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ABSTRACT

The collision of counter propagating ocean surface waves of like periods is known to produce

an infrasonic signal termed a microbarom. It has been suggested that microbaroms associated with

large maritime storms are generated far from the storm center at a location in which the storm

swell and background swell have equal period and are counter-propagating. It is shown in this work

that the interaction of the atmospheric microbarom signal generated by a large maritime storm

with the cyclonic winds of the storm results in a characteristic acoustic signal far from the storm

which could potentially be used to estimate storm intensity from infrasonic measurements.

Numerical propagation modeling has predicted that one particular characteristic, back az-

imuth, might be analyzed to estimate storm intensity. For a storm in the open Atlantic, micro-

baroms which have strongly interacted with the storm winds are predicted to have back azimuths

oriented towards the storm center and are only expected to be observed in a localized region to the

northwest of the storm. Microbaroms which have weakly interacted with the storm are predicted

to have back azimuths oriented towards the source region and are expected to be observed most

clearly from the south of the storm. The size of the region in which the strongly interacting signal is

observed has been found to be strongly dependent on wind speeds in the storm center and therefore

observation of this signal might allow estimation of storm intensity from infrasonic data.

Acoustic data has been collected during the 2010 and 2011 Atlantic hurricane seasons using

infrasound arrays deployed in Florida, North and South Carolina, New Jersey, New York, and

Connecticut. Observations of microbaroms which have not interacted strongly with the storm are

in agreement with the prediction that the location of the microbarom source region is far from the

storm center. Additionally, observations of microbaroms with back azimuths such that interaction

with the storm is likely are in strong agreement with predictions from propagation modeling.
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CHAPTER 1

INTRODUCTION

Infrasonics involves the study of acoustic radiation at frequencies below the range of human

hearing. Acoustic energy refers to the presence of elastic longitudinal waves in a fluid. Displacement

of a boundary surface or localized compression or rarefaction causes a disturbance of the particle

locations within the fluid. Such displacement results in a restoring force on the particles which can

produce traveling waves in an unbounded fluid or standing waves in a contained fluid. The human

ear can detect sound with frequencies as low as 20 Hz, and the human body can sense vibrations

at even lower frequencies. This 20 Hz threshold defines the upper limit of infrasonic frequencies.

Infrasound can be generated by both natural and anthropomorphic sources. Severe weather, surf,

avalanches, earthquakes, bolides, aurorae, and lightning are known to produce natural infrasound.

Sonic booms, chemical and nuclear explosions, and large machinery are known sources of man-made

infrasound.

The Objective of This Work

The goal of this project is to extend the understanding of the continuous infrasonic signals,

termed microbaroms, generated by large maritime storms in the open ocean and to develop a

physical model for the interaction between the microbaroms and the strong winds of the storm. The

general mathematical theory describing microbarom generation by colliding ocean waves has been

established since the 1950’s and is straightforward [1]. However, the surface wave structure around

a large maritime storm can be complex and highly energetic leading to difficulty in identifying

how and where the microbaroms associated with a large storm are generated [2, 3]. Here, the

microbarom generating model suggested by Hetzer et al. has been examined using an axially
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symmetric storm wind model to approximate the surface wave structure beneath the storm [3]. It

is expected that the interaction of the storm induced swell with the background swell will produce

the counter propagating waves required to generate microbaroms at a location far from the storm

center.

The microbaroms propagate away from this source region in all directions. The energy

that propagates away from the storm center interacts with the weaker storm winds in the region,

while the energy that propagates towards the storm center interacts with the much stronger wind

field around the storm eye. The propagation of the microbaroms from the source region through

the storm winds has not been investigated previously and is the primary focus of this research.

Geometric acoustics has been used to model the propagation of the microbaroms through the

storm wind structure and measure the refraction effects due to the strong wind gradients in the

storm center. Strong horizontal refraction is predicted for microbaroms which propagate near the

eye column and the severity of the refraction has been found to be dependent on storm intensity.

From this result, it is expected that by monitoring this refraction one could infer some measure of

the storm intensity from the characteristics of the acoustic signal.

The signal far from the storm is expected to contain some contribution which has weakly

interacted with the storm wind field away from the eye and, possibly, a second contribution which

has been strongly refracted by the storm winds around the eye. The back azimuths of these two

signals are expected to differ by a measurable separation far from the storm. Therefore, by moni-

toring the back azimuth of microbaroms observed far from the storm, it could be possible to extract

information regarding the storm’s wind structure from the signal characteristics. The propagation

model predictions have been compared with observations taken during the 2010 and 2011 Atlantic

hurricane seasons. These experimental results have been promising, however, additional obser-

vations are necessary in order to better understand if the model developed here is an accurate

physical description of the interaction. Recommendations are provided regarding array design and

data processing for future experiments designed to more thoroughly investigate the storm produced

microbarom signal.

Alternate methods to probe the interior structure of a large maritime are difficult and can

be dangerous. The first direct measurements of a large maritime storm were performed by an

American Army Air Corps pilot, Joseph Duckworth, who flew into the eye of a hurricane on July
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27th, 1943 [4]. Since that time, instrumentation has advanced to include improved reconnaissance

aircraft, land-based radar, and weather satellites. The physical model describing the microbarom

interaction with the storm developed here provides the framework to develop a method to extract

information regarding the wind structure in the boundary layer of the storm using the characteristics

of the infrasonic signal far from the storm. Such information is not intended to replace any of these

other data sources, but to provide an additional source of data regarding the storm structure.

The predictive tools used to forecast maritime storm dynamics have advanced substantially

in the past decades, however the accuracy of such predictions are limited by the accuracy of the

measurements used to parameterize the predictive models. One of the most difficult phenomena to

predict in the dynamics of a large maritime storm is a rapid intensification such as that observed

by a number of strong storms which made landfall in the United States in past decades [5]. Such

phenomena could likely be monitored using the microbarom signal. Unlike the periodic measure-

ments taken by aircraft, the microbarom signal which interacts with the internal wind structure

of a hurricane can provide a continuous, near-real-time measure of the storm interior which can

be analyzed quickly. Additionally, the primary delay involved is due to propagation time. As a

large storm approaches a coast-line, the propagation distance to infrasonic arrays along the coast

decreases and the infrasonic monitoring becomes even closer to a real-time data source.

Acoustic Propagation and Past Microbarom Research

In a uniform medium, acoustic energy radiates spherically away from a source. Variations in

the temperature and flow velocity of the medium can greatly alter the propagation of the acoustic

signal [6, 7, 8, 9]. The speed at which sound propagates through a stationary, ideal gas is given

by the thermodynamic sound speed c =
√
γRT , where γ is the adiabatic index, R is the universal

gas constant, and T is the temperature of the gas in Kelvin [6, 7]. For reference, γR = 402.8 m2

s2K
in

air. In a medium which varies in temperature, an acoustic wave is deformed due to some portions

of the wavefront traveling faster than others. Consider, as an example, a stratified atmosphere.

In the case that temperature increases with altitude, the portion of the wavefront slightly higher

in the atmosphere travels faster and the sound is refracted downward. Alternately, if temperature

decreases with altitude the portion of the wavefront slightly higher up will travel slower and the

3



sound is refracted upward. Similar refraction occurs in the case of changes in fluid flow speed in

the direction that the wave is propagating.

The result of this refraction can be measured using an array of microphones. As an acoustic

signal moves across the array, it arrives at each microphone with some delay in time due to its

finite propagation velocity. The time delays between multiple pairs of microphones can be used to

estimate the speed at which the signal moved across the array, termed its trace velocity, and the

direction in which it was traveling, termed its direction of arrival (DOA) or back azimuth. The

vertical refraction of the signal will produce some change in the angle at which the signal arrives at

the ground, which influences its trace velocity. Horizontally, the acoustic signal can be displaced by

strong cross winds or refracted by horizontal gradients in the winds, producing differences between

the back azimuth and the azimuth to the true source location. In most cases, horizontal gradients

in the atmosphere are too weak to produce any significant propagation effects and most horizontal

propagation effects are due to cross winds. However, in the case of a large maritime storm, the

large wind gradients near the eye wall are expected to produce strong horizontal refraction.

In addition to the refraction of the sound, acoustic energy is absorbed by the propagation

medium resulting in attenuation of the signal as it propagates. In general, this attenuation is

approximately proportional to 1√
f

where f is the frequency of the acoustic energy [6]. Because of

this dependence, lower frequency signals, such as those in infrasonics, are very weakly attenuated

as they propagate in the atmosphere and can be detected at very large distances from the source.

Attenuation of sound by the propagation medium is due to two types of processes: classical effects

and relaxation effects. Classical effects include molecular diffusion, internal friction, and heat

conduction in the fluid [6]. In the case of relaxation effects, some of the acoustic energy is lost in

the kinetic, vibrational, and rotational energy of the particles in the fluid [6].

The microbarom signal of interest to this project is a continuous form of infrasonic energy

produced by active regions of the ocean surface which radiates into the ocean and atmosphere. Typ-

ical amplitudes of the microbarom signal are ∼ 0.1 Pa√
Hz

and ∼ 100 Pa√
Hz

for atmospheric and oceanic

microbaroms respectively. Microbaroms typically have a maximum amplitude at a frequency of

0.2 Hz with energy distributed between 0.15 and 0.3 Hz. This band is in the detection range for

1-kiloton nuclear explosion tests and therefore the microbarom signal complicates observation of

such signals [10]. Applications have been proposed by a number of scientists to use the micro-

4



barom background as a passive probe of ocean surface activity, weather phenomena, and acoustic

tomography of the atmosphere [11, 12, 13, 14, 15, 16].

The study of microbaroms and microseisms, a seismic signal now known to be generated

by the same mechanism, began with observations by Benioff and Gutenberg in 1939 and Baird

in 1940 [17, 18]. A mathematical theory for the generation of microseisms was developed several

years later during the 1950’s by Longuet-Higgins [1]. Additional research showed correlations of the

locations of microbarom and microseism sources [19, 20, 21]. Comparison of these correlations with

meteorological and oceanographic data lead to speculation that strong storms over the open ocean

and the resulting active ocean surface dynamics are a driving mechanism of both microbaroms and

microseisms.

A more thorough derivation of the generating mechanism for microbaroms and microseisms

was presented by Waxler and Gilbert in 2006 [22]. The mathematical theory describing the radiation

of atmospheric and ocean microbaroms is constructed by expanding the equations of fluid mechanics

at the air-water interface to second order in small perturbations. At linear order, the interface

conditions result in evanescent perturbations and no acoustic radiation occurs. At second order a

wave equation is found with a source term containing the linear order velocity (that is, a source term

which is only non-zero near the interface) [22]. From this result, it can be shown that microbaroms

are excited by the collision of ocean surface waves of equal period [22, 1, 23].

As mentioned previously, infrasonic signal observed some distance away from the the source

are dependent on the propagation medium and the characteristics of the source. The strength

and direction of the wind in the stratosphere greatly affects the strength of the microbarom signal

detected at at given receiver location. Some regions of the oceans continuously generate micro-

baroms due to colliding currents or interaction with continental shelves and coast lines. A number

of studies have been published using microbaroms to monitor seasonal variations in the atmo-

spheric winds and temperature [12, 24, 14, 16, 15, 13]. Studies published by Donn and Rind in

the 1970s demonstrated a correlation of microbarom amplitude variability to solar tide fluctua-

tions and stratospheric warmings using microbaroms generated by storm sources from the North

Atlantic [12, 16]. More recent studies by Le Pichon et al. used microbarom signals to study winds

over horizontal distances of several thousand kilometers [14]. Seasonal trends in observations have

been studied using a geometric propagation model and high-resolution atmosphere specifications
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by Dessa et.al [25].

It has been found by Walker that the strength of the microbarom source region is critically

important in predicting observations. During the boreal winter months in the North Pacific, open

ocean and near-coastal microbaroms can be produced and observed regardless of propagation di-

rection due to the high energy levels of the signal. During the summer months, the energy level

decreases and observations are limited to arrays downwind in the stratospheric duct [26]. Walker

has demonstrated that there is a high correlation between inferred microbarom source regions and

counter propagating waves predicted by the NOAA Wave Watch 3 (NWW3) directional wave spec-

tra from bouy locations. It is proposed that the microbarom observations could be used to validate

the results of NWW3 [26].

In addition to the model proposed by Hetzer et al., research in 2011 by Stopa et al. has

suggested that microbaroms can be generated by a large, stationary maritime storm regardless

of ambient conditions due to the convergence of the cyclonic waves near the storm center. For a

non-stationary storm, the forward motion of the storm produced opposing waves from the front and

rear quadrants which radiate microbaroms [27]. Applying this method to NWW3 data for cyclones

Felicia and Neki from 2009, Stopa et al. have been able to recreate the observed tropical cyclone

and ambient wave conditions for microbarom sources due to the storms and predict microbarom

source regions around the storms [28]. The resulting model predicts the possibility of microbarom

sources ahead and alongside the storm due to the interaction of the storm swell and ambient swell.

The model proposed by Stopa et al. predicts the microbarom source theorized by Hetzer et al.,

however, it also allows for a large number of additional sources to form depending on ambient ocean

swell, storm intensity, and storm velocity. In this work, the model proposed by Hetzer et al., will

be discussed and used to model the generation of microbaroms by a large maritime storm.

Outline of the Thesis

The structuring of the work presented here is as follows. Chapter 2 contains a derivation of

the generating mechanism of infrasonic energy by colliding sea surface waves and an explanation

of how such a wave structure is generated by a large maritime storm. The exact location of

the source region relative to the storm center can be predicted using these results. Chapter 3
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includes a background on the approximation of geometric acoustics used to model the propagation

of the microbarom signal. Using the results of this propagation model, an in depth discussion

of the predicted interaction of the infrasonic energy with the storm winds in both two and three

dimensional models is presented. Chapter 4 summarizes the deployments of infrasonic microphones

along the Atlantic coast of the United States along with overviews of the 2010 and 2011 Atlantic

Hurricane seasons. The data processing methods developed and used in this project are discussed

in Chapter 5 including a robust multi-signal classification method with statistical model selection,

a most simplified processing method for sparse arrays, and recommendations regarding future

deployments. Analysis of the data collected during 2010 and 2011 is summarized in Chapter

6. Finally, conclusions and recommendations for future work related to studies of microbaroms

generated by and interacting with large maritime storms are listed in Chapter 7.
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CHAPTER 2

GENERATION OF MICROBAROMS BY A LARGE

MARITIME STORM

Longuet-Higgins developed a theory for the generation of oceanic microbaroms and, through

interactions with the ocean floor, microseisms [1]. Hasselmann extended Longuet-Higgins’ theory

to a general sea state and developed a connection between the stochastic model used to describe

ocean waves and the statistics of the observed microseism signal [21]. Brekhovskikh demonstrated

that a large part of atmospheric microbarom signal is due to radiation of sound by pressure fluctu-

ations produced in the water by the motion of the ocean surface [29]. Waxler and Gilbert extended

the work of Longuet-Higgins, Hasselmann, and Brekhovskikh to develop a rigorous mathematical

description of the mechanism which generates atmospheric and oceanic microbaroms via the fluc-

tuations discussed by Brekhovskikh as well as compression of the air by the ocean surface motion

[22].

Here we summarize the theoretical basis published by Waxler and Gilbert for the generation

of microbarom radiation from an active sea state, discuss the coupling mechanism by which the

cyclonic winds of a large maritime storm generates the ocean surface wave pattern necessary to

generate microbaroms, and demonstrate the manner in which the interaction of the surface waves

of a maritime storm and the background ocean swell can generate microbarom radiation.

The Microbarom Generation Mechanism

We set up the source region description as follows. Two fluids of different densities (air

and water) are under the influence of gravity and therefore a stratified medium is formed with the

interface between the air and water defining a plane at z = 0. Energy in the system can produce

8



displacement of the interface surface which we describe as ζ (~xH , t) where ~xH is some location in

the horizontal plane ~xH = (x, y).

The Sea State

The sea state is typically described statistically and therefore it is often expressed using its

Fourier components [30, 31],

ζ (~xH , t) = Re

[∫
ζ̂
(
~k
)
ei(

~k·~xH−ω(~k)t)d2k

]
. (1)

Assuming, further, that the process is Gaussian with mean zero, we can denote the expectation

value by 〈
ζ̂
(
~k
)
ζ̂ (~q)

〉
=
〈
ζ̂∗
(
~k
)
ζ̂∗ (~q)

〉
= 0, (2a)〈

ζ̂
(
~k
)
ζ̂∗ (~q)

〉
= F

(
~k
)
δ
(
~k − ~q

)
, (2b)

where we’ve defined F
(
~k
)

to be the wave number spectral density function. The physical interpre-

tation of this is that the wind field over the ocean surface provides some energy to the ocean surface

which develops some steady state described by a superposition of linear waves whose statistics are

described by F
(
~k
)

.

Additionally, if the sea state dispersion relation 2πf = ω
(
~k
)

is known, one can relate the

wave vector density function to the directional spectral density function F (f, θ) by [30, 31]

F
(
~k
)
d2k = F (f, θ) dfdθ, (3)

where f is frequency in Hz and θ is a direction of propagation relative to some fixed reference

direction. As a function of θ, F (f, θ) is generally strongly peaked at angles near those of the

direction of the prevailing winds. Integrating over θ, one can find the frequency spectrum,

F̄ (f) =

∫ 2π

0
F (f, θ) dθ,

which can then be used to calculate the “significant wave height”,

H = 4

√∫
F
(
~k
)
d2k = 4

√∫ ∞
0

F̄ (f) df. (4)

9



In the case of deep water, one can show that ω
(
~k
)

=
√
gk where g is the gravitational

acceleration [32]. Observations have shown that ζ̂ in Eq. (1) is strongly peaked at 0.1 Hz, which

produces a surface wavelength of 2π
k ≈ 150 meters. The nonlinear nature of the microbarom gener-

ation results in frequency doubling and a dominant microbarom peak at 0.2 Hz. This corresponds

to acoustic wavelengths of 1.7 and 7.5 kilometers in air and water respectively. Thus, the ocean

surface wavelength is much shorter than the acoustic wavelengths and the values of ~k for which

F
(
~k
)

are significant satisfy,

ω

cw
<
ω

ca
� k. (5)

Equations of Motion in the Source Region

Consider some region around the air-water interface which we will denote as S. The region

extends above and below the interface to a greater extent than the ocean surface wavelengths, but

much less than the acoustic wavelengths in air and water. Within this region the air and water

obey the equations of lossless fluid mechanics. One has the continuity of mass, Euler, and adiabatic

state equations [7],

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (6a)

ρ

(
∂~v

∂t
+
(
~v · ~∇

)
~v

)
+ ~∇p = −ρg~̂z, (6b)

ρ = fσ (p) , σ = a (air) , w (water). (6c)

Note that the equation of state differs in the two media. These equations must hold in the bulk

of each fluid separately. In addition to the conditions in Eq. (6), the pressure and normal velocity

must be continuous across the interface,

p
(
~xH , ζ + 0+, t

)
= p

(
~xH , ζ − 0+, t

)
, (7a)

~n (~xH , t) ·
[
~v
(
~xH , ζ + 0+, t

)
− ~v

(
~xH , ζ − 0+, t

)]
= 0, (7b)
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where ~n is an upward pointing normal vector to the interface which can be defined as,

~n (~xH , t) =

−~∇Hζ
1

 , ~∇H =

 ∂
∂x

∂
∂y

 .

Lastly, the vertical component of the interface motion must equal that of the adjacent fluid,

vz
(
~xH , ζ ± 0±, t

)
=
∂ζ

∂t
+ ~v

(
~xH , ζ ± 0+, t

)
· ~∇ζ =

Dζ

Dt z=ζ±0+
, (8)

where D
Dt = ∂

∂t + ~v · ~∇ is the convective derivative.

Solving by Perturbation

Solving Eq. (6) and (7) with ζ 6= 0 requires an approximation of some kind. The nonlinear-

ities in such a description are best treated using perturbative expansion about some ambient state

[33, 34]. The pressure, density, velocity, and displacement can be expanded about the ambient

state as

p = p0 + p1 + p2 + . . . , (9)

with similar expansions for ρ, ~v, and ζ. It is assumed that in the ambient state, ζ0 = 0. Here

we’ve denoted solutions of the linear approximation by subscript 1’s and terms quadratic in linear

solutions as subscript 2’s. Keeping terms up to second order, the equations of fluid mechanics

become,

∂ρ0

∂t
+ ~∇ · (ρ0~v0) (10a)

+
∂ρ1

∂t
+ ~∇ · (ρ1~v0 + ρ0~v1) (10b)

+
∂ρ2

∂t
+ ~∇ · (ρ2~v0 + ρ0~v2 + ρ1~v1) + . . . = 0, (10c)

11



ρ0
D~v0

Dt
+ ~∇p0 + ρ0g~̂z (11a)

+ ρ0

(
D~v1

Dt
+
(
~v1 · ~∇

)
~v0

)
+ ρ1

D~v0

Dt
+ ~∇p1 + ρ1g~̂z (11b)

+ ρ0

(
D~v2

Dt
+
(
~v2 · ~∇

)
~v0 +

(
~v1 · ~∇

)
~v1

)
+ ρ1

(
D~v1

Dt
+
(
~v1 · ~∇

)
~v0

)
+ ~∇p2 + ρ2g~̂z + . . . = 0, (11c)

and the state equation can be written as a Taylor series expansion in the pressure. Additionally,

the boundary conditions become,

p0

∣∣∣
±0+

(12a)

+

[
p1 + ζ1

∂p0

∂z

]
±0+

(12b)

+

[
p2 + ζ2

∂p0

∂z
+ ζ1

∂p1

∂z
+

1

2
ζ2

1

∂2p0

∂z2

]
±0+

+ . . . = 0, (12c)

v0z

∣∣∣
±0+

(13a)

+

[
v1z + ζ1

∂v0z

∂z

]
±0+

(13b)

+

[
v2z + ζ1

∂v1z

∂z
− ~v1 · ~∇ζ1

]
±0+

+ . . . = 0, (13c)

v0z

∣∣∣
±0+

(14a)

+ v1z

∣∣∣
±0+
− ∂ζ1

∂t
(14b)

+

[
v2z + ζ1

∂v1z

∂z
− ~v1 · ~∇ζ1

]
±0+

− ∂ζ2

∂t
+ . . . = 0, (14c)

where we’ve used the simplification that ζ0 = 0 in the unperturbed ambient state. In each of these

equations (a) denotes the zeroth order unperturbed state, (b) denotes the linear perturbation, and
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(c) denotes the second order perturbations.

Ambient State. With ζ0 set to zero, the only forcing on the system in the zeroth order state is

gravity and one has p0 (z), ρ0 (z), and ~v0 (z) with vz (z) = 0. This reduces the equations of fluid

mechanics to the simple conditions

dp0

dz
= −ρ0g →

∫ p0(z)

p0(0)
=

1

f (p0)
dp0 = −gz. (15)

The state equations in the source region for the ambient state is given by ρσ = fσ (p0(0)) which

allows one to use the adiabatic small-signal sound speeds at the interface, cσ =
√

1
f ′σ(p0(0)) , where

the prime denotes differentiation with respect to p0. The expansion of the pressure can be written,

p0 (z) = p0 (0)− ρσgz +
ρσg

2

2c2
σ

z2 + . . . . (16)

For the case here we assume that ~v0 = 0 and from the above we note that ρ0 and c0 are discontinuous

but approximately piece-wise constant at the interface.

Linear Response. At linear order, the equation of state simply relates c2
σρ1 = p1 and the linear

equations in Eq. (10b) and (11b) can be written as,

∂p1

∂t
+ ρσc

2
σ
~∇ · ~v1 = 0, (17a)

~∇p1 + ρσ
∂~v1

∂t
+ gρ1

~̂z = 0. (17b)

The interface conditions can be simplified by the results of the zeroth order state, yielding

[p1 − ρσgζ1]±0+ = 0, (18a)

∂ζ1

∂t
= v1z

(
~xH , 0

+, t
)

= v1z

(
~xH ,−0+, t

)
. (18b)

A velocity potential, φ1, can be introduced which satisfies

~v1 = ~∇φ1 + ~w1, ~∇ · ~w1 = 0, (19a)

p1 (~x, z, t) = −ρσ
∂φ1

∂t
. (19b)
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Eq. (17b) can be satisfied by requiring ρσ
∂ ~w1
∂t = − g

c2σ
p1
~̂z. Combining this with Eq. (17a) results in

a wave equation for the velocity potential,

(
∇2 − 1

c2
σ

∂2

∂t2

)
φ1 = 0. (20)

The source driving the system is the interface motion through the pressure boundary condition.

The interface displacement can once again be expanded into Fourier components,

ζ1 (~xH , t) = Re

[∫
ζ̂1

(
~k
)
ei(

~k·~xH−ω(~k)t)d2k

]
, (21)

where ζ̂ that from Eq. (2). Expanding φ1 in the same manner and substituting it into Eq. (20)

yields,

φ1 (~xH , t) = Re

[∫
φ̂

(σ)
1

(
~k
)
e
i(~k·~xH−ω(~k)t)−

√
k2−ω2

c2σ
|z|
d2k

]
, (22)

and from the above results we can determine that,

ρσ
∂ ~w1

∂t
= − g

c2
σ

p1
~̂z → w1z ∼

g

ω0cσ

p1

ρσcσ
, (23a)

p1 (~x, z, t) = −ρσ
∂φ1

∂t
→ ∂φ1

∂z
∼ k0cσ

ω0

p1

ρσcσ
,

→ w1z ∼
g

ω0cσ

ω0

k0cσ

∂φ1

∂z
. (23b)

And thus ~w1 is negligible compared to ~∇φ1. The resulting pressure and velocity fields can be

written

p1 (~x, t) = Re

[∫
p̂

(σ)
1

(
~k
)
e
i(~k·~xH−ω(~k)t)−

√
k2−ω2

c2σ
|z|
d2k

]
, (24a)

~v1 (~x, t) = Re

[∫
~̂v

(σ)
1

(
~k
)
e
i(~k·~xH−ω(~k)t)−

√
k2−ω2

c2σ
|z|
d2k

]
. (24b)

Substituting these forms into the interface conditions and letting (−1)σ be 1 in air and -1 in water,

one obtains

φ̂
(σ)
1

(
~k
)

= (−1)σ
iω√

k2 − ω2

c2σ

ζ̂1

(
~k
)
, (25a)
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p̂
(σ)
1

(
~k
)

= − (−1)σ
ρσω

2√
k2 − ω2

c2σ

ζ̂1

(
~k
)
, (25b)

~̂v
(σ)
1

(
~k
)

= ω

− (−1)σ
~k√

k2 − ω2

c2σ

− i~̂z

 ζ̂1

(
~k
)
. (25c)

It was previously shown that ω
cw
< ω

ca
� k. Because of this, the oscillations of the interface which

are driving the perturbations can only produce evanescent solutions. The physical pictures of this

result is that the motion of the ocean surface is simply too slow for compression of the air to

generate acoustic radiation [22].

Several useful relations can still be produced from these results. The pressure continuity

requires

0 = (ρw − ρa) g +
ω2

k

 ρw√
1− ω2

k2c2w

+
ρa√

1− ω2

k2c2a

 , (26)

which approximates the expected dispersion relation for surface waves ω =
√
gk. It is worth noting

that with this condition, the two parameters ω0
k0cσ

and g
ω0cσ

are identical. Lastly, we can show that

the first order velocity and pressure can be written in terms of the significant wave height HS ,

v1 ∼ cσ
ωHS

cσ
, p1 ∼ ρσc2

σ

ω0

k0cσ

ω0H2

cσ
. (27)

which are both first order in Mach number, ω0HS
cσ

, while the pressure is also first order in the small

parameter ω0
k0cσ

.

Second Order Response. At second order, the equation of state becomes ρ2 − 1
c2σ
p2 = f ′′(p0)

2 p2
1

and the second order equations in Eq. (10c) and (11c) can be written as,

∂p2

∂t
+ ρσc

2
σ
~∇ · ~v2 =

1− ρσc4
σf
′′ (p0)

ρσc2
σ

p1
∂p1

∂t
− ~v1 · ~∇p1, (28a)

~∇p2 + ρσ
∂~v2

∂t
+ gρ2

~̂z = −p1

c2
σ

∂~v1

∂t
− ρσ

2
~∇ (~v1 · ~v1) . (28b)

Near the interface, one can use the nonlinear form of the equation of state, f ′′ (p0) ≈ −B
A

1
ρσc4σ

[6].

Combining this with the linear result for the order estimate of p1, the right hand sides of the state
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and continuity equations can be estimated,

1

2
f ′′ (p0) p2

1 ∼
B

A
ρσ

(
ω0

k0cσ

)2(ω0HS

cσ

)2

,

1− ρσc4
σf
′′ (p0)

ρσc2
σ

p1
∂p1

∂t
∼
(

1 +
B

A

)
ρσc

2
σω0

(
ω0

k0cσ

)2(ω0HS

cσ

)2

,

~v1 · ~∇p1 ∼ ρσc2
σω0

(
ω0HS

cσ

)2

.

These results are all second order in Mach number, ω0HS
cσ

. Additionally, the two terms containing

f ′′ (p0) are second-order in the small parameter, ω0
k0cσ

, and therefore can be neglected. Similarly, on

the right hand side of the Euler equation one has

1

c2
σ

p1
∂~v1

∂t
∼ ρσcσω0

ω0

k0cσ

(
ω0HS

cσ

)2

,

1

2
ρσ ~∇v1

2 ∼ ρσc2
σk0

(
ω0HS

cσ

)2

.

The first of these is again smaller by two orders of the small parameter ω0
k0cσ

and can be dropped.

Thus we can ignore some terms in the above system of equations and instead solve the simplified

system of equations in which the equation of state has the form c2
σρ2 = p2, and the continuity and

Euler equations are

∂p2

∂t
+ ρσc

2
σ
~∇ · ~v2 = −~v1 · ~∇p1, (31a)

~∇p2 + ρσ
∂~v2

∂t
+ gρ2

~̂z = −ρσ
2
~∇ (~v1 · ~v1) . (31b)

Given this set of equations, all that remains is to determine the interface conditions. The third

term in Eq. (12c) can be simplified by referencing Eq. (17b),

ζ1
∂p1

∂z
= −ρσζ1

∂v1z

∂t
∼ ρσc2

σ

(
ω0HS

cσ

)2

.
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The last term in the pressure boundary condition can be simplified with Eq. (16),

1

2
ζ2

1

∂2p0

∂z2
=

1

2

ρσg
2

c2
σ

ζ2
1 ∼ ρσc2

σ

(
g

ω0cσ

)2(ω0HS

cσ

)2

.

The last term is second order in both Mach number and the small parameter g
ω0cσ

and therefore

can be neglected. Thus one obtains

(p2 − ρσgζ2)
∣∣∣0+

−0+
= ρσζ1

∂v1z

∂t

∣∣∣0+

−0+
. (32)

The second order velocity and interface conditions are given by Eq. (13c) and (14c).

The problem now reduces to substituting the linear solutions into the second order wave

equations and determining the outgoing solutions which satisfy the interface conditions. This pro-

cess can be simplified by assuming that compressibility is insignificant in the linear approximation,√
k2 − ω2(~k)

c2σ
≈ k. The source terms in the velocity and interface displacement conditions can be

written alternately as,

−ζ1
∂v1z

∂z
+ ~v1 · ~∇Hζ1 = −ζ1

~∇ · ~v1 + ~∇H · (ζ1~v1) , (33)

which, in the incompressible approximation, reduces to only ~∇H · (ζ1~v1). This remaining term is

zero since, in the case of microbarom generation, ζ1~v1 is constant for counter propagating waves

with equal period (frequency). Thus, while the right hand side of the v2z condition appears to be

quite large (of order k0cσ
ω0

(
ω0HS
cσ

)2
), its contribution in the case of microbarom radiation will be

small.

Once again we choose to write ~v2 in terms of a velocity potential φ2 which satisfies,

~∇φ2 + ~w2, ~∇ · ~w2 = 0, (34a)

ρσ
∂ ~w2

∂t
+

g

c2
σ

p2
~̂z = 0, (34b)

p2 + ρσ
∂φ2

∂t
= −1

2
ρσ~v1 · ~v1, (34c)

which satisfies the second order Euler equation. As in the linear case, one can show that ~w2 � ~∇φ2
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and therefore this extra contribution to ~v2 is ignored and one is left with ~v2 = ~∇φ2. Combining

the above with the second order continuity and first order Euler equations, one obtains

(
∇2 − 1

c2
σ

∂2

∂t2

)
φ2 =

1

c2
σ

∂

∂t
(~v1 · ~v1) . (35)

Because the linear solution, ~v1, decreases exponentially away from the interface, the driving function

on the right hand side of this wave equation is nonzero only near the interface. Using the form

of the source function on the right hand side and the coupling of the near surface winds with the

ocean surface wave field (which will be discussed in more detail later), one can demonstrate that

microbaroms are produced only in the case of counter propagating waves of equal magnitude. In

the case of two interacting waves ~k1 and ~k2 with equal magnitude but different directions,

ζ1 (~x⊥, t) = Z0

[
ei
~k1·~x⊥−iωt + ei

~k2·~x⊥−iωt
]
. (36)

Comparing this with the relation between ζ1 (~x⊥, t)↔ ζ̂1

(
~k, ω

)
,

ζ1 (~x⊥, t) = Re

[∫
ζ̂1

(
~k, ω

)
ei
~k·~x⊥−iωtd2k

]
→ ζ̂1 = Z0

[
δ
(
~k − ~k1

)
+ δ

(
~k − ~k2

)]
,

which produces a linear velocity perturbation in the atmosphere of the form,

~̂v1 = −Z0ω

 ~k√
k2 − ω2

c2a

+ i~̂z

[δ (~k − ~k1

)
+ δ

(
~k − ~k2

)]
.

~v1 (~x, t) = Re

[∫
~̂v

(σ)
1

(
~k
)
e
i(~k·~xH−ω(~k)t)−

√
k2−ω2

c2σ
|z|
d2k

]
.

= −Z0ωe
−
√
k2−ω2

c2a
|z|

× Re

 ~k1√
k2 − ω2

c2a

+ i~̂z

 ei~k1·~x⊥−iωt +

 ~k2√
k2 − ω2

c2a

+ i~̂z

 ei~k2·~x−iωt

 ,
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and the source term in Eq. (35) goes as

1

c2
a

∂

∂t
~v1 · ~v1 = −2iωZ2

0

ω2

c2
a

e
−2

√
k2−ω2

c2a
|z|

× Re
[
|~C1|2e2i~k1·~x⊥−2iωt + |~C2|2e2i~k2·~x−2iωt

+ 2
(
~C1 · ~C2

)
ei(

~k1+~k2)·~x−2iωt
]
, (37)

where ~Cj =
~kj√
k2−ω2

c2a

+ iẑ. In order to obtain a radiating solution, a source term which oscillates

independently of ~k must be present (otherwise solutions will be evanescent as in the linear case).

Examining the third term, it is immediately clear that such a source term is only possible if

~k1 = −~k2. Thus only counter propagating waves of equal period will generate the source term

necessary to radiate microbaroms into the ocean and atmosphere. This results also produces the

frequency doubling effect observed in the microbarom spectra compared with the ocean surface

wave spectra [30, 31].

The second order wave equation, Eq. (35), contains the effects of nonlinearities in the air

and water themselves. Additionally, the second-order interface conditions in Eq. (32), (13c), and

(14c) contain nonlinear effects due to the motion of the fluid interface. As is usually the practice

in solving any inhomogeneous differential equation, one expands the solution into a particular

solution, φp and a solution to the homogeneous equation, φh [35]. In order to obtain φp, one takes

the first order solution form of ~v1 and plugs them into the second order wave equation using the

incompressible approximation

√
k2 − ω2(~k)

c2σ
≈ k. The resulting source term has the form

1

c2
σ

∂

∂t
(~v1 · ~v1) =

∫∫ [
R(+)
σ

(
~k, ~q
)
ζ̂1

(
~k
)
ζ̂1 (~q) ei((

~k+~q)·~xH−(ω(~k)+ω(~q))t)

+R(−)
σ

(
~k, ~q
)
ζ̂1

(
~k
)
ζ̂1 (~q) ei((

~k−~q)·~xH−(ω(~k)−ω(~q))t)
]

× e−(k+q)zd2kd2q + complex conjugate, (38)

where,

R(±)
σ

(
~k, ~q
)

= − i

c2
σ

ω
(
~k
)
ω (~q)

[
ω
(
~k
)
± ω (~q)

](~k · ~q
kq
∓ 1

)
. (39)
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From this, the particular and homogeneous solutions can be written in the forms

φp (~xH , z, t) =

∫∫ [
Q(+)
σ

(
~k, ~q
)
ζ̂1

(
~k
)
ζ̂1 (~q) ei((

~k+~q)·~xH−(ω(~k)+ω(~q))t)−(k+q)|z|

+Q(−)
σ

(
~k, ~q
)
ζ̂1

(
~k
)
ζ̂∗1 (~q) ei((

~k−~q)·~xH−(ω(~k)−ω(~q))t)−(k+q)|z|
]
d2k d2q

+ complex conjugate, (40)

Q(±)
σ

(
~k, ~q
)

=
R(±)
σ

(
~k, ~q
)

[
(ω(~k)±ω(~q))

2

c2σ

]
+ 2

(
kq ∓ ~k · ~q

) , (41)

φh (~xH , z, t) =

∫∫ [
C(+)
σ

(
~k, ~q
)
ζ̂1

(
~k
)
ζ̂1 (~q) ei((

~k+~q)·~xH−(ω(~k)+ω(~q))t)+iΩ(+)(~k,~q)|z|

+ C(−)
σ

(
~k, ~q
)
ζ̂1

(
~k
)
ζ̂∗1 (~q) ei((

~k−~q)·~xH−(ω(~k)−ω(~q))t)+iΩ(−)(~k,~q)|z|
]
d2k d2q

+ complex conjugate, (42)

Ω(±)
(
~k, ~q
)

=

√√√√(ω (~k)± ω (~q)
)2

c2
σ

−
(
~k ± ~q

)2
. (43)

The resulting second order contribution to the sea state is given by

ζ2 (~xH , t) =

∫∫ [
ζ̂(+)

(
~k, ~q
)
ζ̂1

(
~k
)
ζ̂1 (~q) ei((

~k+~q)·~xH−(ω(~k)+ω(~q))t)

+ ζ̂(−)
(
~k, ~q
)
ζ̂1

(
~k
)
ζ̂∗1 (~q) ei((

~k−~q)·~xH−(ω(~k)−ω(~q))t)
]
d2k d2q

+ complex conjugate. (44)

The coefficients C(±)
(
~k, ~q
)

and ζ̂(±)
(
~k, ~q
)

are determined by the conditions on the interface.

Explicit evaluation of these coefficients in general is difficult, however as discussed previously, in

the case of microbaroms one can make a significant simplification by noting that only the coefficients

with ~q = −~k will contribute to microbarom radiation.

The use of a particular solution and homogeneous solution separates the second

order velocity potential into a term, φp, which is negligible outside of the source region and a

second term, φh, which radiates into the atmosphere and ocean. The particular solution describes
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the nonlinear effects produced in the bulk of the air or water, while the coupling of the homogeneous

solution and particular solution by the interface conditions produces the radiation. That is, the

solution, φp, is produced by the counter propagating waves but does not propagate away from the

interface. Rather, the interface conditions couple φp to the radiation solution, φh, and through the

non-linearities in the interface the microbaroms are generated [22].

The Microbarom Source Associated with a Large Maritime Storm

From the analysis in the previous section, specifically in Eq. (37), it is evident that a

microbarom source region is characterized by counter propagating waves of equal period. There

are a number of possible phenomena which could generate such a state, including interacting ocean

currents, reflections due to continental shelves and coast lines, and cyclonic surface waves induced

by large maritime storms. The last of these is the focus of this study. Here we intend to develop a

formal physical explanation for the expected location of a microbarom source region produced by

a large maritime storm.

Flow Above a Fluid-Fluid Interface

The driving force of surface waves due to a maritime storm is the interaction of the storm

winds with the ocean surface. This interaction is generally overly complicated due to the complexity

of the wind near the surface, however some simple analysis can be used to demonstrate how the

flow couples into the surface wave field. The interaction of a steady flow with a fluid-fluid interface

requires one to include viscosity in the description of the system. That is, the Euler equation, (6b),

is replaced by the Navier-Stokes equation [7, 32, 36],

ρ

[
∂~v

∂t
+
(
~v · ~∇

)
~v

]
= −~∇p+ ν∇2~v + ρgẑ, (45)

where we’ve assumed the fluid to be incompressible and denoted the kinematic coefficient of viscosity

by µ
ρ = ν. Consider then a two dimensional treatment of two fluids bounded at z = 0 and all

horizontal variations contained in the x direction. The Navier-Stokes equation in such a case
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reduces to,

∂vx
∂t

= −1

ρ

∂p

∂x
+ ν∇2vx, (46a)

∂vz
∂t

= −1

ρ

∂p

∂z
+ ν∇2vz − g, (46b)

∂vx
∂x

+
∂vz
∂z

= 0. (46c)

Vector potentials can be used to solve this problem by requiring,

vx = −∂φx
∂x
− ∂φz

∂z
, vz = −∂φx

∂x
+
∂φz
∂z

, (47a)

p

ρ
=
∂φ

∂t
− gz, (47b)

~∇2
Hφx = 0,

∂φz
∂t

= ν∇2φz. (47c)

The vector potentials can then be expanded in normal modes,

φx =
(
Aekz +Be−kz

)
eikx−iωt, (48a)

φz =
(
Cemz +De−mz

)
eimx−iωt, (48b)

which results in the condition m2 = k2−iων . For this analysis we are interested only in the behavior

near the interface and can assume the lower fluid extends to an infinite depth. In order to maintain

finite solutions, B = 0 and D = 0. Thus the velocity of the fluids are given by,

vx = −
(
ikAekz +mCemz

)
eikx−iωt, (49a)

vz = −
(
kAekz − ikCemz

)
eikx−iωt. (49b)

If we again denote ζ (x, t) to be the interface displacement from z = 0, we require ∂ζ
∂t = vz|z=0

which results in the interface displacement,

ζ (x, t) = −i k
ω

(A− iC) eikx−iωt. (50)
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In a system without forcings, the stress conditions at the interface are given by [32, 36],

pzz = −p+ 2µ
∂vz
∂z

= T
∂2ζ

∂x2
, (51a)

pxz = µ

(
∂vx
∂z

+
∂vz
∂x

)
= 0, (51b)

where T is the surface tension at the fluid-fluid interface. Combining these conditions with Eq.

(49) and (50), one finds,

pzz
ρ
− T

ρ

∂2ζ

∂x2
= −∂φx

∂t
+

(
g +

T

ρ
k2

)
ζ + 2ν

∂vz
∂z

=
1

iω

[(
ω2 + 2iνk2ω − gk − T

ρ
k2

)
A

− i
(

2iνkmω − gk − T

ρ
k2

)
C
]
, (52a)

pxz
ρ

= −
[
2iνk2A+

(
−iω + 2νk2

)
C
]
. (52b)

Consider the case that arbitrary forcings given by p′zz, p
′
xz ∼ eikx−iω0t are acting on the interface

with known parameters k and ω0. It can be shown that in the deep ocean result, the dispersion

relation is given by ω2 = gk while the inclusion of surface tension results in the second term which

modifies the dispersion relation resulting in ω2 = gk + T
ρ k

3 [7, 32]. Therefore, scaling these results

by 1
gζ and simplifying,

p′zz
gρζ

=

(
−ω2 − 2iνk2ω + ω2

0

)
A− i

(
ω2

0 − 2iνkmω
)
C

gk (A− iC)
, (53a)

p′xz
gρζ

=
−iω
gk

2iνk2A+
(
−iω + 2νk2

)
C

A− iC
. (53b)

In the specific case that there is no vertical forcing on the surface, p′zz = 0 in Eq. (53a) and

one can solve for a relation between A and C. From this result, one can eliminate A and C in Eq.

(53b) and determine the relation between p′xz and ζ,

p′xz
gρζ

=
ω

gk

(
−iω + 2νk2

)2
+ ω2

0 − 4ν2k3m

−ω2 + 2νk2 − 2νkm
. (54)
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Forcing of the Fluid Interface by Horiztonal Flow

Flow Direction 

ζ
Forcing

Forcing

Fig. 1: The presence of flow
at a fluid-fluid interface results
in a forcing on the surface dis-
placement given by Eq. (55).

In order to determine the forcing necessary to maintain a train of waves of given amplitude on the

interface surface, we assume that ω = ω0. This produces [36],

p′xz = 4νkω0ζ. (55)

Thus the tangential flow acts forwards on the crests of the waves (where ζ is positive) and

backwards on the troughs (where ζ is negative) as seen in Fig. 1. This results in a transfer of energy

from the flow into the surface wave amplitude. When the wind is directed parallel to the wavetrain

with greater velocity than that of the wavetrain, an excess of pressure on the crests of the waveform

produces an increase in the amplitude of the waves to a point at which the dissipation balances the

work done by the surface forces. Alternately, if the wavetrain velocity is greater than that of the

wind or the two are anti-parallel, the interaction results in a damping of the surface wave amplitude

[36]. The result of this interaction is a strengthening of surface waves in the direction of flow and

a dampening of the surface waves in other directions.

The Wind Field of a Large Maritime Storm

The result in Eq. (55) and the subsequent discussion indicates that the wind field near the

ocean surface will produce a traveling wave train parallel to the wind. Therefore, one can infer that

the strong cyclonic winds near the ocean surface generated by a large maritime storm will produce

a cyclonic surface wave pattern underneath the storm. While such a cyclonic wave pattern alone

does not produce the counter propagating waves necessary to produce microbaroms, the collision

of the waves induced by the cyclonic winds with the background swell can produce the surface

wave conditions necessary for microbarom generation at some location away from the storm center
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Pressure and Temperature In a Warm-Core System

Boundary Layer

Tropopause
z

West East

Low

High

Cold Warm Cold
Fig. 2: The pressure and

temperature in a large maritime

storm. Thin lines denote iso-

baroms, dashed lines denote the

upper and lower bounds of the

storm system.

[3]. Thus, an approximation of the surface wave pattern around a large maritime storm can be

constructed from the wind producing the background oceanic swell and the wind field of the storm

near the ocean surface.

The dominant winds produced by a large maritime storm are the result of cyclonic flow

around the low pressure at the base of the eye column and the inflow of air into this low pressure

region. Large maritime storms are warm core cyclonic weather systems centered about an eye

column which has low pressure at its base and high pressure at its peak [37]. An idealized model of

the storm structure is shown in Fig. 2. The thin solid lines in the figure denote surfaces of constant

pressure. The boundary layer extends from the ocean surface to the altitude at which the storm

winds reach a maximum at approximately 1 kilometer above the ocean surface [37]. Large maritime

storms typically extend through the troposphere, with cloud layers ending at the tropopause, 10

to 12 kilometers above the ocean surface.

In order to describe the cyclonic winds in the storm, one can write the Euler equation in

cylindrical coordinates [37],

1

ρ

∂p

∂r
= fcvφ +

v2
φ

r
, (56)

where vφ is the cyclonic wind speed and fc is the Coriolis parameter. Once the storm has reached

an intensity such that fc �
vφ
r , this reduces to the cyclostrophic wind equation [37],

vφ ∼=

√
r

ρ

∂p

∂r
. (57)
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Differentiating Eq. (56) with respect to altitude allows one to relate the horizontal gradient of

the average temperature to the cyclonic wind’s vertical gradient. Consider first expanding out the

vertical derivative,

∂

∂z

[
1

ρ

∂p

∂r

]
= fc

∂vφ
∂z

+ 2
vφ
r

∂vφ
∂z

,

1

ρ

∂

∂r

∂p

∂z
− 1

ρ2

∂p

∂r

∂ρ

∂z
=
(
fc + 2

vφ
r

) ∂vφ
∂z

.

From the hydrostatic equation in (15), one can replace ∂p
∂z = −ρg while the second term can be

simplified by the ideal gas law,

dρ

ρ
=
dT

T
+
dp

p
, (58a)

with some additional approximation. In the troposphere, typical measures of pressure, temperature,

and density are of the order 101 to 5.5 kPa, 288 to 216 K, and 1.23 to 0.088 kg
m3 respectively [37].

Because the temperature variations are roughly a quarter of the pressure and density, one can

approximate the above relation in the troposphere as nearly isothermal,

dp

p
∼=
dρ

ρ
, (58b)

which in the case of vertical gradients reduces to 1
ρ
∂ρ
∂z = 1

p
∂p
∂z = −ρg

p . Combining these results, the

left hand side of the above simplifies as

1

ρ

∂

∂r

∂p

∂z
− 1

ρ2

∂p

∂r

∂ρ

∂z
= −1

ρ

∂

∂r
ρg +

1

ρ

∂p

∂r

ρg

p

= −g
ρ

∂ρ

∂r
+
g

p

∂p

∂r

= −g
ρ

∂

∂r

p

RT
+
g

p

∂p

∂r

= − g

ρR

(
1

T

∂p

∂r
− p

T 2

∂T

∂r

)
+
g

p

∂p

∂r
. (59)

The first and last terms cancel and the remaining term can be simplified to give,

(
2
vφ
r

+ fc

) ∂vφ
∂z

=
g

T

∂T

∂r
. (60)
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From this result it is evident that because the cyclonic winds decrease with altitude above the

boundary layer, the temperature must decrease away from the eye, thus the storm is a warm core

system as expected [37].

Combining the hydrostatic equation in Eq. (15) with the ideal gas law leads to the hypso-

metric equation [37],

(z2 − z1) =
R

g
T̄ ln

(
p1

p2

)
, (61)

which can be used to describe the pressure gradient in a column of air between z1 and z2, with

average temperature T̄ . Consider applying this equation to columns of air in the eye and some

large distance from the storm,

pT,∞ = pB,∞e
− gzT
RT̄∞ , pT,eye = pB,eyee

− gzT
RT̄eye , (62a)

∆pT = pT,∞ − pT,eye = pB,∞e
− gzT
RT̄∞ − pB,eyee

− gzT
RT̄eye

= pB,∞e
− gzT
RT̄∞ − (−∆pB + pB,∞) e

− gzT
RT̄eye

= ∆pBe
− gzT
RT̄eye + pB,∞

(
e
− gzT
RT̄∞ − e−

gzT
RT̄eye

)
. (62b)

One can now define the difference between the ambient temperature and the eye column by T̄eye =

T̄∞ − ∆T̄ with ∆T̄ � T̄eye, T̄∞. Therefore the term in brackets can be expanded to determine a

relation between ∆pT , ∆pB, and ∆T̄ [37].

∆pT = ∆pBe
− gzT
RT̄eye + pB,∞

(
e
− gzT
RT̄∞ − e

− gzT
R

(
1
T̄∞
−∆T̄

T̄2∞
+...

))

= ∆pBe
− gzT
RT̄eye + pB,∞e

− gzT
RT̄∞

(
1− e

gzT
RT̄∞

∆T̄
T̄∞

)
+O

(
∆T̄ 2

)
= ∆pBe

− gzT
RT̄eye − gzT

RT̄ 2
∞
pB,∞e

− gzT
RT̄∞∆T̄ +O

(
∆T̄ 2

)
. (62c)

Inserting approximate values of zT = 15 km, T̄eye = 293 K, and ambient pressure pB,∞ = 101.3

kPa, this result is approximately,

∆pT ∼= 0.15∆pB − 0.7
kPa

K
∆T̄ .
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This equation demonstrates that because the average temperature in the eye is larger than that

outside the storm, ∆pT and ∆pB differ in sign, producing a low pressure region at the base of the

eye column and a high pressure region at the top.

In order to proceed any further, a model for the storm energy cycle and dynamics is useful.

A large maritime storm converts thermal energy absorbed from the ocean surface into mechanical

energy and can therefore be described using an analog of a Carnot heat engine [38, 39, 37]. A

thermodynamic diagram, such as that in Fig. 3, can be used to demonstrate how the cyclone

extracts energy from the ocean.

Beginning at point (1) in the figure, air at the outer boundaries of the storm moves into the

low pressure region at the base of the eye, at point (2). As the air moves across the sea surface in

the storm’s boundary layer, evaporation saturates the air and the absorbed heat coupled with the

pressure decrease leads to an overall constant absolute temperature. That is, the air is drawn from

the outer boundary of the storm into the base of the eye isothermally by the pressure gradient at

the ocean surface. The moisture and heat absorbed from the active ocean surface are the primary

energy source for the storm. From point (2), the air rises moist-adiabatically through the eye

column wall. As the air increases in altitude, the temperature decreases, but at a slower rate than

the ambient air outside of the storm. Air at the base of the eye may differ in temperature only

slightly from air outside the storm at ocean level, however at increased altitudes the temperature

difference increases. The temperature, pressure, and saturation of the air rising through the eye

wall are coupled in such a way that this transition preserves entropy [37].

Circulation of Air in a Warm-Core System 
 Analog to a Carnot heat engine

Boundary Layer

Tropopause

E
ye

 C
ol

um
n

(1)(2)

(3) (4)
z

West East

Fig. 3: Air circulation and

thermodynamic diagram of a

large maritime storm.
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Once the air reaches the top of the eye column, point (3), the high pressure forces the air

to spiral outward over the storm structure at roughly constant altitude. During this outflow, the

air loses heat due to infrared radiation into the tropopause and the temperature decreases to the

ambient value at that altitude. Lastly, the air subsides back dry-adiabatically towards the ocean

surface, warming as it does so. This returns the air to the initial region at point (1), where the

cycle continues until the storm moves over cooler water or a large land mass and the energy source

is no longer present.

The gaining of entropy at one temperature (during inflow along the ocean surface) and

the loss of entropy at another temperature (during outflow in the tropopause) allows the storm to

produce mechanical energy at a rate according to [37]

Emech = ∆T∆sB, (63)

where ∆T is the different in average temperature at the base of the storm, between points (1) and

(2), and the top of the storm, between points (3) and (4), and ∆s is the entropy gained by the air

in moving from point (1) to (2). This mechanical energy is the driving mechanism for the winds

and resulting ocean surface waves

Given this simple model, we now seek some description of the temperature and winds in

the boundary layer of the storm where a positive wind gradient is likely to produce an acoustic

duct. As mentioned in the previous discussion, the movement of air from point (1) to (2) in Fig 3 is

isothermal and therefore at the ocean surface and in the boundary layer the horizontal temperature

gradients are negligible. Because the air moving from point (1) to (2) absorbs moisture from the

ocean surface, a correction to the thermodynamic sound speed can be made due to the introduction

of H2O. At leading order, for a fraction, h, of H2O molecules in air, the thermodynamic sound speed

increases by [6],

cwet = [1 + 0.16h] cdry. (64)

At 40o C, 100% humidity corresponds to h = 0.07 which results in a moist thermodynamic sound

speed correction of less than 1.5%. Such a small difference will be insignificant relative to the

wind gradients. Thus for the purpose of this analysis, we will not consider any variations in the
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thermodynamic sound speed due to the horizontal temperature and humidity gradients.

The cyclonic winds at the top of the boundary layer can be calculated using a model for

the pressure distribution and Euler’s equation in Eq. (56). The pressure distribution at the top of

the boundary layer of a large maritime storm can be approximately fit by

rB ln
p∞ − peye

p(r)− p∞
= A, (65)

where A and B are scaling parameters [40]. Rearranging this equation,

p (r) = peye + ∆p e
− A

rB . (66)

Combining this form of p(r) with Eq. (56), the cyclonic wind profile at the top of the boundary

layer is found to be

vφ (r) =

√
AB∆p

ρrB
e
− A

rB +
r2f2

c

4
− rfc

2
, (67)

which reduces to

vφ (r) = vmax

√(rm
r

)B
e1−( rmr )

B

, (68)

when one neglects the Coriolis terms [40]. In this final form, we’ve written the cyclonic winds in

terms of the maximum winds and radius of maximum winds which are given by

rm = A
1
B , vmax =

√
B∆p

ρe
.

This cyclonic wind model was developed by G. J. Holland in a 1980 publication and subsequently

updated in 2010 by replacing the square root with an additional parameter x resulting in [40, 41],

vφ (r) = vmax

[(rm
r

)B
e1−( rmr )

B
]x
. (69)

An explanation of how to compute B, x, and vmax from observations of ∆p are given in the updated

publication, however such methods are intended to assist in fitting measured wind data and are

not applicable to this project. Here we will use the cyclonic wind profile in Eq. (68) with B = 1.5,

rm = 50 km, and vmax dependent on model storm strength. The value of rm is chosen to fall within
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the average of observed values which range between 30 and 60 km with observed extrema between

8 and 200 km [37]. The maximum winds chosen for each storm intensity are near the upper limit

of the Saffir-Simpson scale for that strength storm. Exact wind speeds used in analysis are listed

in Table 1 at the end of this section.

The model developed by Holland models only the cyclonic wind, vφ. A more realistic

storm model would also include the radial winds, vr which are directed inwards, towards the eye

column, and typically on the order of 1/5 the magnitude of the cyclonic wind [37]. A small vertical

component of the wind exists in the eye column itself, but it is two orders of magnitude smaller

than the cyclonic winds and has been neglected in the development of this storm model. In order

to approximate the radial wind component near the ocean surface, we refer to the boundary layer

equations for a axisymmetric vortex in a homogeneous fluid [42],

1

r

∂

∂r

(
rv2
r

)
+

∂

∂z
(vrw) +

v2
gr − v2

φ

r
+ fc (vgr − vφ) =

∂

∂z

(
K
∂vr
∂z

)
, (70a)

1

r2

∂

∂r

(
r2vrvφ

)
+

∂

∂z
(vφw) + fcvr =

∂

∂z

(
K
∂vφ
∂z

)
, (70b)

1

r

∂

∂r
(rvrχ) +

∂

∂z
(vzχ) =

∂

∂z

(
K
∂χ

∂z

)
, (70c)

∂

∂r
(rvr) +

∂

∂z
(rvz) = 0, (70d)

where vr, vφ, vz are the three components of velocity, vgr (r) is the tangential wind speed at the

top of the boundary layer, fc is again the Coriolis parameter, χ is a scalar quantity related to the

dry static energy or specific humidity, and K is the eddy diffusivity. Some manipulation of these

equations leads to,

vr,b
dvr,b
dr

= vr,b
vz,−
δ
−
v2

gr − v2
φ,b

r
− fc (vgr − vφ,b)−

CD
δ
vr,b

√
v2
r,b + v2

φ,b, (71a)

vr,b
dvφ,b
dr

=
vz,−
δ

(vφ,b − vgr)−
(vφ,b
r

+ fc

)
vr,b −

CD
δ
vφ,b

√
v2
r,b + v2

φ,b, (71b)

where the subscript b’s denote the value at the top of the boundary layer, wz,− is the vertical wind

component averaged below the boundary layer, CD is the drag coefficient, and δ is the boundary

layer depth [42]. In this second result, one can make an approximation by neglecting variations in
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Fig. 4:
The cyclonic wind, vφ(r), (up-

per) and radial wind, vr(r),

(lower) at the top of the bound-

ary layer, approximately 1 kilo-

meter above the ocean surface,

of a large maritime storm as ex-

pressed in Eq. (68) and (73) re-

spectively.

the vertical advection term, resulting in [42, 43]

vr,b = −CD
δ

v2
φ,b

ζa
, ζa =

dvφ,b
dr

+
vφ,r
r

+ fc. (72)

Thus, the radial component of the winds varies approximately as the square of the cyclonic wind

component, scaled by a factor depending on the drag coefficient, CD, the boundary layer depth,

δ, and the vertical component of the absolute vorticity in the boundary layer, ζa. Following the

simplified storm model presented by Stull, we can approximate the radial winds by,

vr (r) ∼= −3.5v2
φ (r) , (73)

which produces the observed coupling of |vr,max| ∼ 1
5 |vφ,max| relation [37].

The resulting wind models are shown in Fig. 4 for a Category 3 storm. Note that while

vφ(r) decreases as
(
rm
r

) b
2 for r � rm, the radial winds, vr(r) decrease as

(
rm
r

)b
. In an idealized

axisymmetric vortex, one sets b = 1, resulting in vφ ∼ 1√
r

and vr ∼ 1
r which are consistent with

conservation of potential vorticity and mass inflow respectively [38, 44, 37]. In Holland’s model, the

variability in b allows one to allows some loss in vorticity and inflow and produce a more realistic

wind profile.
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Fig. 5: The dominant currents in the

northern Atlantic Ocean. The storms of

interest to this project interact with the

North Equatorial Current in the lower cen-

ter of the figure.

Locating the Microbarom Source Region

We can now infer from the previous discussion that the storm winds in Eq. (68) and (73)

will produce a surface wave field on the ocean surface beneath the storm with waves propagating

in the direction of the winds and wavelengths dependent on the wind speed. In addition to these

waves, a background swell exists in the open Atlantic which interacts with the swell produced by

the storm.

In the open north Atlantic where low pressure regions form, the dominant background swell

is due to the North Equatorial and Canary Currents shown in Fig. 5 [45, 46]. These currents

produce a background swell in the open Atlantic which is dominated by flow from east to west.

Nearer to the North American continent, the Gulf Stream and Antilles Currents complicate the

background swell significantly. Additionally, reflections from the eastern coast of North America

produce additional complications of the background swell. The complications of multiple currents

contributing to the background swell and possible reflections from the continent could produce

localized variations in the directionality of the background swell, however such concerns are beyond

the scope of this preliminary investigation into the microbarom signal produced by the storm.

For the purpose of this analysis, it is assumed that the storm is far from any land mass and the

background swell is dominated by winds directed from east to west.

It was previously shown that a flow above a fluid-fluid interface generates a forcing in the

direction of the flow. For a steady wind over an interface, the surface waves would asymptotically

33



reach a velocity equal to that of the wind. Therefore, one can use the deep water dispersion relation,

gλ

2π
= c2

surf, (74)

to infer that, to leading order, a steady wind, ~v0, over the open ocean will generate propagating

surface waves in the direction of the wind with wave length, λ = 2π |v0|2
g . Additional corrections

can be made to account for surface tension of the interface and other effects, however this relation

holds to leading order.

In the case of our model storm, this coupling produces two surface wave fields, shown in

Fig. 6. The storm winds in Eq. (68) and (73) generate a surface wave field underneath the storm,

shown in the upper row of the figure. The background oceanic swell and its associated wind are

shown in the lower part of the figure. The two wave fields interact as seen in the right-most panel

of the figure. The generation of microbaroms is dependent on the head-on collision of surface waves

with equal wavelength. The red ring denotes the regions in which the wavelength of the storm wave

field is equal to that of the background. Within this region, collisions between counter propagating

waves is expected to produce microbarom radiation. The storm induced and background swell

have waves propagating in directions denoted with black and blue arrows respectively. It is evident

that the microbarom source region due to these interacting wave field is located approximately 500

kilometers south of the storm eye where the storm induced waves and background swell are both

counter propagating and equal in wavelength.

Thus, for a large maritime storm producing a cyclonic ocean surface wave pattern due to

the coupling of the storm winds to the ocean surface, there is expected to be a region outside of

the strong storm winds in which the swell generated by the storm winds is equal in wavelength

but opposite in propagation direction to the background ocean swell. In such a region, infrasonic

energy can be radiated into the atmosphere and ocean. The acoustic energy radiated away from

the storm winds will propagate with weak horizontal refraction and is observable at locations south

of the storm in the case of a hurricane in the Atlantic. Alternately, the acoustic energy which

propagates into the storm will interact with the strong storm winds and, possibly, be detectable on

the far side of the storm.

34



Fig. 6: The interaction of the wave fields produced by the storm winds with the background swell provides a

method to infer where the microbaroms are generated by a large maritime storm.

Saffir-Simpson Hurricane Scale

Storm Intensity Cyclonic Wind Range vmax

Tropical Depression < 17m
s Not Used

Tropical Storm 17− 32m
s Not Used

Category 1 33− 42m
s 40m

s
Category 2 43− 49m

s 48m
s

Category 3 50− 57m
s 55m

s
Category 4 58− 69m

s 65m
s

Category 5 > 70m
s 75m

s

Table 1: The Saffir-Simpson Hurricane Scale classifies storms based on maximum cyclonic wind speed. (73).
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CHAPTER 3

PROPAGATION OF MICROBAROMS THROUGH THE

STORM WINDS

In a uniform motionless medium, acoustic energy radiates away from the source spherically.

However, in the case of a medium with variations in temperature and flow velocity, the wavefront

is deformed due to different regions propagating faster or slower than others. The approximation

of geometric acoustics is a useful tool for visualizing this deformation of wavefronts in the high

frequency limit. Geometric acoustics neglects effects of diffraction and scattering, however such

phenomena are dominant only if the characteristic scale of variations in the medium are of the

same scale as the wavelength of the acoustic waves propagating through the medium.

In the case of microbaroms, the wavelength is approximately 1.7 kilometers. The cyclonic

wind field of a large maritime storm is characterized by a radius of maximum winds which is typ-

ically on the order of 50 kilometers. Therefore, the horizontal refraction effects of microbaroms

propagating through the wind field of a large maritime storm is well described by geometric acous-

tics. Additionally, the orientation of the wavefront detected far from the storm winds, which we

intend to use as a diagnostic of the storm, can be easily calculated with geometric acoustics.

Geometric Acoustics in Three Dimensions

The propagation of acoustic energy can be described by a linear perturbation of the fluid

mechanics equations in Chapter 2. Using the results of the ambient state, the linear order continuity,

Euler, and state equations have the forms [7],

Dρ

Dt
+ ρ~∇ · ~v0 + ~∇ · (ρ0~v) = 0, (75a)
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D~v

Dt
+
(
~v · ~∇

)
~v0 = − 1

ρ0

~∇p+ ρ~∇p0

ρ2
0

, (75b)

~v · ~∇p0 +
Dp

Dt
= c2

[
~v · ~∇ρ0 +

Dρ

Dt

]
+
(
c2
)′
~v0 · ~∇ρ0, (75c)

where we’ve dropped the subscript 1’s since there are no higher order terms. The approximation

of geometric acoustics is constructed by expanding each variable with a spatially varying phase,

eik0ψ(~x), and Debye series,
∑ Pj(~x)

(ik0)j
. The phase function, ψ (~x), is termed the Eikonal and its solution

provides information about the deformation of surfaces of constant phase. Expanding each linear

variable, 

p

~v

ρ(
c2
)′


= eik0ψ(~x)

∞∑
j=0

1

(ik0)j



Pj (~x)

~Vj (~x)

Dj (~x)

Cj (~x)


. (76)

Under the further assumption of harmonic time dependence, p ∼ e−iω0t = e−ik0c0t, one can reduce

Eq. (75) to expansions in powers of k0. For reference, whenever ~∇ acts on one of the expanded

variables in Eq. (76), one has

~∇p =

∞∑
j=0

1

(ik0)j

[
ik0Pj ~∇ψ + ~∇Pj

]
eik0ψ. (77)

The linearized fluid mechanics equations can then be written as,

∞∑
j=0

1

(ik0)j

{
− ik0Dj (c0 − ~v0 · ~ν) + ~v0 · ~∇Dj +Dj ~∇ · ~v0

+ ρ0
~∇ · ~Vj + ρ0ik0

~Vj · ~ν + ~Vj · ~∇ρ0

}
= 0, (78a)

∞∑
j=0

1

(ik0)j

{
−ik0

~Vj (c0 − ~v0 · ~ν) + ~v0 · ~∇~Vj + ~Vj · ~∇~v0

}
=

∞∑
j=0

1

(ik0)j

{
− ik0

ρ0
Pj~ν −

1

ρ0

~∇Pj +Dj ~∇
p0

ρ0
2

}
, (78b)
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∞∑
j=0

1

(ik0)j

{
~Vj · ~∇p0 − ik0Pj (c0 − ~v0 · ~ν) + ~v0 · ~∇Pj

}
=

∞∑
j=0

1

(ik0)j

{
c2
[
~Vj · ~∇ρ0 − ik0Dj (c0 − ~v0 · ~ν) + ~v0 · ~∇Dj

]
+ Cj~v0 · ~∇ρ0

}
, (78c)

where we’ve simplified the notation by defining ~ν = ~∇ψ. Collecting terms in powers of k0 one finds

the leading order contributions to be:

(
1− ~v0 · ~ν

c0

)
D0 =

ρ0

c0

~V0 · ~ν, (79a)(
1− ~v0 · ~ν

c0

)
~V0 =

1

ρ0c0
P0~ν, (79b)

P0 = c2D0. (79c)

Combining Eq. (79a) and (79c),

(
1− ~v0 · ~ν

c0

)
P0 =

ρ0c
2

c0

~V0 · ~ν. (80)

Finally, combining Eq. (80) with (79b),

ν2 =
c2

0

c2

[
1− ~v0 · ~ν

c0

]2

, (81)

which is the Eikonal equation for propagation in three dimensions [8, 9]. A dispersion relation can

be found by assuming a wave vector ~k = k0~ν. From Eq. (81),

k2

k2
0

=
k2c2

0

ω2
=
c2

0

c2

(
1− ~v0 · ~k

ω

)2

→ ω = kc+ ~k · ~v0, (82)

which results in a propagation velocity,

~cp =
∂ω

∂~k
= c

~ν

ν
+ ~v0. (83)

Thus the sound propagates in the direction defined by n̂νc+~v0 where c is the thermodynamic sound
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speed and ~v0 is the ambient wind in the propagation medium. From this result, it is immediately

clear that ~cp · ~ν = ~v0 · ~ν + cν = c0. The differential equations describing the geometric ray paths

can be determined by using Hamilton-Jacobi relations,

∂~x

∂τ
=
∂H

∂~ν
,

∂~ν

∂τ
= −∂H

∂~x
, (84a)

H =
1

2

[
ν2 − 1

c2
(c0 − ~v0 · ~ν)2

]
= 0, (84b)

which results in the coupled differential equations,

∂~x

∂s
=
~cp
cp
, (85a)

∂νj
∂s

= − 1

cp

[
ν
∂c

∂xj
+ ~ν · ∂~v0

∂xj

]
, (85b)

where we’ve changed variables from the unitless quantity τ into physical ray length s. The next

terms in the expansion, those proportional to k0 in Eq. (78), can be used to construct the Transport

equation defining P0 (~x) [9]. The amplitude coefficient will not be used extensively in this analysis,

and therefore we include the derivation and result of the Transport equation separately in Appendix

A.

Before continuing with this analysis, it is critically important to identify the conditions in

which the approximation of geometric acoustics is valid. It can be shown that the approximation

is not an accurate description of the physics involved in propagation in the case that (1) the

radius of curvature of the rays is of the order or smaller than the wavelength, (2) the velocity of

propagation changes appreciably over the distance of a wavelength, or (3) the percentage change in

amplitude is large over the distance of a wavelength [47]. The curvature of rays is determined by

the gradients of the propagation medium, and as noted earlier, the storm winds increase radially

at a rate which is within the limits of applicability for geometric acoustics. However, the vertical

structure of the storm winds is less well defined. The storm winds increase from zero at the ocean

surface to their maximum intensity at an altitude of 1-2 kilometers above the ocean surface. This

produces a very thin, strongly downward refracting duct in the storm boundary layer. The results

of geometric propagation modeling in this region will be discussed in the later part of this chapter,

39



with additional results using a full wave model to evaluate the effectiveness of the duct in Appendix

B.

Initializing and Reflecting Ray Paths

The initial conditions for tracing a ray can be found using simple geometric analysis of

the source region. Within a small region around the source, the medium can be approximated as

homogeneous and the acoustic energy radiates spherically [9, 48, 49],


x (s, θ, φ)

y (s, θ, φ)

z (s, θ, φ)

 =


xsrc + s cos θ cosφ+O

(
s2
)

ysrc + s cos θ sinφ+O
(
s2
)

zsrs + s sin θ +O
(
s2
)

 . (86)

where θ is the angle the ray initially makes with the horizontal and φ is the azimuth angle defined

relative to the x axis. The coordinate system defined by s, θ, φ are termed ray coordinates. In our

case the source is located at the ocean surface some distance from the storm center,


x (0, θ, φ)

y (0, θ, φ)

z (0, θ, φ)

 =


xsrc +O(s)

ysrc +O(s)

O(s)

 =


xsrc

ysrc+

0

 . (87)

In order to determine initial conditions for ~ν, we reference Eq. (83) and (85a),

∂~r

∂s
=
~cp
cp

=
c~νν + ~v0∣∣∣c~νν + ~v0

∣∣∣
=

~ν
ν + ~v0

c√
1 + 2~ν·~v0

cν +
v2
0
c2

. (88)

This equation cannot be solved explicitly for ν, and therefore we cannot find a direct relation for

~ν0 (θ, φ). In practice this doesn’t cause a problem because one can define an initial vector direction

ν̂ and scale the vector so that it satisfies the eikonal equation at the source,

|ν| = 1− ~ν · ~v0

c0
→ |ν| = 1

1 + ν̂ · ~v0
c0

, (89)

40



However, it must be noted that the direction of ~ν = |ν| ν̂ and ∂~r
∂s are not parallel unless the wind is

negligible at the source. This is true in the case of a source located at the ground or ocean surface

where the winds go to zero, and therefore one finds,

∂~r

∂s
=

c~νν∣∣∣c~νν ∣∣∣ =
~ν

ν
= ~ν

c

c0
, (90)

and near the source,

~ν
∣∣∣
0

=
c0

c

∂~r

∂s
=


cos θ cosφ+O(s)

cos θ sinφ+O(s)

sin θ +O(s)

 . (91)

To determine the initialization values following a ground reflection, the spherical spreading

method used to determine the values at the source can be applied, with the ray path length, s, and

range, r (x, y), shifted to those of the incident path,


x (s, θ, φ)

y (s, θ, φ)

z (s, θ, φ)

 =


x0 (θ, φ) + (s− s0 (θ, φ)) cos θref cosφref +O

(
[s− s0(θ, φ)]2

)
y0 (θ, φ) + (s− s0 (θ, φ)) cos θref sinφref +O

(
[s− s0(θ, φ)]2

)
|s− s0 (θ, φ)| sin θref +O

(
[s− s0(θ, φ)]2

)
 . (92)

Additionally, in the case of a range dependent medium, the angle the ray paths makes with the

ground at reflection is not necessarily equal to the angle made at the source. The known relations

between ∂~r
∂s and ~ν can be used to determine the angle at the reflection point. Some simple geometric

analysis produces

θref = − sin−1 (νz0) , (93a)

φref = tan−1

(
νy0

νx0

)
, (93b)

where we’ve denoted quantities associated with ground intercept of the incident ray path with

subscript zeros. Again making the assumption that the wind at the ground is negligible, the
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conditions for ~x and ~ν = c(0)
c(~x)

∂~x
∂s give,

~x
∣∣∣
s0

=


x0 (θ, φ) +O ([s− s0(θ, φ)])

y0 (θ, φ) +O ([s− s0(θ, φ)])

O ([s− s0(θ, φ)])

 =


x0 (θ, φ)

y0 (θ, φ)

0

 , (94a)

~ν
∣∣∣
s0

=


cos θref cosφref +O ([s− s0(θ, φ)])

cos θref sinφref +O ([s− s0(θ, φ)])

sgn [s− s0 (θ, φ)] sin θref +O ([s− s0(θ, φ)])

 =


νx0(θ, φ)

νy0(θ, φ)

−νz0(θ, φ)

 . (94b)

The initialization and reflection conditions for the angular derivatives necessary to calculate the

amplitude coefficient are presented in Appendix A.

Propagation Through the Wind Field of a Large Maritime Storm

In this section, the refraction of acoustic energy by the winds of a large maritime storm is

discussed. Using the ray path equations in Eq. (85), a qualitative discussion of refraction effects of

the storm winds is given, followed by a discussion of the numerically produced results describing

propagation in a two dimensional axisymmetric planar model of sound propagating through the

top of the boundary layer of a storm as well as a vertically varying storm. The physics of acoustic

propagation through the storm winds, though complicated, can be physically modeled using the

approximation of geometric acoustics.

The propagation equations in Eq. (85) provide a quantitative description of how variations

in the propagation medium affect sound. From this pair of differential equations, one can produce

a qualitative understanding of how ambient flow in the medium and gradients in the sound speed

and ambient flow will affect propagating sound. Consider a small packet of an acoustic disturbance

with leading and trailing edges described by surfaces of constant phase as given in Fig. 7. The

packet of acoustic energy is localized such that the leading and trailing edges are parallel. Because

we’ve defined ~ν = ~∇ψ (~x), the vector ~ν is perpendicular to the leading surface and indicates the

direction in which the disturbance propagates in the absence of ambient flow. From Eq. (85a) and

the definition of ~cp, it is evident that the disturbance propagates forward along n̂ν with speed c and

is shifted in the direction of the winds ~v0. Note that the ~v0 term in Eq. (85a) does not produce a
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refraction effect but merely displaces the packet of acoustic energy.

The differential relation in Eq. (85b) describes how gradients in c and ~ν · ~v0 produce

refraction effects, which change the propagation direction n̂ν . In the left side of Fig. 7, ambient

flow is neglected and a gradient is present in the propagation velocity. For a medium in which c

increases to the left, the vector ~ν is refracted to the right. The physical reason for this refraction

is that the surface of constant phase is distorted by the left side propagating faster than the right

side. Similar refraction occurs for gradients in the ambient flow, however only if the disturbance

is propagating in the appropriate direction. If νj = 0, refraction will not occur even if
∂v0,j

∂xi
is

non-zero.

The orientation of the signal as it passes through the upper region of the left and right sides

of Fig. 7 demonstrates how the refraction can be measured. In each case, the plane perpendicular

to ~̃ν can be determined and used to determine the direction from which the signal appears to be

emanating, shown as a blue arrow in the figure. As mentioned in Chapter 1, strong cross-winds

and horizontal gradients can produce errors when using the back azimuth as the azimuth to true

source location. In the left panel of the figure, the displacement of the signal results in a back

azimuth indicating that the source is directly south. Alternately, in the right figure, the back

Fig. 7: The two types of effects in geometric propagation as described in Eq. (85) are visualized using a small

packet of acoustic energy. The packet propagates in the direction n̂ν at speed c with additional propagation in

the flow direction ~v0 (left). A gradient in the thermodynamic sound speed, c, (or flow velocity in the direction of

propagation, ~ν · ~v0) results in refraction of the sound (right).
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azimuth would point to the south west, indicating an apparent source to the west of the actual one.

Using geometric acoustics as a model for propagation, one is able to quantify how the propagation

medium produces a given back azimuth at the receiver and correct the propagation effects in order

to more accurately estimate the true source location.

This is the set up for most propagation problems, the received data is used along with the

propagation characteristics to determine the location and characteristics of the source, or the data

and source information are used to infer the characteristics of the propagation medium. In this

case, the microbarom source location is either inferred from the model in Chapter 2, or known

from arrays observing the storm from directions away from the storm winds. We aim to use

the characteristics of the received signal and the propagation model presented here to infer some

measure of the propagation medium.

Two-Dimensional Propagation

One can estimate the refraction of the microbarom signal propagating into the strong storm

winds near the eye by neglecting vertical variations in the atmosphere and modeling the propagation

in a horizontal plane at the top of the boundary layer. The source functions in the geometric

equations for this simplified propagation scheme are,

c (~x) = c0, ~v0 (~x) =


−vφ (r) sinφ+ vr (r) cosφ− vbg cos θbg

vφ (r) cosφ+ vr (r) sinφ+ vbg sin θbg

0

 , (95)

where r =
√
x2 + y2 and φ = tan−1

( y
x

)
are radial distance from the storm eye and azimuth around

the storm in polar coordinates, respectively. The velocities vφ (r) and vr (r) are the cyclonic and

radial wind components given in Eq. (68) and (73), and vbg and θbg are the magnitude and direction

of the background wind associated with the background swell. Because propagation is assumed to

be contained within the horizontal plane, all ray paths must have initial inclination angles of θ = 0.

An example ray field for propagation through a Category 3 storm is shown in Fig. 8 as an

overlay on the combined wind field of the storm and background. The source location has been

inferred by locating the region in which |~vstorm − ~vBG| ∼ 0, which is in agreement with the predicted

source location from Chapter 2. Included in the figure are ray paths with φ between 15o and 165o
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where φ = 90o corresponds to north (into the storm eye). The ray paths in the figure were truncated

at a radius of 2000 kilometers from the storm center. Note that the refraction along paths away

from the strong storm winds is negligible. For ray paths near 15o or 165o, the propagation is nearly

along straight lines radiating away from the source region. The ray paths which propagate into the

strong winds around the eye are refracted strongly around the storm resulting in a region directly

north of the storm where little acoustic energy is present due to strong geometric attenuation.

To the north west of the storm eye there are multiple propagation paths of interest. There are

some propagation paths which pass to the west of the strong winds in the eye and arrive at the

2000 kilometer radius with weak refraction. These arrivals have back azimuths directed towards the

actual source region. Several additional arrivals are present in this north-western region which have

been strongly refracted. The signal detected due to these propagation paths is expected to have

back azimuths directed back towards the eye of the storm, which produces a false source associated

with the region around the eye of the storm. In the following discussion, these strongly refracted

arrivals are referred to as anomalous arrivals from the direction of the storm eye.

Using the direction of ν̂ at the outer radius where rays are ended, the back azimuth for

signals at locations around the storm can be computed. The back azimuth relative to the direction

to the storm eye is plotted in Figure 9 with the Category 3 storm in the previous figure corresponding

to the blue line. The horizontal axis in the figure corresponds to the an azimuthal location around

the storm with 90o being north. The vertical axis shows the difference between the back azimuth

Fig. 8: Planar propagation paths

through the boundary layer of a mar-

itime storm and the wind field in the

boundary layer.
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detected at that location around the storm and the direction to the eye of the storm. As mentioned

previously, the azimuths away from the strong winds are weakly refracted resulting in the positive

and negative deviations in the figure for φ > 120o and φ < 60o respectively.

The other lines in the figure represent the arrival characteristics for propagation through

stronger and weaker storm winds. For increased or decreased maximum wind speed, the source

location changes to a new location where |~vstorm − ~vBG| ∼ 0 produces counter propagating waves

of equal period. Additionally, the refraction effects for propagation through the storm vary with

storm intensity. The moving source region produces the variations in the positive and negative

deviations for φ > 120o and φ < 60o respectively, while the wind speed variations produce a

noticeable change in the propagation effects of the anomalous arrivals from the storm eye. For

increased storm intensity, the refraction effect is intensified and the extent around the storm to

which the anomalous arrivals are present increases. For a weaker, Category 1 storm, the anomalous

arrivals extend only 35o counterclockwise from north of the storm. Alternately, in a more intense

Category 5 storm these anomalous arrivals extend over 70o from north of the storm.

A clear physical explanation for this strong refraction can be elucidated by examining the

propagation effects in Fig. 7. The strong cyclonic winds produce displacement of acoustic energy
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emanate from the eye itself. The extent around the storm that this anomalous signal is present is strongly dependent

on the storm intensity.
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as it propagates through the storm as in the left side of Fig. 7. Additionally, regions in which the

wind varies rapidly produce refraction effects as in the right side of Fig. 7. The region near the

eye in Fig. 8 has been enlarged and is shown in the left panel of Fig. 10. The gray ring in the

figure shows the radius of maximum winds at 50 kilometers. It is immediately evident from this

enlarged region that the anomalous arrivals from the storm eye are the result of strong refraction

effects in the eye wall of the storm. These refraction effects in the eye wall are due to the rapid

increase in the cyclonic wind speed. The right panel of Fig. 10 shows the cyclonic wind profile as a

function of radius from the eye. Included in the figure are numerical values for the gradients in the

eye wall region and at radii larger than the radius of maximum wind. For comparison, the upward

refracting thermodynamic sound speed gradient in the troposphere due to the adiabatic lapse rate

of 9.8 K
km is 0.0058 s−1.

The wind in the eye wall increases rapidly with radius producing a positive gradient which

results in refraction of signal propagating in the φ̂ direction into the −r̂ direction. This causes

the rays to bend counterclockwise as they pass near the storm eye in the direction of the cyclonic

winds. Thus, the reason that the anomalous arrivals from the eye extend further around the

storm for stronger winds is due to the increasingly strong cyclonic wind gradient in the eye wall.

Away from the eye column, the interaction of the wind and microbarom signal is dominated by

-400 -200  0  200  400

Range [km]

-400

-200

 0

 200

 400

R
an

ge
 [k

m
]

 0

 10

 20

 30

 40

 50

W
in

d 
S

pe
ed

 [m
/s

]

 0

 10

 20

 30

 40

 50

 0  50  100  150  200  250  300  350  400

Range [km]

Refraction by a Cyclonic Wind Field

Strongly Refracting

Gradient, dv/dr = 0.003 s-1

Weakly Refracting

Gradient, dv/dr = -0.00005 s-1

Fig. 10: A closer view of the refraction which occurs near the eye wall of the storm (left). The radial profile of the

cyclonic component of the storm wind (right).
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the displacement effect in the left panel of Fig. 10. The gradient in this region is two orders of

magnitude smaller than the gradient in the eye wall where the wind increases from zero in the

eye column to a maximum at the radius of maximum winds. Additionally, the direction of the

refraction outside of the radius of maximum winds is away from the storm, in the +r̂ direction

since the wind is decreasing with range in this region.

To summarize, in the limit of propagation in a two dimensional plane at the top of the

boundary layer of a large maritime storm, the refraction of infrasonic signal is produced by a

refraction of the φ̂ component of ~ν toward −r̂ as a ray passes through the eye wall due to the large

positive value of
∂vφ
∂r in this region. This produces an extended region north west of the storm

characterized by anomalous microbarom signals which seem to emanate from the storm eye. The

extent of this region around the storm is dependent on the strength of the refraction in the eye

wall and therefore on the gradient of the cyclonic winds in this region between the eye column and

the radius of maximum winds. A more intense storm generates a larger the wind gradient in the

eye wall, resulting in increased refraction and an enlargement of the region containing anomalous

arrivals.

Three-Dimensional Propagation

In the previous section, it was assumed that the microbarom signal would undergo refraction

as it propagated through the entire boundary layer wind field of a large maritime storm. In

actuality, the strong winds in the boundary layer form an acoustic duct which traps some of

the microbarom energy beneath the storm where it will propagate and interact with the strong

horizontal wind gradients. However, the two dimensional model neglected the directionality of this

duct and various other complications associated with propagation in a vertically varying medium.

In order to model propagation in three dimensions, the wind profiles in Eq. (68) and (73) must be

modified to include the vertical variations between the ocean surface and the top of the storm at

the tropopause. To accomplish this, we have elected to modify the wind models used previously

by varying the coefficient, vmax, with altitude. This produces wind models which are separable in

r and z,

vφ (r, z) = vmax (z)

√(rm
r

)B
e1−( rmr )

B

, vr (r, z) = −3.5v2
φ (r, z) . (96)

In the lowest few kilometers of the atmosphere, winds increase from zero at the ocean surface
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to a maximum at the top of the layer, which we assume to be approximately two kilometers for this

idealized model. Several studies have demonstrated that, for flow over the open ocean, the wind in

the boundary layer increases logarithmically above the stagnation height, z0,

vBL (z) =

 0 z < z0

v0

[
ln
(
z
z0

)
+ ψ (z, z0, L)

]
z > z0

, (97)

where v0 is some overall scaling to produce the physical wind speed, L is the Monin-Obukov stability

parameter, and ψ is a correction term [50, 51]. As in Reference [49], a modification is made to shift

the z axis by z0 which removes the non-smooth transition at z = z0 by shifting it to z = 0 while

maintaining the condition that vBL (0) = 0. The correction term is assumed to be linear, resulting

in a boundary layer wind profile described by,

vBL (z) = v0

[
ln

(
1 +

z

z0

)
− βz

]
. (98)

Direct measurements of the vertical structure in the boundary layer of a large maritime

storm are nearly nonexistent. One of the limited sources of measurements of the boundary layer

of a storm is the Coupled Boundary Layers Air-Sea Transfer (CBLAST) experiment in 2003 which

made measurements of the vertical structure of turbulence in the boundary layer between rain

bands [52]. GPS dropsondes where launched from NOAA WP-3D Orion aircraft flying above the

boundary layer regions between rain bands of Hurricanes Fabian and Isabel in early September of

2003. The wind speed data obtained from CBLAST in these experiments are shown in the left

panel of Fig. 11. Other atmospheric data sources can provide some estimate of the wind structure

in the lower troposphere. The center panel in Fig. 11 shows wind profiles during Hurricane Igor in

2010 from WRF [53]. The right panel in the figure contains the wind profiles from the same storm

from the Ground-2-Space database [54]. In all of these data sources, the measurements extend to

some minimum altitude tens of meters above the ocean surface and the winds are not assumed to

go to zero at the ground surface, which is required in our model.

The wind profiles shown in Fig. 11, can be used to determine the range of possible surface

roughnesses, z0, and linear coefficients, β, in Eq. (98) which produce accurate profiles for the winds

in the boundary layer. One finds that the surface roughness is typically of order 20 to 50 meters
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with extrema from 1 to over 100 meters. The linear coefficient, β, ranges from 0.3 to 0.7 km−1.

The range of possible surface roughnesses is within the range of surface wave heights expected

for the sub-hurricane force winds which would be present in the outer bands of the storm [37].

In the following examples and discussion, a surface roughness of 35 meters and linear coefficient

β = 0.4 km−1 have been used to model the propagation in the duct under the storm. The physical

wind speed, v0, is determined by the maximum wind speed for a given storm intensity.

The vertically varying storm model needs to be combined with a background atmosphere

model to produce a full propagation medium. The polynomial fit for atmospheric temperature

developed by Lingevitch et al. can be used to calculate the ambient thermodynamic sound speed

[56]. Additionally, a Gaussian wind jet with magnitude 60 meters per second, centered at 60

kilometers altitude, and directed towards the west can be used to produce a stratospheric duct for

propagation downwind of the duct. Such an atmospheric state is typical of late summer and early

autumn in the northern hemisphere [37]. The temperature and wind in this stratified background

model are shown in the left panels of Fig. 12. The right panel of the figure shows some of

the propagation paths in such an atmosphere. In the case of propagation towards the west, the

stratospheric jet provides additional downward refraction and the shallower ray paths are ducted

back towards the ground in the stratosphere. For energy propagating towards the east, there

is no ducting in the stratosphere and all of the energy propagates into the thermosphere before

being refracted by the large temperature gradient there. Thus, microbaroms which do not interact

strongly with the storm winds will propagate into the upper atmosphere and be refracted back

towards the ocean surface from the stratosphere or thermosphere depending on the propagation
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Fig. 11: (a) Wind speed profiles obtained during the CBLAST experiment in September of 2003, as reported in

Ref. [55]. (b) Wind speed profiles obtained from WRF data during Hurricane Igor in 2010. (c) Wind speed profiles

obtained from G2S data during Hurricane Igor in 2010. Note the differences in vertical range.
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direction.

The winds in the boundary layer have been used to determine a source region for the

microbaroms generated by the storm as in Chapter 2. Ray paths have been generated with initial

inclinations of 5o ≤ θ ≤ 20o and initial azimuths 60o ≤ φ ≤ 100o, where φ = 90o is north. The

propagation medium consists of the vertically dependent storm wind field described in Eq. (68),

(73), and (98) for storms of varying intensity and the background temperature and wind shown

in Fig. 12. The refraction effects observed are similar between storms of different intensity as

one would expect, therefore only the results for a Category 3 storm will be discussed in detail. In

order to analyze the back azimuth of signal arriving in the far field, only the geometric ray paths

are necessary. However, the transmission loss due to the geometric spreading can be calculated to

determine whether the refracted signal will contain sufficient energy to contribute to the measured

acoustic energy far from the storm. The extension of geometric acoustics necessary to calculate the

geometric spreading factor in a range dependent medium is presented in Appendix A.

Consider propagating a bundle of rays with identical azimuth and varying inclination angles.

In this analysis, a bundle defined by φ = 84o and 12.5o ≤ θ ≤ 13.5o has been generated and used

to elucidate the ducting and refraction effects. An overhead view of this ray bundle is shown on

the left side of Fig. 13 along with an overlay showing the storm winds magnitude at the top of

the boundary layer. Several of the ray paths are horizontally refracted by the storm winds near

the eye as in the 2D propagation model. The resulting anomalous arrivals due to this refraction
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Fig. 13: Multiple views of the ray bundle with fixed azimuth, φ = 84o, and varying inclination angle θ = 12.5o to

13.5o.

extend ∼ 30o counter-clockwise around the storm at a range of 2,000 kilometers. This is less than

the ∼ 40o predicted for a Category 3 storm using the two dimensional model. The decrease in

refraction is due to the decreased interaction with the horizontal gradients.

Ray are ducted in the boundary layer under the condition that they are propagating parallel

to the winds. Therefore, only the rays aligned with the cyclonic wind component will be refracted

by the radial gradient. In the case that the ray paths are only weakly refracted, the cyclonic winds

turn westward on the north side of the storm while the ray paths continue to propagate towards

the north. This results in the ray paths escaping from the duct and weaker overall refraction

compared to the two dimensional model. In the case that the horiztonal refraction is stronger, the

rays continue propagating parallel to the winds and the horizontal refraction is close to that of

the two dimensional model. Thus, a stronger storm is likely to produce refraction nearer to that

predicted by the 2D model in which the ray interacts with the boundary layer winds along their

entire propagation paths. Similarly, for storm winds weaker than some threshold, the winds in the

boundary layer may not be able to duct the microbaroms at all.

In addition to the overhead view of the propagation paths shown in the left side of Fig. 13,

it is useful to examine the vertical refraction producing ducting in the boundary layer. The right

panels in the figure show the same bundle of ray paths as viewed from the west. The color scaling
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in these panels is the wind along the y = 0 plane. The lower panel of the figure is a magnified

view of the region around the storm eye column near the ocean surface. Within this region, the

rays returning to the ocean surface with steeper angles pass through the boundary layer and are

reflected off the ocean surface, passing through the boundary layer a second time and escaping

from the storm winds. The rays which return towards the ocean surface with shallower angles

are refracted back upward before reaching the ocean surface due to the wind gradient above the

boundary layer.

For a small number of ray paths, the horizontal changes in the winds are such that the rays

penetrate through the boundary layer and are reflected off the ocean surface. The rays are then

unable to escape back through the downward refracting wind gradient. These ray paths are ducted

through the boundary layer and refracted by the horizontal wind gradients in the eye wall of the

storm. Analyzing other initial azimuth angles, one finds that the results from the analysis of the

two dimensional propagation are still valid for propagation in three dimensions. The rays which

are ducted through the radially increasing winds in the eye wall are horizontally refracted as in the

two dimensional model.

The leading order amplitude can be computed by solving the transport equation as discussed

in Appendix A. One can then determine the amplitude of the anomalous arrivals relative to those

which are not ducted in the boundary layer of the storm. The intercepts and amplitudes for rays

strongly refracted by the cyclonic storm winds are shown in the left panel of Fig. 14. The cluster of

points near the origin show the reflection points in the duct under the eyewall. After being ducted

and horizontally refracted by the storm winds, the rays propagate either through the stratospheric

or thermospheric duct shown in Fig. 12. In the case shown in Fig. 13, some of the rays are refracted

sufficiently strongly around the storm that they are ducted by the stratospheric jet.

The anomalous arrivals produced by the horizontal refraction in the boundary layer arrive

some distance form the storm forming ensonified bands which overlap with the ensonified regions

produced by the microbaroms which are not ducted by the storm. The right panel of Fig. 14

shows this multiple propagation path geometry. The resulting signal at the receiver contains two

coherent signals with slightly different back azimuths. From the analysis here, the separation of

these azimuths can be determined to range from 10o to over 25o depending on the relative locations

of the storm, source, and receiver.
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Fig. 14: (Left) Geometric attenuation for the contribution to the signal of the refracted arrival. (Right) The

geometry of the multi-pathing due to the horizontal refraction.

The direct contribution to the signal will be ducted either by the winds in the stratosphere

or the increasing temperature in the thermosphere. The attenuation of the arrivals due to the

storm, stratospheric ducting, and thermospheric ducting are shown in Fig. 15. In the figure,

the horizontally refracted arrivals due to the storm are shown in black. The stratospheric and

thermospheric arrivals are shown in red and blue respectively. Additionally, the solid and dashed

lines in the figure correspond to the attenuation expected for spherical and cylindrical spreading

respectively. In each of the arrival clusters from the storm, the amplitude of the refracted arrivals

is ∼ 10 dB stronger than those of the stratospheric or thermospheric paths.

There is an important caveat to note regarding this result. The attenuation shown here

is purely geometric, it does not include the effects of atmospheric absorption which can produce

significant additional energy loss, particularly for propagation in the thermosphere. The additional

attenuation due to atmospheric absorption could apply to only the horizontally refracted arrivals,

only the direct arrivals, or both. In the case that the refracted energy is ducted in the stratosphere

after it escapes the storm and the direct propagation is not, the amplitude difference could increase

considerably. It is unlikely that the direct contribution would be ducted in the stratosphere and

the horizontally refracted contribution would not due to the dominantly east-west orientation of

the stratospheric jet. However, in such a case the two arrivals would likely be nearer to equal in
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due to atmospheric absorption would likely increase this difference due to the refracted energy propagating less in

the thermosphere.

amplitude. Finally, if neither or both of the propagation modes are ducted in the stratosphere,

the similar additional attenuation will produce a pair of arrivals which are approximately 10 dB

different in strength but have overall larger or smaller amplitude relative to the ambient noise levels

at the receiver.

To summarize, it has been shown that the large positive gradient in the cyclonic component

of the winds of a large maritime storm produces a strong refraction in the −r̂ direction for infrasonic

energy propagating through the boundary layer of the storm in the direction of the cyclonic winds.

This refraction is present in both two and three dimensional propagation models, however, the di-

rectionality of the duct is only accounted for using the vertically varying storm. The refracted signal

produces ensonified regions away from the storm which containing an anomalous contribution with

back azimuth directed towards the storm center. In both two and three dimensional propagation

models, the storm intensity affects the extent to which this anomalous signal is present around the

storm.

It is expected that observations of the microbarom signal far from the storm center could

contain multiple contributions: one corresponding to the energy which interacted weakly with the
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storm and propagated directly to the receiver and a second corresponding to a strongly refracted

ray path which has been ducted through the storm boundary layer near the eye column. Geometric

propagation modeling predicts a difference in back azimuth between the two signals of 10o - 25o

and a difference in amplitude of ∼ 10 dB. In Chapter 5, these values will be used to evaluate the

performance of an idealized array design for continued study of microbaroms generated by large

maritime storms.
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CHAPTER 4

MONITORING THE 2010 AND 2011 ATLANTIC HURRICANE

SEASONS

Microbaroms generated by maritime storms in the Atlantic can be detected in North Amer-

ica, Europe, and Africa depending on the atmospheric winds. In order to test the results obtained

in Chapter 3, a number of infrasound arrays were deployed along the southern Atlantic coast of

the United States during the 2010 and 2011 Atlantic hurricane seasons. Each array consisted of

four infrasound recording elements. The elements each contained an infrasonic microphone with

flat response from 0.02 Hz to 200 Hz, a data acquisition system sampling data at 33 samples-per-

second, a GPS antenna, a 12 V battery, and a solar panel to maintain power. The sensor and data

storage system is a single unit designed by the infrasound group at the NCPA specifically for rapid,

temporary deployments.

The 2010 Atlantic Hurricane Season Deployment

During the 2010 Atlantic hurricane season, arrays were deployed in Florida and the Caroli-

nas. The geometry of each array was an equilateral triangle of three elements with a fourth element

at the center of the triangle. Each array of was deployed to obtain an aperture of approximately 1

to 1.5 kilometers. Detailed descriptions of the arrays is given in Appendix C along with expected

array response functions. The array in Croatan National Forest near the Atlantic coast of North

Carolina is shown in the left panel of Fig 16. The aperture of each triangular array was approxi-

mately one kilometer. The locations used for the deployments are shown in Fig. 17 and included

the Ocala National Forest in central Florida, Francis Marion National Forest in South Carolina,

Croatan National Forest in North Carolina, and private land owned by the McCoy family near
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Fig. 16: The geometry of the Croatan array (left) and Brookhaven National Lab array (right)

Maxton, North Carolina.

During the 2010 Atlantic hurricane season, 12 storms reached at least Category 1 intensity.

A full list of these storms and their trajectories are shown in Fig. 18. The arrays were not fully

deployed and active until early September, and so storms early in the season (Danielle and Earl)

were not recorded. Hurricanes Karl, Paula, and Richard formed in the Gulf of Mexico and didn’t

travel into the Atlantic. Hurricane Igor formed off the coast of Africa and moved eastward before

turning north and strengthened to a Category 4 storm. Igor weakened to a Category 1 storm before

striking Bermuda and continuing through the open Atlantic. The strong microbarom signals from

hurricane Igor were chosen to use as sample data during development of array processing methods

for detecting and monitoring microbaroms generated by large maritime storms. The remaining

storms which formed late in the season either did not move through the open Atlantic or were not

measured due to decreased solar exposure and loss of power on the equipment. Hurricane Otto

formed north of the Dominican Republic and moved north west from there during early October

of 2010. Hurricane Tomas formed north of Venezuela, moved into the Caribbean Sea, and turned

north passing between Cuba and the Dominican Republic before weakening to a tropical storm.

The 2011 Atlantic Hurricane Season Deployment

The array locations from the 2010 experiment were re-populated for the 2011 Atlantic

Hurricane seasons and three additional sites were added along the northern Atlantic coast. The

additional sites included Bass River State Forest on the coast of New Jersey, Pachaug State Forest

near the Rhode Island-Connecticut state line, and Brookhaven National Laboratory in New York.
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Fig. 17: Locations of arrays deployed
during the 2010 Atlantic Hurricane sea-
son (red markers) and sites added dur-
ing the 2011 season (yellow markers).

These new sites are denoted with red markers in Fig. 17. The arrays in Bass River and Pachaug

forests each contained 4 elements in a centered triangular array identical to those in Florida and the

Carolinas. The Brookhaven National Laboratory array is semi-permanent and contains 6 elements

in an approximately 3× 2 grid.

The arrays were populated and began recording data in mid-July of 2011, allowing all the

major storms of the 2011 season to be recorded. Five major storms were recorded during the 2011

Atlantic Season. Hurricane Irene produced usable data before making land fall in North Carolina

near the Croatan Array. Hurricane Katia reached a maximum intensity of Category 4 and passed to

the west of Bermuda. This maximum intensity and storm path are similar to those of Hurricane Igor

in 2010 and provide a useful measure of whether such storms produce similar microbarom signals.

Hurricane Maria was a very weak storm which produced some signal, Hurricanes Ophelia and

Philippe passed through the open Atlantic during early October of 2011 and produced measurable

microbarom signal. Detailed analysis and discussion of these storms along with results for Hurricane

Igor will be presented in Chapter 6.
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Fig. 18: Summaries of all storms during the 2010 (top) and 2011 (bottom) Atlantic Hurricane Seasons.
From the 2010 season, data was recorded and analyzed from Hurricane Igor. The majority of other storms
which remained in the open Atlantic occurred before the equipment was deployed. From the 2011 season,
Irene, Katia, Maria, and Ophelia produced microbaroms which has been analyzed.
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CHAPTER 5

ARRAY PROCESSING METHODS

In this section, mathematical methods for analyzing data recorded on an array of sensors

are developed and discussed. Statistical properties of the data can be used to characterize the data

and estimate the coherence, signal power, and back azimuth of the acoustic disturbance recorded

on the array of sensors. The methods developed here are applicable to all types of data analysis

involving periodic signals.

In the following analysis, the array geometry is contained in a composite location matrix Z

whose rows are given by ~zj = (xj , yj) which is the location of the jth sensor, p denotes the number of

sensors in the array, and q denotes the number of coherent signals present in the data record. A time

record of data across an array is denoted by a vector ~x (t) and the Fourier transform of these time

series form the vector ~X (f). Measured quantities are denoted by tildes, ~̃X (f), estimated quantities

are denoted with hats, ~̂X (f), and averaged quantities are denoted with brackets,
〈
~X (f)

〉
. If

multiple frequencies are being used in a calculation, the band is bounded by f1 and fK , and we

assume K discrete frequency bins in the band. Additionally, a weighting function % (f) can be used

to weight quantities calculated at various frequencies (in practice this function produces a K length

vector of weights at the bins in the frequency band).

Background: Statistical and Fourier Methods

Consider an ensemble of recordings from an array of microphones. Each element xi (t)

corresponds to the data recorded on a single sensor. From this vector of records, several statistical
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properties can be calculated immediately [57].

µi = lim
T→∞

1

T

∫ T

0
xi (t)dt Mean Value, (99a)

ψi = lim
T→∞

1

T

∫ T

0
xi

2 (t)dt Mean Square Value, (99b)

Ri,i (τ) = lim
T→∞

1

T

∫ T

0
xi (t)xi (t+ τ)dt Autocorrelation Functions, (99c)

Ri,j (τ) = lim
T→∞

1

T

∫ T

0
xi (t)xj (t+ τ)dt Cross-correlation Functions, (99d)

where T is the time length of each recording. Note that µi and ψi form vectors of length p while the

auto and cross correlation functions form a p×p matrixR (τ) which is simply termed the correlation

matrix [57, 58]. In practice one will never obtain an infinitely long time sample and instead one

assumes T � τphen. where τphen = 1
fphen.

is the period associated with the lowest frequency present

in the phenomenon.

Consider if instead of the above definitions, one used averages across an infinite number of

elements in an array to determine mean values at specific times,

µi (tn) = lim
p→∞

1

p

p∑
i=1

xi (tn) Mean Value, (100a)

ψi (tn) = lim
p→∞

1

p

p∑
i=1

xi
2 (tn) Mean Square Value, (100b)

Ri,i (tn, τ) = lim
p→∞

1

p

p∑
i=1

xi (tn)xi (tn + τ) Autocorrelation Functions, (100c)

Ri,j (tn, τ) = lim
p→∞

1

p

p∑
i=1

xi (tn)xj (tn + τ) Cross-correlation Functions. (100d)

If the properties computed from the time averages over individual records of the ensemble are the

same from one record to the next and equal the corresponding properties from an ensemble average

over the records at any time tn, then

lim
T→∞

1

T

∫ T

0

∣∣Ri,i (τ)− µi2
∣∣ dτ = 0, (101)

and the data is termed “stationary“. This condition is termed the ergodic theorem [57]. In the
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case of acoustic data, these statistical quantities have physical meaning which is important to note.

The elements of ~µ give the ambient pressure about which the acoustic perturbations occur. For

analysis, the mean value is subtracted off the records. The elements in ~ψ are proportional to the

acoustic energy of the disturbance per unit time. The elements in R (τ) exhibit peaks at specific

times. The diagonal elements should exhibit peaks at τ = 0 while the off-diagonal elements exhibit

peaks at the travel times from one sensor to another in the case that coherent energy is present

across the array.

The microbarom signal of interest to this investigation is a continuous signal which is

detected on the array for long periods of time. In such a case, it is more beneficial to analyze

the data in the frequency domain because statistical quantities can be estimated by averaging over

multiple concurrent snapshots. The frequency content of each record can be computed via a Fourier

transform [35],

Xi (f) =
1√
2π

∫ ∞
−∞

xi (t) e2πiftdt ⇐⇒ xi (t) =
1√
2π

∫ ∞
−∞

Xi (f) e−2πiftdf. (102)

The function Xi (f) is a complex function, however, because x(t) is pure-real, a number of useful

properties are immediately found. Consider writing Xi (f) = Ai(f)eiϕi(f), then one finds

Ai (−f) = Ai(f), ϕi (−f) = −ϕi (f) ⇒ Xi (−f) = X∗i (f) .

Thus only the positive frequencies need be considered for analysis. Additionally, the results of time

scaling and shifting can be inferred.

x(at)⇔ 1

|a|
X

(
f

a

)
time scaling, (103a)

1

|b|
x

(
t

b

)
)⇔ X (bf) frequency scaling, (103b)

x(t− t0)⇔ X (f) e2πift0 time shifting, (103c)

x(t)e−2πif0t ⇔ X (f − f0) frequency shifting. (103d)

Using the time shifting result, one can derive an important result for the correlation func-

tions above. Consider expressing the cross-correlation function in terms of the Fourier transforms
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of the functions,

Ri,j (τ) = lim
T→∞

1

T

∫ T

0
xi (t)xj (t+ τ)dt

= lim
T→∞

1

T

∫ T

0

[
1√
2π

∫ ∞
−∞

Xi (f1) e2πif1tdf1

] [
1√
2π

∫ ∞
−∞

Xj (f2) e2πif2(t+τ)df2

]
dt

= lim
T→∞

1

T

∫ ∞
−∞

∫ ∞
−∞

Xi (f1)Xj (f2) e2πif2τ 1

2π

∫ T

0
e2πi(f1+f2)tdf1df2dt

=

∫ ∞
−∞

∫ ∞
−∞

Xi (f1)Xj (f2) e2πif2τδ(f1 + f2)df1df2

=

∫ ∞
−∞

Xi (f1)Xj (−f1) e−2πif1τdf1 =

∫ ∞
−∞

Si,j (f1) e−2πif1τdf1. (104)

In this result we’ve defined the cross-spectral density function, Si,j (f), which can be derived from

the Fourier transform of the cross correlation function, Ri,j (τ). This relation is termed the Weiner-

Khinchin theorem [57]. From this result, one can calculate the cross-spectral density function

from the Fourier transformed data and use its Fourier transform to compute the cross correlation

function. Introducing the finite Fourier transform, Xk (f, T ), the cross spectral density matrix is

then defined by

Si,j (f) = lim
T→∞

Xi (f, T )X∗j (f, T ) , Xk (f, T ) =

∫ T

0
xk(t)e

2πiftdt. (105)

The cross spectral density matrix, S (f), contains information about the relative phase of the

signal across the entire array of sensors and is therefore very useful in approximating the direction

of arrival.

In addition to direction of arrival estimates, the cross spectral density matrix elements can

be used to construct the coherence matrix, γ2 (f) ,with elements given by [57],

γ2
i,j(f) =

|Si,j (f)|2

Si,i (f)Sj,j (f)
. (106)

It is straightforward to see that the diagonal elements of γ2 (f) are each unity. However, the off-

diagonal elements contain information about the relative phasing of the signals between sensors i

and j. When there exists some relative phasing between two data records, the cross spectral density

function Sij (f) will be some non-zero value dependent on the strength of the signal. Alternately,
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when there is no such relationship present, the random phase difference averaged over time results

in Sij (f). Thus, the coherence function in Eq. (106) measures the relative phase between data

recorded on sensors i and j, scaled to eliminate any bias due to the gain or background level of the

sensors.

The multivariate coherence contained in an array’s data record can be measured measure

by the pure state filter developed by Samson and further studied by Olson [59, 60],

γ2
(filter) [S (f)] =

pTr
[
S†(f)S(f)

]
− Tr [S (f)]2

(p− 1) (Tr [S(f)])2 . (107)

The benefit of this coherence measure is that it can be used as a data-adaptive band-pass filter.

For broadband analysis, γ2
(filter) (f) provides a measure of how coherent the data is across the array

at one frequency versus another. This allows a heavier weight to be associated with frequencies

which contain more coherent signal.

Some analysis of this filter should be performed before any applications can be considered.

The form with which data is input to the filter function is critical for understanding the output.

Consider the simple case of 2 elements. For the spectral density matrix, one has,

S(f) =

S11 (f) S12 (f)

S21 (f) S22 (f)

 ,

where, by definition, S∗12 (f) = S21 (f). The traces involved in the pure state filter are given by,

Tr [S (f)] = S11 (f) + S22 (f) ,

Tr
[
S† (f)S (f)

]
= S2

11 (f) + S2
22 (f) + 2 |S12 (f)|2 ,
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and the pure state filter returns,

γ2
(filter) [S (f)] =

2
(
S2

11 (f) + S2
22 (f) + 2 |S12 (f)|2

)
− (S11 (f) + S22 (f))2

(S11 (f) + S22 (f))2

=
S2

11 (f) + S2
22 (f)− 2S11S22 + 4 |S12 (f)|2

S2
11 (f) + S2

22 (f) + 2S11S22

=
(S11 (f)− S22 (f))2 + 4 |S12 (f)|2

(S11 (f) + S22 (f))2 ,

which doesn’t provide much information directly. Consider alternately, if one divides the i, j element

of the matrix by the combined diagonal magnitudes,
√
SiiSjj . The resulting matrix is the coherence

matrix,

γ (f) =

 1 S12√
S11S22

S21√
S11S22

1

 =

 1 γ12(f)

γ21(f) 1

 .

Immediately one can see that,

Tr [γ (f)] = 2, Tr
[
γ† (f)γ (f)

]
= 2 + 2 |γ12 (f)|2 ,

which leads to,

γ2
(filter) [γ (f)] =

2
(

2 + 2 |γ12 (f)|2
)
− 22

22
= |γ12(f)|2 .

Thus, once a matrix is modified by Aij → Aij√
AiiAjj

, non-zero off-diagonal elements increase the value

of the pure state filter applied to the matrix towards unity and provide a measure of coherence

across sensors in the case of the power spectral density matrix. It can be seen that in the case that

S (f) is diagonal,γ2
(filter) [Sdiag] = 0.

In practice, one is limited to a finite sample length as well as discrete sampling of the actual

process. This requires the use of a discrete Fourier transform, or DFT,

Xk = dt
N∑
n=1

xne
2πi kn

N ⇔ xn = df
N∑
K=1

Xke
−2πi kn

N , (108)

where Ndt = T and df = 1
Ndt = 1

T . The value of xn corresponds to x(ndt) while Xk corresponds
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to X
(

n
Ndt

)
. From these definitions for the discrete Fourier transform and because xn is pure-real,

several characteristics of Xk are immediately known,

X−k = X∗k for all k, (109a)

XN−k = X∗k for k = 1, 2, 3, . . . ,
N

2
, (109b)

Xk+N = Xk for all k, (109c)

xn+N = xn for all n. (109d)

The operation of taking the DFT of a vector of values ~x can be written more compactly by

~X = W~x, Wij = e−2πi ij
N , (110)

and requires N2 operations. However, an algorithm termed the fast Fourier transform, or FFT,

can compute the transform of ~x in N ln2N operations [61]. The mathematical formulation of the

FFT has been known since Gauss derived its basic algorithm in 1805. However, it was not until the

1960’s that Cooley and Tukey published the algorithm [62]. Prior to this, Danielson and Lanczos

demonstrated that a discrete transformation of length N can be rewritten as a sum of two discrete

transformations of length N
2 [63]. The proof is straight forward,

Xk =
∑
n

Wk,nxn =

N−1∑
n=0

e2πink
N xn

=

N
2
−1∑

n=0

e2πi 2nk
N x2n +

N
2
−1∑

n=0

e2πi
(2n+1)k

N x2n+1

=

N
2
−1∑

n=0

e
2πinkN

2 x2n + e−2πi k
N

N
2
−1∑

n=0

e
2πinkN

2 x2n+1

= X
(even)
k + e−2πi k

NX
(odd)
k . (111)

In this result X
(even)
k is the kth component of the Fourier transformation of length N

2 from the even

components of the original ~x while X
(odd)
k are the odd components. These subdivisions can be

written more compactly as Xe
k and Xo

k and additional subdivisions can be denoted by sequences

of e’s and o’s in the superscript. The algorithm functions by zero padding the input to obtain a
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vector of length 2n for any integer n and recursively dividing each new vector until all segments

are of length 1. The transform of such an array is the identity operator that copies its one input

number into the output slot. That is, for every pattern of ln2N even and odd subdivisions, there

is a one-point transformation that is just a transform of input numbers xn,

xn = Xeoeooeoeoeeeeoeoe...eoeooe
k , for some n.

The remaining step is to determine which value of n corresponds to which pattern of e’s and o’s

in the definition above. The relation can be found by reversing the order in the superscript and

changing e → 0, o → 1. This gives the value of n in binary. The combination of the Danielson-

Lanczos subdivision method with this bit reversal makes the FFT useful [63, 62, 61]. Although an

FFT routine is straightforward to write, more robust routines are available for use. In this project,

all Fourier analysis has been done using the FFTW package of routines [64].

Beamforming Methods

In this section we set up the general problem of determining the direction of arrival, or

DOA, for a signal incident on an array of sensors. The direction of arrival can be calculated using

the time delay between when a signal is recorded on one microphone relative to another. Far from

the source, acoustic energy propagates as a planar wave. A plane wave’s velocity can be written in

terms of the angles it makes with the horizontal, θ, and x-axis, φ,

~v =


v cos θ cosφ

v cos θ sinφ

v sin θ

 .

From this parameterization, the horizontal velocity at which the plane wave travels across the array

can be denoted by ~vtr = v
cos θ

cosφ

sinφ

 and is termed the ”trace velocity“ of the plane wave. For

an acoustic plane wave with trace velocity ~vtr incident on an array of microphones, the time delay
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between when the signal reaches microphones i and j can be written

xi,j
vtr,x

+
yi,j
vtr,y

= τi,j →



x1,2 y1,2

x1,3 y1,3

...
...

xp−1,p yp−1,p


 1
vtr,x

1
vtr,y

 =



τ1,2

τ1,3

...

τp−1,p


. (112)

This equation can be written more compactly in the form D ~w = ~τ where ~w =

v−1
tr,x

v−1
tr,y

 is termed

the slowness vector [58, 65].

A DOA approximation can be made by finding a least squares error solution of Eq. (112)

using the pseudo inverse of the matrix of sensor separations and a measured vector of time delays,

~̂w =
(
D†D

)−1
D†~̃τ. (113)

The time delays can be found by determining the maximum cross correlation τ̃i,j = max
[
R̃i,j (τ)

]
.

Because of wind and other noise sources, the above relation will not be exact. A measure of the

accuracy of this solution can be calculated from the residual,

~ε = ~τ −D ~w → ~̂ε =

[
I −D

(
D†D

)−1
D†
]
~̃τ. (114)

The ratio ||~̂ε||2

||~̃τ ||2
measures how much of the signal is not accounted for by the plane wave defined

by ~̂w. This DOA approximation has several limitations, most notably that there is no control of

look direction. The pseudo inverse simply determines the plane wave direction which minimizes

the difference between D ~̂w and ~̃τ . Additionally, if multiple plane waves are incident on the array

of microphones, this algorithm has no way of resolving them.

In order to obtain a more sophisticated DOA approximation method, one can construct a

model for the signal recorded on each element of the array. For q plane waves incident on an array

of microphones, the signal detected on the ith microphone can be modeled by

xi (t) =

q∑
j=1

Fj

(
t− τ (j)

i

)
+ ni (t) , τ

(j)
i = ~wj · ~zi, (115)
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where Fj (t) is the waveform of the jth plane wave, ~zi is the two dimensional location of the ith

sensor, and ni (t) describes all other contributions to the data record on the ith sensor. It is useful

to assume a single signal and perform some analysis of this result.

Time Domain Analysis. Due to the continuous nature of the microbarom signal, only frequency

domain analysis is used in this project. However, the time domain result for this analysis is

straightforward. Using the above definition,

Ri,j (τ) = lim
T→∞

1

T

∫ T

0
xi (t)xj (t+ τ)dt

= lim
T→∞

1

T

∫ T

0
[F (t− τi) + ni (t)] [F (t− τj + τ) + nj (t+ τ)]dt

= lim
T→∞

1

T

∫ T

0
F (t− τi)F (t− τj + τ)dt

+ lim
T→∞

1

T

∫ T

0
F (t− τi)nj (t+ τ)dt

+ lim
T→∞

1

T

∫ T

0
ni (t)F (t− τj + τ)dt

+ lim
T→∞

1

T

∫ T

0
ni (t)nj (t+ τ)dt

= lim
T→∞

1

T

∫ T

0
F (t− τi)F (t− τj + τ)dt+ lim

T→∞

1

T

∫ T

0
ni (t)nj (t+ τ)dt,

where we’ve set the cross terms to zero because the signal and noise are assumed to be incoherent.

The correlation matrices of the signal and noise then have the forms,

R
(F )
i,j (τ) = lim

T→∞

1

T

∫ T

0
F (t− τi)F (t− τj + τ)dt, (116a)

R
(n)
i,j (τ) = lim

T→∞

1

T

∫ T

0
ni (t)nj (t+ τ)dt ≈ σ2

nδij , (116b)

where the simplification of the noise correlation coefficients is the result of assuming constant

incoherent white noise. Note that the diagonal elements of R(F ) (τ) are proportional to the signal

strength while those ofR(n) (τ) are equal to the noise power. Because of this, one expects R
(F )
i,i (0) >

σ2
n(0) when a strong coherent signal is present.
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Frequency Domain Analysis. The modeled signal can be Fourier transformed and written in

the frequency domain as

Xi (f) =

q∑
j=1

Fj (f) e2πifτ
(j)
i + ηi (f) . (117)

which simplifies to Xi (f) = F (f) e2πifτi + ηi (f) in the case of a single plane wave. From this

result, the cross spectral density matrix can easily be derived,

Si,j (f) = lim
T→∞

1

T
Xi (f)X∗j (f)

= lim
T→∞

[
F (f) e2πifτi + ηi (f)

] [
F∗ (f) e−2πifτj + η∗j (f)

]
= lim

T→∞
|F (f)|2 e2πif(τi−τj)

+ lim
T→∞

F (f) e2πifτiη∗j (f) + lim
T→∞

ηi (f)F∗ (f) e2πifτj

+ lim
T→∞

ηi (f) η∗j (f)

= lim
T→∞

|F (f)|2 e2πif(τi−τj) + lim
T→∞

ηi (f) η∗j (f).

Again we’ve separated the signal and noise cross spectral densities,

S
(F)
i,j (f) = lim

T→∞
|F (f)|2 e2πif(τi−τj), (118a)

S
(η)
i,j (f) = lim

T→∞
ηi (f) η∗j (f) ≈ σ2

η (f) δi,j . (118b)

Note again that the diagonal elements of S(F) are proportional to the signal strength while those of

S(η) are proportional to the noise power. At frequencies which contain coherent energy, S
(F)
i,i (f)�

σ2
η (f).

Given these alternate representations of the correlation and spectral density matrices, the

formulation of beam methods is straightforward. The central idea of beamforming is to define a

“beam” by a slowness vector ~w and determine some measure of the field in that direction, termed

the spatial spectrum. In the frequency domain, one can define a steering vector ~Φ (~w, f) which

produces the phase shifts expected in Eq. (117). For a single plane wave incident on an array of
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sensors, the steering vector is a vector of length p with elements defined by

Φj (~w, f) = e2πif(~w·~zj). (119)

The steering vector(s) which produce local maxima in the spatial spectrum correspond to the DOA

estimate(s). From a linear algebra point of view, all beamforming reduces to expressing ~Φ in

terms of the eigenvectors of S (f) and performing some analysis of the projection on the different

eigenvectors. The matrix S is positive definite and therefore its eigenvectors, ~v
(S)
j , and eigenvalues,

λ
(S)
j , define a p dimensional vector space [35]. At each frequency,

S = UΛU †, U =

(
~v

(S)
1 ~v

(S)
2 . . . ~v

(S)
p

)
, Λ =


λ

(S)
1 0 0

0
. . . 0

0 0 λ
(S)
p

 , (120a)

S~v
(S)
j = λ

(S)
j ~v

(S)
j for j = 1, 2, . . . p. (120b)

Further, the steering vector, ~Φ, can be expanded in terms of the eigenvectors of S at each frequency,

~Φ =

p∑
j=1

(
~Φ · ~v(S)

j

)
~v

(S)
j =

p∑
j=1

c
(~Φ)
j ~v

(S)
j . (120c)

where c
(~Φ)
j is the projection of the steering vector on the jth eigenvector of S. Once each beam-

forming method is derived, it is useful to return to this notation and analyze the resulting spatial

spectrum in terms of c
(~Φ)
j .

In order to derive the spatial spectra in each method, the power in the signal is calculated

using a weighted version of the actual data, ~̃X (f). One writes the estimate of the signal as a linear

function,

F̂ (~w, f) = ~ν†
(
~Φ,S

)
~̃X (f) , (121)

where the weighting vector ~ν is defined to satisfy some criterion proposed by the beamforming

method. Several formulations are presented in the literature, however, the most commonly used

beamforming methods are the Bartlett and Capon beams [66, 67, 68, 69]. In the following discussion

these two methods will be derived along with two methods which extend the results to account
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for multiple signals. Once a form for ~ν is determined, the corresponding spatial spectrum can be

calculated using a statistical average of
∣∣∣F̂ (~Φ, f)∣∣∣2 [58],

P (~ν) =

〈∣∣∣~ν† ~̃X∣∣∣2〉 = ~ν†
〈
~̃X ⊗ ~̃X†

〉
~ν

= ~ν†(~Φ)Ŝ(f)~ν(~Φ). (122)

In order to define the weighting function, we combine Eq. (119) with the model in Eq.

(117) for a single plane wave,

~X (f) = F (f) ~Φ (~w, f) + ~η (f) . (123)

The spatial spectrum in Eq. (122) can be used to write the expected spatial spectrum by replacing

~̃X with ~X,

〈∣∣∣~ν† ~X∣∣∣2〉 = ~ν†
〈
~X ⊗ ~X†

〉
~ν

= ~ν†
〈[
F~Φ + ~η

]
⊗
[
F∗~Φ† + ~η†

]〉
~ν

=
〈
|F|2

〉 ∣∣∣~ν†~Φ∣∣∣2 + σ2
η |~ν|

2 , (124)

where we’ve used the assumptions
〈
F~Φ⊗ ~η†

〉
= 0,

〈
~η ⊗F∗~Φ†

〉
= 0, and

〈
~η ⊗ ~η†

〉
= σ2

ηI. This

result can be used to determine ~ν
(
~Φ,S

)
for a given criterion.

The Bartlett Beam

The conventional, or Bartlett, beamforming algorithm seeks a normalized weighting function∣∣∣~ν (~Φ,S)∣∣∣ = 1 which maximizes the spatial spectrum [66]. Normalizing ~ν
(
~Φ,S

)
fixes the noise

term in Eq. (124). The first term in Eq. (124) is maximized when ~ν is parallel to ~Φ which leads to

the normalized weighting,

~ν(B)
(
~Φ,S

)
=

~Φ (~w, f)√
~Φ† (~w, f) ~Φ (~w, f)

. (125)
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Inserting this result into Eq. (122), one finds [66],

P (B) (~w, f) = ~ν†(~Φ,S)Ŝ(f)~ν(~Φ,S)

=
~Φ†(~w, f)√

~Φ†(~w, f)~Φ(~w, f)
∗ Ŝ(f)

~Φ(~w, f)√
~Φ†(~w, f)~Φ(~w, f)

=
~Φ†(~w, f)Ŝ(f)~Φ(~w, f)

|~Φ(~w, f)|2
. (126)

Referring back to Eq. (120), this spatial spectra can be written in the form,

P (B) (~w, f) =
1

p

p∑
j=1

λ
(S)
j (f)

∣∣∣~Φ(~w, f) · ~v(S)
j (f)

∣∣∣2
=

1

p

p∑
j=1

λ
(S)
j (f)

∣∣∣c(~Φ)
j (~w, f)

∣∣∣2. (127)

The coefficients c
(~Φ)
j (~w, f) measure how much of ~Φ(~w, f) is projected onto ~v

(S)
j (f), and therefore the

Bartlett beamformer searches for a solution which is dominated by projections on the eigenvectors

associated with the largest eigenvalues. The Bartlett beamformer has some limitations in resolving

multiple incident signals when their back azimuths are separated by small angles because it uses

every degree of freedom in the model to concentrate the signal along the beam into the spatial

spectrum.

The Capon Beam

In order to alleviate the resolution limitations of the Bartlett beamformer, the Capon

method (also termed the Minimum Variance Distortionless Response filter) was developed [67, 68].

The spatial spectrum for the Capon beamformer is defined by

min

[〈
|F (f)|2

〉 ∣∣∣~ν†~Φ∣∣∣2 + σ2 |~ν|2
]
,

subject to
∣∣∣~ν†~Φ∣∣∣ = 1.

The physical meaning of this weighting is that the gain in the look direction is held fixed by the

second condition. Then, the contribution to the spatial spectrum from noise and signals off-beam
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is minimized. The optimizing weighting function can be found by Lagrange multipliers [67],

~ν(C)
(
~Φ,S

)
=

Ŝ−1(f)~Φ (~w, f)

~Φ† (~w, f) Ŝ−1(f)~Φ (~w, f)
. (128)

Again, inserting the weighting into Eq. (122) gives the Capon beamformer spatial spectrum [67, 68],

P (C) (~w, f) = ~ν†(~Φ,S)Ŝ(f)~ν(~Φ,S)

=
~Φ†(~w, f)Ŝ−1(f)(

~Φ†(~w, f)Ŝ−1(f)~Φ
)∗

(~w, f)
Ŝ(f)

Ŝ−1(f)~Φ(~w, f)

~Φ†(~w, f)Ŝ−1(f)~Φ(~w, f)

=

~Φ†(~w, f)
(
Ŝ−1(f)Ŝ(f)

)
Ŝ−1(f)~Φ(~w, f)∣∣∣~Φ†(~w, f)Ŝ−1(f)~Φ(~w, f)

∣∣∣2
=

1

~Φ†(~w, f)Ŝ−1(f)~Φ(~w, f)
. (129)

The inverse spatial spectrum matrix, Ŝ−1(f), contains the inverse of the matrix Λ in Eq.

(120). Λ−1 in a diagonal matrix with λ−1
j along the diagonal. From Eq.(118) and the discussion

following it, we can infer that in such a case, the previously small noise eigenvalues become dominant

and the previously larger signal eigenvectors become relatively small. Therefore the vector space

associated with Ŝ−1(f) is dominated by the noise eigenvectors. Again referring back to Eq. (120),

the Capon spatial spectra can be written in the alternate form,

P (C) (~w, f) =
1∑p

j=1
1

λ
(S)
j (f)

∣∣∣~Φ(~w, f) · ~v(S)
j (f)

∣∣∣2
=

 p∑
j=1

1

λ
(S)
j (f)

∣∣∣c(~Φ)
j (~w, f)

∣∣∣2
−1

. (130)

Thus, the spatial spectrum searches for solutions which have the smallest projections on the eigen-

vectors associated with the smallest eigenvalues. This provides the basis for the description of

this spatial spectrum as a minimum variance distortionless response filter [35, 67, 68]. Unlike the

Bartlett method, some noise suppression capability is sacrificed in order to reduce both coherent

and incoherent energy away from the beam direction. This results in a spatial spectrum which

reduces spectral leakage from closely spaced sources and has superior spatial resolution compared
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to the Bartlett method [67, 68].

The MUSIC Beam

An additional method was developed by Schmidt which is similar in function to the Bartlett

and Capon beamforming methods, though its aim is to identify multiple coherent signals and

therefore its derivation is slightly different [70]. In the Capon beamformer, the inverse of Ŝ was used

to spatially filter for steering vectors near the null space of the inverse matrix, which is dominated

by the noise eigenvectors. Consider if, instead, one simply extracts the noise eigenvectors from Ŝ

and finds steering vectors which are near the null space of the noise. Combining the results of Eq.

(118) with (120), we expect to be able to write the decomposition of Ŝ in the form,

Ŝ(f) = Usig(f)Λsig(f)U †sig(f) +Uη(f)Λη(f)U †η(f) (131)

≈ Usig(f)Λsig(f)U †sig(f) + σ2
η(f)I,

where we’ve separated the eigenvalues and eigenvectors associated with the coherent signal from

those associated with incoherent noise. In realistic data, the distinction between signal and noise

eigenvalues is more complicated. In the high SNR case, this separation is possible because λj(f) ∼

σ2
η(f) for all noise eigenvectors where σ2

η(f) is the noise power, and λk(f)� σ2
η(f) for k denoting

a signal eigenvector. In the lower SNR case, this separation is difficult and more robust methods

must be used. Such methods will be developed later in this chapter. For now, let’s assume for now

that we’ve determined there to be q coherent signals incident on the array (q < p).

Λsig(f) =


λ1(f) 0

. . .

0 λq(f)

 , Usig(f) =

(
~v1(f) · · · ~vq(f)

)
,

Λη(f) =


λq+1(f) 0

. . .

0 λp(f)

 , Uη(f) =

(
~vq+1(f) · · · ~vp(f)

)
.

Any vector orthogonal to Usig(f) can be expressed as a linear combination of the eigenvec-

tors in Uη(f) and vice versa [35]. Because the eigenvectors in Uη(f) are orthogonal to the signal
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vector space, we seek steering vectors which are as orthogonal as possible to the vector space of the

noise. That is,

U †η(f)~Φ (w, f) ∼ 0 for the true DOAs.

A projection operator, Π
(q)
η (f) = Uη(f)U †η(f), can be constructed and the multiple signal classifi-

cation or MUSIC spatial spectrum is then defined by [70, 58]

P (M)
q (~w, f) =

~Φ†(f)~Φ(f)

~Φ†(f)Π
(q)
η (f)~Φ(f)

. (132)

Using the representations in Eq. (120) and (131), we can alternately write this spatial spectrum as

P (M)
q (~w, f) =

1

p

p∑
j=q+1

∣∣∣~Φ (~w, f) · ~v(S)
j (f)

∣∣∣2
−1

=

1

p

p∑
j=q+1

∣∣∣c(~Φ)
j (~w, f)

∣∣∣2
−1

. (133)

That is, if one expands ~Φ in terms of the eigenvectors of S and separates the summation as

~Φ(~w, f) =

q∑
j=1

c
(~Φ)
j (~w, f)~v

(S)
j (f) +

p∑
j=q+1

c
(~Φ)
j (~w, f)~v

(S)
j (f)

= ~Φsig(~w, f) + ~Φη(~w, f), (134)

one seeks a solution which minimizes |~Φη(~w, f)|2. It should be noted that P
(M)
q (~w, f) is not a true

spectrum in any sense, but instead is a measure of the distance between a given steering vector and

the vector subspace associated with the noise. However, it does exhibit peaks for ~Φ in the vicinity

of the true DOAs.

The Dominant Mode Rejection Beam

In addition to the MUSIC spatial spectrum discussed in the previous section, other beam-

forming methods using the eigenvalue structure of the spectral density matrix have been developed.

One such method is the Dominant Mode Rejection, or DMR, beamformer. The DMR beamformer

uses an eigenvalue decomposition and separates the eigenvalues and eigenvectors of the spectral

density matrix into those associated with signal and noise as the MUSIC spatial spectra does,

however it includes all eigenvectors in the calculating, with the average of the eigenvalues for the

noise eigenvectors, λ̄(S), replacing the exact values [71]. The DMR spectrum is calculated similarly
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to the Capon beamformer in Eq. (130),

P (DMR) (~w, f) =

 q∑
j=1

1

λ
(S)
j (f)

∣∣∣c(~Φ)
j (~w, f)

∣∣∣2 +
1

λ̄
(S)
η (f)

p∑
j=q+1

∣∣∣c(~Φ)
j (~w, f)

∣∣∣2
−1

(135a)

= λ̄(S)
η (f)

 q∑
j=1

λ̄
(S)
η (f)

λ
(S)
j (f)

∣∣∣c(~Φ)
j (~w, f)

∣∣∣2 +

p∑
j=q+1

∣∣∣c(~Φ)
j (~w, f)

∣∣∣2
−1

. (135b)

Typically, the form of the beamformer in Eq. (135a) is used to compute the beam. However, it

is useful to analyze the behavior of the beamformer using the second form in Eq. (135b). It is

expected that λ
(S)
j (f) � λ̄

(S)
η (f) when a signal is present and the correct number of signals is

assumed. Therefore, in such a case, the DMR spatial spectrum exhibits peaks in the regions where

the sum in the second term is nearly zero.

The averaging used in defining λ̄
(S)
η allows one to use the beamformer without requiring

that the sensor to snapshot ratio be less than unity. Recall that the spatial spectrum matrix, S,

has been estimated by averaging ~X (f)⊗ ~X† (f) over multiple snapshots. Therefore, if fewer than

p snapshots were used in this estimation, the matrix cannot be full rank. In such a case, the lowest

eigenvalues are zero and the inversion required to use the Capon beamformer cannot be calculated.

Thus, the dominant mode rejection can be used as an estimate of the Capon spatial spectrum in

the case that S is rank deficient.

Comparing Eq. (135b) with the definition of the MUSIC spatial spectra in Eq. (133),

we find that in this case the DMR and MUSIC spatial spectra are simply scaled versions of one

another. Consider the different case in which one of the noise eigenvalues has been assumed to be

signal and is left out of the averaging to find λ̄
(S)
η . In such a case the ratio of λ

(S)
j to λ̄

(S)
η will be

nearly unity (not the very small value it would be if λ
(S)
j were actually a signal eigenvalue) and

the corresponding coefficient |cj |2 is kept in the summation. Thus, the DMR functions reproduces

a scaled version of the MUSIC spatial spectrum in the case that the signal power is very high and

the correct number of signals is input, however, it is less likely to fail when the number of signals

is not correct.
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Developing a Processing Routine for Microbaroms

In this section, we present a rigorous development of a data processing routine to be used to

extract the microbarom signal from the data record of an array of microphones. The development

of this routine has focused on determining the most effective method to achieve the following,

• Approximate the true spectral density matrix S(f) by some Ŝ(f).

• Determine which of the beamforming methods most efficiently identifies microbaroms in the

data. Specific attention is being paid to develop a method to detect multiple microbaroms in

noisy data.

• Use the model in Eq. (117) to separate the signal and noise and, if possible, determine the

signal count which best explains the data.

Approximating the Spectral Density Matrix

and Applying a Data Adaptive Filter

Unlike analysis of transient signals, the signal to noise ratio of a continuous signal can be

enhanced by taking a long recording and averaging over sub-windows to reduce the incoherent

noise in the data record. During a large window of time, several snapshots of data within the larger

window can be used to obtain a statistical average of the spectral density matrix. That is,

Ŝ (f) =
〈
~̃X (f)⊗ ~̃X† (f)

〉
snap shots

. (136)

The limitations on the size of the window and snapshots is determined by the physical system of

interest. The large window must be sufficiently small to guarantee that the source satisfies the

assumption of stationarity but large enough to provide at least p independent snap shots so that

Ŝ (f) is full rank. The sub-window snapshots must be sufficiently large to record several cycles of

the phenomenon of interest, and should be large enough to provide adequate frequency resolution.

Recall that the frequency resolution from the DFT is df = 1
Tsnap shot

.

For microbaroms, the band of frequencies which are dominant ranges from 0.15 to 0.3 Hz

which corresponds to a maximum possible period of ∼ 6 seconds. Fig. 19 shows how the snapshots

overlap across the larger window. In order to maintain the assumption of stationarity and include
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Fig. 19: A large window of data is bro-

ken into overlapping snapshots of data and

the spectral density matrix is estimated by

Ŝ(f) =
〈
~X(f) ⊗ ~X†(f)

〉
snap shots

.

sufficient microbarom cycles, we have elected to use a larger window of 6 minutes with 30 second

snapshots. Within each snap shot, the 30 seconds of data is scaled using a Hann window,

W (n) =
1

2

(
1− cos

(
2πn

N − 1

))
, (137)

which reduces spectral leakage [61]. Additionally, 15 seconds of zero padding are added before

and after the actual data, resulting in a one minute time sample with 30 seconds of windowed

data at its center. The resulting time data for a sample snapshot is shown in Fig. 20. Snapshots

are overlapped to compensate for the windowing and allow all data to contribute to the averaged

spectral density matrix.

Once a statistically determined spectral density matrix has been calculated, the pure state

filter in Eq. (107) can be used to calculate the strength of the coherence at each frequency on

interest. These values can then be used to determine the weighting function ~% (f), at discrete

frequency bins fk,

%k =
γ(filter)

[
Ŝ (fk)

]
∑K

j=1 γ(filter)

[
Ŝ (fj)

] . (138)

Note that the γ filter is not squared in this relation, so one must take the square root of the result

from Eq. (107). Any quantity A =
∑
Ak%k is simply the weighted average of Ak where frequencies

with strongly coherence frequencies weighted more heavily than those with weaker coherence. It is
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Fig. 20: The original data is scaled using a Hann window to eliminate edge effects and zero padded to double the

snapshot length and reduce spectral leakage.

easily seen that if all frequencies are uniformly coherent, one finds %k = 1
K for all bins and a simple

average is calculated A = 1
K

∑
Ak.

Evaluation of Beamformer Performance

In order to compare the performance of the beamforming methods discussed previously,

we have elected to use a combination of synthesized data using Eq. (117) as a model and actual

microbarom data detected during Hurricane Igor in September of 2010. The synthesized data is

generated by,

Xj (~w, f) =

q∑
n=1

RµF ,σF (n, f) ~Φ (~wn, f) +Rµη ,ση (f) (139)

where Rµ,σ is a random number generator with mean amplitude µ and variance σ. For our analysis,

we’ve used mean amplitudes µF =
√

SNR and µη = 1. The variances used were σF = 0.1
√

SNR,

ση = 0.1. The random numbers associated with the signal are generated once for each n value while

those associated with the noise are generated at each frequency. Both generators also produced a

random phase. Thus we can generate n coherent plane waves of chosen amplitudes incident on a

model array of microphones with fixed amplitude incoherent noise. Additional plane waves can be

synthesized and included to model multiple coherent signals incident on an array of microphones.

The array design used in generating the synthetic data is a 6 element array with geometry identical

to that of the Brookhaven National Laboratory deployment.

The data from Hurricane Igor was chosen because it contains a strong microbarom signal

and provides a real world example of the signal measured when a strong maritime storm is present

in the open ocean. Hurricane Igor was the most intense storm of the 2010 Atlantic hurricane season.
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Igor reached a maximum intensity of Category 4 with sustained winds of just under 70 m
s . The

storm weakened to a Category 1 storm as it traveled eastward across the Atlantic but did not make

landfall on the continental United States. Igor did strike the island of Bermuda as a Category

1 and continued to move northward through the Atlantic, maintaining its intensity. During the

time that Igor was active, the Croatan and McCoy sites were recording with all four elements.

One element in the Ocala array was not functioning and two sensors in the Francis Marion array

were not functioning. All non-functioning elements were due to loss of power from insufficient solar

exposure.

In this comparison of the beamforming methods discussed previously, we will consider how

well each method’s spatial spectra identifies the presence of one signal and a pair of signals incident

on an array of microphones at various SNR values using the synthetic data. The data from Hur-

ricane Igor will then be used to compare how the methods perform with actual data and compare

the stability of solutions over large time samples associated with the prolonged microbarom energy

produced by a large maritime storm.

Here we consider azimuth directions −180o ≤ φ ≤ 180o with increment 1o, and acoustic

trace velocities, vtr, between 330 and 400 m
s . For the various beamforming methods, the spatial

spectrum, P (φ, vtr, f), is calculated for all considered values and reduced to a function only of φ

by taking the maximum value at constant azimuth, φ, and using the weighting vector,

P (φ) =
K∑
k=1

maxvtr [P (φ, vtr, fk) %k]. (140)

The performance of the various spatial spectra can be analyzed using synthetic data incident

on a model array. In this case, an array of eight elements in a five kilometer aperture are used

to test synthesized continuous signal in the microbarom band, 0.15 - 0.3 Hz. The spatial spectra

resulting from a single signal incident with SNR = 1, 2, and 4 are shown in the left column of

Fig. 21. These panels show the response from each beamforming method for a single plane wave

incident from 0 degrees. The Bartlett spatial spectrum varies very little with variations in noise

level due to the side lobes present off the main beam. In the case of a single plane wave incident on

the array, the Capon and MUSIC spatial spectra are equally efficient in identifying the peak. Even

in the low SNR case, the DOA of a single signal is easily identified by all of the spatial spectra.
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Fig. 21: The spatial spectrum response for one signal (left) and two signals (center, right) incident on an array of

eight microphones in a five kilometer aperture array. In the left and center columns, the SNR decreases in the lower

panels. In the right column, the sources source separation decreases with constant SNR.

In the case of two signals incident on an array, both the SNR and relative DOAs are factors

in detection. The center column of Fig. 21 shows the results for two signals separated by 30 degrees

at variable SNR. The Bartlett beam is able to resolve the two separate peaks in all cases, however

again the side lobes complicate the spatial spectrum. The Capon spectrum reduces the side lobes,

allowing the peaks to be easily identified in all cases, however the MUSIC spectra assuming q = 2

is able to better minimize the spatial spectra away from the true DOAs.

The spatial spectra response for two signals separated by 30o, 20o, and 10o with constant

SNR is shown in the right column of Fig. 21. All spatial spectra exhibit local maxima at the

true DOAs when separated by 30o (top), however, the Bartlett beam begins to have difficulty once

the pair of arrivals are within 20o of one another and cannot resolve the separate signals for small

separations. The Capon spatial spectrum is able to reduce the side lobes, and more easily identify

the signals when separated by 20o, however it also fails to separate the signals at 10o. Only the

MUSIC (q = 2) is able to resolve the separate maxima for a separation of 10o. Array geometry
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contributes to the limiting resolution, however, in this case the relative performance of the different

methods is of interest. It is evident from these results that the MUSIC algorithm out performs the

Bartlett and Capon spatial spectra assuming that the correct value of q is known. A method to

determine the number of signals present in a data record will be presented later in this chapter.

The data recorded on the Croatan and McCoy arrays during Hurricane Igor can be used to

further compare the performance of the various beamforming methods. Once a window of data has

been analyzed, it is straightforward to determine the largest local maximum. The large window can

then be moved forward in the data record (possibly overlapping) resulting in a time series record

of the azimuth of a continuous acoustic signal incident on an array. In the case of Hurricane Igor,

microbaroms were present in the data from September 17 to September 22 of 2010. These five

days of data have been processed using each type of spatial spectra and plotted using the difference

between the azimuth of the microbarom signal and the azimuth from the array to the storm eye.

The results of this processing are shown in Fig. 22 and 23. The horizontal axis denotes the time

as the storm moved through the Atlantic and the vertical shows the relative azimuth of the signals

detected relative to the azimuth to the eye. Positive azimuths indicate signal emanating from north

of the storm while negative azimuths indicate signal emanating from south of the storm. The large

dot on the horizontal axis denotes the time at which the hurricane passed the latitude of the array.

Before that time, the storm was south of the array and the microbarom signal propagated through

the storm wind field, while after that time the storm was north of the array and the microbarom

signal was relatively unaffected by the storm winds.

In each case, the microbarom signal is overwhelmed by noise in the daytime hours due

to increased wind and atmospheric turbulence. During the overnight hours, the signal is easily

detected and analyzed. In the nighttime hours between 00:00 and 12:00 GMT on September 19th,

both the Croatan and McCoy arrays detected microbaroms with azimuths north of the storm. As

the storm passed each array latitude, the spread of the azimuths decreased and a low variance

azimuth shifted to a location south of the storm and stabilized there. This stabilized azimuth is

easily seen the results for the Bartlett, Capon, and q = 1 MUSIC spatial spectra. For the data

recorded before the storm passed the array latitude, the microbarom propagated through the storm

winds and the q = 2 MUSIC spatial spectra was able to locate multiple signals frequently.
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Spatial Spectra Comparison - Croatan Array 
 Hurricane Igor (September 2010)
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Fig. 22: The maximum of the spatial spectral function applied to data from the Croatan array during Hurricane

Igor (September 2010).
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Spatial Spectra Comparison - McCoy Array 
 Hurricane Igor (September 2010)
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Fig. 23: The maximum of the spatial spectral function applied to data from the McCoy array during Hurricane

Igor (September 2010).
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Residual and Model Selection

From the analysis the beamforming performance, it is clear that the MUSIC spatial spec-

trum (or alternately the DMR beamformer) is more efficient than the Bartlett or Capon methods

for extracting one or possibly several microbarom signals from a noisy data record. However, both

MUSIC and DMR beamforming require a decision be made regarding the number of signals present.

In this section we finalize the data processing routine to be used by developing and implementing

a model selection criterion. In a general sense, the problem we approach can be summarized as

follows: a data record is being analyzed which can be explained by a number of possible models.

A null hypothesis exists which asserts that no coherent energy is present (q = 0). Alternately, one

or more coherent plane waves could be present in the data, to a maximum of p − 1. Thus, for an

array of p microphones, there exist p possible models to explain the data, q = 0, 1, . . . p− 1.

Model selection is a statistical process which is based on a well-justified criteria of choosing

the “best” model to explain a finite amount of noisy data. Model selection criterion should be a

quantity calculable from the result of each model applied to the data and fit into a general statistical

framework of a likelihood or Bayesian framework of statistics [72]. Such a criterion first relies on a

quantification of information such as that developed by Kullback and Leibler in a 1951 publication.

Let T (X ) denote full reality or truth from a given state, X , andM(X ,Q) denote an approximating

model with parameters Q. The truth varies only over the variable X while the model varies over

X and a space of different models defined by Q. The Kullback-Leibler information, I (T ,M), is

the information lost when the model M is used to approximate T [73],

I (T ,M) =

∫
T (X ) ln

(
T (X )

M (X ,Q)

)
dX . (141)

The best model is then defined by that which minimizes the information lost relative to all possible

models.

This information criterion cannot be used directly because it requires knowledge of the true
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system, T (X ). However, note that K-L information can be expressed in the alternate form,

I (T ,M) =

∫
T (X ) ln

(
T (X )

M (X ,Q)

)
dX

=

∫
T (X ) ln T (X ) dX −

∫
T (X ) lnM (X ,Q) dX

= ET [ln T (X )]− ET [lnM (X ,Q)] .

where we’ve denoted the expectation of a quantity
∫
T (X )AdX = ET [A]. The first term in this

new form is a constant, we’ll denote it by CT , and so finally,

I (T ,M) = CT − ET [lnM (X ,Q)] . (142)

This produces an information criterion measure which can be compared for different values of Q

without requiring knowledge of the truth.

A rigorous model selection criterion based on K-L information was introduced by Akaike

[74]. The basis of the problem reduced to estimating

EX̃EX

[
lnM

(
X|Q̂

(
X̃
))]

,

where EX

[
lnM

(
X|Q̂

(
X̃
))]

= ET

[
lnM

(
X|Q̂

)]
with Q̂ being the maximum likelihood estima-

tor ofQ based on the modelM and data X̃ . Akaike demonstrated that the maximized log-likelihood

value was a biased estimate of EX̃EX

[
lnM

(
X|Q̂

(
X̃
))]

, but the bias was proportional to K, the

number of estimable parameters in the model [74]. Therefore, an approximately unbiased estimator

in the case of large sample sizes and “good” models is

ln
(
L
(
Q̂|X̃

))
−K = CT − ÊQ̂

[
I
(
T ,M̂

)]
,

where M̂ =M
(
·|Q̂
)

. Akaike took this result and scaled it by −2, producing the Akaike Informa-

tion Criterion [74],

AIC = −2 ln
(
L
(
Q̂|X̃

))
+ 2K. (143)
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In the case of a least squares estimation, the AIC can be expressed alternately as

AIC = N ln

(
RSS

N

)
+ 2K, (144)

where N is the number of independent measurements used in the model selection process. In the

case that K is large relative to N (or N is small for any K), there is a second order bias correction

which must be used to correct for a finite sample size. The corrected AIC was derived by Sugiura,

Hurvich, and Tsai [75, 76],

AICc = N ln

(
RSS

N

)
+ 2K +

2K (K + 1)

N − (K + 1)

= N ln

(
RSS

N

)
+

2KN
N − (K + 1)

. (145)

Thus, in order to select the model which best explains the data, we require the number of inde-

pendent measurements, N , the number of parameters in each model, K, and the residual sum of

squares, RSS, for each possible model. The model which minimizes the AICc is then the one which

best explains the information contained in the data.

The application of the AICc can be separated into a number of steps. Initially, the null

hypothesis produces an AICc value,

AICc (0) = N ln

(
1

N

)
. (146)

Then, taking the peak of the MUSIC or DMR spatial spectrum for q = 1, the residual for 1 plane

wave is found, 0 ≤ RSS1 < 1, which provides some decrease in the logarithmic term. However, a

penalty is produced by K1. Thus, a single plane wave is a “better” model for the data if,

AICc(1) < AICc(0)

N ln

(
RSS1

N

)
+

2K1N
N − (K1 + 1)

< N ln

(
1

N

)
2K1

N − (K1 + 1)
< ln

(
1

RSS1

)
. (147)

A similar expression can be derived to relate the AICc values for q and q+1. The resulting condition

89



states that the penalty for additional parameters required in a more complicated model must provide

a sufficiently large decrease in the residual sum of squares to be accepted as a “better” model. In

general, the more measurements used in the analysis, the easier it is to satisfy this condition,

while a large number of parameters requires a larger reduction in the residual to allow the more

complicated model.

The number of parameters associated with each model can be determined by referencing

the set up of our problem in Eq. (124). For each plane wave incident on the array, only its overall

amplitude |F (f)|2 was free in the beamforming derivation. This provides K free parameters for

each plane wave in the model. Additionally, each plane wave was defined by a two component

slowness vector ~w. However, in each beamforming development, the length of ~Φ was fixed by some

condition. This constraint eliminates one free parameter. Therefore, a model with q plane waves

contains K = (K + 2− 1) q = (K + 1) q free parameters.

The residual sum of squares for a given number of signals can be found by using Eq. (117)

with (119) with the slowness vector(s) defined by the q largest peaks in the spatial spectrum.

Assuming that ~η (f)� F (f) Φ (~w, f), the spectral content of the coherent signal(s) incident on the

array can be calculated with the pseudo-inverse of ~Φ,

~̂F(f) =
(
Φ†(w, f)Φ(w, f)

)−1
Φ(w, f) ~̃X(f), (148)

Φ(w, f) =

(
~Φ1(~w1, f) ~Φ2(~w2, f) · · · ~Φq(~wq, f)

)
.

This can be combined with the modeled signal to define a projection operator for the residual,

~̂η (w, f) = ~̃X (f)−Φ(w, f)
(
Φ†(w, f)Φ(w, f)

)−1
Φ(w, f) ~̃X(f)

=

[
I −Φ(w, f)

(
Φ†(w, f)Φ(w, f)

)−1
Φ(w, f)

]
~̃X (f)

=
[
I − Π̂sig (w, f)

]
~̃X (f) = Π̂η (w, f) ~̃X (f) . (149)
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The residual spectral density can then be written,

Sη (f) =
〈
~̂η (w, f)⊗ ~̂η† (w, f)

〉
=

〈
Π̂η (w, f) ~̃X (f)⊗

[
Π̂η (w, f) ~̃X (f)

]†〉
= Π̂η (w, f)

〈
~̃X (f)⊗ ~̃X† (f)

〉
Π̂†η (w, f)

= Π̂η (w, f) Ŝ (f) Π̂†η (w, f) . (150)

And so finally, the residual can be calculated by comparing the trace of the original spectral density

matrix to the trace of the residual,

RSS =
K∑
j=1

Tr
[
Ŝη (fj)

]
Tr
[
Ŝ (fj)

] %k. (151)

It should be noted that this normalizes the RSS values so that in the case of q = 0, one has RSS

= 1.

In our application, the number of measurements used to select a model is 2pK since there is

a real and imaginary component of Xj (f) at each sensor and at each frequency used in broadband

analysis. A problem arises at this point because not all of the measurements are independent.

Spectral leakage and time correlations in the noise reduce the independence of the measurements.

In order to demonstrate this problem, consider the 12 hours of data displayed in Fig 24. In the left

side of the figure are the largest maxima of the MUSIC spatial spectra assuming q = 1 and q = 2.

Over the course of the data record, a consistent coherent signal is present at around 0o. There are

occasional times during which a weak second signal is present from around 100o and a short period

between hours three and four where a second signal is present between −60o and −90o.

On the right are the full spatial spectra for a few specific times within the overall record.

Early in the data record, at 00:27, there is evidently only a single signal since the q = 2 spectra

doesn’t contain a second peak which can be distinguished from the incoherent noise. Later, at 03:50,

the q = 1 spatial spectra actually pick up several instances of strong coherent energy from around

−75o which is consistent with the q = 2 spectra and therefore during these times it is reasonable

to assume a strong second coherent signal is present. Later still in the record, at 07:47, the signal
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incident around 0o is seen to split into a pair of coincident signals separated by approximately 20

degrees.

In the upper panel of Fig. 25 is the residual calculated using the projection result in Eq.

(151) for q = 0, q = 1, and q = 2. In the lower panels of the figure is the AICc values assuming all

of the measurements are independent, 90% are independent, and 80% are independent. In the case

that all measurements are assumed completely independent, the AICc selects the q = 2 result for

nearly the entire data record, which the results in Fig. 24 clearly indicate to be an incorrect model

selection for much of the data record. By assuming some of the measurements are dependent on

one another, we can scale the value of N = 2pK and by doing so produce the modified AICc results

in the lower panels of the figure in which the model selection is more applicable to the data record.

In order to account for these losses, we have introduced a multi-frequency spectral density

matrix, which we elect to term the “super spectral density matrix”. Within each snapshot of data,

we stack the vectors of data from f1 to fK and then average over multiple snapshots to produce a

matrix of the form,

~̃XS =



~̃X (f1)

~̃X (f2)

. . .

~̃X (fK)


−→ Ŝ =

〈
~̃XS ⊗ ~̃X†S

〉
. (152)

As an alternate visualization of this matrix, consider defining the spectral density matrix for mul-
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Fig. 24: Data from Brookhaven National Laboratory during Hurricane Ophelia likely contains multiple coherent

signals at certain time intervals and can be used to demonstrate the overestimate of the number of independent

measurements used in the AICc calculation.
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tiple frequencies,

Ŝ (fn, fm) =
〈
~̃X (fn)⊗ ~̃X† (fm)

〉
,

then the super spectral density matrix is defined by sub-matrices,

S =



Ŝ (f1, f1) Ŝ (f1, f2) . . . Ŝ (f1, fK)

Ŝ (f2, f1) Ŝ (f2, f2)
...

...
. . .

Ŝ (fK , f1) . . . Ŝ (fK , fK)


.

A number of characteristics of the data can be obtained from the super spectral density matrix.

If one sets all off-diagonal blocks to zero, and substitutes the resulting matrix into the pure state

filter in Eq. (107), one finds a measure of only the spatial coherence at all frequencies being used

in the calculation. Such spatial coherence is assumed to be the result of a coherent acoustic signal

propagating across the array. In order to obtain a measure of the spectral leakage, one sets the

off-diagonals within each sub-matrix to zero resulting in a matrix of the form,

Sspec =



S11 (f1, f1) 0 . . . S11 (f1, f2) 0 . . .

0 S22 (f1, f1) . . . 0 S22 (f1, f2)

...
...

. . .
. . .

S11 (f2, f1) 0

0 S22 (f2, f1)

...
. . .


. (153)

Substituting this matrix into the pure state filter in Eq. (107) results in a measure of how

much independence is lost due to spectral leakage. One can therefore approximate the number of

independent measurements by N ′ = 2pK
(
1− γ(filter) [Sspec]

)
.

Preliminary work using the data recorded at BNL has produced value of γ(filter) [Sspec]

which greatly improve the accuracy of the AICc model selection method. However, additional

complications arise due to the need for this large matrix to be full rank which requires a large

number of snapshots to provide sufficient statistics of the dependence of the data. Additional work

is necessary to further investigate the information contained in the super spectral density matrix

and determine if it is a useful quantity to use in the statistics of array processing. Regrettably, the
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additional data collection and time necessary to perform such an investigation is beyond the scope

of this project and will need to be done at a later time.

The introduction of the super spectral density matrix, Eq. (152), leads to a new concern in

our scheme of arranging snapshots within a larger time window. The super spectral density matrix

is pK × pK and therefore we have increased the number of independent snapshots necessary to

construct a statistically accurate matrix by a factor of K. In order to assure ourselves that the

super spectral density matrix computed by snap shot averaging is full rank, we require at least

(p+ 1)K independent windows be included in our calculation. For a frequency band ∆f and data

sampled with time steps dt, K = ∆f ×Ndt. Accounting for the zero-padding of data, the snapshot

window is of length Tsnap = N
2 dt. Combining this,

Twindow

Tsnap
≥ (p+ 1) ∆f Ndt

≥ (p+ 1) ∆f 2Tsnap. (154)

Thus we require,

Twindow ≥ 2 (p+ 1) ∆f T 2
snap, (155)

which can produce feasibility issues when p or ∆f are large.

Summary and Evaluation of An Optimized Routine

All aspects of the proposed data processing routine have been discussed and here we provide

a summary of the method. Following the description of the routine is a short explanation of post

processing methods which are useful for characterizing the detection.

1. A large window of data is selected for analysis. The length of this window is determined

by Eq. (155). Within this window, overlapping snapshots of data are Fourier transformed

to produce an averaged power spectral density matrix, Ŝ(f), by Eq. (136) and an averaged

super spectral density matrix S by Eq. (152).

2. Various operators are performed using the power spectral density matrix and super spectral

density matrix.

• The power spectral density matrix at each frequency to be included in analysis is used
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in the pure state filter, Eq. (107), to weight each frequency by the coherence of the data

in that bin.

• The power spectral density matrix at each frequency to be used is expanded into an

eigenvector decomposition as in Eq. (120).

• The super spectral density matrix is modified to include only spectral coherence as in

Eq. (153) and plugged into the pure state filter to determine the fraction of the measured

data which is independent. From this result the AICc (0) is computed using Eq. (146).

3. The MUSIC or DMR spatial spectrum is calculated for q = 1 using the eigenvalues and

eigenvectors of Ŝ(f).

• The peak of the spatial spectrum is found and used to construct the projection operator

in Eq. (149).

• The residual RSS1 is calculated and used to calculate AICc(1).

4. If AICc(0) < AICc(1), the routine exits and reports that there is no signal present. Otherwise

it calculates the MUSIC or DMR spatial spectrum for the subsequent value of q.

• The largest q peaks of the spatial spectrum are determined, the projection operator in

Eq. (149) is calculated, and RSSq is determined.

• AICc(q) is checked against AICc(q − 1) to determine if a minimum value of AICc has

been found.

• These steps are looped over until a minimum AICc value is found or the limiting number

of signals is reached.

5. The large window is moved forward by some fraction of its duration and the subsequent data

is analyzed. This is repeated until the end of the data file is reached.

Once a model is chosen by the AICc criterion, several characteristics of the result can

be calculated and used to characterize the detection. The discrete second derivative at the local

maximum associated with a signal can be used to fit a quadratic and window the peak in the spatial

spectrum. Once this is completed, the mean, µP , and standard deviation, σP , of the off-beam data

can be computed. An example of this analysis is shown in Fig. 26. From the form of the expression
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Fig. 26: The zeros of a quadratic fit (black solid line) can be used to identify the portions of the spectrum which

are “off-beam”. In this region, the mean, µ, and standard deviation, σ are calculated in order to characterize the

result.

in Eq. (134), it is evident that the spatial spectrum in the vicinity of a maximum associated with

a signal can be expressed as a scaled Cauchy-Lorenz distribution,

P (φ)
∣∣∣
φ0

∼ µP +
P (φ0)− µP
1 + (φ−φ0)2

δφ2

. (156)

Using µP , σP , and this fit, the confidence and width of each spatial spectral maximum can be

calculated by,

Confidence =
P (φmax)− µP

σP
, (157a)

Beam Half-Width = φ 1
2

= 2

√
−2

P (φ0)

P ′′ (φ0)
. (157b)

The first of these quantities measures the maximum in terms of standard deviations above the off-

beam mean. The second measures the half-width of the maximum relative to the off-beam mean

and is derived by the condition

µP +
P (φ0)− µP

1 +

(
φ 1

2
−φ0

)2

∆φ2

= µP +
P (φ0)− µP

2
, (158)

where it can be shown from the fit that ∆φ =
√
−2P (φ0)−µP

P ′′(φ0) .

It should also be noted that the processing routine discussed here can be implemented as

97



part of a broader method. Consider the case that a low SNR transient is present in data with a

moderately strong microbarom signal (or other continuous coherent background). The routine here

can be used to construct the projection operator in Eq. (149), which can then be used to remove

the continuous background signal from the data. The projection operator, Πη (w, f), acting on a

snapshot of data ~̃X (f), removes all coherent information along the beam(s) defined by w; in effect

spatially filtering the data to remove coherent signals only along the beam(s). The resulting snap

shot of data can then be analyzed using any other method to identify remaining transients.

Limited Data Sources - A Processing Method for Sparse Arrays

From the results of the analysis of the previous section, it is evident that in the case of the

small arrays used in the experiment by the NCPA infrasound group, the data is insufficient to use

the MUSIC/AICc algorithm. As an alternate to the method proposed above, it has been chosen

here to use steps 1 and 2 from the previous section’s method to extract the approximate spectral

density matrix Ŝ (f) and use it to determine weighting of frequency bins as in the first part of step

2 from the method summary. Instead of using the MUSIC spatial spectrum, the inverse Ŝ−1
(f)

at each frequency of interest is computed and the frequency weighted Capon beamformer is used

to produce a spatial spectrum for the data. From this result, the largest local maximum indicating

signal incident from east of the array (that is, from the Atlantic) is chosen and the beamwidth

is calculated as in Eq. (157b) using the second derivative and local maximum from the Capon

beam. This extracts only the largest local maximum in the direction of interest and neglects any

secondary sources which might contribute to the sound field at the array.

Optimizing Array Design

The arrays deployed during the 2010 and 2011 Atlantic hurricane seasons have been found

to be incapable of resolving the nearly coincident arrivals predicted by the propagation models in

Chapter 3. From the separation of arrival geometry in Fig. 9 and 14, we can infer that future

deployments should be designed such that the arrays are capable of resolving incident signals

separated by as little as 10 degrees and with differences in intensity of over 10 dB. In this section,

we use the Capon beamforming methods to test the response of various array geometries including

those used in the current analysis and several denser array layouts to determine the sensor count
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and array footprint necessary to resolve the arrivals predicted by the propagation models.

In all the examples here, 15 60-second synthetic data records are generated to produce the

equivalent of sampling a 15 minute data file using 15 subwindows. Using 15 snapshots to create

the spectral density matrix guarantees that the sensor to snapshot ratio is always less than unity.

While some processing methods allow a sensor to snapshot ratio of greater than unity, here we have

required that the sensor to snapshot ratio be less than that value. In the event that the sensor to

snapshort ratio is greater than unity, the spectral density matrix becomes rank deficient and the

inversion in the Capon beamforming calculation fails.

Centered Triangular Array

The 4 element centered triangular arrays used for the majority of deployments in this

project have provided useful data for identifying the microbarom source region once the signal is

no longer interacting with the storm winds. However, the limited resolution of such a sparse array

prevents one from being able to identify multiple signals in a data record without exceptionally

large differences in incident angle. Shown in Fig. 27 is the spatial spectrum response for a pair of

signals differing by 10 dB and incident from 0o and −25o relative to east. The signal to noise ratio

(SNR) between the stronger signal and the background noise in this example is 4. It is immediately

evident from this result the reason that our current data set has been unable to resolve the multi-

pathing predicted by the model. Even in this high signal to noise ratio case, the only indication of

the second signal is the asymmetry in the peak due to the stronger signal.

The Brookhaven National Laboratory Array

The 6 element array deployed at Brookhaven National Laboratory has performed markedly

better than the four element centered triangular arrays deployed elsewhere during this project.
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Fig. 27: The spectral response of a four element centered

triangular array to a pair of infrasonic signals with 10 dB

difference incident from 0o and −25o degrees.
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The Brookhaven array has a longitudinal aperture of 4 km and latitudinal aperture of 1.8 km. The

array is arranged such that it can be used as a pair of three element sub-arrays on the east and

west side of the laboratory property, however, as mentioned in the analysis of the 4 element arrays,

the resolving power of such sparse arrays is lower than that of the total array. Fig. 28 shows the

resolving power of the existing 6 element array and a modified array of 8 elements in which a new

central element and south-eastern element have been added.

Compared with the results in Fig. 27, it is clear that the increase in resolving power from a

4 element design to a 6 element design is significant. At a signal to noise ratio of 2, the expanded

array is able to identify the weaker signal if it is separated by 15o. The existing array is able to

identify the second signal if the SNR increases to 4. If the separation decreases to 10o, the expanded

array is nearly able to resolve the two signals at an SNR of 8 while the existing array is unable

to identify the second peak since there is no clear local maximum. The two additional sensors

included in this analysis are shown in Fig. 29. In addition to the overall noise reducing that the

added element provide, by decreasing the average inter-element spacing, the resolving power of the

array is increased.
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Fig. 28: The spectral response of the existing array at Brookhaven National Laboratory as well as the response of

the array if two additional sensors are installed.
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Fig. 29: The existing array at Brookhaven

National Lab (yellow markers) and the pro-

posed additional elements to improve perfor-

mance (red markers).

Omni-Directional Array

In order to determine the limiting array characteristics for microbarom monitoring, one

must ensure that the array has appropriate aperture and inter-element spacing to resolve signals

from any azimuth. While it might be useful to design an array such that the sensitivity is non-

uniform, it is more beneficial to be able to detect infrasonic energy incident from any azimuth in

order to possibly track multiple targets accurately. Thus, we seek to produce an array design which

has uniform resolving power in all directions and is capable of resolving multiple continuous signals

in the microbarom band with the differences in azimuth and amplitude mentions previously. The

microbarom band is assumed to be from 0.15 to 0.3 Hz. The wavelength of such signals at the

ground (assuming a propagation speed of 350 m
s ), range from 1.17 to 2.3 km. The nearest-neighbor

inter-element spacing in the array should be approximately a half wavelength, which is 0.59 to

1.15 kilometers. Thus, as the number of elements increases in the array design, the overall aperture

should increase as well. It should also be noted that exact replication of any specific array geometry

is not required. It has been shown in previous studies that multiple solutions can be found for the

“optimal” geometry and that it is efficient to pseudo-randomly distribute elements within a given

aperture so long as the nearest neighbor spacing is approximately half wavelength [77].

The difference in array resolving power when one increases from 4 to 6 element is substantial,

however the performance gained by further increasing the array density is less substantial (as seen

in the change of 6 to 8 sensors in the BNL array). It is expected that as more sensors are added to

an array, the increase in performance becomes less significant, therefore we seek to determine how
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much additional resolving power is gained by increasing beyond this 8 element limit. For feasibility

of installation and maintenance, an upper limit of 10 − 12 elements has been chosen. Considered

here are a symmetric 8 element array arranged in a pair of centered squares with a 4 kilometer

aperture and a 12 element array arranged along the line,

r (θ) = 3.325 ln

(
1 +

θ

π

)
, θ = 0 . . .

7π

2
. (159)

This results in a 5 kilometer aperture array in which the inter-element spacing varies slightly but

remains approximately λ
2 . Both array geometries are shown in Fig. 30.

The response of these two array designs to signals separated by 15o and 10o at various

signal strengths is shown in the left and right sides of Fig. 31 respectively. The improvements

in resolving power by increasing the element count from 8 to 12 is still significant. For a pair of

signals separated by 15o, the 12 element is able to resolve the local maxima of the separate signals

for SNR of two or greater. The 8 element array is nearly able to resolve the two signals at an SNR

of 4, and easily able to resolve the second signal once the SNR increases to 8. The 8 element array

is never able to identify the second peak when the signals are separated by only 10o, while the 12

element array can distinguish the separate peaks for sufficiently high SNR. For both arrays, the

second signal is not visible below an SNR of 2, although there is some asymmetry in the beams
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Fig. 30: The symmetric array geometries tested to determine optimal array design for microbarom monitoring.

(Left) 8 elements in a pair of centered squares with aperture of 4 kilometers. (Right) 12 elements in a logarithmic

spiral with aperture 5 km.
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which could be used to infer the presence of a second signal.

Recommendations for Future Work

The limiting resolutions of the array geometries investigated here are presented in Table

2. These results have been obtained by maintaining the dominant signal at a fixed azimuth and

continuously varying the azimuth of the weaker signal to determine the separation at which each

array design is no longer able to resolve the separate signals at fixed SNR. From these results it is

immediately clear that the 4- and 6-element arrays which were used in this project were not sufficient

to resolve the nearly coincident microbaroms theorized to be generated by the storm. Additionally,

the enhanced 8-element array at Brookhaven National Lab under performs a symmetric aperture

array. This is due to the wider longitudinal aperture which enhances its resolving power for signals

incident from the north and south, but weakens its resolving power for signals from the east and

west. It is likely that if additional elements are to be added to the array, efforts should be made to

extend the latitudinal aperture of the array.

From these results, it is clear that in order to consistently distinguish the nearly coincident

signals predicted for microbaroms around a large maritime storm at low SNR, one requires an array

with aperture of at least 4−5 km and a minimum of 10−12 elements. Because of the abundance of
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Fig. 31: Array response for a pair of signals separated by 10o and 15o incident on the arrays shown in Fig. 30.
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Resolving power of array designs

Array Design Aperture SNR 2 SNR 4

4 Element C-Triangle 1.4 km 58o 53o

6 Element BNL Array 3 km 33o 26o

8 Element BNL Array 3 km 30o 24o

8 Element C-Squares 4 km 22o 19o

12 Element Spiral 5 km 16o 13o

Table 2: The limiting signal separation at which each array geometry can distinguish a pair of incident signals

with 10 dB amplitude difference. SNR is given relative to the stronger signal..

infrasonic energy and the inability to predict where other additional signals could be produced, it is

best to design the array as symmetrically as possible in order to reduce biasing sensitivity in certain

azimuths. Thus, the ideas from random array methods are useful in selecting an aperture size and

pseudo-randomly distributing the elements such that the nearest neighbor spacing is ∼ λ
2 . It could

be beneficial to increase the element count beyond 12, however such increases lead to additional

analysis problems when the sensor to snapshot ratio is kept below unity. Increasing the number

of snapshots extends the sample window to a limit in which the signal may no longer satisfy the

ergodic condition and the azimuth may varying within a sample window.
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CHAPTER 6

ANALYSIS OF THE STORMS

A total of five storms observed during the 2010 and 2011 Atlantic Hurricane seasons pro-

duced data applicable to this project. Hurricane Igor in September of 2010 provided a useful case to

study data processing performance. During the 2011 Atlantic Hurricane season, hurricanes Irene,

Katia, Maria, and Ophelia produced measurable microbaroms along the eastern coast of the United

States. The data presented here has been processed using the methods discussed in Chapter 5 for

arrays of limited size. For each storm, a time sequence of detection back azimuths and beam widths

were calculated from measurements. These results were then smoothed using a Kalman statistical

tracking filter and used to create tracking animations. The following discussion includes frames

from these tracking results along with discussion of the implications of these measurements.

Statistical Tracking Using the Kalman Filter

The azimuths calculated using the recorded infrasonic data contain some uncertainty and

noise due to additional coherent sources, incoherent energy, and a number of other noise sources.

In order to smooth the time dependent results, we have processed the results of the beamforming

through a Kalman filter, a statistical algorithm which uses a model of the observed system and

iteratively incorporates new data into a filtered version of the input [78]. The Kalman filter functions

by taking a physical model of the observable and some known current state to predict the state

which would be measured some time later. Once the subsequent measurement is entered, the filter

calculates a correction using its prediction and the new measurement. Finally, the current state is

updated with the new information and a new prediction is made. This process is repeated each

time a new measurement is made.
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Fig. 32: Azimuth tracking us-

ing the Kalman statistical filter.

A graphical form of the Kalman filter as used for azimuth tracking is shown in Fig. 32. In

the figure, one starts at the low point on the cycle where the state of the system is described by an

observed azimuth, φ(t|t), and beam width, dφ(t|t), which are known at time t. Using the physical

model, a prediction is made that at a later time t+ dt, a measurement of the system will return an

azimuth, φ (t+ dt|t), with a beam width, dφ (t+ dt|t). Once the new measurement, φ(t+ dt) and

dφ(t+ dt), is given to the Kalman filter, it compares its prediction with the system and uses that

to produce a new known state of the system. The process updates the expected observables as long

as there are measurements being given to the filter. If no additional measurements are given, the

the Kalman filter allows the uncertainty, dφ, to increase at some rate with increased dt according

to the model of the system.

Analysis of the Storms from the 2010 and 2011 Atlantic Hurricane Seasons

The Kalman filter discussed in the previous section has been used to produce time series

of azimuths and beam widths for each array during the various storms recorded during 2010 and

2011. The results to be discussed have been organized as shown in Fig. 33. The upper right of the

figure identifies the storm being analyzed as well as the date and time, in GMT, of the window of

data being analyzed. The data has been analyzed using six minute windows, thus the example here

shows the results for data recorded between 20:33 and 20:39 on September 18th, 2010. The left side

of the figure shows the array geometry at each site with the radial scale for reference. The azimuth
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Fig. 33: Example of beamforming analysis results. The spatial spectra at various arrays are shown on the left.

Time, beam directions, beam widths, and the location of the storm are shown on the right.

of the maximum and associated beam width have been calculated as discussed in Chapter 5. In

the case that a clear signal is evident from the Atlantic, the resulting direction and width of the

beam at each array are plotted in the right panel of the figure along with the storm location. In the

example shown, only the array at Francis Marion is detecting coherent signal and therefore only

that beam is plotted. The red spiral symbol in the right panel denotes the location of the storm at

the time indicated in the figure. The location of Bermuda is noted here because the island’s relative

location to that of the storm is useful to describe the storm trajectory through the Atlantic.

Hurricane Igor Results

Hurricane Igor was one of the most intense storms of the 2010 Atlantic hurricane season

and although it did not make landfall in the United States, it produced large storm swells and

damaging winds in Bermuda and Newfoundland where it did made landfall. Igor formed in the

equatorial Atlantic on September 8th, 2010 and remained at hurricane intensity until September

21st. The storm reached a maximum intensity of category 4 with maximum wind speeds of 70 m
s ,

though it weakened to a category 1 storm by the time it reached Bermuda and maintained that

intensity until it made landfall in Newfoundland [79].
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The storm track and results of microbaroms recorded during Hurricane Igor are shown in

Fig. 34. In the upper panels of the figure, showing results at 03:06 and 05:15 on September 18, it is

evident that as Hurricane Igor approached the south-east coast of the US, the arrays detected signal

incident from around the storm. The beam widths at Croatan, McCoy, and Francis Marion are

large possibly due to low signal to noise ratios or to multiple coherent signals from similar azimuths

as predicted in Chapter 3. Comparing the spatial spectra at 03:06 and 05:15, the beam widths at

the later time have decreased appreciably. This is likely due to decreased wind and anthropogenic

noise at the array locations during the overnight hours. Additional analysis shows similar behavior

in that data recorded during the day and night at all array locations. Thus, analysis here has

Fig. 34: The storm track, spatial spectra, and resulting beam directions for data recorded during
Hurricane Igor during September of 2010..
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focused on data obtained during the overnight hours when infrasonic noise levels are reduced.

In the lower panels of the figure, those at 06:06 and 12:03 GMT, the storm has moved

nearer to the array latitudes. The beams widths continue to decrease significantly. The combined

azimuths clearly identify a source of the microbaroms to the south of the storm at the location in

which the beams converge. This observed source location is in agreement with the model presented

in Chapter 2. The propagation distance from the indicated source region is over 1,000 kilometers,

however there is sufficient microbarom energy to provide high signal to noise and produce the very

narrow beam widths observed in the lower panels of Fig. 34.

Hurricane Irene Results

Hurricane Irene formed in the equatorial Atlantic on August 21, 2011 and reached a max-

imum intensity of Category 3 with wind speeds of 55 m
s . Irene has been ranked as one of the

ten costliest storms to hit the United States in recorded history. The storm maintained hurricane

intensity until August 28th and made land fall in North Carolina near Cape Lookout and the

eye of the storm made landfall within a few kilometers of the Croatan array [80]. We have not

included the interaction of the storm swell with a coast line, however, it is reasonable to expect

that the reflected surface waves from the coast line could produce additional microbarom source

regions. Despite this, data recorded by the Ocala and McCoy arrays in Florida and North Carolina

respectively provide applicable data for analysis before the storm made landfall.

The storm track and spatial spectra analysis results for Hurricane Irene are shown in Fig.

35. In all the frames in the figure, the array in Ocala is able to identify microbaroms emanating

from a region south of the storm center where the source is expected to be located. In the earliest

time presented here, 14:39 on August 26th, the McCoy array detects coherent energy emanating

from around the storm center, however, the asymmetry of the spatial spectrum at the array hints

that there are likely multiple contributions which cannot be resolved separately. Several hours later,

in the 21:15 frame, the signal at McCoy has becomes stronger and more symmetric, indicating a

single signal which still appears to emanate from near the storm center.

In the lower left panel, at 07:42 on August 27, the array at Ocala is still able to identify

the source region to the south of the storm as predicted in the model, however, the storm winds

produce excessive wind noise on the arrays in the Carolinas and no coherent signal can be resolved.

109



Fig. 35: The storm track, spatial spectra, and beam directions relative to the storm for data
recorded during Hurricane Irene in August of 2011.

Note that the Bass River array shows a wide maximum in the spatial spectrum from the south-west,

which coincides with the general direction to the storm. The following day, at 07:24 on August 28,

the storm has moved further northward along the coast and the arrays in Florida and the Carolinas

detect microbaroms emanating from the region in which the beams converge. In both of these later

frames the storm induced waves interact with the continental coast line and the storm is no longer

in the “open ocean”. Because of this, the model discussed in Chapter 2 is no longer an accurate

description of the storm system and other microbarom radiating regions are likely formed due to

the reflection of waves from the coast.
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Hurricane Katia Results

Hurricane Katia formed in the equatorial Atlantic south of Cape Verde on August 29, 2011,

and strengthened to a Category 4 intensity storm by September 5 before weakening to Category 1

and moved east toward the North Sea where it merged with a second storm system and produced

strong winds and waves across the United Kingdom during September 11-13 [81]. The storm did

not make other landfalls during its time in the Atlantic, and therefore provides a useful example of

a storm in open water producing microbaroms. Katia’s path through the Atlantic was similar to

Hurricane Igor’s in 2010 and therefore it is useful to compare the characteristics of the microbaroms

detected from the two storms.

The storm track and results for microbaroms analyzed during Hurricane Katia are shown in

Fig. 36. In the upper panels, on September 5 and 6, the storm reaches its maximum intensity and

microbaroms are detected at the Ocala and McCoy arrays with back azimuths indicating the signal

is emanating from around the storm center. On September 6, the storm is nearer to the coast and

the azimuths are markedly more well defined in the spatial spectra on the two arrays. Comparing

these with the observations made during Hurricane Igor in 2010, it is found that the back azimuths

are similar. In both cases the storm moves through the region at 60o to 70o W longitude and 25o

to 30o N latitude with high storm intensity and produces microbaroms at the arrays in Florida and

the Carolinas with back azimuths centered around the storm center.

On September 8, the storm moved nearer and past the latitude of Bermuda. Unlike Hurri-

cane Igor in 2010, Hurricane Katia did not make landfall in Bermuda and progressed through the

Atlantic several hundred kilometers to the west of the island. The microbaroms detected at 05:54

on the Ocala and Croatan arrays provide an estimate of the location of the microbarom source

region to the south of the storm at the time. The spatial spectrum on the McCoy array shows

a very wide, asymmetric maximum which implies multiple contributions which the array cannot

separately resolve. One of these arrivals appears to emanate from directly east and the other from

the south-east. In the results at 13:18, the behavior of the Croatan and McCoy spatial spectra

swap. The beam at McCoy, and the beam at Ocala in fact, narrow significantly and indicate

a clearly defined microbarom signal emanating from the expected source location. The Croatan

spatial spectrum contains an asymmetric maximum with a contribution from the south-east and a

second contribution from directly east.
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Fig. 36: The spatial spectra and beam directions relative to the storm position for data recorded
during Hurricane Katia during September of 2011.
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In both cases, the contribution from the south-east indicates a coherent signal from near

the location at which the beam from Ocala converges with the other beam, which is in agreement

with the expected microbaroms source location. The second contribution from the east would

indicate signal from around the storm itself, consistent with the refraction effects predicted by the

propagation model in Chapter 3, though the anomalous arrival is not expected to extend this far

around the storm. It’s possible that the gradient of winds in the eye columns is more severe than

modeled by the Holland cyclonic wind model. The observation that this second arrival is present

at the McCoy array and not Croatan at 05:54 and then present at Croatan and not McCoy for

the later observation at 13:18 can be explained by the formation of bands of ensonified regions in

the three dimensional propagation model. At the earlier time, McCoy was contained within the

region in which the anomalous arrivals are present and Croatan was not, and in the later case, the

ensonified region shifted such that Croatan was within the region and McCoy was not.

In all observations on September 8 and 9, a microbarom source region located to the south

of the storm is implied by the converging beams in that region. The last panel, September 9 at

06:42, clearly identifies a source region for the microbaroms located south of the storm. These

results along with those in the lower panels of Fig. 34 provide convincing evidence that the source

region of microbaroms due to a large maritime storm in the Atlantic trails to the south of the storm

in the open ocean as predicted by Hetzer et al. and as discussed in Chapter 2.

Hurricane Maria Results

Hurricane Maria was a weaker storm which formed in the central equatorial Atlantic on

September 6, 2011. A combination of high vertical wind shear and cooler sea temperatures in that

region weakened the storm into a low-pressure area soon after forming. The storm later moved

north, passing to the west of Bermuda before strengthening to a Category 1 storm with wind speeds

of 35 m
s and passing near to Newfoundland [82]. The storm provided very weak microbarom signals,

but is included in this discussion to demonstrate the necessity to use appropriate array designs and

data processing in continued work regarding microbaroms due to large maritime storms.

The storm track and results from Hurricane Maria are shown in Fig. 37. In the upper

most panel, September 14 at 03:36, all of the arrays indicate a strong coherent signal emanating

from the northern Atlantic, likely due to the large microbarom source which forms to the south
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of Greenland in this region. In this region, converging currents are known to microbaroms which,

under the appropriate atmospheric conditions, can propagate toward Newfoundland and the eastern

United States. This signal can often overwhelm any microbarom signal coming from the central

and equatorial Atlantic. Examination of the spatial spectra on the arrays in Ocala, McCoy, and

Croatan at this time, one notices that weaker local maxima are present which would indicate signal

emanating from the south-east, which would be consistent with the observations of Hurricane Igor

and Katia as they progressed through the similar region of the Atlantic (the September 18 frames

in Fig. 34 and September 5 and 6 frames in Fig. 36).

In the lower right panel, September 15, Hurricane Maria has progressed northward in the

Atlantic to the latitude of the Ocala array. At this time, microbaroms are detected emanating from

around the storm on the McCoy and Croatan arrays, however, microbaroms produced in the Gulf

Fig. 37: The spatial spectra and beam directions relative to the storm position for data recorded
during Hurricane Maria during September of 2011.
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of Mexico produce additional coherent signals which complicate the spatial spectra of all arrays. In

the final frame, September 16, the storm has moved north-east through the Atlantic. The array in

Ocala is able to detect some coherent energy from the region south of the storm, however, the other

arrays cannot detect any coherent signal and it is not possible determine if the signal detected at

Ocala is due to a microbarom source region to the south of the storm or some other location along

the beam.

In all of the results for Hurricane Maria, weak signal strength and the presence of multiple

signals in the data record complicate the identification and analysis of microbaroms produced by

the storm. As discussed in the array optimization section of Chapter 5, denser arrays can be used

to increase the effective signal strength and by arranging the array to limit biasing of one azimuth

to another, multiple contributions to the data record can be separated. Thus, it is critical to future

research that arrays be designed so that any microbaroms generated by non-storm sources such as

those in the northern Atlantic and Gulf of Mexico can be separated from the microbarom signals

produced by large maritime storms even in the case of weak signal strength from the storm induced

microbaroms.

Hurricane Ophelia Results

Hurricane Ophelia was the most intense storm of the 2011 Atlantic hurricane season, reach-

ing a sustained wind speed of 63 m
s corresponding to a Category 4 intensity. The storm formed

in the central equatorial Atlantic on September 20 and strengthened as it moved north through

the Atlantic, passing to the east of Bermuda and weakening to a Category 1 when its outer bands

produced strong winds and heavy rain in Newfoundland [83]. Because Ophelia remained in the

open Atlantic, it was expected to provide useful data similar to that of Hurricane Igor in 2010 and

Katia earlier in 2011. However, the storm remained east of Bermuda and formed in late September,

resulting in weaker signals than those produced by other storms. The reason for this is a combina-

tion of the increased propagation range from the storm to the arrays and a seasonal change in the

winds in the stratosphere around the time of the autumnal equinox. The microbaroms produced

by the storm propagated hundreds of additional kilometers compared with the other storms dis-

cussed here and underwent stronger attenuation due to propagation through the rarefied air in the

thermosphere.
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Fig. 38: The spatial spectra and beam directions relative to the storm position for data recorded
during Hurricane Ophelia during October of 2011.

The storm track and results for data recorded during Hurricane Ophelia are shown in Fig.

38. In the uppermost panel, October 2 at 09:03, signal is detected on the Brookhaven and Bass

River arrays from around the storm center and on the Croatan array from south of the storm.

Roughly an hour later, at 10:00, the results are similar, but additional sources complicate the

spatial spectra on the arrays at Bass River and Croatan. It should be noted that the additional

elements at the Brookhaven array provide enhanced noise reduction and resolving power to separate

multiple signals. In this result at 10:00, the beam at Brookhaven contains two contributions which

are narrowly separated which both appear to emanate from the storm center. On the following

day, October 3, the storm had moved north of all arrays and although signals are weak due to the

increased propagation range and thermospheric attenuation, the beams at Brookhaven, Bass River,

and Croatan converge at a location to the south of the storm.
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Summary of Microbarom Observations During the 2010 and 2011 Hurricane Seasons

During the 2010 and 2011 Atlantic hurricane seasons, infrasonic measurements have been

taken at locations in Florida, South Carolina, North Carolina, New Jersey, New York, and Con-

necticut. During these two years, infrasonic measurements have been analyzed during five storms of

at least Category 1 intensity. In all of these cases, once the storm moved sufficiently far north into

the open Atlantic, combined back azimuths of coherent signal detected from multiple the arrays

indicated a source region south of the storm system from which the microbarom signal appears to

emanate. In all cases except for Hurricane Maria, multiple arrays produced beams which converged

in a location south of the storm system. These observations are in agreement with the model de-

scribed in Chapter 2 which predicts microbaroms to be generated in a region away from the storm

center where the interaction of the storm swell and the background Atlantic swell produce the

counter propagating surface wave structure required for microbarom radiation. In one of these

cases, Hurricane Irene in 2011, it must be noted that the observations were made while the storm

made landfall along the Atlantic coast of the United States and interaction with the coast has not

been included in our storm model. During the time that Hurricane Irene approached the coast,

the array in Ocala was able to identify a microbarom source azimuth consistent with the other

observations. However, without a second array to provide an intersection of multiple azimuths, an

approximate location for the source cannot be found.

Analysis of the data from arrays north of the storm system provide consistent results that

a microbarom signal appears to emanate from the general region around the storm center when

observed from the north-west. In all of these cases, the beam width of the detection is much

larger compared to the detections from south of the storm as one would expect for signal which

has interacted with the storm in some manner. This observation has been made repeatedly during

Hurricanes Igor, Katia, and Ophelia. In all three cases, as the storm approached arrays from the

south, multiple arrays would indicate signal emanating from around the storm itself. Additional

experiments using denser arrays and a more robust data processing method would provide clarifi-

cation of whether the cause of the wide beams in these observations is low signal to noise levels or

to multiple arrivals with similar azimuths as predicted by the propagation modeling in Chapter 3.

It should also be noted that the alternate microbarom generation mechanism proposed
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by Stopa et.al. in Ref. [27] would produce microbaroms in the storm center which then radiate

away symmetrically in all directions from the storm. Such a source could explain the presence of

the observed anomalous microbarom signal. It would be possible to determine if the anomalous

microbaroms observed here are the result of refraction or an additional source region by increasing

the number of arrays deployed and monitoring multiple locations around a storm to determine if

the anomalous arrivals are present at all locations around the storm. In the case that the anomalous

arrivals are found to be present in all directions around the storm, it is likely that the microbaroms

are being generated in the storm center as proposed by Stopa et al.. Alternately, if it were found

that the anomalous arrivals are only present in the regions predicted by the refraction models,

then it is likely that the source is due to the interaction discussed in Chapter 2 and the anomalous

arrivals are produced by the propagation effects discussed in Chapter 3. The observations reported

here show definite azimuth dependence on the anomalous arrivals since they are only observed from

the north-west side of the storm, however additional observations are necessary to determine with

certainty which model more accurately explains the anomalous signals from the storm center.

Lastly, in the case in which the storm made landfall near an array, some useful observations

can be made. Referring back to the data taken on the Ocala and McCoy arrays during Hurricane

Irene in Fig. 35, it is possible that some contribution of the signal arriving at the McCoy array

has propagate through the storm. During this storm, the direction to the source is indicated

by the array in Ocala, however without a second array it is not possible to identify where along

that azimuth the source is located. As the storm approached the coast, the arrays at McCoy,

Croatan, and Bass River detected coherent energy emanating from around the storm, though the

back azimuth at McCoy was the most well defined. It is possible that the observations at McCoy

are of signal which has propagated through the storm winds. It is also possible that the signal is the

result of propagation over the storm or that the interaction with the coast north of the storm has

produced additional microbarom source regions close to the array. Again, additional experiments

using denser arrays and more robust data processing methods is required to elucidate where the

microbarom signals are produced. Further, a model for the storm, swell, and coast line interaction

would provide some predictions of whether or not additional sources would be expected in such a

case.
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CHAPTER 7

CONCLUSIONS

The physical model for generation of microbaroms and microseisms by active sea states has

been incrementally extended over several decades. The most thorough treatment of microbarom

generation is that published by Waxler and Gilbert in 2006. The manner in which a large maritime

storm produces microbaroms is still a topic of some debate within the research community. It has

been shown here that the simple interaction model proposed by Hetzer et al. accurately predicts

the location of the microbarom source associated with a large maritime storm. Specifically, the

surface waves induced by the strong cyclonic winds generate counter propagating waves relative to

the open ocean swell along a line extending radially from the the storm center and perpendicular

to the direction of the background swell. At some distance along this radial line, the wavelength

of the induced surface waves is equal to that of the background swell. In such a region, the ocean

surface is expected to radiate microbaroms. Additionally, as the storm moves through the open

ocean, this region of counter propagating waves travels with the storm. Thus, a large maritime

storm in the open ocean not only produces microbaroms at a predictable location relative to the

background swell, but also carries this source region with it as it moves through the ocean.

When observed along propagation paths away from the storm center, horizontal refraction is

weak and the back azimuth of the received signal is expected to be oriented towards the microbarom

source region. However, geometric propagation methods have predicted that, along propagation

paths which interact with the strong winds near the storm center, strong horizontal refraction can

produce a localized region in which the observed back azimuth of the microbarom signal is oriented

towards the storm center. It has been shown here that this refraction is produced by the steep

radial gradient in the cyclonic winds near the storm eye. Due to this dependence on the wind

gradient in the storm eye, the region in which these arrivals are present is expected to increase in
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size with increased storm intensity. From these predictions, one can expect that characteristics of

this signal might be used to infer some measure of the winds in the storm center.

Infrasonic data has been collected during the 2010 and 2011 Atlantic hurricane seasons

from locations along the eastern coast of the United States. From this data set, five storms which

reached at least Category 1 intensity and moved through the open Atlantic have been analyzed

using beamforming methods to evaluate the back azimuths of the received microbarom signals. It

has been found that observations of microbaroms which have weakly interacted with the storm are

in agreement with predictions of the source and propagation models discussed here: observations

from south of the storm latitude consistently indicate a source region hundreds of kilometers south

of the storm center, which is perpendicular to the dominantly westward background swell in the

open Atlantic.

When observed from north of the storm latitude, microbaroms are weaker in intensity and

oriented with back azimuths directed towards the storm center as predicted by the propagation

modeling. These microbaroms with back azimuths oriented around the storm center are observed

only when the storm is south of an array’s latitude. The asymmetry of these observations is

inconsistent with a microbarom source located at the storm center, but is expected for a source to

the south of the storm center from which microbaroms propagate through the strong winds around

the storm eye. The observations obtained during this work are more accurately explained using

the microbarom generation mechanism proposed by Hetzer et al. combined with the propagation

methods presented here than using the generation mechanism proposed by Stopa et al..

Additional observations of storms using a larger array network would clarify the extent of

the asymmetries in the microbarom signal which appears to emanate from the storm center. In

the case that additional research is planned regarding microbaroms generated by large maritime

storms, it would be advantageous to attempt observations from additional locations around the

storm, particularly locations to the east of likely storm paths. The array locations in this work

have been limited to areas of the east coast of the United States, however additional locations at

various Atlantic islands would likely provide very useful observations to study the asymmetries

of the signal emanating from the storm center. Infrasound data is recorded worldwide on the

IMS network, which includes a location at Bermuda, however, data recorded on the IMS Bermuda

array has been found to contain excessive levels of wind noise and is unable to provide useful
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beamforming results. It should be noted that, in addition to monitoring Atlantic hurricanes, it

is likely that observations of typhoons in the Pacific might provide additional insight into the

asymmetries of the anomalous signal from the storm center. It would be beneficial for future work

to deploy array networks in the Atlantic and Pacific with emphasis on obtaining observations from

multiple locations around large maritime storms.

In addition to an expanded array network, improvements to the individual arrays are re-

quired to resolve the multi-pathing predicted by the propagation modeling. The four and six

element arrays used in this project have been able to detect the presence of the anomalous arrivals

northwest of the storm and have been able to identify the source location to the south of each

storm as it moves through the Atlantic. However, the propagation predictions indicate that within

the region of anomalous arrivals, a weakly interacting signal also contributes to the observed sig-

nal. The two signals are expected to differ in back azimuth by at little as 10o and in amplitude

by approximately 10 dB depending on the stratospheric winds. The four and six element arrays

used here cannot resolve these separate signals and therefore improved array design is required for

continued work. It has been found that in order to resolve two such signals, the array must contain

at least 10− 12 elements distributed pseudo-randomly over 4− 6 kilometers such that the nearest

neighbor element spacing is approximately half-wavelength, 850 meters for microbaroms.

The work presented here is an initial step in understanding the manner in which the infra-

sonic signal observed far from a large maritime storm might be used to estimate some characteristics

of the storm structure. The observations presented here indicate that the generation of microbaroms

by a large maritime storm can be easily understood by examining the manner in which the surface

waves produced by the storm interact with the background oceanic swell. Further, the geometric

propagation model used in this work provides insight into the physical mechanism by which the

infrasonic signal interacts with the winds in the storm and influences the signal observed far from

the storm center. Additional observations and research are required to advance the model and

determine whether the predictions made by it are accurate. Given such additional observations

and refinement of the model, inversion methods might be developed to passively probe the interior

structure of a large maritime storm and continuously monitor wind speeds and wind gradients in

the storm center by analyzing characteristics of the infrasonic signal observed at a multitude of

locations around the storm.
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APPENDIX A

CALCULATING AMPLITUDES IN GEOMETRIC ACOUSTICS

The amplitude coefficient P0 (~x) can be found by taking the terms in Eq. (78) proportional

to k0.

(
1− ~v0 · ~ν

c0

)
~V1 −

1

ρ0c0
P1~ν

=
1

c0

[
~v0 · ~∇~V0 + ~V0 · ~∇~v0 +

1

ρ0

~∇P0 −
D0

ρ0
2
~∇p0

]
= ~b, (160a)(

1− ~v0 · ~ν
c0

)
D1 −

ρ0

c0
~ν · ~V1 =

1

c0

~∇ ·
(
D0~v0 + ρ0

~V0

)
= b1, (160b)

P1 − c2D1 =
1

cν

[
~V0 · ~∇p0 + ~v0 · ~∇P0 − c2~v0 · ~∇D0 −

P0

c2
~v0 · ~∇c2 − c2~V0 · ~∇ρ0

]
= b2, (160c)

where C0~v0 · ~∇ρ0 in Eq. (78) has been replaced by P0
c2
~v0 · ~∇c2 [9]. Using Eq. (81), the left hand

sides of these equations can be combined in a manner which goes to zero.


ν~V1 − 1

ρ0c0
P1~ν = ~b

νD1 − ρ0

c0
~ν · ~V1 = b1

P1 − c2D1 = b2

→ c0ρ0

ν
~ν ·~b+ c0cb1 + νb2 = 0. (161)

Replacing ~V0 and D0 with P0 from Eq. (79), each term can be calculated and simplified before
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combining all three. One has,
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The last term in Eq. (162a) and the first term in Eq. (162c) cancel. Additionally the two terms in

brackets in Eq. (162c) can be written in logarithm form

c2~v0 · ~∇
1

c2
+

1

c2
~v0 · ~∇c2 = ~v0 · ∇

[
ln

1

c2
+ ln c2

]
= 0.
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Thus only the last term in νb2 contributions. If the remaining terms are scaled by cP0,
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0 (ρ0cν)
(
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)( 1
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2
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Noting that ~cp = ~v0 + c~νν , the first and fourth terms combine to give P0

(
~cp · ~∇

)
P0. The second,

sixth, and seventh terms can all be written in logarithmic form.

P2
0 (ρ0cν)

(
~v0 · ~∇

)( 1
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)
= −P2

0~v0 · ∇ ln (ρ0cν) , (164a)
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1
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P2
0
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c
~ν
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· ~∇ρ0 = −P2

0c
~ν

ν
· ~∇ ln ρ0. (164c)

Finally, in the fourth term, ~v0 · ~ν =
(
~cp − c~νν

)
· ~ν = c0 − cν, and therefore,

P2
0

ν2
~ν · ~∇ (~v0 · ~ν) =
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= −P2
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By combining terms and writing all differentiation in terms of ~cp · ~∇,

P0

(
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)
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~∇ · (P0~cp)− P2
0

(
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)
ln
(
ρ0c

3ν
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The first two terms here can be combined using P0
~∇ · (P0~cp) = ∇ ·

(
P2

0~cp
)
− P0~cp · ∇P0, resulting

in the transport equation,

~∇ ·
(
P2

0~cp
)

= P2
0~cp · ~∇ ln

(
ρ0c

3ν
)
, (166)

and the amplitude coefficient,

P0 (s, θ, φ) = P0 (0, θ, φ)

∣∣∣∣ ρ0 (s) ν (s) c3 (s)

ρ0 (0) ν (0) c3 (0)

cp (0)D (0, θ, φ)

cp (s)D (s, θ, φ)

∣∣∣∣
1
2

, (167)

where the angular dependences of ρ0, ν, c, and cp have been suppressed and D (s, θ, φ) denotes the
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Jacobian determinant describing the coordinate transformation from Cartesian (x, y, z) into ray

coordinates (s, θ, φ). One can assumed spherical spreading near the source due to there being a

constant sound speed for very small s. Thus, P0 (s, θ, φ) |s↓0 = 1
4πs2

and D (s, θ, φ) |s↓0 = s2 cos θ,

which results in a coefficient of the form,

P0 (s, θ, φ) =
1

4π

∣∣∣∣ ρ0 (s) ν (s) c3 (s)

ρ0 (0) ν (0) c3 (0)

cp (0) cos θ

cp (s)D (s, θ, φ)
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1
2

. (168)

The Jacobian determinant is dependent on the variations in ~x with respect to changes in s,

θ, and φ. Denoting ∂
∂s = ∂s, the determinant has the form,

D (s, θ, φ) = ∂sx (∂θy ∂φz − ∂φy ∂θz)

− ∂θx (∂sy ∂φz − ∂φy ∂sz)

+ ∂φx (∂sy ∂θz − ∂θy ∂sz) . (169)

The s derivatives are easily obtained using Eq. (85), however, the angular derivatives are more

difficult to calculate. Consider defining auxiliary variables which are the angular derivatives ∂~x
∂(]) =

~X (]) and ∂~ν
∂(]) = ~µ(]). Then, we can determine how such variables vary along a ray path by taking

the angular derivatives of Eq. (85). Presented here is the θ derivative for ~x and ~ν, the φ derivative

is identical.

Taking the θ derivative of Eq. (85) and exchanging the order of operations gives,
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∂s
=

∂

∂θ

(
~cp
cp

)
,
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− 1

cp

ν ∂c
∂xi

+
3∑
j=1

νj
∂v0,j

∂xi

 . (170)

The magnitude of cp can be expressed as cp = c
√∑3

j=1

(v0,j

c +
νj
ν

)2
and we can simplify notation

by defining C(θ)
p =

∂cp
∂θ . Derivatives with respect to θ can be performed using the chain rule,

∂
∂θ =

(
∂θ~x · ~∇

)
. Consider first the position equation,

∂ ~X (θ)

∂s
= − ~cp

cp2

∂cp
∂θ

+
1

cp

(
∂~v0

∂θ
+

∂

∂θ

( c
ν
~ν
))

= − ~cp
cp2
C(θ)
p +

1

cp

[
∂~v0

∂θ
+
~ν

ν

∂c

∂θ
+ c

∂

∂θ

~ν

ν

]
. (171)
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Thus all that remains is to calculate ∂
∂θ

~ν
ν and C(θ)

p . Some simple manipulation produces,

∂

∂θ

~ν

ν
=
~µ(θ)

ν
− ~ν

ν2

∂

∂θ

√√√√ 3∑
j=1

νj2

=
∂θ~ν

ν
− ~ν

2ν3

 3∑
j=1

2νj
∂νj
∂θ


=
∂θ~ν

ν
− ~ν

ν2

~ν · ~µ(θ)

ν
=
∂θ~ν

ν
− ~ν

ν2

∂ν

∂θ
. (172)

Note that in the last term we’ve used the shortened form, ∂ν
∂θ = ~ν·~µ(θ)

ν . The derivative of the

propagation velocity is more complicated,

∂cp
∂θ

=

√√√√ 3∑
j=1

(v0,j

c
+
νj
ν

)2 ∂c

∂θ
+ c

∂

∂θ

√√√√ 3∑
j=1

(v0,j

c
+
νj
ν

)2

=
cp
c

∂c

∂θ
+
c

2

 3∑
j=1

(v0,j

c
+
νj
ν

)2

− 1
2 3∑
j=1

∂

∂θ

(v0,j

c
+
νj
ν

)2

=
cp
c

∂c

∂θ
+

c2

2cp

3∑
j=1

[
2
(v0,j

c
+
νj
ν

)( ∂

∂θ

v0,j

c
+

∂

∂θ

νj
ν

)]

=
cp
c

∂c

∂θ
+

c

cp

3∑
j=1

(
v0,j + c

νj
ν

)(1

c

∂v0,j

∂θ
− v0,j

c2

∂c

∂θ
+
∂θνj
ν
− νj
ν2

∂ν

∂θ

)
. (173)

And so finally, the propagation velocity derivative can be expressed by,

C(θ)
p =

cp
c

[
∂c

∂θ
+
c2

c2
p

~cp ·
(

1

c

∂~v0

∂θ
− ~v0

c2

∂c

∂θ
+
∂θ~ν

ν
− ~ν

ν2

∂ν

∂θ

)]
. (174)

The same operations can be performed on the momentum equation,

∂µ
(θ)
i

∂s
=

1

cp2

∂cp
∂θ

ν ∂c
∂xi

+

3∑
j=1

νj
∂v0,j

∂xi

− 1

cp

∂

∂θ

ν ∂c
∂xi

+

3∑
j=1

νj
∂v0,j

∂xi

 . (175)

The first term can be expressed in terms of C(θ)
p . The second term requires some additional manip-
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ulation,

∂

∂θ

ν ∂c
∂xi

+

3∑
j=1

νj
∂v0,j

∂xi

 =
∂ν

∂θ

∂c

∂xi
+ ν

∂2c

∂θ∂xi
+

3∑
j=1

(
∂θνj

∂v0,j

∂xi
+ νj

∂2v0,j

∂θ∂xi

)
. (176)

And so the resulting momentum equation can be written as

∂µ
(θ)
i

∂s
=
C(θ)
p

cp2

(
ν
∂c

∂xi
+ ~ν · ∂~v0

∂xi

)
− 1

cp

[
∂ν

∂θ

∂c

∂xi
+ ν

∂2c

∂θ∂xi
+ ~µ(θ) · ∂~v0

∂xi
+ ~ν · ∂

2~v0

∂θ∂xi

]
. (177)

To summarize, the system of equations in Eq. (85) can be expanded to include,

∂ ~X (])

∂s
= − ~cp

cp2
C(])
p +

1

cp

[
∂~v0

∂ (])
+
~ν

ν

∂c

∂ (])
+ c

(
~µ(])

ν
− ~ν

ν2

∂ν

∂ (])

)]
, (178a)

∂µ
(])
i

∂s
=
C(])
p

cp2

(
ν
∂c

∂xi
+ ~ν · ∂~v0

∂xi

)
− 1

cp

[
∂ν

∂(])

∂c

∂xi
+ ν

∂2c

∂(])∂xi
+ ~µ(]) · ∂~v0

∂xi
+ ~ν · ∂2~v0

∂(])∂xi

]
. (178b)

where ] = θ, φ, C(])
p is given in Eq. (174), ∂ν

∂(]) =
~ν·∂(])~ν

ν , and angular derivatives are taken by

∂
∂(]) =

(
~X (]) · ~∇

)
. The results of this system can be used with Eq. (169) to compute the transfer

function, Eq. (168), along each geometric ray path in three dimensions.

Initializing and Reflecting Ray Paths in Three-Dimensions

The initial conditions for the angular derivative can be found by differentiating Eq. (87) and

(91) with respect to θ and φ. One obtains,

~X (θ) = ~X (φ) =


0

0

0

 , (179a)
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~µ(θ) (0, θ, φ) =
∂

∂θ
~ν (0, θ, φ) =


− sin θ cosφ

− sin θ sinφ

cos θ

 , (179b)

~µ(φ) (0, θ, φ) =
∂

∂φ
~ν (0, θ, φ) =


− cos θ sinφ

cos θ cosφ

sin θ

 . (179c)

The reflection conditions can also be derived in a similar fashion as to those in Chapter 3.

However, let’s consider first the simpler 2D case in which we write Eq. (92) instead in terms of the

arrival range r and altitude z,

r (s, θ)

z (s, θ)

 =

r0 (θ) + (s− s0 (θ)) cos θref +O
(
[s− s0(θ)]2

)
|s− s0 (θ)| sin θref +O

(
[s− s0(θ)]2

)
 . (180)

We can use the auxiliary parameter R(θ) = ∂r
∂θ to determine the reflection behavior of X (θ) and

Y(θ). One finds,

R(θ)
(
s0 + 0+, θ

)
=

∂

∂θ
(r0 (θ) + (s− s0 (θ)) cos θref) +O (s− s0 (θ))

= R0 (θ) +
∂r

∂s

∣∣∣
s0

∂s0

∂θ
− ∂s0

∂θ
cos θref +O (s− s0) . (181)

Simple geometric analysis shows that in the case that ~v0 (x, y, 0) = 0, ∂r
∂s

∣∣∣
s0

= cos θref and therefore

R(θ) is continuous across the reflection. From this result we can infer that X (θ) and Y(θ) are also

continuous across the reflection in three dimensions.

Repeating this differentiation on z (s, θ),

Z(θ)
(
s0 + 0+, θ

)
=

∂

∂θ
(|s− s0 (θ)| sin θref) +O (s− s0 (θ))

= −∂s0

∂θ
sin θref +O (s− s0 (θ)) . (182)

As in Reference [49], quantities associated with the intercept of the incident ray path and can be de-

fined by the location at which the incident ray path meets the ground, z0 (θ, φ) = z (s0 (θ, φ) , θ, φ) =
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0. Differentiating the intercept condition with respect to (]) = θ or φ,

dz0

d(])
=

∂z

∂(])

∣∣∣
s0

+
∂z

∂s

∣∣∣
s0

∂s0

∂(])

= Z(])
0 + νz0

∂s0

∂(])
= 0, (183)

and it can immediately be seen,

∂s0

∂(])
= −Z

(])
0

νz0
=
Z(])

0

sin θref
. (184)

where we’ve used the result from Eq. (93a) to write νz,0 in terms of θref. From this result it is

immediately clear that Z(θ)
0 is discontinuous by a change in sign across the reflection. It is straight

forward to extend the above results for the three dimensional case and show that,

X (])
(
s0 + 0+, θ, φ

)
= X (])

0 , Y(])
(
s0 + 0+, θ, φ

)
= Y(])

0 ,

Z(])
(
s0 + 0+, θ, φ

)
= −Z(])

0 . (185)

This leaves the reflection relations for ~µ(]) to determine. Consider one element of this

vector,

µj
(
s0 + 0+, θ, φ

)
=

∂

∂ (])
νj,0 +

∂νj
∂s

∣∣∣
s0

∂s0

∂ (])

=
∂

∂ (])

(
c0

c

∂rj
∂s

)
s0

− ∂νj
∂s

∣∣∣
s0

Z(])
0

νz,0

= −c0

c2

∂c

∂ (])

∂rj
∂s

∣∣∣
s0

+
c0

c

∂2rj
∂s∂ (])

− ∂νj
∂s

∣∣∣
s0

Z(])
0

νz,0
.

In the first term, ∂c
∂(]) can be expanded into,

∂c

∂ (])
=

∂~x

∂ (])
· ~∇c =

∂~x⊥
∂ (])

∣∣∣
s0
· ~∇⊥c+

∂z

∂(])

∣∣∣
s0

∂c

∂z
, (186)

and since this result is calculated at s0 where the ray intercepts the ground, we have ∂z
∂(])

∣∣∣
s0

= 0.

Further, by our choice of propagation medium description, we’ve defined c such that c (x, y, 0) is
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constant and therefore the other term is also zero. Thus, the first term in this result does not

contribute.

The factor c0
c goes to unity at the reflection surface and therefore we are left with

µj
(
s0 + 0+, θ, φ

)
=

∂2rj
∂s∂ (])

+
∂νj
∂s

∣∣∣
s0

Z(])
0

νz,0
. (187)

In the first term, one has ∂
∂(])

∂rj
∂s

∣∣∣
s0

which we can evaluate for each component of j and each angle

φ. However, it is more beneficial at this point to return to the 2D results. Consider,

∂r

∂s

∣∣∣
s0

= cos θref → ∂

∂θ

∂r

∂s
= − sin θref

∂θref

∂θ
, (188a)

∂z

∂s

∣∣∣
s0

= sin θref → ∂

∂θ

∂z

∂s
= cos θref

∂θref

∂θ
, (188b)

where,

θref = −asin νz,0 = acos νr,0.

The derivative ∂θref
∂θ can be evaluated using the relations between θref and ~ν. One finds,

∂θref

∂θ
=

∂

∂θ
(−asin νz,0) = − 1√

1− ν2
z,0

∂νz,0
∂θ

∣∣∣
s0

= − 1√
1− ν2

z,0

(
µz,0 +

∂νz
∂s

∣∣∣
s0

∂s0

∂θ

)
, (189a)

∂θref

∂θ
=

∂

∂θ
(acos νr,0) =

1√
1− ν2

r,0

∂νr,0
∂θ

∣∣∣
s0

=
1√

1− ν2
r,0

(
µr,0 +

∂νr
∂s

∣∣∣
s0

∂s0

∂θ

)
. (189b)
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And so finally,

∂

∂θ

∂r

∂s
= − sin θ

∂θref

∂θ
=

νz,0√
1− ν2

r,0

(
µr,0 +

∂νr
∂s

∣∣∣
s0

∂s0

∂θ

)

=

√
1− ν2

r,0√
1− ν2

r,0

(
µr,0 +

∂νr
∂s

∣∣∣
s0

∂s0

∂θ

)
, (190)

and similarly,

∂

∂θ

∂z

∂s
= −

√
1− ν2

z,0√
1− ν2

z,0

(
µz,0 +

∂νz
∂s

∣∣∣
s0

∂s0

∂θ

)
. (191)

Because ∂νr
∂s ∝

∂c
∂r is zero at the reflection point, this produces the result that µ

(θ)
r must be continuous

across a reflection. Therefore µ
(])
x and µ

(])
y must be continuous across a reflection point. The

remaining reflection conditions on µ
(])
z require one last bit of analysis to correctly derive. In

calculating ∂θref
∂θ , we are interested in the incident values of the quantities. Because νz and Z

change sign in the reflection and these terms behave as ∂νz
∂s
Z0
νz

, the contributions add together

instead of canceling and one finds,

µ(])
z

(
s0 + 0+, θ, φ

)
= −µ(])

z,0 −
2

c0

∂c0
∂z

Z(])
0

νz,0
. (192)

Thus, µ
(])
z changes sign in the reflection, but picks up additional change due to the gradient of

the sound speed profile at the ground. Using these boundary conditions, geometric ray paths

and geometric attenuation can be calculated for any propagation medium for which c (x, y, 0) is a

constant and ~v (x, y, 0) goes to zero.
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APPENDIX B

AN ASIDE ON THE EFFICIENCY OF THE BOUNDARY

LAYER DUCT

It was mentioned in Chapter 3 that the physical characteristics of the duct in the boundary

layer could produce errors in the predictions of geometric acoustics. This is due to a combination of

the large wind gradient near the ocean surface and the limited vertical extent of the duct. In order

for geometric acoustics to accurately describe the propagation, the refractive index must satisfy,

λ0 n̂ν · ~∇n (~x)� 1 → n̂ν · ~∇n (~x)� f

c0
=

0.2 Hz

0.34km
s

= 0.588 km−1,

which is not guaranteed to be true for the vertical wind gradients in the boundary layer of the storm.

Additionally, the wind increase from zero at the ocean surface to their maximum at approximately

1-2 kilometers altitude [37]. This results in a vertically thin acoustic duct which limits the number of

modes interacting strongly with the storm winds in the boundary layer. Because of this, geometric

acoustics overestimates the efficiency with which the duct traps energy in the boundary layer. As

the sound propagates through this duct, some fraction of the energy may leak out and therefore

not be refracted by the horizontal wind gradients.

Developing A Full Wave Solution

In this section, the mathematical basis of a modal expansion for propagation in an atmo-

sphere with stratified temperature and horizontal winds is reviewed [84, 8, 9]. The wave equation

for sound propagating in a stratified medium can be solved using horizontal eigenvalue expansion

in the horizontal wave number, k⊥. Consider the wave equation for propagation using the effective
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sound speed approximation,

[
∇2
⊥ + ρ0

∂

∂z

1

ρ0

∂

∂z
+
ω2

c2
eff

]
p̂ (~x, ω) = 0, (193)

where ρ0 and ceff are functions only of z and ceff = c+ ~v0 · n̂k⊥ is the effective sound speed defined

by the sum of the thermodynamic sound speed with the wind in the direction of propagation [85].

In such a case, one can expand in horizontal wavenumber,

[
d2

dz2
+ F (ρ0) +

ω2

c2
eff(z)

− k2
j

]
p̃j (z) = 0, p̂ (~x, ω) =

∑
j

p̃j (z)
√
ρ0

H
(+)
0 (kjr), (194)

where we’ve used a cylindrical expansion but kept only zeroth order outgoing Hankel function,

H
(+)
0 (kjr), because of the azimuthal symmetry. The function F is a result of changing p̂→ p̃√

ρ0
in

order to remove the first order derivative term and has the form,

F (ρ0) =
1

2

ρ′′0
ρ0
− 3

4

ρ′
2

0

ρ2
0

. (195)

The resulting one dimensional eigenfunction problem can be solved numerically by solving the

eigenvector equation,

M ~̃pj (z) = k2
j
~̃pj (z) , M = D2 +

[
F (ρ0) +

ω2

c2
eff(z)

]
I, (196)

where D2 is the matrix operator which produces the discrete second derivative and ~̃pj is a vector

of the pressure at discrete altitude steps,

~̃pj =



p̃j(0)

p̃j(δz)

p̃j(2δz)

...

p̃j(Nδz)


, D2 =

1

δz2



B 1 0 0 · · ·

1 −2 1 0 · · ·

0 1 −2 1 · · ·
...

...
...

...
. . .


. (197)

In this last matrix, B is determined by the boundary condition at the ground, ∂p̂
∂z

∣∣∣
z=0

= 0, which
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requires B = 1

1+ δz
2

ρ′0
ρ0

− 2.

Propagation Through the Atmosphere Around a Large Maritime Storm

The propagation scheme discussed above is valid only for an atmosphere which is inde-

pendent of range. Therefore, we have chosen to use the vertically varying atmosphere at a single

point within the storm. For this analysis, we’ve chosen to examine the ducting at the radius of

maximum winds directly east of the eye column. The effective sound speed profiles at this point

for propagation north and west in such at atmosphere are shown in the left-most panel of Figure

41. The red line in the figure is for westward propagation and the blue is that for northward. The

wind field alone are shown in the other panel on the left. Shown in this figure is a category 3 storm

with maximum winds of 55 m
s , a surface roughness of 10 m, and a westward directed stratospheric

jet with speed 60 m
s .

The right side of Figure 39 shows the transmission loss for propagation at various azimuths

though this atmosphere. Unlike the geometric analysis, the source is located at the origin for this

plot. Directly to the west of the source, the stratospheric jet produces the expected ducting for a

stratospheric duct. The energy reaching the ground to the south is the result of the strong decrease

Fig. 39: The effective sound speed profiles (left) and arrival field (right) for propagation through the atmosphere

at the radius of maximum winds in a direction east of the eye column of a Category 3 storm with boundary layer

surface roughness of 10 meters.
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Fig. 40: The effective sound speed profiles (left) and arrival field (right) for propagation through the atmosphere

at the radius of maximum winds in a direction east of the eye column of a Category 5 storm with boundary layer

surface roughness of 10 meters.

in winds at the top of the storm in the troposphere. Within a few hundred kilometers of the source,

ducting is observed in the direction of the storm winds (northward), however the duct is leaky and

the energy is no longer contained within a propagation distance of a few hundred kilometers.

In the case of a stronger storm, it can be expected that the larger magnitude of the winds

will increase the duct’s efficiency. In Fig. 40, the overall storm intensity has been increased to

that of a Category 5 storm, with a maximum wind speed of 75 m
s . The ducting to the north of

the storm is much more effective and energy is contained in the boundary layer to a range of over

1,000 kilometers. In this case, one would expect a majority of the energy which enters the duct in

the boundary layer to propagate through the storm winds in the boundary layer and produce the

refraction effects predicted in Chapter 3.

In addition to variations in storm intensity, it was mentioned in Chapter 3 that the surface

roughness could be larger than the 10 m used in the above examples. As an example of how the

duct would be modified for a weaker wind gradient at the ocean surface, consider the result of Fig.

41. In this case, the strength of the storm has been left at a Category 3, while the surface roughness

in the boundary layer has been increased to 100 m. It is immediately obvious that in this case the

duct becomes more efficient and a large fraction of the energy will remain in the storm boundary

layer and as a result be strongly refracted by the horizontal wind gradients.
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Fig. 41: The effective sound speed profiles (left) and arrival field (right) for propagation through the atmosphere

at the radius of maximum winds in a direction east of the eye column of a Category 3 storm with boundary layer

surface roughness increased to 100 meters.

From these results we can infer that the results of Chapter 3 are possible under the conditions

that the storm winds are sufficiently strong or the wind gradients near the ocean surface are

sufficiently weak that an efficient duct is produced. However, some care must be taken in using the

predicted amplitudes of the refracted arrival since some fraction of the energy would be lost through

the inefficiency of the boundary layer duct. These results also imply that there could be a minimum

storm intensity, below which the boundary layer cannot form a sufficiently strong acoustic duct and

energy will not be strongly refracted. Additional observations would be necessary to determine if a

minimum storm intensity for ducting exists and what other conditions might influence the ducting

efficiency.
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APPENDIX C

EXPERIMENT DETAIL - ARRAY GEOMETRIES

In order to obtain sensor locations in appropriate units, the latitude and longitude coordi-

nates each sensor recorded were converted to the new universal international map standard (UTM)

coordinates. UTM divides the earth into 60 north-south zones each 6o wide in longitude. Within

each zone, distances are measured in Easting and Northing from the zone boundaries in meters.

The relative UTM locations of the sensors in each array are listed in Tables 2 and 3. The array

response for a plane wave incident on the array from the east (0 degrees) is shown in Fig. 42 and

43 for 2010 and 2011 respectively. This response is calculated using the Bartlett spatial spectra

with a synthetic planewave incident at the selected azimuth and no noise.
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Array Geometry: Croatan (2010)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

172 34.725675 76.958710 706 m -434 m
200 34.733768 76.964311 210 m 473 m
213 34.726234 76.971874 -499 m -349 m
214 34.729462 76.966509 0 m 0 m

Array Geometry: Francis Marion (2010)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

203 33.161155 79.746462 231 m 922 m
210 33.152862 79.749058 0 m 0 m
212 33.149289 79.746651 229 m -393 m
216 33.158829 79.758561 -895 m 651 m

Array Geometry: McCoy (2010)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

99 34.933585 79.548829 -606 m 117 m
102 34.927326 79.538768 323 m -564 m
148 34.932448 79.542213 0 m 0 m
202 34.936029 79.540514 149 m 399 m

Array Geometry: Ocala (2010)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

207 29.269756 81.685118 -883 m -305 m
209 29.276640 81.676530 -45 m 452 m
215 29.272558 81.676042 0 m 0 m

Table 3: The array design in GPS coordinates and relative New Universal International Map
Standard (UTM) for the deployments in 2010.
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Array Geometry: Bass River (2011)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

71 39.64654 74.39501 519.0 -362.8
75 39.65386 74.40080 16.8 446.3
121 39.64684 74.40691 -502.3 -336.3
172 39.64984 74.40103 0.0 0.0

Array Geometry: Brookhaven National Laboratory (2011)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

67 40.87163 72.86021 0.0 0.0
84 40.86848 72.84649 1165.0 -321.3
137 40.86517 72.89490 -2906.2 -788.2
140 40.88063 72.85096 755.1 1017.8
166 40.88180 72.88631 -2226.9 1074.8
187 40.87166 72.88771 -2317.0 -53.1

Array Geometry: Croatan (2011)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

99 34.72606 76.97256 -659.3 -174.2
113 34.73328 76.96424 118.3 611.9
157 34.72774 76.96540 0.0 0.0
199 34.72573 76.95865 614.4 -235.1

Array Geometry: Francis Marion (2011)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

95 33.15994 79.75531 -332.7 367.1
110 33.15659 79.75179 0.0 0.0
235 33.15117 79.74872 293.6 -597.9
208 33.15871 79.74613 525.9 241.6

Array Geometry: McCoy (2011)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

55 34.93685 79.53912 360.0 556.0
87 34.92737 79.53861 422.1 -494.5
125 34.93188 79.54315 0.0 0.0
182 34.93353 79.55127 -744.6 171.2

Array Geometry: Ocala (2011)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

37 29.27001 81.67060 525.4 -288.6
185 29.27655 81.67615 -9.4 439.6
246 29.26987 81.67866 -257.1 -300.1
252 29.27259 81.67603 0.0 0.0

Array Geometry: Pachaug (2011)

Sensor ID GPS (Lat.) GPS (Long.) UTM (x) UTM (y)

178 41.61997 71.87594 -550.6 420.7
194 41.61635 71.86917 0.0 0.0
237 41.61164 71.86740 130.8 -528.3

Table 4: The array design in GPS coordinates and relative New Universal International Map
Standard (UTM) for the deployments in 2011.
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Fig. 42: The Bartlett spatial spectra response for the deployments in 2010.
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Fig. 43: The Bartlett spatial spectra response for the deployments in 2011.
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