (figure 2.11 (c)) use metallic shorting strips on a piezoelectric 

substrate. The metal shorts the piezoelectric field which decreases the Rayleigh velocity 

depending on the magnitude of the piezoelectric constant. Another approach is to use diffusion to 

create the required velocity changes. Significant velocity changes can be achieved with no rise of 

attenuation. 

Topographic waveguides are produced by a local deformation of the substrate. The 

binding is strong and vertical reflections occur. A waveguide with a ridge (figure 2.11 (d)) which 

anti-symmetrical flexural modes go through is highly dispersive. Ultrasonic field is strongest at 

the top of the ridge but dies away exponentially towards the substrate. A symmetric pseudo-

Rayleigh mode through a ridge waveguide has no dispersion. The displacement is due a 

combination of S0 and SH modes and propagates down to zero frequency. A wedge waveguide 

(figure 2.11 (e)) uses an ideal wedge which no length scale making it dispersionless. Mainly 

flexural modes are excited and are tightly bound to it. 

Circular fiber waveguides were originally developed to achieve low loss, low dispersion 

and long delay lines. Capillary waveguides (figure 2.11 (f)) propagate Rayleigh waves along the 

inside surface of a capillary. Group velocity is relatively constant over a limited frequency. 

Cladded acoustic fibers (figure 2.11 (g)) can also be used as waveguides. An acoustic mode can 

be trapped in the case if the velocity in the cladding is greater than that of the case. Waves can be 

propagated over long distances and are used in the development of cladded delay lines.  
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CHAPTER 3 

EXPERIMENTAL INVESTIGATION OF PAW IN ELECTRONIC MATERIALS 

3.1 Fast Fourier transform (FFT) 

Fast Fourier transform is an algorithm that rapidly converts time to frequency and vice 

versa. It is obtained by decomposing a sequence of values into components of different 

frequencies. FFT is largely used in digital signal processing. As shown in figure 3.1, the 

waveform at the top in the time domain is converted to its frequency components at the bottom 

by the fast Fourier transform. 

 

 

Fig. 3.1: Fast Fourier Transform being applied to a waveform 
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In the experiments conducted in this project, FFT comes into play in measurements from 

the oscilloscope. Pulses containing various amounts of bursts (periodic signals) are supplied as 

the input from the function generator which creates a waveform at the oscilloscope as the 

output. Both of these waveforms, the input and the output, are observed through the 

oscilloscope and analyzed using the built in FFT function in the oscilloscope. In the input pulse, 

the lower the number of bursts you have the more scattered the frequency spectrum of it will be 

when analyzed by the FFT function. So it is always better to have as high an amount of input 

bursts as possible without overlapping with the output wave. This will give a frequency 

spectrum with a sharper peak with the frequencies concentrated in to a narrow range making the 

actual frequency of the input more accurate. This also avoids exciting the transducer or the 

crystal with many undesired frequencies. Performing FFT analysis of the output is useful in 

finding the frequencies of the modes or wave packets in the output waveform. Some images of 

the FFT performed on lithium niobate are shown later in figures 3.32 and 3.33. It can be seen 

that more than one frequency peak can be found, and this is due to the excitation of the crystal 

at those frequencies by resonance. It can also be used to distinguish different modes since they 

usually have different frequencies. 

 

3.2 Method error (Readout error) 

Method error is the experimental error caused by the limitations of precision of the 

instruments used. It depends on the minimum possible measurement in an instrument and the 

value measured. If the minimum measurement is m and the value that is being measured is x, 

              
 

 

 

 
         (3.1)  
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So the idea is to have the scale of the measurement as large as possible compared to the 

minimum measurement. In the experiments carried out, this method mostly effects the 

measurements taken from the oscilloscope. Since the measurements are mainly regarding the 

delay, the time axis is stretched so that most of the measurement area of the waveform fits in the 

display. This is doubly advantageous as the points of measurement can be seen larger and 

precisely. In the following experimental measurements done, it can be seen that the method 

error ranged from about 1% to about 7% which is reasonable. 

 

3.3 Multi-purpose ultrasonic transducer (ITC-9070-1) 

 

Fig. 3.2: Image of the transducer used for the experiments (white coloured one) 

The two transducers used are a transmitting and receiving pair suitable for various 

applications such as bubble detection, NDT and close range high resolution proximity sensing. 

Their small size and rugged construction makes them versatile. The specifications of these 

transducers at 22°C are as shown below. They operate mainly in the 4.5MHz frequency range but 

can be used effectively in the low frequency regions as well. 
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Table 3.1: Specifications of the ITC-9070-1 transducer at 22°C 

 

 

Fig. 3.3: Impedance of the ITC-9070-1 transducer in air and water at different frequencies 

 

Property Value Unit 

Frequency 4.5 MHz 

Q in Air 18 - 

Q in Water 11 - 

Capacitance 940 pF 

Operating Temperature -20 - 80 °C 

Humidity 0 - 100 % 

Weight 2.5 g 
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3.4 General experimental setup 

The general experimental setup used to examine the three materials glass, aluminium and 

brass is as shown in figure 3.4. The input is provided by an HP 8116A pulse/function generator 

via a cable connecting it to an ITC-9070-1 multi-purpose ultrasonic transducer. It is also 

connected to a Tektronix TDS 2014B digital oscilloscope in order to observe the input signal. 

The digital oscilloscope is triggered externally by the above mentioned function generator via a 

cable. Output transducer is also connected to the same above mentioned digital oscilloscope to 

inspect the output waveform. Both of these transducers are grounded at one end. The transducers 

are attached to the plate with the aid of a layer of Vaseline for the surfaces of the transducers to 

make good acoustic contact with the plate. The digitally stored information about the input and 

output waves is then transferred for analysis to a computer via a USB drive. 

 

 

 

 

 

Fig. 3.4: General experimental setup used for the investigation of propagation of acoustic waves 

through glass, aluminium and brass 
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3.5 Experimental samples 

Different types of plates were used for the investigation of the propagation of Lamb 

waves through them. The materials used were glass, brass, aluminium and lithium niobate. These 

plates in general had different lengths, widths and thicknesses. A variety of thicknesses was used 

for the plates of the same material in order to obtain more experimental points and make the 

procedure more accurate. 

Table 3.2: Samples of plates used for the investigation of propagation of plate acoustic waves 

Sample 

number 

Laboratory 

number 

 

Material 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Weight 

(g) 

Density 

(kg/m
3
) 

1 GL1-S Glass 75.5 25.45 0.92 8.5 2404.4 

2 BR1-S Brass 268 152 0.07 26.7 9363.4 

3 BR2-S Brass Irregular 48 0.2 23.8 8838.38 

4 BR3-S Brass 281.5 152 0.3 113.1 8810.88 

5 BR4-S Brass 280 152 0.52 184.6 8341.17 

6 BR5-S Brass 282 98 0.85 195.1 8305.45 

7 BR6-S Brass 302.7 39.2 3.21 328.9 8634.96 

8 AL1-S Aluminium 200 24 4.67 59.6 2658.8 

9 AL2-S Aluminium 126.5 67 3.07 71.1 2732.5 

10 AL3-S Aluminium 229 94 2.45 143 2711.48 

11 AL4-S Aluminium 151 Irregular 1.55 22.4 - 

12 LNO-1S LiNbO3 49 19 1.8 - - 
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3.6 Experimental setup for glass 

 

Fig 3.5: Experimental setup for excitation and detection of acoustic waves through a glass plate 

The setup for excitation and detection of plate acoustic waves in a glass plate is shown in 

figure 3.5. The glass plate used here is the same as the glass slides used with microscopes. The 

dimensions of the glass plate were measured using a digital vernier caliper and a micrometer 

gauge to be 75.5mm in length, 25.45mm in width and 0.92mm in thickness. The weight of the 

glass plate was recorded as 8.5g on the Acculab electronic digital scale Model 333, thus giving a 

density of 2404.18 kg/m
3
 which matches with Silicate glass (from glassproperties.com). The 

acoustic velocities through ‘Water white glass’ were found to be VL = 5836 m/s and VT = 3423 

m/s [8] and this was the closest density of a glass variety that matched Silicate glass, so the 

acoustic velocities were assumed to be similar. This glass plate is taped on to a half open metal 

box as shown in the figure above at a height which makes it have contact at the center of two 
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transducers. These transducers are fixed perpendicular to the glass plate in order to propagate 

acoustic waves along the plate. In between the transducers and the glass plate a layer of Vaseline 

is applied in order to make good acoustic contact and transfer most of the acoustic waves through 

the plate rather than air. The transducers used are ITC 90701L93 which have a main operating 

frequency in the region of 4.5 – 5 MHz. The wire ends of these transducers are soldered to the 

metal box so that one connects to a function generator and the other to an oscilloscope and are 

both earthed as well. The metal in the box acts as an earth for the whole circuit. The above 

mentioned oscilloscope, Tektronix TDS 2014B, is triggered externally by an HP 8116A 

pulse/function generator through a cable connection. The function generator generates acoustic 

signal pulses containing sinusoidal waves. The output waveform after the pulse goes through the 

glass plate is displayed in the oscilloscope. A USB flash drive is plugged in to the oscilloscope to 

record the data displayed. 

 

3.7 Group velocity of PAW in a glass plate 

The function generator produces pulses containing sinusoidal waves of peak to peak 

voltage of 5V to be propagated through the plate. It is run in internal burst mode producing 

pulses according to the frequency the transducer is going to be operated at. The duty factor is set 

at 50% and the pulse width is kept comparatively much smaller than the repetition period in 

order to avoid overlaps of the waveforms of two consecutive pulses. As the pulses go through the 

glass plate and to the oscilloscope the output waveform is displayed on its screen. The frequency 

is varied and the resulting output waveforms are measured by obtaining peaks which generally 

means the output signal is strong. The signal needs to be comparatively higher than the noise 

shown in the oscilloscope.  For a particular frequency where peaks occur, the wave form in the 



 

45 

oscilloscope is saved and measured. For each of the peaks, by measuring the delay from the start 

of the original input pulse to the start of the output signal, the group velocities of the modes 

present can be calculated. Each peak corresponds to a separate mode if there are no 

reverberations or reflections of the waves from the edges of the plate. Some oscillograms 

obtained from the oscilloscope for a variety of frequencies are shown in figures 3.6 to 3.9. As 

seen, the input burst is shown in yellow and the output in green. As the frequency is changed, the 

speed of the separate modes changes accordingly and can be seen by observing the movement of 

the peaks, which also vary by strength due to the workable frequencies of the transducers. 

 

 

Fig 3.6: Oscillogram containing the acoustic modes propagated through the glass plate and also 

the air signal at a frequency of 1.44MHz, showing the measurement of delay of the so mode 

using cursors 
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Fig. 3.7: Oscillogram showing the measurement of delay of the s0 mode at 222kHz 

 

Fig. 3.8: Oscillogram showing the measurement of delay of the s0 mode at 4.88MHz 

 

Fig. 3.9: Oscillogram showing the measurement of delay of the s0 mode at 149kHz 
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The variation of the delay of couple of modes with the change of frequency is given in 

table 3.3 below. The thickness of the glass plate was 0.92mm and the distance between the two 

transducers was 75.5mm. Only the modes ao and so are considered since the curve shown in 

figure 3.10 [6] contains only those two for comparison. Note that this curve is for a glass plate 

with VT = 3200m/s and VL = 5960m/s and the glass plate used in the experiment has values of 

VT = 3423m/s and VL = 5836m/s, but since the numbers are close enough the comparison can be 

done with the occurrence of negligible differences. 

Table 3.3: Delay of a0 and s0 modes propagating through the glass plate at a variety of 

frequencies 

Frequency (MHz) 
Delay (s) 

a0 s0 

0.149  14.2 

0.169 44.4  

0.233 39.4  

0.480 28.8  

0.819 24.1 14.2 

1.09 25.4  

1.41 25.4  

1.44  14.1 

2.59 25.2  

2.83  38.2 

3.47  33.8 

4.91  25.8 
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Using this set of data the group velocities of each acoustic mode through the glass plate 

can be calculated using, 

    
                     

     
    (3.2) 

These calculated group velocities are then compared with the theoretical values as found 

in the plot (figure 3.10) between frequency x thickness and group velocity [6] by plotting them 

on the same graph. The Relative velocities are converted to group velocities by multiplying by 

VT = 3200m/s. 

Table 3.4: Comparison of the experimental points of group velocities with the theoretical values 

for various frequencies in a glass plate 0.92mm thick 

Frequency x 

0.92mm 

(MHz x mm) 

Group velocity of a0 (m/s) Group velocity of s0 (m/s) 

Experimental Theoretical Method 

Error (%) 

Experimental Theoretical Method 

Error (%) 

0.137    5316.9 5470 1.76 

0.155 1700.45  2.25    

0.214 1916.24  1.27    

0.442 2621.53 2880 1.74    

0.753 3132.78 3200 1.04 5316.9 5360 1.76 

1.003 2972.44 3220 1.97    

1.297 2972.44 3220 1.97    

1.325    5354.61 5040 1.77 

2.383 2996.03 3140 1.98    

2.604    1976.44 1790 1.31 

3.192    2233.73 2310 1.48 

4.517    2926.36 2850 1.94 
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Fig. 3.10: Experimental results (red and blue points) for the group velocity of Lamb waves 

through a glass plate 0.92mm thick plotted in comparison with theoretical curves of group (- - -) 

and phase (
___

) velocities of ao and so modes in a glass plate with VT = 3200m/s and VL = 

5960m/s from [6] 

 

3.8 Experimental setup for brass and aluminium 

To investigate Lamb waves in metal plates, plates of brass and aluminium are being used 

for propagation of waves through them. A set of metal plates with different thicknesses are tested 

with two transducers in contact with the surface or edges with the distance between them also 
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varied. The higher the distance between the transducers is, the better the results will be due to the 

bigger delay caused making the measurements and the calculations more accurate. There is also 

some attenuation caused by the plate which is proportional to the square of the frequency of the 

Lamb waves propagated. The transducers are placed as much towards the center of the surface of 

the plate as possible in order to lessen the reverberations of the waves caused by the edges of the 

plate, so the bigger the surface area of the plate the better. These reverberations are caused 

anyway due to the finite size of the plates but are minimized by the said method as the waves 

that hit the edges are attenuated by travelling the longer distance and are low in strength and late 

when reaching the receiving transducer. When transducers are attached perpendicular to the main 

surface of the plate, the S modes may not be seen because they are longitudinal and would 

propagate easier if the transducers are attached perpendicular to a side surface of the plate. If the 

plate is thin it would be hard to fix it parallelly and even if fixed the energy transfer from the 

transducer to the plate won’t be so efficient. Therefore wedges are used to focus the energy from 

the transducer to the plate. It is better to use lower frequencies and thinner plates since only two 

modes are encountered then and them too with contrasting velocities so that the peaks can clearly 

be distinguished in the oscilloscope. The air signal which goes through the air from the input 

transducer to the output transducer is blocked by placing a grounded metal across the center of 

the plate just on top of the plate so that the air signal does not interfere with the output wave 

pattern. It also minimizes the disturbance of the output wave pattern. The plate is placed on some 

soft sponges so that the waves don’t propagate into the metal below it. Also the least amount of 

cable is used to connect the circuit as they may interfere with the output. The experimental set up 

for brass plates is shown below in figure 3.11. 
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Fig. 3.11: Experimental setup for testing the propagation of PAW through a brass plate of 

thickness 3.21mm 

 

3.9 Group velocity of PAW in brass samples 

Brass was tested with six different samples having various thicknesses. The oscillograms 

of six measurements from brass plates are shown below in figures 3.12 to 3.17. The input pulse 

is in yellow and the output waveform is in green. The delay, which is the time difference 

between the 1
st
 and the 2

nd
 cursors which are also yellow, is displayed again in yellow at the right 

of each picture as t. The data obtained from these are recorded in tables 3.5 and 3.6. 
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Fig. 3.12: Oscillogram containing some low order acoustic modes propagated through a brass 

plate 0.07mm thick and also the input pulse at a frequency of 214kHz, showing the measurement 

of delay of the s0 mode using cursors 

 

Fig. 3.13: Oscillogram showing the measurement of delay of the s0 mode propagated through a 

brass plate 0.3mm thick at a frequency of 495kHz 
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Fig. 3.14: Oscillogram showing the measurement of delay of the a0 mode propagated through a 

brass plate 3.21mm thick at a frequency of 260 kHz 

 

Fig. 3.15: Oscillogram showing the measurement of delay of the a0 mode propagated through a 

brass plate 0.52mm thick at a frequency of 825kHz 

s0 
a0 

Side-wall signals 
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Fig. 3.16: Oscillogram showing the measurement of delay of the s0 mode propagated through a 

brass plate 0.85mm thick at a frequency of 486kHz 

 

Fig. 3.17: Oscillogram showing the measurement of delay of the s0 mode propagated through a 

brass plate 3.21mm thick at a frequency of 339kHz 
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Table 3.5: Measurements of delays of several propagated acoustic modes in brass plates of 

different thicknesses for a variety of frequencies 

Plate Thickness 

(mm) 

Distance between 

transducers (mm) 

Frequency 

(kHz) 

Delay (s) 

a0 s0 a1 

0.07 286 
123 572   

214 454 76  

0.2 258 

206  73  

241 233   

483  69  

0.3 301.5 

261  81  

464 195   

495  81.2  

807 164   

0.52 

257 203 190   

295 454  81.2  

 

257 

500 148   

825 125   

295 834  83  

0.85 275.5 

115 148   

433 135   

486  75.2  

870  79.2  

3.21 282 

63 169   

206 130   

260 137   

339  99  

475   101 
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Table 3.6: Group velocities of three separate acoustic modes through brass plates at different 

frequency-thickness combinations 

Frequency x Thickness 

(MHz x mm) 

Group velocity (m/s) 

a0 s0 

0.009 500  

0.015 629.96 3723.68 

0.041  3534.25 

0.048 1107.3  

0.078  3722.22 

0.097  3739.13 

0.098 1861.49  

0.106 1352.63  

0.139 1538.46  

0.148  3694.58 

0.202 1668.64  

0.236  3633 

0.242 1829.27  

0.260 1736.49  

0.368 2040.74  

0.413  3663.56 

0.429 2056  

0.434  3554.22 

0.661 2058.39  

0.739  3478.54 

0.835 2058.39  

1.088  2848.48 

1.525 a1 = 2792.08 

 



 

57 

These results are compared with the theoretical plot (figure 3.18) shown below. The low 

frequency x thickness range is then magnified in Figure 3.19 and the experimental points are 

included. Since only the very low range of frequency x thickness comes into consideration, only 

the two modes a0 and s0 are existent with the a1 mode coming in to the picture at the very end. 

Only these three modes are recorded and compared. 

 

 

Fig. 3.18: Phase (
__

) and group (
….

) velocities of plate acoustic waves in a brass plate having VL 

= 4700 m/s and VS = 2100 m/s as a function of frequency x thickness from [1] 
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Fig. 3.19: Experimental results of group velocities of Lamb wave modes propagating through 

brass plates of various thicknesses at different frequencies 

 

3.10 Group velocity of PAW in aluminium samples 

Aluminium was tested with four different samples having different thicknesses. These 

plates had an average measured density of 2700.9 kg/m
3
 which closely matched with the metal 

type ‘Aluminium 5052’ which had a density of 2690 kg/m
3
 (avlandesign.com). Below are some 

of the oscillograms from the measurements made with aluminium plates. Only the s0 and a0 
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modes were measured as shown in figures 3.20 to 3.25 and the results for the delay are shown in 

tables 3.7 and 3.8. 

 

Fig. 3.20: Oscillogram containing the first few acoustic modes (green) propagated through an 

aluminium plate 1.55mm thick and also the input pulse (yellow) containing three cycles at a 

frequency of 218kHz. The yellow cursors show the measurement of delay of the a0 mode 

 

Fig. 3.21: Oscillogram showing the measurement of delay of the s0 mode propagated through an 

aluminium plate 3.07mm thick at a frequency of 573kHz 
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Fig. 3.22: Oscillogram showing the measurement of delay of the a0 mode propagated through an 

aluminium plate 4.67mm thick at a frequency of 447kHz 

 

 

Fig. 3.23: Oscillogram showing the measurement of delay of the s0 mode propagated through an 

aluminium plate 4.67mm thick at a frequency of 66kHz 

a0 

s0 
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Fig. 3.24: Oscillogram showing the measurement of delay of the a0 mode propagated through an 

aluminium plate 2.45mm thick at a frequency of 69kHz 

 

 

Fig. 3.25: Oscillogram showing the measurement of delay of the s0 mode propagated through an 

aluminium plate 1.55mm thick at a frequency of 408kHz 
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Table 3.7: Measurements of delays of several propagated acoustic modes in aluminium plates of 

different thicknesses for a variety of frequencies 

Plate Thickness 

(mm) 

Distance between 

transducers (mm) 

Frequency 

(kHz) 

Delay (s) 

a0 s0 

1.55 

129 

99 60.8  

218 46.8  

298 45.2  

128 408  27.4 

 1300  44.8 

2.45 

202 69 108  

207.5 

216 65.2  

287  39 

465 69.6 43.2 

3.07 105 

133 34.8  

296  22 

442 36.2  

573  24 

4.67 

200 

66  38.6 

186  40.4 

238  40 

293  40.6 

180 447 61.6  

200 200 66  
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Table 3.8: Group velocities of acoustic modes a0 and s0 through aluminium plates at different 

frequency-thickness combinations 

Frequency x Thickness 

(MHz x mm) 

Group velocity (m/s) 

a0 s0 

0.153 2121.71  

0.169 1870.37  

0.308  5181.35 

0.338 2756.41  

0.408 3017.24  

0.462 2853.98  

0.529 3182.5  

0.632  4671.53 

0.703  5320.5 

0.869  4950.5 

0.909  4772.73 

0.934 3030.3  

1.111  5000 

1.139 2981.32 4803.24 

1.357 2900.55  

1.368  4926.11 

1.759  4375 

2.015  2879.46 

2.087 2922.08  
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These results are then compared with the curve below (figure 3.26) obtained from [9] and 

edited so that it can be compared with the results of this experiment. Notice that the a1 mode is 

not shown although it exists within the frequency-thickness range considered. So the group 

velocities of only the s0 and a0 modes are measured and compared. 

 

 

Fig. 3.26: Comparison of experimental results (points) of group velocities of Lamb wave modes 

propagating through aluminium plates of various thicknesses at different frequencies, with the 

theoretical curves (solid and dashed lines) [9] 
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3.11 Experimental setup for lithium niobate (LiNbO3) 

A single crystal of YZ-cut lithium niobate was used for the experiment. The YZ-cut 

means that the plate acoustic waves travel along the Z-axis in the Y-cut plate as shown in figure 

3.27. Two electrodes were in contact with either end of the crystal’s plate surface as shown in 

figure 3.28 connecting it to the function generator and the oscilloscope using wires and cables. 

The rest of the setup was similar to the one used with brass and aluminium with another two 

electrodes directly on the opposite side of the plate grounded to a metal surface which provided 

the base for the crystal. The crystal is excited by itself using the piezoelectric effect of lithium 

niobate instead of using transducers as in the previous experiments. When the electronic signal 

from the function generator is received, the piezoelectric crystal produces acoustic waves and 

vibrates accordingly. 

 

 

 

 

 

 

 

Fig. 3.27: YZ-cut of the lithium niobate crystal shown along with the experimental setup 
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Fig. 3.28: Experimental setup used for excitation and detection of PAW through a lithium 

niobate plate of thickness 1.8mm 

 

3.12 Dispersion of s0 mode in YZ-cut lithium niobate 

The experiment for lithium niobate was done using a crystal with dimensions 49mm x 

19mm x 1.8mm. It was excited with frequencies ranging from as low as 153kHz up to 2.5MHz. 

At higher frequencies the output signal becomes weak and hard to measure. The plate gets 

excited at its own frequency so that the piezoelectric coupling constant is the highest, usually a 

sub-harmonic of the original frequency. The group velocity of the s0 mode was calculated by 

obtaining the delay of the output wave for each of the frequencies. Due to the usage of only one 

plate and thus the thickness being constant at 1.8mm, the group velocity was plotted against 

frequency of the input signal. As high a number of bursts within a pulse were used in order to 
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minimize the scattering of frequencies of the input signal, thus the occurrence of slight overlaps 

of the input wave with the output waveform. Some oscillograms showing the measurement of the 

delay of so mode through lithium niobate are displayed in figures 3.29 to 3.32. The 

measurements from these oscillograms are recorded in table 3.9 and are then plotted in figure 

3.35.  

 

Fig. 3.29: Oscillogram containing the so mode (green) propagated through a lithium niobate plate 

1.8mm thick and also the input pulse (yellow) containing one burst at a frequency of 215kHz. 

The yellow cursors show the measurement of delay of the so mode 

 

Fig. 3.30: Oscillogram showing the measurement of delay of the so mode at 1.5MHz 
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Fig. 3.31: Oscillogram showing the measurement of delay of the so mode at 2.04MHz 

 

 

Fig. 3.32: Excitation burst and subharmonic generated at half of the excitation frequency 

of 2.3MHz 
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Fig. 3.33: Fast Fourier Transforms of the output waveforms of PAW in lithium niobate at 

excited frequencies of 1.13MHz (top) and 1.3MHz (bottom) 
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Fig. 3.34: Fast Fourier Transforms of the output waveforms of PAW in lithium niobate at 

excited frequencies of 1.59MHz (top) and 1.65MHz (bottom) showing the measurements of 

detected frequency peaks with cursors 



 

71 

Table 3.9: Measurements of the s0 mode through the LiNbO3 plate at a variety of frequencies 

Main frequency 

(MHz) 

Detected frequency of 

excited so mode (MHz) 
Delay (s) Group Velocity (m/s) 

0.153 0.5263 5.40 6851.85 

0.215 0.4717 5.44 6801.47 

0.345 0.4717 5.44 6801.47 

0.516 0.5208 5.48 6751.82 

0.676 0.6579 5.68 6514.08 

0.913 0.7143 5.80 6379.31 

1.13 0.6945 5.96 6208.05 

1.23 1.316 6.72 5505.95 

1.30 1.316 7.48 4946.52 

1.40 1.351 8.96 4129.46 

1.50 1.250 11.3 3274.34 

1.59 1.250 16.8 2202.38 

1.70 1.190 18.6 1989.25 

1.78 1.190 18.0 2055.56 

1.90 1.136 16.0 2312.50 

2.00 1.111 13.5 2740.74 

2.04 1.087 13.6 2720.59 

2.30 1.111 13 2846.15 

2.50 1.111 13 2846.15 
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Fig. 3.35: Experimental results of the group velocity of ao and so modes propagating through a 

YZ-cut lithium niobate plate of thickness 1.8mm, plotted against the frequency alongside the 

theoretical curve 

 

3.13 Non-destructive testing (NDT) 

Non-destructive testing, also known as non-destructive evaluation (NDE) is a technique 

used in laboratory and industry to analyze materials and their properties without causing 

damage to the sample examined. Importance is that the article inspected is not altered, saving 

time and money in the process. Application of NDT here is by propagating plate acoustic waves 
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through materials to be evaluated and observing the behaviour of the output. This causes no 

harm to the physical characteristics of the material and at the same time if a defect such as a 

crack, hole or a non-uniformity is present it may possibly be detected. Especially if the flaw is 

internal and cannot be detected with the naked eye, the only way to detect is by testing it non-

destructively and in our case by propagating acoustic waves. 

A primary experiment carried out in order to simply measure the thickness of a solid 

element or distance between given points, was the inspection of the reflected wave from an edge 

or discontinuity. The general method and set up are as shown below in figure 3.36. In this 

instance by measuring the delay of the reflected wave, the distance to the edge or discontinuity 

can be calculated thus giving rise to the useful application of ultrasonic thickness and distance 

measurements. In this process the group velocities of the fastest mode obtained in the preceding 

sections for different materials at different frequencies and thicknesses are made good use of. 

 

Fig. 3.36: Left: Set up showing a transducer sending acoustic waves across the thickness of a 

plate along with the corresponding oscillograms of the reflected waves detected, below; Right: 

Two transducers used, one to supply the input bursts and the other to detect the output 

Plate 

Transducers 

Corresponding Oscillograms 
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For this experiment an aluminium plate with thickness 2.45mm (AL3-S) was used. A 

circular hole with a diameter of 3mm was drilled towards the center of the plate’s main surface 

which was 229mm in length and 94mm in width. Transducers with diameter 0.9mm each were 

placed on either side of the plate exactly aligning each other as shown on the right in figure 3.36 

nearer to the hole than any of the edges. Two separate transducers were used, one to supply and 

the other to detect acoustic waves because the amplitude of the reflected wave is much lower 

compared to the original input signal. In order to be able to observe the reflected signal the 

sensitivity of the second transducer oscilloscope reading must be contrastingly higher than the 

first one. Usage of two different channels in the oscilloscope allows two different scales of 

amplitude to be used making the weaker signal visible alongside the input. Just as in the 

previous experiments, short bursts of ultrasonic pulses were used with center frequencies 

ranging from the kilohertz region up to about 5MHz. Only the first edge or discontinuity may be 

able to be clearly identified due to the overlaps of several signals after the occurrence of the first 

reflection. These may be the secondary modes of the first reflected wave and the signals coming 

from the eventual reflections after the first one. In the case of a discontinuity this method 

becomes less efficient since only a part of the wave is reflected from a crack, hole or any other 

kind of discontinuity, resulting in an output signal barely noticeable. Although the transducers 

were placed nearer to the hole than the edges, the first reflected signal detected in the output 

was determined to be from an edge rather than from the hole. So this method wasn’t very 

effective in detecting defects, rather more useful in determining distances to edges or 

discontinuities we already knew that existed or primarily to measure thickness. 

A similar but more effective method to detect defects was to send acoustic waves 

through a defective material plate and inspect the FFT of the output. The oscillograms of the 
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outputs show a slight drop in amplitude compared to the input whenever a defect was present 

but not to an extent to say for sure that there is a defect. Observations of the FFTs were done for 

the outputs from the following general experimental set up.  

 

 

 

 

 

Fig. 3.37: The experimental set up used for non-destructive testing 

A brass plate with thickness 0.52mm (BR4-S) was used with a 6mm diameter circular 

hole was drilled at the center of the plate’s surface. The dimensions of the plate surface were 

280mm x 152mm. Firstly the two transducers were positioned 5.7cm apart, somewhat away from 

the hole as shown in figure 3.38. 

 

  

 

    

 

 

Fig. 3.38: Top view of the brass plate showing positions of the transducers with respect to the 

6mm diameter hole 

Function 

generator 

Oscilloscope 

Defect (Hole) 

Transducers 
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Hole 
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An acoustic signal of 50 bursts of amplitude 10V at a frequency of 4.72MHz was 

supplied through the input transducer. Higher frequencies were used due to the relatively small 

size of the hole. The output was detected through the second transducer from which the 

oscillogram and FFT data as shown in figure 3.40 were obtained. Then this was compared to data 

from another position of the transducers as shown in figure 3.39 below. The distance between the 

transducers were kept the same while on this occasion the acoustic waves had to travel on a path 

where the hole was in the way. Same acoustic signal input was provided and the oscillogram and 

the FFT were obtained by the oscilloscope and are shown in figure 3.40 in comparison to how 

they looked like earlier. 

 

 

  

 

    

 

Fig. 3.39: Top view of the brass plate with the two transducers exactly aligned with the same 

hole in a straight line 

5.7cm 

Transducers 
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(a)                                                                   (b)  

  

        (c)                                                                    (d) 

Fig. 3.40: Oscillograms ((a) and (c)) and FFTs ((b) and (d)) of the two different positionings of 

the two transducers in relation to the hole in the brass plate, when both are away from the hole 

((a) and (b)) and when they are aligned with the hole in a straight line ((c) and (d)) 

 

As seen from the oscillograms of figure 3.40 (a) and (c), the amplitude of the whole 

waveform dropped slightly when the hole came in between the transducers. This does not give 

much of an indication that a defect is present or it may be due to the type of defect, which in this 

case is a circular hole. The clear contrast lies in the FFTs of the two scenarios. As seen on the 
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figure 3.40 (b) and (d), the side lobes of the spectra have almost completely disappeared from (b) 

to (d) but the main frequency at the center remains intact. In figure 3.40 (b), peaks at 4.82MHz 

and 4.90MHz have intensities in the order of 30dB below the center maximum at 4.575MHz 

whereas in figure 3.40 (d) they have dropped in intensity significantly to about 43 – 50dB below 

the central peak. In most cases the intensity drop is more than 10dB which is considerably high. 

This indicates that the frequencies that were present in that part of the spectrum have been 

absorbed when propagating across the hole. These absent frequencies may mean that the modes 

with those frequencies do not propagate across the hole. This may depend on the size and shape 

of the hole or defect and also on the input frequency supplied. The lower frequencies have a 

lesser effect since the wavelength of the acoustic waves then, is comparable to the diameter of 

the hole. As seen here the difference in the FFT spectra when a hole is present, can be used to 

detect defects and analyze them. 
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CHAPTER 4 

CONCLUSIONS 

1) The Group velocity of plate acoustic waves in four electronic materials was tested for 

different frequencies and thicknesses. The plots obtained from these were compared with 

theoretical curves contained in published work. It can be concluded that the experimental 

results match closely with those. So the results obtained for particular plate thicknesses 

and frequencies can be put to use in applications such as non-destructive testing. 

2)  The glass, brass and aluminium materials used here may not have been examined before 

since the densities of those plates used didn’t exactly match with the samples used in 

referred previous work. So the results obtained here could be useful for future work with 

materials having same densities. This may also explain the slight drift away from the 

theoretical plots used for comparison, as these published curves were of materials with 

densities similar but not exact. Also some of the various thicknesses used here may not 

have been investigated before although they are plotted as the frequency x thickness. So 

the group velocity values of the particular plate used at particular frequencies can be 

useful in future references. 

3) The four electronic materials used turned out to have similarly dispersive  curves to each 

other, with the s0 mode having a high dispersion at or around 1MHz-mm whereas the a0 

mode has a high dispersion at frequencies x thickness values below 500kHz-mm. As the 

frequency was increased from a minimum, the a0 mode always started slower than the s0 

mode and became faster and overtook the usually decelerating s0 mode at or around  
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2MHz-mm. For brass plates though, the value of the frequency thickness product in both 

these cases was slightly lower than the above mentioned values. 

4) In the glass plate examined, the group velocity of the a0 mode increased rapidly from zero 

to a maximum of about 3200m/s in the low frequency x thickness region until about 

900kHz-mm then remained approximately constant for higher frequency x thickness 

values thereafter. The s0 mode started from around 5400m/s and decreased rapidly 

between 1MHz-mm and about 2.5MHz-mm to a minimum of about 1600m/s and 

increased again to about 2900m/s. This was consistent with the usual dispersion observed 

in the s0 mode. 

5) In the six brass plates tested, it is found that the highest velocity of a mode is about 

3750m/s, which is of the s0 mode at very low frequencies. This decreased as the 

frequency x thickness was increased and dipped below the a0 and the a1 mode at about 

1.25MHz-mm. The group velocity of the a0 mode increased rapidly from zero to about 

2200m/s until the frequency thickness product reached a value of about 0.5MHz-mm and 

thereafter remained constant throughout. An experimental point was obtained for the a1 

mode as well which happened to be slightly faster than it should theoretically have been, 

none the less the existence of the a1 mode was confirmed. As seen in figure 4.18 there 

exists a frequency x thickness value in which the group velocities of all three modes s0, a0 

and a1 are equal, a fact which could be useful in applications. 

6) In the four aluminum plates examined, it is found that the highest group velocity is 

around 5200m/s in the s0 mode at frequencies below about 1MHz. This decreased 

gradually till about 1.5MHz-mm and then rapidly from there on till about 2.5MHz-mm 

and increased again thereafter. As usual, the group velocity of the a0 mode starts at 0m/s 
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and increases rapidly to about 3000m/s in the region below 1MHz-mm and then remains 

approximately constant throughout overtaking the s0 mode at around 2.1MHz-mm. 

Aluminum is used vastly in the aviation industry and is frequently investigated for cracks 

within the metal. Since a crack is similar to a hole with a lesser diameter to the one 

experimented in the work, an existence of a crack would mean that experimental curves 

of it would drift away significantly from the ones obtained here. So this experimental 

analysis can be extremely useful in the industry. 

7) The group velocity of acoustic waves through a YZ-cut lithium niobate plate was 

investigated for the first time. The plot of the s0 mode through YZ-cut lithium niobate 

was found to be consistent with the usual dispersion seen of an s0 mode. It is found that at 

very low frequencies the s0 mode has its highest group velocity of about 7000m/s, which 

is significantly higher than the other three materials investigated. This velocity decreases 

gradually in the frequency region below 1.2MHz and then rapidly from there on till about 

1.6MHz. It reaches a minimum of about 2000m/s at 1.7MHz and thereafter increases 

again between frequencies 1.7MHz and 2MHz and remains approximately constant there 

onwards. This analysis could be very useful for future work in the field as YZ-cut lithium 

niobate has many applications but rarely has been investigated for the group velocity of 

PAWs in them. Future work can be built on this analysis by the measurement of the 

group velocity of the a0 mode and some higher order modes as well. 

8) By the inspection of the Fast Fourier transforms of the inputs and outputs, the existing 

frequencies in the waveform can be determined. It is seen that the most abundant 

frequencies of the waveform are shown as peaks in the FFT. It is found that the FFT of 

the input has a clear peak at the main frequency provided by the function generator when 
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a higher number of bursts of were applied while a scattered frequency spectrum is 

observed around that central frequency when a lower number of bursts were applied. 

There is usually more than one peak in output FFT oscillograms meaning that the plate is 

excited in more than one frequency. Sometimes in LiNbO3 a sub-harmaonic acoustic 

mode is excited as well. It can be explained by a frequency dependent electromechanical 

coupling factor in a lithium niobate plate. Thus separate modes can be identified with the 

help of FFTs. It can be concluded that the FFT function is very useful in analyzing 

oscillograms. 

9) A very useful application of plate acoustic waves is thickness or distance measurements. 

Using the experimental results obtained regarding group velocities of PAW in the four 

electronic materials examined, thickness or distance measurements for same material 

plates were able to be done. This involved studying and measurement of the reflected 

signal from an edge or discontinuity. It is found that the calculations of distances to edges 

were fairly accurate although it wasn’t the case regarding less sharp discontinuities due to 

the fact that the wave is only partially reflected. So this method wasn’t that effective in 

detecting discontinuities but rather to simply calculate distances to ones already known. 

10) Detecting defects or discontinuities was also experimented. This time the wave 

propagated rather than the wave reflected was considered. Examination of FFTs rather 

than oscillogram data of the propagated output, proved more likely to yield information 

about existing discontinuities. It was seen that the amplitude of the whole output 

waveform drops when a defect is encountered. This observation alone couldn’t be used as 

an identification of a defect since the drop was usually very small. Instead FFTs revealed 

that the intensities of several frequencies besides the center frequency dropped 
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significantly when encountered with a discontinuity. This meant that those frequencies 

were absorbed by the hole or in other words, they were not able to propagate across it. So 

several modes with those frequencies were almost completely blocked off. It can be 

concluded that this phenomenon could be used to detect certain types of defects and the 

FFTs help immensely in the process. 
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APPENDIX A: SOLID - SOLID INTERFACE 
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There are two reflected and two transmitted waves for an incident longitudinal (P) or bulk 

shear wave (SV). 

    z 
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Fig. A.1: Reflection and transmission of acoustic waves at a solid-solid interface 

There is no coupling between SH modes and P and SV waves. For SH modes, the particle 

velocities (vy) can be written as [1], 

  
                                 (A.1) 

  
                                (A.2) 

  
                                (A.3) 

Where A, B and C are constants. 

Then the normal and tangential stresses are [1], 

     
   

  
 (

   

  
)    (A.4) 
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 (

   

  
)    (A.5) 

At a free boundary an SH wave is reflected and converted in to another SH wave with no 

mode conversion. For SV and P waves reflection coefficients can be calculated using boundary 

conditions of zero normal and tangential stress at the boundary. If L stands for longitudinal 

waves and S stands for shear waves, they are related as, 

RLL = -RSS      (A.6) 

RLL
2
 + RLS RSL = 1     (A.7) 
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APPENDIX B: CRYSTAL ACOUSTICS 
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By using the strain tensor, the equation of motion of a wave propagating in the x 

direction can be written as [1], 

 
    

   
       

    

      
     (B.1) 

A wave in a bulk medium in three dimensions can be written in the form, 

                ⃗⃑  ⃗     (B.2) 

where, 

 – angular frequency 

k – propagation vector 

For bulk waves propagating in isotropic media there is one longitudinal mode and two 

transverse modes. For crystalline media three independent waves may be propagated with each 

having a particular phase velocity and the displacements are perpendicular to each other. These 

are neither longitudinal nor transverse. However depending on the crystal structure there are 

certain directions which pure waves can be propagated in.  

From (B.1) and (B.2) Christoffel’s equation can be obtained as, 

   
                      (B.3) 

where, 

n – propagation direction 
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B.1 Group velocity and characteristic surfaces 

The crystal structure imposes restrictions on the allowed directions of propagation of pure 

modes and also energy, which may be different from the propagation of the wave. By using the 

acoustic Poynting’s vector, the relation between the energy propagation velocity and phase 

velocity can be expresses as, 

     
             

   
     (B.4) 

where, 

Ve = energy propagation velocity 

This implies that the projection of the energy propagation velocity on the propagation 

direction yields the phase velocity. In linear acoustics the energy propagation velocity is equal to 

the group velocity (VG) and can be expressed as, 

     
   

   
     (B.5) 

The direction of the group velocity is perpendicular to a constant energy surface in k-space as 

seen in figure B.1 below. Acoustic wave propagation in anisotropic solids can be described by 

constructing several different surfaces. For every case there are three shells, one quasi-

longitudinal and two quasi-shear. 

As shown below, the velocity surface traces out the phase velocity as a function of 

direction. The slowness surface shows the variation of 1/VP in k/ space. It is a surface of 

constant . For a point on the surface, the radius vector gives 1/VP for that direction and the 

group velocity is normal to the slowness surface. Then the wave surface is the locus of the group 
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velocity as a function of direction. It gives the distance traveled by a wave emitted from the 

origin within a certain time. This time is fixed due to it being an equiphase surface. For a given 

point on the surface the propagation vector for a plane wave is perpendicular to the surface. 

 

  

Velocity surface                   Slowness surface   

      

           Wave surface 

Fig. B.1: Characteristic surfaces for acoustic wave propagation in anisotropic solids [1] 
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APPENDIX C: PIEZOELECTRIC MATERIALS AND APPLICATIONS 
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C.1 Piezoelectricity 

Piezoelectricity is the electric charge internally generated in a solid in response to an 

applied mechanical stress. It is actually the electromechanical interaction between the 

mechanical and the electrical state in crystalline materials with no inversion symmetry, i.e. not 

containing an inversion center as one of its symmetry elements. It is a reversible process in 

which in some materials, internal generation of mechanical strain occurs due to an applied 

electric field. Piezoelectric effect is very useful in production and detection of sound and 

generation of high voltages and frequencies. 

A necessity for piezoelectricity to occur is the absence of a center of symmetry meaning 

the media are intrinsically anisotropic. Piezoelectricity involves an interaction between the 

elastic and dielectric phenomena and therefore dielectric and elastic constants are useful in 

regards to piezoelectric properties. These coefficients are usually arranged in a 99 matrix in 

which each column refers to one stress variable as the independent variable and each row to a 

strain variable as the dependent variable. The matrix is symmetrical so that in general there are 

45 coefficients comprising 21 elastic compliances (   
 ), 6 permittivities (   

 ) and 18 

piezoelectric constants (dik). Here E and T refer to constant electric field and constant elastic 

stress respectively. The dots or filled circles mean a non-zero component, blank spaces are zero 

coefficients, tie lines mean equality required by symmetry and open circles mean equal value but 

opposite sign as seen in figure C.1. 
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Fig. C.1: Elasto-electric matrices for the 32 crystal classes [2] 

 

Piezoelectric crystals can be used to generate and detect ultrasonic waves since the 

indirect piezoelectric effect is still works at high frequencies. A necessary but not sufficient 

condition for piezoelectricity is the absence of a center of symmetry since the occurrence of 

electric dipole moments in solids is due to ions on crystal lattice sites with asymmetric charge 

surroundings being induced. The sign of the induced potential difference depends on whether a 

compression or an expansion was applied. For dielectric media, two piezoelectric constitutive 

relations can be written as [1], 
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               (C.1) 

where, 

D – electric displacement 

E – electric field 

0 – permittivity 

P – polarization 

and, 

        
                (C.2) 

where, 

e – piezoelectric stress constant 

 

C.2 Piezoelectric coupling factor 

Denoted as K
2
, the electromechanical coupling coefficient is a numerical measure of 

conversion efficiency of electrical energy in to acoustic energy or vice versa in piezoelectric 

materials. It expresses the coupling of electrical and mechanical energy. This can be expressed as 

[2], 

   
  

√    
      (C.3) 

Where, 

Um = mutual energy between electrical and acoustic components 
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Ue = elastic energy 

Ud = dielectric energy 

The one dimensional equation of motion for the propagation of acoustic waves along the z-axis 

in a piezoelectric medium can be obtained as [1], 

 
   

       (   
  

    )
   

        (C.4) 

As seen from equation (C.4) the sound velocity in a piezoelectric medium   
  is stiffened 

compared to the usual sound velocity    √
  

 
 as follows, 

  
     √          (C.5) 

where the piezoelectric coupling constant, 

    
  

          (C.6)  

This is valid only when D = 0 and for transversely clamped transducers where width is 

much greater than the wavelength. The impedance of a transducer is determined by the effective 

coupling constant   
 , 

    
   

  

           (C.7) 

Piezoelectric coupling factor can be written as, 

      
     

     
      (C.8) 

where, 

Uelec – stored electrical energy 
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Uelas – stored elastic energy 

 

C.3 Equations of the piezoelectric medium 

These equations are derived from thermodynamic potentials. The piezoelectric constants 

relate 2
nd

 order symmetric tensors to vectors and they themselves are 3
rd

 order tensors. The 

elastic constants relate two 2
nd

 order symmetric tensors and are 4
th

 order tensors themselves. The 

dielectric constants relate two vectors and therefore are 2
nd

 order tensors themselves. In the most 

general case magnetic field should also be included, which gives [2], 

                           (C.9) 

Where, 

D – electric displacement component 

H – magnetic field 

S – entropy 

 - temperature 

i – 1, 2, 3, 4, 5, 6 

m – 1, 2, 3 

Then it follows, 

   

   
  

   

   
     

   
  Piezoelectric constant 

   

   
  

   

   
     

   
  Piezomagnetic constant 
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  Pyroelectric constant 

   

  
  

  

   
    

   
  Pyromagnetic constant 

   

   
  

   

   
     

   
  Magneto-dielectric constant  (C.10) 

   

  
  

  

   
    

   
  Thermal expansion constant 

(
   

   
)
     

     
     

  Elastic compliance 

(
   

   
)

     
     

     
  Dielectric constant 

(
   

   
)

     
     

     
  Permeability constant 

Here, 

j – 1, 2, 3, 4, 5, 6 

m – 1, 2, 3 

Pyroelectricity is the generation of a temporary voltage in a certain material when 

subjected to a temperature change. The temperature change makes the atoms move slightly 

changing the polarization of the material. This polarization causes a generation of voltage. 

Similarly pyromagnetism is the generation of a magnetic field due to a temperature change.  

In a piezoelectric medium stress is a function of not only the geometric strain but also of 

the electric field. In practice effects of magnetic fields are ignored when dealing with 

piezoelectric materials and effects of electric fields are neglected when considering magnetic 
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materials. For piezoelectric materials that are not pyroelectric, piezoelectric and dielectric 

constants are similar whether it’s in adiabatic or isothermal conditions.  

Piezoelectric media are anisotropic. For any direction of propagation there are three 

possible acoustic waves with mutually perpendicular directions of vibration and in general with 

different velocities. General wave equation can be written as, 

 
    

        
     

        
   

  
    (C.11) 

Where 

 - density of medium 

c – elastic constant 

Acoustic waves in piezoelectric semiconductors can be amplified or attenuated by 

applying a dc electric field parallel to the propagation direction. The interaction of the direct 

current in the piezoelectric medium with the elastic wave creates a travelling ac electric field. 

Coupling between electromagnetic waves due to piezoelectric effect is negligible. Mechanical 

damping gives rise to an additional force on a unit volume which is proportional to the velocity 

of the wave. 

 

C.4 Piezoelectric properties of materials 

Piezoelectric constants are proportional to the electric field generated by a unit 

mechanical stress or alternatively to the mechanical strain produced by a unit electric field. 
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Table C.1: Piezoelectric constants of LiNbO3, LiTaO3 and PZT [7] 

Piezoelectric 

Constant 

Lithium Niobate Lithium Tantalate PZT-4 (Navy Type I) 

d15 (x10
-11

 C/N) 6.8 2.6 50.0 

d22 2.1 0.7  

d31 -0.1 -0.2 -12.2 

d33 0.6 0.8 29.5 

e15 (C/m
2
) 3.7 2.6  

e22 2.5 1.6  

e31 0.2 0.0  

e33 1.3 1.9  

g15 (x10
-2

 m
2
/C) 9.1 5.8 3.9 

g22 2.8 1.5  

g31 -0.4 -0.6 -1.06 

g33 2.3 2.1 2.49 

h15 (x10
9
 N/C) 9.5 7.2  

h22 6.4 4.3  

h31 0.8 0.0  

h33 5.1 5.0  
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C.4.1 PZT Ceramic 

PZT is the inorganic compound lead zirconate titanate with the chemical formula   

Pb[ZrxTi1-x]O3 (0 ≤ x ≤ 1). It is renowned for its piezoelectric effect which has many 

applications. When compressed there occurs a potential difference across two of its faces. 

When an external electric field is applied a change in its physical shape occurs. It is also 

pyroelectric and ferroelectric adding to its applications. PZT is used in producing ultrasound 

transducers, sensors, actuators, ceramic capacitors as well as ceramic resonators for reference 

timing in electronics circuitry. It is commercially used not in its pure form but rather doped 

with acceptors or donors. Acceptors create oxygen vacancies and donors create metal 

vacancies to facilitate domain wall motion. Acceptor and donor doping create hard and soft 

PZT respectively differing in piezoelectric constants. Soft PZT has a higher piezoelectric 

constant and higher losses whereas hard PZT has a lower piezoelectric constant and lower 

losses. One of the more commonly used PZT ceramics is PbZr0.52Ti0.48O3. It has a higher 

piezoelectric response and poling efficiency due to the increased number of allowable 

domain states. PZT is a metallic oxide based piezoelectric material found in the Tokyo 

institute of technology around 1952. It is formed under extremely high temperatures. 

Compared to the previously discovered piezoelectric material barium titanate, PZT has a 

higher sensitivity and a higher operating temperature. Other material characteristics include 

high dielectric constant, high coupling, high charge sensitivity, high density with a fine grain 

structure, high Curie point and a noise free frequency response. 
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C.5 Applications 

C.5.1 Interdigital transducers 

The advantage of surface acoustic waves (SAW) is that they are accessible at the surface 

making them be adapted to the technology easily. The acoustic energy is usually contained 

within 1 to 100m from the surface. Thus it’s easy to construct a delay line travelling along the 

surface. Because of the easy accessibility of the surface, a delay line can be tapped at several 

points creating a transversal filter. 

 

Fig. C.2: Excitation and detection of surface acoustic waves by an interdigital transducer 

Interdigital transducers convert an electric signal into a surface acoustic wave and 

reconvert it into an electric signal. These are usually used to excite surface acoustic waves in a 

piezoelectric material. As shown in figure C.2, an electric field excites a surface acoustic wave in 

the piezoelectric substrate and it is reconverted to an electrical signal at the electrode at the other 
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end. It is efficient to use an interdigital transducer consisting of several pairs of electrodes or 

fingers. A pair of electrodes excites a Rayleigh wave and these combine to form a large enough 

acoustic signal. Frequency is chosen such that between each two fingers there is one wavelength. 

A transducer with many fingers works efficiently over a narrow frequency range and is used to 

filter various frequency signals from one another. 

 

C.5.2 Network theory of the transducer 

The network theory is an equivalent circuit method on the idea that the response of a 

single finger is similar to that of a bulk wave transducer. It is useful in determining the electrical 

input impedance and the frequency response of an interdigital transducer. Another approach is 

the use of the normal mode formalism which is based on the conservation of power. Another is 

based on wave impedance concepts. Yet another one is a direct solution of the field theory. 

Electrical equivalents to the acoustic force Fi and terminal velocity Vi are defined as [3], 

    
  

 
     (C.12) 

Where  is the transformer ratio, 

   
   

 
 

h – piezo constant 

Cs – capacitance of one periodic section 

Then the mechanical impedance Z0 of the substrate can be expressed as, 
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      (C.13) 

Where, 

0 = 2v/l = synchronous frequency 

v – acoustic velocity 

l – periodic length of the system 

K – effective electromechanical coupling constant 

Electromechanical coupling constant is the change of velocity of the wave in the medium 

when the RF field between the electrodes is shorted out. Using the ratio of stiffened and 

unstiffened velocity of a piezoelectric medium (V/V), the fractional change in velocity of a 

bulk wave transducer when there is no electric field within the medium can be obtained as,  

  

 
  

   

 
     (C.14) 

 

A correction factor is added to compensate for the effect of changing the finger width and (C.14) 

can be written more generally as, 

     |
  

 
|       (C.15) 

Where, 

f – filling factor 
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C.5.3 Bulk acoustic wave transducers 

The transducer element is a cut from an oriented piezoelectric crystal. This makes the transverse 

and longitudinal waves emitted perpendicular to the faces. Electrodes which are generally 

vacuum deposited gold on a thin chromium film, are at the opposite faces as shown in figure 

C.3(a) The electrodes ate usually about 0.5m in thickness. 

      

Fig. C.3: Electric field in an (a) ideal thickness mode piezoelectric transducer and (b) One with 

coaxial electrode configuration [1] 
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