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ABSTRACT

High-accuracy quantum mechanical (QM) wavefunction methods have been applied

to compute molecular properties of weakly-bound clusters. This work focuses on both ex-

tending the applicability of robust theoretical methods to larger systems and also determin-

ing the inherent accuracy of ab initio methods when compared to experimentally measured

properties. Described here is the development of an efficient many-body approach that offers

the ability to reduce both the time and the computational resources normally required to

compute these properties reliably. The N -body:Many-body QM:QM technique has been ex-

tended to compute harmonic vibrational frequencies of clusters. Applying this methodology

to small hydrogen-bonded clusters demonstrates that this approach yields both optimized

geometries and harmonic vibrational frequencies in excellent agreement with the “gold stan-

dard” of correlated wavefunction methods, the CCSD(T) method, but with much greater

efficiency. In addition, this work includes careful calibration studies to examine the basis set

convergence of harmonic frequencies to determine which basis sets can be employed to obtain

ab initio frequencies lying near the complete basis set (CBS) limit. These benchmark values

are used to calibrate more efficient methods including ab initio methods, various density

functional approximations and water potentials. Lastly, anharmonic vibrational frequencies

and dissociation energies have been computed for small hydrogen-bonded dimers, allowing

for a direct comparison to experiment.
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CHAPTER 1

INTRODUCTION

1.1 Theoretical Background

Noncovalent interactions are the relatively weak interactions existing between

molecules. These interactions are considered “weak” insofar as the energy associated with

such an interaction is typically on the order of a few kcal mol−1, much smaller than the

energy associated with the covalent bond that binds together an O2 molecule, for exam-

ple. Nevertheless, it is difficult to overstate the importance of these interactions. From

the structure of DNA to the unique properties of water and even to the very existence of

condensed phases, noncovalent interactions play a variety of critical roles in the natural

world. The origin of these interactions differs depending on the context. For example, the

attractive interaction between stacked DNA bases is very different from the binding of two

water molecules. Whether we speak of a stacking interaction in the case of DNA bases or

a hydrogen bond formation in the case of the water molecules, the ability to accurately

predict the details of either phenomenon requires the tools of ab initio quantum mechanical

wavefunction methods.

1.1.1 The Hartree-Fock Approximation

The central problem of quantum chemistry is finding approximate solutions to the

nonrelativistic time-independent electronic Schrödinger equation for a collection of nuclei

Portions of this chapter are reproduced with permission from “Wavefunction methods for the accurate
characterization of water clusters,” J. Coleman Howard and Gregory S. Tschumper, WIRES: Comp. Mol
Sci. 4 (3), Copyright c© 2013, Wiley Periodicals, Inc.
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and electrons.1

ĤΨ = EΨ (1.1)

Here, Ĥ is the Hamiltonian operator acting on the wavefunction Ψ to yield the total energy

E. For a collection of N electrons and M nuclei, the Hamiltonian (in atomic units) takes

the form of Equation 1.2.

Ĥ = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(1.2)

The terms in Equation 1.2 represent, from left to right, the kinetic energy of the electrons,

the kinetic energy of the nuclei, the attraction between electrons and nuclei, electron-electron

repulsion and nuclear-nuclear repulsion. In quantum chemistry, a (very) common assumption

is that the nuclei are fixed with respect to the much smaller, faster electrons. By invoking this

Born-Oppenheimer approximation, the kinetic energy of the nuclei (second term in Equation

1.2) becomes zero, and the nuclear-nuclear repulsion (last term in Equation 1.2) becomes a

constant. In this picture, nuclei move in a potential created by the electrons, leading to a

concept central to many areas of chemistry, the potential energy surface (PES).

As the foundation of many ab initio methods, the wavefunction of an N -electron

system is approximated as an N ×N Slater determinant, shown in Equation 1.3.

Ψ0 = |φP1φP2 . . . φPN
| = 1√

N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φP1(x1) φP2(x1) . . . φPN
(x1)

φP1(x2) φP2(x2) . . . φPN
(x2)

...
...

...

φP1(xN) φP2(xN) . . . φPN
(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.3)

Here, the φP represent occupied spin molecular orbitals, denoted by subscripts and

organized into columns, shown in the more explicit representation on the right-hand side of

the equation. The spin molecular orbitals are assumed to be orthonormal. Because these are

spin orbitals, the x coordinates contain both spatial and spin coordinate information, and the

2



subscripts on these denote a particular electron. Interchanging two rows of this determinant

would be equivalent to exchanging the coordinates of the two electrons labeled by those two

rows. Since swapping rows of a determinant changes its sign, we can see that this form of the

wavefunction satisfies the antisymmetry requirement of fermions. Now, consider the effect

of two of the φP being identical. This is analogous to having two electrons in the same spin

orbital. The properties of determinants also dictate that if two columns are identical, then

the determinant is zero, satisfying the Pauli exclusion principle.2

Setting aside the constant nuclear repulsion term, it will be convenient to write the

Born-Oppenheimer Hamiltonian in a compact form (Equation 1.4).

Ĥ =
N∑
i=1

ĥ(i) +
N∑
i=1

N∑
j>i

1

rij
(1.4)

Here, the electron kinetic energy and the electron-nuclear attraction have been com-

bined into the one-electron operator ĥ(i), implying that the operator depends on the spatial

coordinates of electron i. The expectation value of the electronic energy is then given by

Equation 1.5.2

E0 =

∫ ∫
. . .

∫
Ψ∗0 Ĥ Ψ0 dx1 . . . dxN−1dxN =

〈
Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 (1.5)

=
N∑
a=1

〈
φPa(x1)

∣∣∣ ĥ(1)
∣∣∣φPa(x1)

〉
+

1

2

N∑
a=1

N∑
b=1

〈
φPa(x1)φPb

(x2)

∣∣∣∣ 1

r12

∣∣∣∣φPa(x1)φPb
(x2)

〉

− 1

2

N∑
a=1

N∑
b=1

〈
φPa(x1)φPb

(x2)

∣∣∣∣ 1

r12

∣∣∣∣φPa(x2)φPb
(x1)

〉

Equation 1.5 introduces the bra-ket notation that implies integration over the coordinates of

all electrons. The summations here do not index electrons, but instead occupied spin molec-

ular orbitals. The symmetry of the Slater determinant and the fact that the Hamiltonian

only contains one- and two-electron operators allow us to arbitrarily label each electron in

the one-electron terms as electron 1 and likewise the electrons in the two-electron terms as

3



electrons 1 and 2. By assuming the order of the electronic coordinates in the integrals above

and replacing the two electron repulsion integrals with a single antisymmetrized integral,

Equation 1.5 can be expressed in an even more compact form (Equation 1.6).

E0 =
N∑
a=1

〈
φPa

∣∣∣ ĥ ∣∣∣φPa

〉
+

1

2

N∑
a=1

N∑
b=1

〈
φPaφPb

∣∣∣ ∣∣∣φPaφPb

〉
(1.6)

To find the spin orbitals needed to compute the ground state energy in Equation 1.6,

the energy is minimized with respect to the orbitals. Those orbitals which minimize Equation

1.6 are the Hartree-Fock (HF) spin orbitals, and the process of finding those orbitals is the

Hartree-Fock Self-Consistent Field (HF-SCF) procedure. The basic idea of the HF-SCF

procedure is to choose a set of basis functions (a basis set) from which to expand the molecular

orbitals as linear combinations of these basis functions. In practice, the most common choice

is to use functions that mimic the hydrogen atomic orbitals, utilizing multiple functions of

differing angular momenta (i.e, s, p, d, f , etc.) depending on the chemical system under

investigation. Quoting the text “Modern Quantum Chemistry” by Szabo and Ostlund,2 “the

choice of a basis set is more of an art than a science.” Fortunately, the variational nature

of the HF-SCF procedure defines a convergent method, where the HF molecular orbitals

become closer to exact as the basis set becomes more complete. If the molecular orbitals

are expanded from a set of K atomic orbital basis functions, then the HF-SCF procedure

yields a total of 2K molecular orbitals. The N lowest-energy molecular orbitals will then

be occupied by an electron, and the 2K −N other orbitals are called unoccupied or virtual

orbitals. The number of electron repulsion integrals to compute grows as the fourth power of

the number of basis functions so the choice of basis set is limited by time and computational

considerations. Often, it is the decades of existing computational chemistry literature that

provide the best motivation for choosing a particular basis set. Section 1.2.2 expands on this

topic of choosing an appropriate basis set.
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1.1.2 Beyond the HF approximation

Even with a complete set of basis functions, the HF-SCF method has a serious defi-

ciency in its treatment of electron-electron interactions, which can be seen by examining the

Hartree-Fock equation for the energy (εa) of a particular spin orbital (φPa).

ĥφPa(1) +
N∑
b 6=a

(∫
dx2 |φPb

(2)|2 1

r12

)
φPa(1)−

N∑
b 6=a

(∫
dx2φ

∗
Pb

(2)φPa(2)
1

r12

)
φPb

(1)

= εaφPa(1) (1.7)

In the second term of Equation 1.7, the parenthetical part can be identified as a Coulomb

operator. Recognizing the probability factor for electron 2 immediately inside the integrand,

this Coulomb term may be interpreted as an average repulsion experienced by electron 1, and

summing over all other molecular orbitals effectively means that the energy of each orbital

only includes the average repulsion from the other electrons.2 For this reason, Hartree-Fock

theory is often called a mean-field theory.

The HF energy usually accounts for more than 99% of the total electronic energy.1

However, to accurately predict chemical phenomena, this is often not enough. This missing

energy is necessarily negative because of the variational nature of HF theory, and it is

referred to as “correlation energy.”a If the set of spin orbitals {φP} is complete,b then the

exact N -electron wavefunction can be expressed as a linear combination of all the possible

Slater determinants that can be formed from these spin orbitals. Besides the ground state

wavefunction, additional Slater determinants are formed by substituting virtual orbitals for

occupied orbitals. These replacements can be viewed as electron excitations, producing

aTechnically, this correlation energy is “dynamical correlation energy”, referring to the energy lowering
by correlating the motions of the electrons, leading to decreased repulsion. This is distinct from so-called
“static” correlation, which results when the HF wave function is not a good zeroth order approximation.
Static correlation is not considered in this work.

bA complete set of spin orbitals is unobtainable in practice, and the wavefunction will only be exact
within the space spanned by the one-electron expansion functions.
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excited configurations.

|Φ0〉 = |Ψ0〉+

(
1

2

)2∑
a,r

cra |Ψr
a〉+

(
1

6

)2∑
ab,rs

|Ψrs
ab〉+

(
1

24

)2 ∑
abc,rst

|Ψrst
abc〉+ · · · (1.8)

In Equation 1.8, the exact wave function |Φ0〉 is expanded as the sum of the HF reference

wavefunction |Ψ0〉 and all possible configurations including single excitations (second term),

double excitations (third term), triple excitations (fourth term), etc. up through N -tuple

excitations. The vector |Ψr
a〉 represents a Slater determinant formed by replacing ΦPa in |Ψ0〉

with ΦPr . Each term has a coefficient associated with it that can be viewed as a relative

weight to the determinant. Minimizing the total energy with respect to these coefficients

is equivalent to diagonalizing the Hamiltonian matrix and yields the best possible approx-

imation to the ground state energy within the space spanned by the Slater determinants.

This method is referred to as configuration interaction (CI), and including all possible ex-

citations defines the Full CI (FCI) method. In practice, the FCI matrix is far too large,

and truncated CI methods are used instead, where determinants are, for example, limited

to singly and doubly excited configurations (CISD). Unfortunately, the truncated CI models

are not very useful either, as they lack an important quality called size consistency.2 In a

size-consistent method, the total energy of a collection of N particles becomes proportional

to N as N → ∞. The CI method is the simplest correlation method conceptually, though,

and it demonstrates how the deficiencies in the HF wavefunction can be remedied by in-

cluding excited determinants to capture electron correlation energy. In Section 1.3.1, some

size-consistent correlation methods that are more commonly used are discussed.

1.2 Hydrogen Bonding

The focus of the research presented here is hydrogen-bonded systems. While perhaps

best known as being the stabilizing interaction between water molecules, hydrogen bonding

also has important roles in crystal packing, protein folding and DNA base pairing, for ex-
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ample.3 The concept of the hydrogen bond has existed for more than a century now, but

a precise definition has proven difficult. As more theoretical and experimental evidence has

become available, the accepted ideas on what constitutes hydrogen bonding have shifted.4

The International Union of Pure and Applied Chemistry (IUPAC) established a task force

in 2005 to determine a definition for the hydrogen bond.4 Their recommendation was the

following: “The hydrogen bond is an attractive interaction between a hydrogen atom from

a molecule or a molecular fragment X-H in which X is more electronegative than H, and

an atom or a group of atoms in the same or different molecule, in which there is evidence

of bond formation.” A hydrogen bond is typically written X-H· · ·Y, where the X-H group

is referred to as the “donor.” Under the IUPAC definition, the only requirement for the

“acceptor” Y is that it contain an electron-rich region, such as a lone pair of electrons in the

case of the O-H· · ·O hydrogen bonds in water. This IUPAC definition does not require any

one particular criterion to be met for there to exist evidence of a hydrogen bond, but instead

offers a list of criteria that can be used to gauge the reliability in considering a particular

interaction to be considered a hydrogen bond.

While the IUPAC definition of a hydrogen bond is sufficiently broad to include many of

the more ambiguous cases, we will focus here on the common qualities of the stronger variety

of hydrogen bond involving highly electronegative atoms, such as oxygen or fluorine. The

stability of the hydrogen bond in these cases is largely electrostatic in origin.4–6 For example,

in a single water molecule, the electronegative oxygen atom causes a partial negative charge

to accumulate on the oxygen and a partial positive charge on the hydrogen atoms. When

multiple water molecules are present, the partially positive hydrogen atoms are attracted to

the lone pair of a nearby oxygen, leading to hydrogen bond formation. Hydrogen bonding

interactions are directional, and an X-H· · ·Y angle near 180◦ is typically associated with a

stronger hydrogen bond.4

Experimentally, NMR spectra can be useful to establish evidence of hydrogen bond

formation, as the proton deshielding is enhanced in a donor molecule.4 Important to the

7



work presented here is the effect of hydrogen bonding on a vibrational spectrum. Upon

hydrogen bond formation, the X-H bond length in the donor molecule is lengthened, and

the X-H vibrational frequency shifts to lower energy, commonly called a “red shift.”4,6 This

can be a sensitive indicator of the hydrogen bonding environment and serve as a spectral

“signature” for the hydrogen bond.

Figure 1.1. Depiction of a water molecule (center) accepting two and donating two hydrogen
bonds denoted by the dashed lines O-H· · ·O.

1.3 Computational Considerations

Ab initio wavefunction-based methods for intermolecular interactions fall into two

categories: perturbation approaches and supermolecular approaches. Symmetry adapted

perturbation theory (SAPT) is a powerful technique that falls into the former classification.

SAPT and its variants directly calculate the interaction energy and components thereof

(electrostatic, induction, dispersion, and exchange repulsion) between two fragments (usually

monomers) as a perturbation to non-interacting monomer wavefunctions or Kohn-Sham

densities.7–11 The procedure can be extended to larger clusters in principle. In practice,

however, implementing the perturbation approach for a molecular cluster with more than

two fragments is not straightforward. Three-body versions of SAPT and SAPT (DFT)

exist,12–17 but we are not aware of higher-order implementations at this time. Nevertheless,
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the technique has provided a wealth of insight into noncovalent complexes because the lowest-

order interactions tend to be the most important.

In water clusters and other hydrogen bonded systems, cooperative effects are signifi-

cant, and higher-order interactions cannot be ignored. In fact, cooperative effects can account

for more than 30% of the binding energy in (H2O)n clusters (n>4).18 The supermolecular

approach includes these many-body interactions by determining the binding energy (Ebind)

of a noncovalent cluster from the difference between the energies of the individual fragments

(f1, f2, . . . , fn) and that of the cluster.

Ebind = E[cluster]−
n∑
i=1

E[fi], (1.9)

E[X] represents the total electronic energy of species X computed with a size consistent

method.19,20 (Reference 21 includes a tutorial on the relationship between size consistency

and the supermolecular approach.)

If the internal coordinates of the fragments do not change as the complex forms (i.e.,

the rigid or frozen monomer approximation), then Ebind is formally equivalent to the interac-

tion energy (Eint), the latter requiring that the internal coordinates of each fragment be the

same in both the complex and fragment computations.22 Automated geometry optimization

procedures are available for a wide range of DFT, semi-empirical and wavefunction meth-

ods, and as such, it is now common practice in supermolecular electronic structure studies

to use fully optimized internal coordinates when computing E[cluster] and each E[fi]. The

quantity computed in this manner via Equation 1.9 formally corresponds to the equilibrium

binding energy (simply denoted Ebind here), differing from Eint by the energy required to

distort each fragment from their optimized geometries to the ones adopted in the complex.

This distortion can also be viewed as the monomer relaxation energy, a quantity with the

same magnitude but opposite sign as the distortion energy.

Consequently, Ebind and Eint can be thought of as adiabatic and vertical quantities,
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respectively, representing the energetic stabilization that results as n non-interacting frag-

ments associate with each other to form a cluster, and their values are necessarily negative

for a bound complex. In practice, less rigorous definitions are commonly employed for Eint,

Ebind and closely related terms (e.g., stabilization energy, association energy, complexation

energy and dissociation energy). Therefore, a great deal of confusion can be avoided if

authors clearly define the terminology adopted in a particular study.

If the isolated fragments are identical (e.g., water molecules), then the summation

can be eliminated because each E[fi] has the same value. For example, Ebind for a water

cluster composed of n monomers reduces to the following expression.

Ebind = E[(H2O)n]− nE[H2O] (1.10)

The dissociation energy (De) is closely related to the binding energy, having the same mag-

nitude but opposite sign because it refers to the reverse process. The term De is typically

reserved for minima on a potential energy surface (PES).

Often it is convenient to use a reference other than the separated monomers. For

example, the energy of a tetramer could be compared to the energy of two dimers rather

than four monomers. When studying the sequential growth of water clusters, it may be

useful to examine the energy associated with the addition of each water.

∆En+1
n = E[(H2O)n+1]− (E[(H2O)n] + E[H2O]) (1.11)

Potential energy surfaces of even the smallest water clusters possess a number of

low-energy stationary points, and the number of low-lying minima on the PES grows with

the value of n. The number of hydrogen bonding topologies increases exponentially with

cluster size.23 Consequently, the relative energy of the stationary points can be a more

useful quantity than Ebind. Any stationary point can serve as a reference point, but the most
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common choice is the structure presumed to be the global minimum, (H2O)g.m.n .

∆E = E[(H2O)n]− E[(H2O)g.m.n ] (1.12)

The equations presented in this section also apply to energies that include the zero-

point vibrational energy (ZPVE) of each species, usually denoted by a superscript 0 (e.g.,

E0
bind, D

0
e or ∆E0). The simplest approaches obtain the ZPVE from the harmonic vibrational

frequencies or employ suitable scaling factors24,25 to estimate anharmonic effects, which are

particularly significant in water clusters and other weakly bound systems. More rigorous

procedures, such as vibrational perturbation theory, can be used to compute anharmonic vi-

brational frequencies and the corresponding ZPVE.26 A recent paper by Temelso and Shields

includes a superb overview of procedures for estimating vibrational anharmonicity in water

clusters.27,28 Analogous expressions can also be obtained for related thermodynamic quanti-

ties, (e.g., enthalpy, entropy and free energy) which have provided much insight into thermal

and entropic effects on the formation of water clusters.29

1.3.1 Electron Correlation

Correlated wavefunction theory methods and sufficiently flexible atomic orbital (AO)

basis sets are required to consistently compute accurate energetic quantities for Equations 1.9

– 1.12 as well as related properties (optimized geometries, harmonic vibrational frequencies,

etc.). The most successful and widely utilized quantum mechanical electronic structure

techniques for clusters of molecules held together by noncovalent interactions are based on

many-body perturbation theory (MBPT) and coupled-cluster (CC) theory.30 This collection

includes Møller-Plesset perturbation theory (MPPT),31 which is a particular partitioning

scheme for the former, and quadratic configuration interaction (QCI) theory, which is a

special case of the latter.32–34

Practically speaking, the level of electron correlation and the size of the basis set

are limited by computational resources, because the computational demands of sufficiently
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accurate wavefunction methods scale unfavorably with the size of the system (e.g., number of

atoms, number electrons, number of basis functions). The hierarchy of single reference post-

HF methods is defined by the categories of excited determinants or configurations included

(i.e., single, double, triple, etc.) in the construction of the wavefunction.

Second-order Møller-Plesset perturbation theory (MP2) is generally considered the

simplest correlated wavefunction method to provide reliable results for hydrogen bonds as

long as dispersion does not make a relatively large contribution.35 MP2 has the advantage

of being a non-iterative, size-consistent technique that scales asymptotically as the fifth

power with the size of the system (N5). In practice, the scaling can be somewhat lower for

systems that are not extremely large. Unfortunately, MP2 does not perform equally well for

all types of noncovalent interactions, and it is known to significantly overbind dispersion-

dominated interactions, particularly those between aromatic molecules that adopt face-to-

face arrangements.36–39

More demanding post-HF methods are required to correctly describe the entire spec-

trum of noncovalent interactions. Although the coupled-cluster technique that includes all

single and double substitutions (CCSD) tends to substantially underbind the systems for

which MP2 overbinds,40,41 reliable results can obtained by including a perturbative estimate

of connected triple excitations (i.e., the CCSD(T) method). The CCSD(T) method is widely

employed to generate benchmark binding energies in this context,21,42–46 but QCISD(T) may

also be an effective alternative for clusters composed of closed-shell fragments.47 Unfortu-

nately, the additional complexity associated with the CCSD(T) method (and the QCISD(T)

method) increases the scaling to N7. In terms of occupied (o) and virtual (v) orbitals,

the CCSD(T) method actually scales as o3v4. So increasing the size of the AO basis set

even for a small system can substantially increase the computational demands. Higher or-

ders of Møller-Plesset perturbation theory (MP3, MP4, etc.) are not typically employed

to evaluate electron correlation effects beyond the MP2 level because the series can some-

times diverge.48–50 Quantum Monte Carlo (QMC) techniques offer an alternative approach

12



to computing electronic energies with high accuracy and are naturally suited to large-scale

parallelization. Recent QMC results for water clusters51–55 show great promise for further

application and development.

1.3.2 Atomic Orbital Basis Sets

The AO basis set also significantly affects the accuracy of results obtained with post-

HF wavefunction methods. Several popular classes of basis sets have recently been reviewed

by Jensen in WIREs Comp. Mol. Sci.56 In principle, it is desirable to use an extremely large

basis set that lies near the complete basis set (CBS) limit. Unfortunately, the unfavorable

scaling of computational demands with the number of virtual orbitals (vide supra) requires

that truncated basis sets must be used in practice, which leads to basis set incompleteness

error (BSIE). This quantity is merely the difference between a value computed with a par-

ticular finite basis set and the corresponding CBS value obtained with the same electronic

structure method.

The development of Dunning’s correlation consistent Gaussian basis sets57–64 has been

critical to understanding and overcoming the inherent limitations of truncated basis sets.

The correlation consistent family (cc-pVXZ or simply XZ) was designed to systematically

approach the CBS limit as the cardinal number (X) of the basis set increases. For water

clusters, X simply corresponds to the maximum angular momentum of the basis functions.

The versions augmented with diffuse functions (aug-cc-pVXZ or simply aXZ) are particu-

larly important for hydrogen bonding and other noncovalent interactions. Diffuse functions

have relatively small orbital exponents which leads to slower radial decay than their valence

counterparts. They usually provide improved results for anions, excited states and long

range interactions because they help describe regions farther from the nuclear centers that

still have appreciable electron density. The addition of diffuse functions is generally critical

for reliably modeling hydrogen bonding and noncovalent interactions.21,65–68

For hydrogen bonding, particularly in (H2O)n clusters, it is often not necessary to
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put diffuse functions on the H atoms, a practice that can be computationally advantageous.

The electronegative atom to which H is bonded (O in this case) withdraws electron density,

leaving H with a substantial partial positive charge (δ+). Diffuse functions are not needed

to describe the depleted electron density around this partially exposed proton. The opposite

is true, however, for the heavier electronegative atom because it acquires an appreciable

partial negative charge (δ−). Our research group has dubbed these “heavy” aug-cc-pVXZ

(or haXZ) basis sets because diffuse functions are only added to the heavy (non-hydrogen)

atoms. Other popular notations include aug′-cc-pVXZ and more recently jul-cc-pVXZ.69 It

is not clear, however, that the smaller jun-, may- and apr- variants of the partially augmented

calendar correlation consistent basis sets69 can be employed in CBS extrapolation schemes

because the correlation consistency has been disrupted. It should be noted that these haXZ

style basis sets are not physically justified for all noncovalent interactions though. For

example, diffuse functions on H may be necessary in dihydrogen bonding where one of the

participating H atoms actually develops a partial negative charge (δ−).

The smooth convergence of Dunning’s basis sets has inspired several different tech-

niques61,70–74 for extrapolating both the HF and correlation energies to the CBS limit. Feller’s

exponential fit of (H2O)2 total energies calculated with a correlation consistent family of basis

sets was certainly one of the earliest applications to water clusters.70

EX
HF = ECBS

HF + Ae−bX (1.13)

This simple formula with 3 parameters can be expressed in a closed algebraic form for a set

of energies calculated with 3 successive values of the cardinal number (X−2, X−1 and X).

ECBS
HF = EX

HF −
(EX

HF − EX−1
HF )2

(EX
HF − EX−1

HF )− (EX−1
HF − EX−2

HF )
(1.14)

Both Equations 1.13 and 1.14 are written in terms of the HF energy because it is common

to extrapolate the correlation energy separately, given their different convergence behav-
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iors.65,74–78

It has been known for some time that the correlation energy converges asymptotically

as an inverse power of the maximum angular momentum of the basis set.79,80 Extrapolation

schemes for the correlation energy are based on this observation and differ from one another

in the actual exponents and number of terms in the function.65,72,75,81,82 Martin75 and

Helgaker65 each proposed 2-parameter formulae in this manner:

EX
corr = ECBS

corr +
A

(X + 1/2)4
(1.15)

EX
corr = ECBS

corr +
A

X3
(1.16)

Martin’s formula (Equation 1.15) has also been modified and tested with an additional

sixth power term and a variable exponent as well.72,75 Note that for the correlation consistent

basis sets, X is equal to the maximum angular momentum for all first and second row

atoms. Binding energies (Ebind) of water clusters have also been extrapolated using heuristic

expressions based on inverse powers of angular momentum28,83–85 and can exhibit different

convergence behavior than interaction energies.83 More recent extrapolation formulae such

as that of Schwenke82 have also been proposed, however there is still no consensus as to

which procedure is the most accurate across a variety of chemical systems.78

1.3.3 Basis Set Superposition Error

The use of a finite AO basis set within the supermolecular approach introduces an

inconsistency for any sort of dissociative (or associative) process that compares the energies

of the parts (e.g., a set of fragments) to the energies of the whole (e.g., a cluster).86–91 It

applies to both the rupture (or formation) of a covalent bond as well as the dissociation (or

binding) energies of noncovalent clusters such as Equations 1.10 and 1.11. This inconsistency

is better known as (intermolecular) basis set superposition error (BSSE).86,89

BSSE arises from the fact that the fragments are allowed to “share” basis functions
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when interacting (e.g., in a cluster) but not when separated from each other. Consequently,

the magnitude of Ebind (or De) is artificially too large for conventional electronic structure

theory computations. The most common method for correcting the BSSE is the counterpoise

(CP) procedure.87,88 CP corrections remove the inconsistency by calculating the energy of

the fragments in the basis set of the cluster. This necessitates utilizing the geometries that

the fragments adopt in the cluster, E[fi]
cluster basis
cluster geom. If the fragment geometries are flexible

rather than rigid, then the energy change associated with the fragment distortion (or relax-

ation, depending on your perspective) must also be computed in the fragment basis set by

comparing the energy of the fragment at its optimized fragment geometry, E[fi]
fragment basis
fragment geom,

to that of its distorted geometry in the cluster, E[fi]
fragment basis
cluster geom .

Applying the CP procedure to a dimer composed of monomers m1 and m2 yields the

following expression for the binding energy.

ECP
bind = E[dimer]− E[m1]

dimer basis
dimer geom − E[m2]

dimer basis
dimer geom

+
(
E[m1]

monomer basis
dimer geom − E[m1]

monomer basis
monomer geom

)
+
(
E[m2]

monomer basis
dimer geom − E[m2]

monomer basis
monomer geom

)
(1.17)

If the rigid monomer approximation is employed, then the terms in parentheses (distortion

energies) do not need to be evaluated. Some ambiguities arise when applying the CP pro-

cedure to clusters larger than a dimer.90,91 One straightforward option simply extends the

procedure for 2 monomers in a dimer to each fragment in a cluster.

ECP
bind = E[cluster]−

n∑
i=1

E[fi]
cluster basis
cluster geom

+
n∑
i=1

(
E[fi]

fragment basis
cluster geom − E[fi]

fragment basis
fragment geom

)
(1.18)

Again, if the rigid monomer approximation is employed, then the 2nd summation involving

computations in the fragment basis set vanishes.
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Regardless of the implementation, the CP procedure requires extra computational

effort. The additional monomer computations in the monomer basis are relatively trivial,

but those in the cluster basis set can actually be quite demanding (sometimes comparable

to the computation on the whole cluster). There will be n of each type when there are

no symmetrically equivalent fragments. Fortunately, these computations are completely

independent and, therefore, well-suited to coarse-grained parallelization. In addition to the

a posteriori procedure for computing ECP
bind (e.g., Equations 1.17 and 1.18), a counterpoise-

corrected PES can be defined.90

ECP = E[(H2O)n] +
n∑
i=1

(
Ei[H2O]monomer basis

cluster geom − Ei[H2O]cluster basis
cluster geom

)
(1.19)

A priori CP-corrected geometry optimizations and harmonic vibrational frequency compu-

tations can be obtained from the corresponding first and second geometrical derivatives of

this expression (i.e., gradients and Hessians).

CP corrections are widely utilized in studies of water clusters and other noncova-

lent complexes. Diffuse functions have been shown to significantly reduce the BSSE in

hydrogen-bonded clusters.92 Correlation consistent basis sets that only augment the heavy

(non-hydrogen) atoms are particularly attractive for water clusters because they often pro-

vide energetics closer to the CBS limit for these systems than their fully augmented ver-

sions.21,93,94 Furthermore, uncorrected results obtained with these haXZ basis sets are often

closer to the CBS limit than the CP-corrected values for small water clusters.21,93 It is not

guaranteed that these trends will extend to larger (H2O)n clusters, and the behavior of these

haXZ basis sets needs to be thoroughly evaluated for different hydrogen bonding topologies.

These results highlight two aspects of BSSE and CP corrections that are often over-

looked. Specifically, large BSSE does not necessarily indicate a large error, and CP correc-

tions are not guaranteed to move calculated values closer to the CBS limit.21 These issues

do not indicate a deficiency of the CP procedure but are, instead, a manifestation of basis
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set incompleteness error.90 BSIE, in contrast, actually does measure the error relative to the

CBS limit. The two quantities (BSSE and BSIE) are not unrelated though. By definition,

BSSE must vanish in the limit of a complete basis, and small BSSE indicates the results are

close to the CBS limit (i.e., small BSIE).

In light of the previous paragraph, “basis set superposition inconsistency” (BSSI) is

perhaps a more appropriate name than “basis set superposition error”, but the former will

not likely supplant the latter because the term BSSE is deeply entrenched in the literature.

Fortunately, this inconsistency is less of an issue when relative energies (∆E) are the quan-

tity of interest rather than binding (Ebind) or dissociation energies (De). However, the CP

procedure can still have an appreciable effect on ∆E for isomers with significantly different

structures and/or hydrogen bonding topologies.

1.3.4 Explicitly Correlated Methods

Explicitly correlated methods provide a different route to the CBS limit without re-

sorting to extrapolation techniques. These R12 or F12 procedures construct the wavefunction

with explicit dependence on interelectronic distance and correctly model the electron-electron

cusp to significantly accelerate convergence of the correlation energy. In fact, some explicitly

correlated coupled-cluster calculations with small basis sets (X = D or T) have been shown

to be as accurate as canonical coupled-cluster calculations performed with appreciably larger

basis sets (X = T or Q).95 Although the advantages of explicitly correlated methodologies

were recognized nearly a century ago,96 their application to larger systems has only become

practical with recent advances. Several reviews detail the history and key breakthroughs,

such as resolution of the identity (RI) techniques.97–100 Today explicitly correlated MP2

and CCSD methods are available in a number of software packages implemented within

various ansatze. While there is no consensus on the best approach for a broad range of

chemical applications, most modern implementations provide more accurate energetics than

the corresponding canonical wavefunction methods for almost no additional computational
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effort.101

Explicitly correlated CCSD(T) methods deserve special attention102,103 because direct

inclusion of F12 terms in the perturbative estimate of connected triples substitutions is

challenging. For example, the popular F12a and F12b implementations104,105 available in

the Molpro106 software package do not directly affect the triples energy associated with the

(T) part of the calculation. Scaling procedures have been introduced to estimate the effect of

explicit correlation on the triples energy by assuming that it is proportional to the effect on

the MP2 correlation energy.105,107 The approximate triples energy obtained in this manner

is denoted (T*).

EMP2−F12
corr

EMP2
corr

=
E

(T∗)
corr

E
(T)
corr

(1.20)

Unfortunately, CCSD(T*)-F12 approaches are not size consistent. The CCSD(T**)-F12

methods were introduced to correct this problem by employing a common scaling factor,

usually that of the complex rather than the monomers.102 The CCSD(T**)-F12a technique

and the related dispersion-weighted approach have been shown to yield very accurate results

for hydrogen bonded dimers.103 Hopefully this impressive performance will also extend to

larger (H2O)n clusters.

1.4 Water Clusters

1.4.1 Accurate Computational Strategies

The evolution of quantum mechanical electronic structure studies of water clusters

has followed a fairly consistent pattern since the earliest HF calculations on (H2O)2.
108–114

The water dimer is small enough that some of the most sophisticated methods available at

a particular time can be applied to it. These “high-level” results for (H2O)2 can be used

to calibrate less demanding “low-level” procedures. (Keep in mind that the definition of

high- and low-level changes over time as computing power increases.) The expectation has

been that methods yielding reliable results for the dimer will also give reliable results for the

trimer. Techniques that work well for (H2O)3 can then be applied with reasonable confidence
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to (H2O)4, and so forth. Eventually computational resources improve to the point that the

high-level methods can be applied to larger clusters to test the accuracy of the the low-level

methods. Then the cycle starts over again. Sometimes techniques that work well for (H2O)2

or (H2O)3 do not reliably transfer to larger clusters, but these setbacks often provide insight

into the chemical physics of the noncovalent interactions of water clusters.

For several decades, MP2 has provided the foundation for accurate electronic struc-

ture computations on water clusters. Extensive calibration has shown that MP2 optimized

structures and energies are quite reliable when obtained with sufficiently flexible basis sets

(e.g., aug-cc-pVTZ for O and cc-pVTZ for H). Additionally, MP2 algorithms are efficient

enough that CBS limit energetics can routinely be obtained for rather sizable (H2O)n clus-

ters with the extrapolation techniques or explicitly correlated methods (e.g., MP2-R12 or

MP2-F12) described earlier. In fact, MP2 CBS limit binding energies were computed for

(H2O)20 isomers in 2004.115

CCSD(T) computations are now feasible, but not necessarily routine, for clusters

containing more than a dozen water molecules. The largest water cluster to which the

method has been applied is likely (H2O)20,
116 an accomplishment which required significant

CPU resources. With this more demanding procedure, basis sets tend to be limited to

double- or triple-ζ quality, which can produce unreliable extrapolations of the CCSD(T)

correlation energy. However, the difference between the MP2 and CCSD(T) correlation

energies converges to the CBS limit more quickly and typically can be reliably described

with such basis sets.117,118 Consequently, the additive approach that is widely employed to

generate benchmark binding energies for noncovalent dimers42,43 can be employed to reliably

estimate Ebind at the CCSD(T) CBS limit for (H2O)n clusters. The most popular scheme

computes a higher-order correlation correction by comparing the MP2 and CCSD(T) binding

energies obtained with a modest basis set, simply denoted MBS.

δ
CCSD(T)
MP2 = E

CCSD(T)/MBS
bind − EMP2/MBS

bind (1.21)
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This quantity can then be combined with Ebind at the MP2 CBS limit to estimate the binding

energy at the CCSD(T) CBS limit.

E
CCSD(T)/CBS
bind ≈ E

MP2/CBS
bind + δ

CCSD(T)
MP2 (1.22)

Other combinations are possible. For example, the MP2 values could be replaced by the

corresponding CCSD ones, or QCISD(T) could be used instead of CCSD(T) to estimate the

higher-order correlation effects. Janowski and Pulay have offered an alternate interpretation

of this additive scheme.47 By regrouping the terms, the process can be viewed as a basis set

correction rather than a higher-order correlation correction.

E
CCSD(T)/CBS
bind ≈ E

CCSD(T)/MBS
bind +

(
E

MP2/CBS
bind − EMP2/MBS

bind

)
= E

CCSD(T)/MBS
bind + δCBS

MBS (1.23)

Regardless of the interpretation, binding and relative energies obtained with this ad-

ditive approach agree closely with available data from explicitly correlated CCSD(T) com-

putations on water clusters and other hydrogen bonded systems. For benchmark work, it

should be noted that double-ζ basis sets may not provide sufficiently reliable δ
CCSD(T)
MP2 values

for some noncovalent dimers.41,102

The next few sections review high-accuracy studies of (H2O)n clusters, starting with

the dimer and progressing to larger values of n. Comparison of MP2 and CCSD(T) CBS limit

energetics has started to reveal that not all hydrogen bonds in water clusters are created

equal. The two methods yield nearly identical results for (H2O)n systems with similar

hydrogen bonding topologies, such as a collection of cyclic structures in which each water

donates one hydrogen bond and accepts another (homodromic hydrogen bonding networks).

If more diverse networks are considered with not only single donors and single acceptors

but also double donors and/or double acceptors, then non-negligible discrepancies can arise

between the MP2 and CCSD(T) methods. Other factors can lead to differences between the

two methods (e.g., significant geometrical distortions about the O–H· · ·O hydrogen bond),
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but MP2 computations still play a vital role in the study of water clusters. When studying

water clusters with qualitatively different hydrogen bonding networks, a more sophisticated

method, such as CCSD(T), should be used to obtain reliable results via explicitly correlated

techniques, extrapolation of the CCSD(T) correlation energy or an additive approximation

(e.g., in conjunction with MP2 data).

The following discussion is focused primarily on investigations that have used high-

accuracy wavefunction methods to compute energies and structures of small water clusters.

The excessive computational demands associated with these correlated electronic structure

methods have limited their extension to computing other properties of interest, such as vibra-

tional frequencies. The reliable computation of spectra and other properties with accurate

ab initio quantum chemistry techniques is an area of great interest,27,54,119–122 particularly

in light of the recent advances in spectroscopic techniques for probing small neutral water

clusters.123,124

1.5 The Water Dimer

The water dimer has attracted significant interest as the smallest water cluster and a

prototype for hydrogen bonding, in general. Furthermore, the water dimer is the foundation

for understanding the pairwise interactions which account for a significant portion of the

binding energy from small hydrogen-bonded clusters all the way to the bulk phase. The

first dimer calculations were performed by Morokuma and Pedersen in 1968 at the HF

level with a minimal basis set.108 Since these earliest ab initio investigations109–114,125,126 a

variety of correlated post-HF methods and a wide range of basis sets have been used to gain

insight into (H2O)2 and hydrogen bonding. These dimer studies have revealed much about

the applicability and convergence properties of the methods themselves. With only two

non-hydrogen atoms, the water dimer is well-suited for high accuracy electronic structure

computations. So it is unsurprising that the dimer seems to regularly be the target of very

sophisticated theoretical methods. Our attention will be focused on these high-accuracy
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studies, with an emphasis on their relationship to the computational challenges described in

the previous section.

Experiment and theory have long been in agreement that the minimum-energy struc-

ture of the water dimer is of Cs symmetry with a nearly linear hydrogen bond.

Figure 1.2. The global minimum Cs (H2O)2 structure

For this structure, a key intermolecular parameter of interest is the separation be-

tween the two oxygen atoms. Early microwave spectroscopic studies gave a vibrationally

averaged O· · ·O distance of about 2.97 Å,127 which is expected to be somewhat larger than

the corresponding equilibrium value. Within each water monomer, the geometries remain

mostly rigid upon dimer complexation. However, the covalent O-H bond participating in

the O-H· · ·O hydrogen bond is appreciably elongated in the dimer. So the parameter R(O-

Hd), where d denotes donor, and its change relative to the monomer value are of particular

interest.

Throughout the 1990s, the structural properties of the global minimum were thor-

oughly explored at the MP2 level.76,128–130 In particular, the efforts of Xantheas and Hobza

provided much insight into the basis set dependencies of MP2 geometry optimizations on

both CP-corrected and uncorrected PESs.83,84,130,131 By including electron correlation at

the MP2 level, the equilibrium distance R(O· · ·O) consistently decreases relative to the HF

value. With the aTZ basis set, the optimal value for R(O· · ·O) is 2.905 Å.130 The R(O-Hd)

elongation at the MP2/aTZ level leads to a distance of 0.969 Å, nearly 0.01 Å longer than

R(O-H) in the optimized monomer computed at the same level of theory.
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In these works, the convergence pattern of the dimer geometry was thoroughly ex-

amined. Optimization of R(O· · ·O) was carried out at the MP2/aQZ and MP2/a5Z levels.

As would eventually be seen for larger water clusters with homodromic hydrogen bonding

networks, the MP2/aTZ geometries were found to be well converged. The MP2/a5Z optimal

value for R(O· · ·O) was 2.905 Å,83 a value perfectly matched with the much smaller aTZ

basis set.

Although not routine because of the additional computations required, it is possible to

perform CP-corrected geometry optimizations.132 With this approach, the BSSE is removed

a priori, rather than by removing the BSSE a posteriori with a series of energy calculations

at the optimized geometry on the uncorrected PES. Xantheas and Hobza both evaluated

the effects of CP-corrected geometry optimizations for the Cs global min.83,130 The CP

corrections consistently increase the distance between the two monomers, an observation that

is consistent with its effect on the binding energy. For instance, unconstrained optimizations

at the MP2/aDZ level produce R(O· · ·O) values of 2.921 and 2.977 Å for the standard and

CP-corrected procedures, respectively.130 On the other hand, the optimal R(O-Hd) value is

unaffected by the method of optimization, as both techniques yield the same value to within

0.001 Å regardless of the basis set. Intermolecular geometrical parameters of (H2O)2 appear

to converge more slowly with respect to X on the CP-corrected PES. It appears that the

computation of accurate energetics for this system, however, does not require CP-corrected

geometry optimizations. As noted by Hobza,130 “Good agreement between stabilization

energies resulting from CP-corrected and standard PESs gives evidence that stabilization

energy, contrary to complex geometry, does not depend on the way in which the BSSE was

covered (a priori or a posteriori).”

The MP2 CBS limit binding energy of the (H2O)2 global minimum was estimated

in many studies through systematic improvement of basis set73,76,83,92,130,133,134 and with

explicitly-correlated calculations.76,135 Large basis set HF calculations combined with MP2

single point energies obtained with more compact basis sets have been used to estimate an
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MP2 CBS limit Ebind of −4.95 kcal mol−1.133 Xantheas83 calculated the De of the water

dimer as 4.88 kcal mol−1 at the MP2/a5Z level, including corrections for BSSE. Klopper

performed explicitly-correlated MP2 computations on the global minimum and found that

their MP2-R12 binding energy (−4.92 kcal mol−1)136 was directly between the other two

values. More recent estimates of Ebind at the MP2 CBS limit are in excellent agreement with

these values, despite using slightly different geometries.76,93,135

As previously discussed, the size of the water dimer makes it an attractive candidate

for calibrating methods and examining basis set effects. Halkier et al. examined the MP2

binding energy of the complex as the basis set is improved from aDZ all the way to a5Z.73

That study also looked at the difference in using the doubly-augmented versions of Dunning’s

correlation consistent basis sets (daug-cc-pVXZ) and the unaugmented forms, as well. They

found that employing the singly-augmented basis sets reduced the CP correction by an order

of magnitude, relative to the corresponding XZ basis. The authors of that study also noted

the surprising performance of aDZ without CP corrections, certainly a fortuitous result, but

one that has remained useful for the study of larger homodromic cyclic clusters (vide infra).

The doubly-augmented basis sets were not found to improve results, as the basis set errors

were always larger with the daug-cc-pVXZ computed Ebind in comparison to MP2 CBS

estimates.

In a more general theoretical study of hydrogen-bonded dimers, Halkier, Helgaker and

others examined in great detail how the binding energy converges with respect to basis set for

correlated calculations.92 A major finding of that study was the unsystematic convergence

of both the Hartree-Fock binding energies and of the correlation contributions to Ebind.

For the SCF part of the binding energy, the convergence behavior was not affected by CP

corrections. It was very unsystematic and even nonmonotonic for ∆ECP in the water dimer.

However, the authors discovered an important trend for the correlation contributions. The

CP-corrected correlation contributions to Ebind always converged from above, suggesting that

an average of the CP-corrected and standard correlation contributions to the binding energy
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would be a useful approximation. Further, they found that removing the BSSE from the

correlation energy, leaving only the basis set incompleteness led to a “monotonic, smooth,

slow and systematic” convergence for ∆ECP
corr. The authors found that Helgaker’s X−3 form

of Equation 1.16 could be applicable to binding energies as well, as long as the basis set

inconsistency had been removed first.

With the structural and energetic profile of the Cs global minimum well defined at

the MP2 level, researchers began to explore the effects of higher-order correlation in detail.

One study, for example,93 applied a series of correlated methods and large basis sets in

the spirit of the focal point analysis developed by Allen and co-workers.117,118,137–140 The

dimer global minimum structure was fully optimized at the CCSD(T) level with all electrons

correlated and a triple-ζ basis set with two sets of polarization functions augmented with

higher angular momentum and diffuse functions (TZ2P(f ,d)+dif). The CCSD(T) optimized

geometrical parameters agreed very well with prior MP2/aTZ results despite differences in

the basis sets. The interoxygen separations differ by less than 0.01 Å, and R(O-Hd) values

are essentially identical. The deviation between the O· · ·O-Hd hydrogen bond angles was

found to be smaller than 0.2◦.

In addition to extrapolating CCSD(T) energies to the CBS limit from basis sets as

large as a6Z, the effects of connected quadruple excitations were estimated from BD(TQ) cal-

culations.93 CCSD(T) results slightly increase the dissociation energy, relative to MP2. The

higher-order correlation effects from BD(TQ) nearly cancel the CCSD(T) effects, however.

At the CBS limit, electron correlation beyond the MP2 level only increased the dissociation

energy by 0.02 kcal mol−1. It should be noted that the same CBS results were obtained with

the haXZ series of basis sets. The average CBS extrapolated De for the haXZ series differs

from the corresponding aXZ value by less than 0.01 kcal mol−1. The effect of correlating the

core electrons was evaluated at the MP2/aug-cc-pCV5Z level and increased the DCP
e by 0.04

kcal mol−1, relative to MP2(FC)/aug-cc-pCV5Z results. CCSD(T)/cc-pCVTZ relativistic

corrections were factored into De and found to have a tiny destabilizing effect, on the order
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of 0.002 kcal mol−1. The best estimate of the CP-corrected De from this analysis is 5.02

kcal mol−1. So the overall improvement beyond MP2 for describing the energetics of the

(H2O)2 global minimum is only on the order of a few hundredths of a kcal mol−1, which was

consistent with other estimates of electron correlation effects beyond MP2.76,135

While the Cs dimer is the only minimum on the (H2O)2 PES, other low-lying station-

ary points have been identified and thoroughly characterized with ab initio wavefunction

methods. In 1990, the structures of ten stationary points on the (H2O)2 PES were char-

acterized via MP2 optimizations and frequencies as well as MP4 energies.128 The authors

identified three transitions states which effectively interconvert equivalent forms of the Cs

global minimum. These are depicted in Figure 1.3.

Figure 1.3. Transition states on the (H2O)2 PES

(a) Open C1 TS (b) Cyclic Ci TS
(c) Bifurcated C2v TS

The open C1 TS in Figure 1.3a corresponds to interchanging the hydrogen atoms in

the acceptor molecule and is the lowest-lying of the transition states, lying less than 0.6

kcal mol−1 above the Cs global minimum.93,128 The cyclic Ci transition structure (Figure

1.3b) represents a pathway to interchanging donor and acceptor molecules. The bifurcated

transition state (Figure 1.3c) “scrambles” all the hydrogens,128 but lies at least 1.7 kcal mol−1

above the global minimum at MP2, MP4 and CCSD(T) levels.93,128 The same process can

be achieved via the two lower energy transition states.

Recently, Lane et al. have reported a series of impressive computations on the (H2O)2

global minimum, up to and including the CCSDTQ and partially augmented QZ basis
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sets.94,141 For CCSD(T)/aQZ optimizations, the R(O· · ·O) separation was 2.91 Å.94 This

intermolecular distance is in very good quantitative agreement with optimizations performed

at lower levels of theory,83,93,130 as are the intramolecular parameters of the monomers. The

dimer geometry was also optimized with the explicitly-correlated CCSD(T)-F12x (x = a and

b) methods, producing nearly identical results. Lane et al. calculated high-accuracy binding

energies by estimating the effects from electron correlation beyond CCSD(T) and core cor-

relation, as well as relativistic and non-Born-Oppenheimer behavior. The best estimate of

the (H2O)2 De from that work is 5.02 kcal mol−1, a value very similar to those from previous

benchmark studies.76,93,134,135

1.6 2-Dimensional Hydrogen Bonding Networks: (H2O)n=3−5

1.6.1 Homodromic Global Minima

The global minima for (H2O)n are all homodromic cyclic structures when n = 3, 4

or 5. Each water molecule functions as both the donor of and acceptor of a single hydrogen

bond (Figure 1.4).

Figure 1.4. Global minima for (H2O)n (n = 3− 5)

(a) C1 global min (b) S4 global min (c) C1 global min

The same computational strategies that were successful for the dimer system have

been shown to be reliable for these 2-dimensional hydrogen bonding networks as well. Del

Bene and Pople’s 1970 SCF calculations predicted cyclic structures with staggered free hy-

drogens to be lower in energy than chain-like configurations for the trimer and larger clus-
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ters. Afterwards, ab initio calculations142–147 and empirical potentials148 confirmed that

these closed structures had lower electronic energies than any chain configurations. These

early ab initio studies were limited to constrained optimizations with small basis sets in the

Hartree-Fock approximation, yet they were still able to identify the structures of the global

minima and provide quantitative evidence for hydrogen bonding cooperativity.

First introduced by Schütz,149 a convenient notation for these homodromic systems

defines each structure according to the orientations of the free hydrogens, relative to the

pseudo-plane defined by the O atoms. For example, the C1 trimer global minimum structure

in Figure 1.4a can be called uud, meaning two of the free hydrogens are positioned “up” above

the plane defined by the 3 O atoms and one is “down” below the ring. All of the minima

from Figure 1.4 can be described by this up or down notation, but other stationary points

will utilize p for planar orientations or bi to denote the presence of a bifurcated hydrogen

bond.

Permuting the letter codes identifies different versions of the same minimum (e.g.,

duu). For the trimer, there are six such permutations that all specify equivalent versions of

the global minimum structure. There are actually 96 equivalent versions of this trimer struc-

ture on the PES from other possible permutations.148 For example, the directionality of the

hydrogen bonding pattern in the ring can be reversed (e.g., clockwise versus counterclock-

wise), and each water molecule can exchange its free hydrogens with its bound hydrogens.

The early 90s saw the first correlated calculations on these clusters. Mó,150 Xanth-

eas151 and Nielsen152 are among those who examined these homodromic clusters in great

detail at the MP2 level. The convergence of the trimer uud global minimum geometry, in

particular, was established by Nielsen et al.152 As with (H2O)2, the MP2-optimized struc-

ture of the global minimum is well converged with the aTZ basis set. The triangle formed

by the oxygen atoms is slightly asymmetric, with O· · ·O separations of 2.7794 Å, 2.7815 Å

and 2.7839 Å at the MP2/aQZ level.152 These values are more than 0.1 Å shorter than the

O· · ·O separation in the dimer. The distortion of the O-Hd bond is larger in the trimer.
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At the MP2/aQZ level, the average r(O-Hd) is 0.9722 Å in the trimer, compared to 0.966

Å in the dimer130 and 0.9589 Å in the monomer. The cyclic nature of the trimer forces the

hydrogen bond angles away from a linear arrangement. The intermolecular O· · ·O-H angle

is around 5◦ for the dimer93,130 but increases to nearly 20◦ for all three values in the trimer.

The same convergence trends were observed for the S4 tetramer and the C1 pentamer.

The R(O· · ·O) separations are all equal by symmetry, increasing to 2.731 Å at the MP2/aQZ

level. The interoxygen distances only change by 0.001 Å between the aTZ and aQZ basis sets.

Although the elongation of R(O-Hd) relative to the optimized monomer structure consistently

increases from the dimer (+0.004 Å) to the trimer (+0.012 Å) to the tetramer (0.018 Å), this

distortion is nearly identical for the (H2O)4 and (H2O)5 global minima (+0.019 Å) at the

CCSD(T)/haTZ level of theory.153 As the size of the ring grows to 4 and 5 water molecules,

the angle about the hydrogen bond returns to a more linear value as seen in the dimer. The

intermolecular O· · ·O-Hd angles are approximately 20◦, 8◦ and 3◦ for the (H2O)3, (H2O)4

and (H2O)5 global minima, respectively at the CCSD(T)/haTZ level.153

The convergence of the cyclic homodromic minima has also been examined by calcu-

lating a series of binding energies within the aXZ hierarchy.84 Xantheas et al. performed

this analysis for the uud trimer and the udud tetramer. The trimer was optimized at the

MP2 level with basis sets ranging from aDZ to a5Z, and high-level dissociation energies were

calculated for each geometry. The difference in De values obtained with the a5Z basis set

was only 0.002 kcal mol−1 when using the aTZ-optimized structure vs. the optimal a5Z

geometry. The deviation associated with the MP2/aDZ optimized structure was roughly an

order of magnitude larger. Similar results were obtained for the tetramer. The aTZ structure

yields an MP2/a5Z De deviating by only 0.001 kcal mol−1 from that computed using the

aQZ geometry, whereas the aDZ tetramer structure is in error by 0.04 kcal mol−1.

In that same study,84 aQZ and a5Z interaction energies were used to estimate MP2

CBS limit dissociation energies. De for the trimer was estimated to be 15.83 and 15.82

kcal mol−1 with and without CP corrections, respectively. De for (H2O)4 was found to be
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27.63 kcal mol−1 both with and without CP corrections. De increases to 36.31 kcal mol−1

for the pentamer when the uncorrected dissociation energies were extrapolated to the MP2

CBS limit. This value is 0.03 kcal mol−1 larger than the corresponding extrapolated value

obtained with CP-corrected energies.

The energetics of the low-lying homodromic cyclic structures of the trimer, tetramer

and pentamer are well converged at the MP2 level. Nielsen observed cancellation between

the effects of correlating core electrons and improving the valence description of electron

correlation with CCSD(T) calculations.152 Another study evaluated the effects of CCSD(T)

contributions with basis sets as large as aQZ and BD(TQ) contributions with the haDZ

basis set.154 Results from that work also showed that the effects of correlating the core

electrons was roughly the same magnitude but opposite sign as valence correlation beyond

the MP2 level. The resulting best estimate of De for trimer C1 global minimum, including

these effects, was identical to the MP2 CBS results of Xantheas and Nielsen at 15.82 kcal

mol−1. Thus, inclusion of higher-order correlation in the other homodromic global minima

is not expected to change the value of De significantly.

1.6.2 (H2O)n (n = 3− 5) Saddle Points

In addition to the uud global minimum, at least five important cyclic stationary points

have been identified on the (H2O)3 PES.149,154–159 Three of these are depicted in Figure 1.5.

These trimer structures have been identified as transition states at the MP2 level.154,160 It

should be noted that many non-cyclic stationary points exist, but are predicted to be much

higher in energy.150

Figure 1.5. Transition states on the (H2O)3 PES

(a) C1 → C1 TS (udp) (b) Bifurcated TS (upbi) (c) C1 → C3 TS (uup)
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Exhaustive studies from Wales157,160 and Schütz149 have provided a wealth of knowl-

edge about the (H2O)3 PES, helping to explain observed tunneling splittings in the VRT

spectra.155 The udp TS in Figure 1.5a interconverts equivalent versions of the uud C1 global

minimum by flipping the orientation of one of the free hydrogens.148 This structure is the

lowest-lying transition state on the (H2O)3 PES. This barrier has been predicted to be only

0.25 kcal mol−1 at the MP2,160 CCSD158 and CCSD(T) levels.154 The upbi transition state

in Figure 1.5b also connects equivalent versions of the global minimum.157,158,160 However,

this structure is over 2 kcal mol−1 above the global minimum.

The last transition state in Figure 1.5c (uup) connects the global minimum to a C3

“Crown” structure (uuu).154,160 This TS is just under 0.8 kcal mol−1 above the uud minimum

according to MP2 and CCSD(T) calculations. These computations indicate the C3 crown

structure is a true minimum on the surface, but there is almost no barrier preventing it from

flipping back to the C1 global minimum. We briefly mention the fully planar ppp higher-

order saddle point because it lies only 1.25 kcal mol−1 higher in energy than the global

minimum.154

The cyclic tetramer rearrangement mechanisms have also been studied in depth by

Schütz161 and Wales.162 The only transition state found to connect equivalent versions of

the S4 minimum is a bifurcated conformation udbid.162 This stationary point, however, has

not been characterized at a correlated level of theory. Two distinct but nearly isoenergetic

transition states (uudp and uupd) have been characterized at the MP2/aDZ level.161 These

connect the S4 minimum to a Ci uudd minimum, lying about 0.9 kcal mol−1 above the global

minimum, according to MP2-R12 and CCSD(T) calculations.161

A third homodromic cyclic minimum has been confirmed at the MP2 level in which

three of the free hydrogens are on the same side of the oxygen plane (uuud). This minimum

is predicted to be very close in energy to the Ci uudd structure at all levels of theory.163

Many other stationary points exist on the (H2O)4 PES, such as bicyclic structures and

double hydrogen bond donor arrangements, but they have significantly higher electronic
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energies.163,164 Interestingly, the δ
CCSD(T)
MP2 corrections for this more diverse group of (H2O)4

stationary points can be quite different, depending on the hydrogen bonding environment.

For example, δ
CCSD(T)
MP2 values calculated for the homodromic minima with the 6-311++G**

are all 0.59± 0.01 kcal mol−1, while for other structures the value can be as low as 0.08 kcal

mol−1.163

The pentamer has been studied less extensively, due to not only its larger size than

(H2O)3 and (H2O)4, but also its similar hydrogen bonding network. Wales159 performed a

rearrangement analysis of the C1 global minimum similar to the trimer and found analogous

rearrangement processes including the single flip and bifurcation mechanisms. A number

of higher-lying pentamer conformations have been identified on MP2 PESs including some

3-dimensional hydrogen-bonding networks,164,165 and three minima have been found to lie

within 1.2 kcal mol−1 of the global minimum according to CCSD(T)/aTZ energies.165
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1.7 3-Dimensional Hydrogen Bonding Networks: (H2O)n≥6

1.7.1 The Water Hexamer

The water hexamer is of particular interest because it is the smallest water cluster for

which a 3-dimensional hydrogen bonding network is lower in energy than a cyclic structure.

In fact, several isomers of (H2O)6 have electronic energies below the cyclic homodromic

motif which characterizes the trimer, tetramer and pentamer global minima.166 The PES of

(H2O)6 is much more complex than that of smaller clusters, with diverse hydrogen bonding

patterns and significant populations for multiple isomers at different thermal conditions.29

Because of the crossover from 2- to 3-dimensional hydrogen bonding networks that occurs

at six water molecules, the hexamer has been referred to as the “smallest piece of ice.”167

In early structural and energetic water hexamer investigations, a variety of water

potentials were employed, and they produced different conclusions as to the identity of the

lowest energy hexamer conformations.168–171 In 1993, Kim and co-workers examined several

conformations of (H2O)6 with both HF and MP2 optimizations.172 In addition to the cyclic

structure, a few stable 3-dimensional hydrogen bonding motifs were explored, including a

“Prism”-type structure (9 hydrogen bonds), a “Cage” motif (8 hydrogen bonds), a “Bag”

structure and a “Book” arrangement (both with 7 hydrogen bonds). All of their HF energies

suggested that the quasiplanar cyclic structure was lower in energy than the 3-dimensional

structures. In contrast, most of the MP2 results indicated that a Prism structure was

lowest in energy by a few tenths of a kcal mol−1. However, the method of optimization

and the application of CP corrections changed the ordering of energies in some instances.

Subsequent MP2 calculations from Kim173 and Jordan173,174 concluded that 3-dimensional

structures had lower electronic energies than the S6 cyclic homodromic structure. Both

studies found a Prism structure and a Cage structure to be around 1 kcal mol−1 below the

cyclic conformation. In 1996, Liu et al. reported in Nature175 a VRT spectrum of (H2O)6.

They observed only one isomer, and the experimental data was consistent with the calculated
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rotational constants and ZPVE-inclusive relative energies for the Cage structure. Kim and

co-workers176 revisited the lowest-lying hexamer structures, applying much higher levels of

calculation including MP2/TZ2P++ geometry optimizations and MP2 energy points with

basis sets as large as hextuple-ζ. Regardless of the CP correction, the Prism structure had the

lowest MP2 electronic energy, with the Cage about 0.1 kcal mol−1 higher. The Bag and cyclic

Ring structure were both found to be ≈ 1 kcal mol−1 above the Prism. The electronic energy

of the Book structure was suggested to be in the middle of these groups, with ∆E somewhere

from 0.3 to 0.5 kcal mol−1. Kim also evaluated the ZPVE for each conformation with MP2/6-

311+G** vibrational frequencies. The Cage becomes the lowest energy minimum on a high

quality MP2 PES when ZPVE is included (approximately 0.2 kcal mol−1 below the prism),

and the Book drops about 0.1 kcal mol−1 below the Prism. Xantheas estimated MP2 CBS

limit binding energies for the Prism, Cage, Book, and cyclic Ring isomers at their optimal

MP2/aTZ geometries.84 MP2/aXZ energies (X=D,T,Q) consistently found the Prism to be

the global minimum but only by 0.1 kcal mol−1 at the CBS limit (De = 45.9 and 45.8 kcal

mol−1 for the Prism and Cage, respectively). The results of Xantheas were in qualitative

agreement with Kim’s MP2 calculations.176 The estimated MP2 CBS dissociation energies

for the Book and Ring were 45.6 and 44.8 kcal mol−1, corresponding to relative energies of

0.3 and and 1.1 kcal mol−1.

In 2007, Olson177 and co-workers calculated CCSD(T)/aTZ binding energies for the

Prism, Cage, Book and Ring (or “Cyclic”) structures with a newly developed parallel algo-

rithm. In addition, a different homodromic cyclic minimum, dubbed “Boat,178” was investi-

gated. Of particular interest in this study are the effects of higher-order correlation on the

binding energies. CCSD(T) computations were found to increase the magnitude of Ebind for

the Prism relative to MP2 results obtained with the same basis set. In contrast, Ebind did

not change for the Cage and its magnitude decreased for the other isomers. Consequently,

the Cage, Book, Ring and Boat conformations were destabilized relative to the Prism iso-

mer by these higher-order correlation effects. The extent of this destabilization (δ
CCSD(T)
MP2 )

35



is not consistent for the different hydrogen bonding environments. For the Cage and Book

isomers, δ
CCSD(T)
MP2 is 0.2 and 0.4 kcal mol−1, respectively. The Ring and Boat isomers are

both destabilized by ≈ 0.6 kcal mol−1 relative to the Prism when the level of electron corre-

lation is elevated to the CCSD(T) level. The results are a departure from that observed for

the low-lying minima of the smaller clusters. Although this dependence of δ
CCSD(T)
MP2 on the

nature of the hydrogen bonding network has been observed for (H2O)4,
163 the hexamer is the

smallest (H2O)n system for which it noticeably affects the relative energies of the low-lying

minima on the PES. Their study also demonstrated that the δ
CCSD(T)
MP2 term was insensitive

to the presence of diffuse functions on the H atoms. The aTZ and haTZ values differed by

no more than 0.01 kcal mol−1.177

The same higher-order correlation effects were observed by others for a similar set

of hexamer isomers optimized with a larger basis set (haTZ).179 The calculated MP2 and

CCSD(T) energies were nearly identical to those from the work of Olson et al.,177 and the

results again demonstrated that there was a strong dependence of δ
CCSD(T)
MP2 on the hydrogen

bonding network. Interestingly, the correction factor for the Bag isomer matched that of the

Book to 0.01 kcal mol−1, and both structures have one double hydrogen bond donor and a

total of seven hydrogen bonds.

A subsequent investigation examined how higher-order correlation corrections would

affect the MP2 CBS limit relative energies.166 That study examined the Prism, Cage, Bag

and Ring isomers, as well as two Book and two Boat conformations. The extra Book and Boat

isomers originated from the fact that References 177 and 179 used structures with slightly

different free-hydrogen orientations. The MP2 CBS limits for these structures were estimated

with explicitly-correlated MP2-R12 calculations. The MP2-R12 relative energies were in

excellent agreement with the extrapolated values of Xantheas84 (e.g., 0.06 kcal mol−1 and 0.07

kcal mol−1 for the Cage, respectively). The destabilization from higher-order correlations

(specifically CCSD(T) vs. MP2) is very important for the low-lying conformations. For

example, δ
CCSD(T)
MP2 for the Cage is significantly larger than the magnitude of ∆E at the MP2
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CBS limit. Applying this correction factor to the MP2 CBS values, CCSD(T) CBS relative

energies were estimated via the additive scheme outline in Equation 1.23 using the haTZ

basis set. At this level, the Cage is 0.25 kcal mol−1 above the Prism. Including higher-

order correlation, the only other isomer within 1 kcal mol−1 of the Prism is one of the Book

conformations (∆E
CCSD(T)/CBS
e = 0.72 kcal mol−1). As with the Olson study177 and Pérez’s

tetramer work,163 the clusters with similar hydrogen bonding patterns saw comparable values

for the δ
CCSD(T)
MP2 correction. The corrections for the Bag and 2 Book isomers were identical

(0.39 kcal mol−1). The cyclic Ring and Boat structures, each consisting of 6 hydrogen bonds

in a homodromic pattern, all had δ
CCSD(T)
MP2 values of 0.58± 0.01 kcal mol−1.

ZPVE corrections, computed at the MP2/haTZ level, have the opposite effect as the

δ
CCSD(T)
MP2 corrections. ZPVE stabilizes the Cage by 0.16 kcal mol−1 relative to the Prism,

resulting in a best estimate for ∆E0 of 0.09 kcal mol−1 for the Cage at the CCSD(T) CBS

limit. Both Book structures considered in that study are within 0.5 kcal mol−1 of the

Prism after ZPVE is included, while the Bag and Ring conformations were both found to

be less than 1 kcal mol−1 above the Prism. The cyclic Boat configurations had the highest

electronic energies, with ∆E0 around 1.25 kcal mol−1 at the CCSD(T) CBS limit, however

the CCSD(T) CBS Gibbs free energy values computed by Shields and co-workers suggest it

becomes the most stable around 200 K.28

Very recently, broadband rotational spectroscopy123 and state-of-the-art quantum

simulations54 have confirmed the predictions of these estimates of the CCSD(T) CBS limit

energetics. The Prism was identified in 2012 for the first time experimentally, and the

relative isomer populations for the Prism, Cage and Book were estimated as 1:1:0.25.123

Subsequently, full-dimensional diffusion Monte Carlo simulations found the Cage and Prism

to have statistically indistinguishable energy differences at very low temperatures when an-

harmonic ZPVE was included.54
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1.7.2 Larger Clusters

Aside from the additional computational cost incurred by applying wavefunction

methods to larger water clusters, the number of possible hydrogen bonding topologies fur-

ther complicates efforts to analyze the lowest-energy conformations at a highly accurate

level. There are over sixty unique hydrogen bonding configurations available for a water

hexamer.23 (These are unique structures, not simply permutations of equivalent structures.)

That number increases to over 2000 for a decamer.23 Thus PES sampling techniques, such as

Monte Carlo and molecular dynamics simulations, the use of parameterized water potentials

and other strategies have been vital to identifying low-lying candidates.28,168,174,178,180–189

(a) Prism (b) Cage (c) Chair

Figure 1.6. Low-lying minima for (H2O)7

The lowest energy heptamer structures exhibit hydrogen bonding motifs similar to

those in the hexamer. There exist multiple low-lying isomers which can be classified as

Prism, Cage and Chair conformations (Figure 1.6).28,29,183,190 A Prism structure has been

calculated as the lowest energy heptamer with conventional MP2 calculations29,190 and with

RI-MP2 extrapolations to the estimated CBS limit.28 When higher-order correlation is

included from δ
CCSD(T)
MP2 corrections, at least three prism conformations lie within 0.5 kcal

mol−1 of the lowest energy Prism configuration (De = 57.4 kcal mol−1).28 The lowest energy

Cage structure is nearly 1.7 kcal mol−1 above the Prism minimum. These two conformations

are depicted in Figure 1.6, along with the lowest-lying Chair structure (∆E ≈ 3 kcal mol−1),
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which is actually the most stable at 298 K when thermodynamic effects are included.28

The most stable octamers can be constructed from stacked tetramers, forming cubic

structures. High-symmetry (D2d and S4) of the two lowest-energy octamers has facilitated

MP2 computations with large basis sets on these (H2O)8 isomers depicted in Figure 1.7. They

differ only in the relative directionality of hydrogen bonds in their component tetramers.

Xantheas et al. established benchmark MP2 CBS energetics via extrapolations with the

aXZ basis sets (X = 3− 5). Both CP-corrected and uncorrected energies indicate that the

two structures are virtually isoenergetic with the D2d isomer being slightly more stable by

less than 0.1 kcal mol−1. The CP-corrected De is estimated as 72.4 kcal mol−1 for the D2d

isomer. CCSD(T) CBS limit binding energies for these structures were computed by Shields

and co-workers28 and found Ebind to be 72.55 kcal mol−1 for both isomers.

In that study,28 CCSD(T) CBS limit binding energies for nonamer and decamer struc-

tures were estimated as well, employing RI-MP2 extrapolations and a δ
CCSD(T)
MP2 correction

computed with the aDZ basis set. Similar to the octamer, the lowest energy nonamer and

decamer structures are composed of stacks of smaller cyclic clusters (tetramers and pen-

tamers). Thermodynamic corrections including anharmonicity indicated that these same

isomers were also the most stable at 298 K.

(a) D2d octamer (b) S4 octamer

Figure 1.7. Low-lying minima for (H2O)8

High-level ab initio calculations are scarce in the literature for clusters larger than
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the octamer. Shields and co-workers computed CCSD(T) CBS binding energies of clusters

up to the decamer with RI-MP2 extrapolations and δ
CCSD(T)
MP2 values from the aDZ basis

set.28 They noted that the δ
CCSD(T)
MP2 changed the binding energies by less than 1% but were

important given the narrow energy spacings between low-lying isomers. Binding energies

of (H2O)11 and (H2O)13 been computed at the MP2/a5Z level.191 Also, MP2 CBS esti-

mates for representative (H2O)20 structures have been established.115,192 Aprà et al. used

(H2O)20 structures to demonstrate the impressive scalability possible with their CCSD(T)

algorithm.116 Reference 193 reviews ab initio energies and structures of water clusters as

large as (H2O)24, where computations are limited to double-ζ or triple-ζ basis sets with MP2.

These cages are interesting as potential building blocks for ice clathrate structures.

Clusters of sixteen and seventeen water molecules have been a target of high-accuracy

electronic structure methods because a structural transition from “all-surface” to “inter-

nally solvated” arrangements are thought to occur in that regime.194,195 In 2010, the bind-

ing energies for several low-lying isomers of (H2O)16 and (H2O)17 were computed at the

CCSD(T)/aTZ level, representing “the current state-of-the-art in scalable high-level elec-

tronic structure theory.”196 Each CCSD(T) computation on (H2O)16 took roughly 3.33

hours utilizing 120,000 AMD Opteron cores on the CRAY XT5 partition at ORNL, the

world’s fastest supercomputer at the time.197 The results demonstrated the importance of

high-level electron correlation and large atomic orbital basis sets. The (H2O)16 boat-a struc-

ture (Figure 1.8a) is the lowest-energy conformation at the MP2/aTZ level, yet it lies over

0.25 kcal mol−1 above the 4444-a conformation (Figure 1.8b) on the CCSD(T)/aTZ PES.

The MP2/aTZ energies actually suggest that the 4444-a isomer is more than 0.38 kcal mol−1

above the boat-a structure. The aTZ δ
CCSD(T)
MP2 higher-order correlation effectively shifts the

relative energies of these two structures (boat-a and 4444-a) by more than 0.6 kcal mol−1.

The relative energies of the other isomers examined are also affected, but not as dramatically.

Although one should not expect that the CCSD(T) energies obtained with the aTZ basis set

are converged to the CBS limit, these results represent the highest-level computations that
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have been performed with canonical post-HF wavefunction methods on these (H2O)16 and

(H2O)17 water clusters.

The aDZ results predict a different ordering of the (H2O)16 isomers at both the MP2

and CCSD(T) levels. In addition, the haDZ and haTZ ∆E values can differ significantly.

For example, CCSD(T) ∆E for a different (H2O)16 boat isomer changes from 0.94 kcal mol−1

with the haDZ basis set to 0.42 kcal mol−1 with haTZ. For the (H2O)17 clusters, both MP2

and CCSD(T) calculations confirmed that an internally solvated Sphere structure has a lower

energy than the all-surface isomers.

(a) Boat-a

(b) 4444-a

Figure 1.8. Low-lying minima for (H2O)16
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1.8 Strategies for Extending High-Accuracy Methods to Larger Clusters

A significant amount of research has been dedicated to calculating accurate molecular

properties with greater efficiency. Fragmentation methods have facilitated the extension of

QM methods to increasingly larger molecules and chemical systems.198–210 Fragmentation

methods divide a molecular system into smaller subunits and combine the results in some

way to obtain an approximation of a calculation on the full system. If the partitioning

scheme and the chosen theoretical methods are appropriate, the results of the fragmentation

method can approach those of the canonical calculation. Reference 211 provides an extensive

review of fragmentation methods.

Related to fragmentation methods are integrated or hybrid methods (e.g., QM:MM,

QM:QM and multi-layered generalizations such as ONIOM).212–216 These methods apply a

high level of theory to a “chemically important” subset of the molecule and lower levels

of theory to the rest of or the entire molecule. An important distinction is that these

methods describe non-local phenomena with a low-level calculation on the entire system (or

the majority of the entire system). It has been recognized for quite some time that extremely

accurate results can be obtained very efficiently when this integrated approach to QM:QM

computations is combined with the many-body expansion for noncovalent complexes.18,112,217

In 1998, for example, Klopper, Quack and Suhm reported CCSD(T) CBS limit disso-

ciation energies for hydrogen fluoride clusters, (HF)n.217 For the trimer, they employed the

explicitly correlated CCSD(T)-R12 method to describe the 1- and 2-body interactions and

the canonical CCSD(T) method to capture the cooperative (3-body) effects. This approach

was effectively a QM:QM treatment where the leading terms in the many-body expansion

were computed at a very high level while the 3-body interactions were computed at a lower

level. For (HF)4 and (HF)5, the MP2-R12 method was used to compute the 4- and 5-body

contributions in what was essentially a QM:QM:QM treatment. The approach was extremely

efficient because the demanding CCSD(T)-R12 computations only had to be performed on

individual fragments (i.e., HF monomers) and pairs of fragments (i.e., HF dimers). Many
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hybrid methods are available today that adopt a similar approach by applying 2 or more

levels of theory to the many-body expansion, including Extended ONIOM (XO),218 the

Molecules in Molecules (MIM) method,219,220 the Hybrid Many-Body Interaction (HMBI)

method,221,222 the Multilevel Fragment-Based Approach (MFBA),223 the Stratified Approxi-

mation Many-Body Approach (SAMBA)224 and the N -body:Many-body QM:QM technique

developed by our group.225–231 Reference 232 presents a general framework for and a very

lucid overview of the various fragmentation procedures based on the many-body expansion.

CCSD(T) and MP2 computations on small water clusters have been used to model

the dominant terms of the many-body expansion in the construction of accurate ab initio

potential energy surfaces.121,233–240 Potentials constructed in this way can be used both

for exploring the potential energy landscapes of large water clusters and for the detailed

characterization of smaller clusters with more rigorous approaches, e.g., quantum molecular

dynamics simulations.54,238,241

Góra et al. applied a many-body expansion with multiple levels of theory to study

water clusters as large as (H2O)16 and (H2O)24 with SAMBA. The 2-body interactions were

captured at the CCSD(T) CBS limit, and the higher-order interactions were calculated up to

fourth order with CCSD(T)/aDZ and MP2/aDZ. Their SAMBA calculations also corrected

for BSSE with CP corrections.224

Relatively large water clusters have also been examined with the N -body:Many-body

QM:QM technique.230 The 3-body:Many-body CCSD(T):MP2 approach provided binding

energies nearly identical to the canonical CCSD(T) values for more than 40 low-lying isomers

of (H2O)n=3−10 with the haTZ basis set. The maximum deviation was only 0.07 kcal mol−1 for

this test set. Similar differences were observed for (H2O)16 and (H2O)17. The CCSD(T):MP2

electronic energies deviated by only 0.06 kcal mol−1 on average for the 7 CCSD(T)/aTZ

values reported by Yoo et al.196

The 1998 study of Klopper, Quack and Suhm already noted that the linear expressions

for the energy associated with an integrated many-body approach facilitates the evaluation
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of geometrical derivative properties. Analytic gradients, for example, have been implemented

for N -body:Many-body QM:QM method and applied to water and other hydrogen bonded

clusters.229,231 In a study of more than 70 water clusters, 2-body:Many-body optimiza-

tions with MP2 as the high-level method and Hartree-Fock (HF) as the low-level method

(MP2:HF) yielded structures nearly indistinguishable to those from the conventional MP2

calculation with the haTZ basis set.231
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CHAPTER 2

N-BODY: MANY-BODY QM:QM VIBRATIONAL FREQUENCIES: APPLICATION TO

SMALL HYDROGEN-BONDED CLUSTERS

We present an efficient method for reproducing CCSD(T) optimized geometries

and harmonic vibrational frequencies for molecular clusters with the N -body:Many-body

QM:QM technique. In this work, all 1-body through N -body interactions are obtained from

CCSD(T) computations, and the higher-order interactions are captured at the MP2 level.

The linear expressions from the many-body expansion facilitate a straightforward evalua-

tion of geometrical derivative properties (e.g., gradients and Hessians). For (H2O)n clusters

(n = 3 − 7), optimized structures obtained with the 2-body:Many-body CCSD(T):MP2

method are virtually identical to CCSD(T) optimized geometries. Harmonic vibrational fre-

quencies calculated with this 2-body:Many-body approach differ from CCSD(T) frequencies

by at most a few cm−1. These deviations can be systematically reduced by including more

terms from the many-body expansion at the CCSD(T) level. Maximum deviations between

CCSD(T) and 3-body:Many-body CCSD(T):MP2 frequencies are typically only a few tenths

of a cm−1 for the H2O clusters examined in this work. These results are obtained at a frac-

tion of the wall time of the supermolecular CCSD(T) computation, and the approach is

well-suited for parallelization on relatively modest computational hardware.

Reprinted with permission from “ N-body:Many-body QM:QM Vibrational Frequencies: Application to
Small Hydrogen-Bonded Clusters,”J. Coleman Howard and Gregory S. Tschumper, J. Chem. Phys. 139 (18),
184113. http://dx.doi.org/10.1063/1.4829463 Copyright c© 2013, American Institute of Physics
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2.1 Introduction and theory

Ab initio quantum mechanical (QM) computations provide a reliable description of

molecular systems, but the application of correlated QM methods is limited by the steep

polynomial scaling of the computational demands with the size of the system being studied.

A significant amount of research has been dedicated to computing accurate molecular proper-

ties with greater efficiency. Fragmentation methods, for example, have successfully extended

correlated QM methods to increasingly larger molecules and chemical systems198–210,242–245

by dividing a molecular system into smaller subunits and combining the results of many

smaller calculations in some way to approximate a single canonical calculation on the full

system. For carefully selected combinations of the partitioning scheme and the theoretical

methods, the results of the fragmentation method can approach those of the canonical cal-

culation. A thorough review of fragmentation methods can be found in Reference 211. In

addition, a recent issue of Phys. Chem. Chem. Phys. was dedicated to the subject.246

Related to fragmentation methods are hybrid or integrated methods, such as IMOMM

and its multi-layer generalization ONIOM.212–216,247 These methods apply a high level of

theory to a “chemically important” region of the molecule and lower levels of theory to the

rest of the molecule. The ONIOM approach describes non-local interactions by perform-

ing a calculation on the entire system. The N -body:Many-body QM:QM technique225–231

developed by our group is essentially a multi-centered ONIOM approach. When applied

to clusters, this technique is equivalent to approximating a full many-body expansion112

by computing the leading dominant terms with a high-level QM method and capturing

the higher-order effects with a less demanding theoretical method. In a 1998 paper, Klop-

per, Quack and Suhm217 utilized a multi-level approach such as this to calculate accurate

interaction energies for (HF)n=2−5 clusters, where the cooperative effects (>2-body) con-

tribute more than 40% of the binding energy for the pentamer.217 Several other hybrid

methods take a similar approach, employing multiple levels of theory, including Extended

ONIOM (XO),218 Molecules-in-Molecules (MIM),219,220 the Hybrid Many-body Interaction
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method (HMBI),221,222 the Multilevel Fragment-Based Approach (MFBA)223 and Stratified

Approximation Many-body Approach (SAMBA).224 In Reference 232, a general framework

is presented for the various many-body approaches.

The many-body expansion112 for the total energy for a cluster of n individual frag-

ments [fifj . . . fn] takes the form of Equation 2.1.

E[fifj . . . fn] = E1 + E2 + E3 + · · ·+ En (2.1)

Here, the energy of the cluster is expressed in terms of fragment, or 1-body, energies (E1),

pairwise (2-body) interactions (E2), triad (3-body) interactions (E3), etc.

E1 =
n∑
i=1

E[fi] (2.2)

E2 =
n−1∑
i=1

n∑
j>i

[
E[fifj]− (E[fi] + E[fj])

]
(2.3)

E3 =
n−2∑
i=1

n−1∑
j>i

n∑
k>j

[
E[fifjfk]− (E[fifj] + E[fifk] + E[fjfk]) (2.4)

+ (E[fi] + E[fj] + E[fk])
]

In the context of molecular clusters, monomers are a natural and very common choice

for the fragments, but Equation 2.1 is general for all types of fragments. This study will

exclusively use monomers as the fragments. The full many-body expansion to nth order

gives the exact energy of the cluster. However, the many-body expansion converges rather

quickly so a reasonable approximation for neutral fragments/molecules can often be obtained

by truncating the series at the 2nd or 3rd order.18

In the N -body:Many-body QM:QM approach, all 1-body through N -body interac-

tions are captured with a high level of theory and all (N + 1)-body through n-body interac-

tions are computed with a less demanding method. If the higher-order (>N) effects are the
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same for the chosen high and low level methods, then the QM:QM result will be identical

to the full high-level result. Equation 2.5 gives the form of the 2-body:Many-body QM:QM

energy.

EHi:Lo[fifj . . . fn] = EHi
1 + EHi

2 + ELo
3 + · · ·+ ELo

n (2.5)

= ELo[fifj . . . fn] + (EHi
1 − ELo

1 ) + (EHi
2 − ELo

2 )

Note that with the latter ONIOM-like form of Equation 2.5, the explicit dependence of E3 on

triad energies (E[fifjfk]) can be bypassed by calculating the energy of the entire cluster at a

low level (ELo[f1f2 . . . fn]) and subtracting ELo
1 and ELo

2 . So the 2-body:Many-body QM:QM

energy depends only on the energies of the monomers (E[fi]) and pairs (E[fifj]) computed

at both high and low levels of theory, and the energy of the entire cluster (E[f1f2 · · · fn])

computed at the low level. Similarly, the 3-body:Many-body QM:QM energy requires high-

level computations to be performed on fragments, pairs and triads. The advantage is easier

to see when the terms for the energies are explicitly written out.

E2bHi:Lo = ELo[f1f2 . . . fn] +
n−1∑
i=1

n∑
j>i

[
EHi[fifj]− ELo[fifj]

]
(2.6)

− (n− 2)
n∑
i=1

[
EHi[fi]− ELo[fi]

]

E3bHi:Lo = ELo[f1f2 . . . fn] +
n−2∑
i=1

n−1∑
j>i

n∑
k>j

[
EHi[fifjfk]− ELo[fifjfk]

]
(2.7)

− (n− 3)
n−1∑
i=1

n∑
j>i

[
EHi[fifj]− ELo[fifj]

]
+

(n− 2)(n− 3)

2

n∑
i=1

[
EHi[fi]− ELo[fi]

]

From the forms of E2bHi:Lo and E3bHi:Lo, one can see that the computational require-
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ments for the high-level method increase quadratically and cubically with the size of the

cluster. For large n, the QM:QM computations can actually be dominated by the low-

level method. It is also worth noting that the calculations are completely independent

so the method lends itself to efficient parallelism. In addition, the expressions are linear,

which facilitates the evaluation of analytic geometrical derivative properties (gradients, Hes-

sians). The development and implementation of 2-body:Many-body gradients have been de-

scribed elsewhere.229,231 The N -body:Many-body technique has previously been applied to

hydrogen-bonded clusters including hydrogen fluoride, methanol and water.228 In a study of

more than 70 water clusters, 2-body:Many-body optimizations with MP2 as the high-level

method and Hartree-Fock (HF) as the low-level method (MP2:HF) along with a triple-ζ

quality basis set yielded structures nearly identical to those from the canonical high-level

calculation.231 In another study,230 3-body:Many-body CCSD(T):MP2 energies of (H2O)n

clusters (n = 3 − 10) never differed from canonical CCSD(T) total energies by more than

0.07 kcal mol−1. Energies for (H2O)16 and (H2O)17 clusters calculated with the aug-cc-pVTZ

basis set showed an average absolute error of 0.06 kcal mol−1, relative to the full CCSD(T)

total energies.231

Here, we expand on the N -body:Many-body QM:QM methodology for clusters in

three important ways. Firstly, QM:QM gradient techniques that proved successful at the

MP2 level have been extended to the CCSD(T) method. Secondly, the 2-body:Many-body

gradients have been extended to 3-body:Many-body and arbitrarily high orders, although it

does not appear to be necessary to go beyond 2- or 3-body in practice. Finally, QM:QM

Hessians have been implemented for the calculation of harmonic vibrational frequencies for

the first time with the N -body:Many-body QM:QM method. The expression for calculating

a particular element of the 2-body:Many-body Hessian matrix is shown in Equation 2.8 where
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qα and qβ each represent two generic Cartesian coordinates of the full molecular cluster.

∂2

∂qα∂qβ
E2bHi:Lo =

∂2

∂qα∂qβ
ELo[f1f2 . . . fn] (2.8)

+
n−1∑
i=1

n∑
j>i

(
∂2

∂qα∂qβ
EHi[fifj]−

∂2

∂qα∂qβ
ELo[fifj]

)

− (n− 2)
n∑
i=1

(
∂2

∂qα∂qβ
EHi[fi]−

∂2

∂qα∂qβ
ELo[fi]

)

Fragmentation methods have scarcely been applied to the computation of vibrational fre-

quencies, with some notable exceptions being via the molecular tailoring approach208,245 and

also within the embedded fragmentation method of Hirata and coworkers.244 We apply these

methods to a series of HF and H2O clusters to examine the efficiency and accuracy of the 2-

and 3-body:Many-body techniques relative to canonical CCSD(T) gradients and harmonic

vibrational frequencies.

2.2 Computational Methods

Nineteen different stationary points of (H2O)n clusters (n = 3 − 7) and five (HF)n

(n = 3 − 6) clusters were optimized with the 2-body:Many-body and 3-body:Many-body

methods using CCSD(T) as the high-level method and MP2 as the low-level method, re-

ferred to as CCSD(T):MP2. The geometries of these clusters were also optimized with the

canonical CCSD(T) method for comparison. For optimized structures, the maximum abso-

lute Cartesian force component on each atom was less than 2.5×10−4 Eh a−10 . CCSD(T):MP2

and CCSD(T) harmonic vibrational frequencies were also computed for each optimized struc-

ture. (CCSD(T) vibrational frequencies for the water heptamers were not calculated due to

the excessive computational demands.)

All computations were performed with Dunning’s double-ζ correlation consistent ba-

sis set,57,58 augmented with diffuse functions on the heavy (non-hydrogen) atoms, hereafter

referred to as haDZ (i.e., cc-pVDZ for H and aug-cc-pVDZ for O and F). The use of an
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incomplete basis set causes an inconsistency when comparing the energies of fragments,

commonly dubbed “basis set superposition error.”90 The standard procedure for removing

this inconsistency is the counterpoise (CP) correction.87,88 The computations in this work

did not include CP corrections, but they could be incorporated into the N -body:Many-body

QM:QM method. All CCSD(T) computations used CFOUR248 for analytic first and second

derivatives. MP2 analytic gradients were obtained from MPQC.249 For the harmonic vibra-

tional frequency computations, MP2 analytic Hessians were computed with Gaussian09.250

The geometry optimization steps and the calculation of harmonic vibrational frequencies

from QM:QM Hessians were performed by Gaussian09 through the external keyword.

2.3 Results and Discussion

2.3.1 Gradients Geometry Optimizations

2.3.1.1 Water Clusters

In past works, the N -body:Many-body geometry optimizations have been compared

to the canonical high-level optimizations on the basis of structural differences, such as inter-

nal coordinates229 or the minimum root-mean-square (RMS) deviation of unweighted Carte-

sian coordinates.231 In this study, however, the geometries from the canonical CCSD(T)

optimizations and those from the CCSD(T):MP2 optimizations are virtually identical.

To illustrate this structural similarity, consider the optimization procedures employed

in this work. Due to the relative computational demands, most of the structures examined

here were first optimized with the 2-body:Many-body (2b:Mb) technique with CCSD(T) as

the high-level method and MP2 as the low-level method. Next, the geometries were further

refined with 3-body:Many-body (3b:Mb) optimizations and finally canonical CCSD(T). Typ-

ically, the geometries obtained from the 2b:Mb optimizations were also converged structures

according to the 3b:Mb and canonical CCSD(T) gradients. Note that in these circumstances

the RMS deviations of the unweighted Cartesian coordinates of the optimized structures is

zero. (In only a few of the most challenging cases (the larger HF clusters) a small number
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of additional steps were required to converge the 3b:Mb and/or CCSD(T) optimizations.)

The individual components of the Cartesian gradients are used here to provide a

more stringent comparison of the N -body:Many-body CCSD(T):MP2 forces to the corre-

sponding supermolecular CCSD(T) values (all computed with the haDZ basis set). Table

2.1 lists the maximum absolute deviation (MaxAD) from any component of the canonical

CCSD(T)/haDZ Cartesian gradient associated with various 2- and 3-body gradients for a

series of water clusters (all at their 2b:Mb optimized geometries). The corresponding av-

erage absolute deviations (AvgAD provided in the Supplementary Material251) are roughly

the same magnitude but approximately 2 to 4 times smaller.

The 2b column indicates the maximum absolute deviations associated with gradi-

ents obtained from a many-body expansion that has been truncated after the inclusion of

CCSD(T) pairwise (2-body) interactions. The MaxADs range from 4.0×10−3 Eh a−10 for the

C1 structure of (H2O)3 to 1.6×10−2 Eh a−10 for the Bag isomer of (H2O)6. If the many-body

expansion is extended through 3rd order at the CCSD(T) level, the deviations decrease by

roughly an order of magnitude as indicated by the 3b column in Table 2.1. Far greater

improvement can be realized, however, by using a low-level method to estimate the higher-

order terms in the many-body expansion. The 2b:Mb technique, for example, recovers the

3-body through n-body interactions at the MP2 level, and the absolute deviations never

exceed 2.4× 10−4 Eh a−10 . The deviations can be further reduced with the 3b:Mb procedure

for which MaxAD does not grow larger than 6.7× 10−5 Eh a−10 for the PR1 structure of the

water heptamer.

These results appear to be fairly insensitive to the size of the basis set and to the

geometry. The deviations did not increase when a larger haTZ basis (aug-cc-pVTZ for

O, cc-pVTZ for H) was used. Very similar MaxADs (and AvgADs) were obtained from

computations employing the haTZ basis set for some of the smaller clusters for which the

canonical CCSD(T)/haTZ gradient computations were feasible. When Hartree-Fock/haDZ

optimized geometries were used instead of the 2b:Mb optimized structures, the deviations
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from the components of the CCSD(T)/haDZ Cartesian gradients actually decreased slightly.

(See data in Supplementary Material.251)

The computational demands associated with the 2b:Mb and 3b:Mb gradients are

significantly reduced relative to those of the CCSD(T) gradients. For the largest systems in

this study (the (H2O)7 isomers), the wall time to compute a CCSD(T)/haDZ gradient on

a single node was just over 38 times longer than corresponding time for a 2b:Mb gradient

and 4 times longer than for a 3b:Mb gradient. These speedups can be further enhanced

by parallelization due to the independent nature of the computations associated with the

QM:QM schemes. For example, over 95% of the wall time for a 3b:Mb gradient for each

(H2O)7 isomer is dedicated to 56 independent CCSD(T) gradient computations on 21 unique

pairs of fragments and 35 unique triads. For these relatively small water clusters, nearly

perfect scaling can be realized with 10 nodes, and the speedup for the 3b:Mb gradients

would increase from about 4 to nearly a factor of 40.

2.3.1.2 Hydrogen Fluoride Clusters

Because they exhibit significant cooperative effects, (HF)n (n = 3 − 6) clusters

have been analyzed in a similar manner. Table 2.2 compares the N -body:Many-body

CCSD(T):MP2 gradients to the CCSD(T) results. Here, we have also extended the method-

ology to compute 4-body and 4-body:Many-body gradients to demonstrate the systematic

convergence of the QM:QM approach even for strongly coupled molecular clusters.

The 2b and 3b columns of Table 2.2 show the MaxADs in the gradients computed with

the many-body expansion terminated at 2nd and 3rd order. These MaxADs are consistently

larger than those for water clusters, indicative of the high degree of cooperativity in these

HF clusters. Even with the inclusion of CCSD(T) 4-body effects, the MaxADs are still

larger than 3×10−4 Eh a−10 for the (HF)5 and (HF)6 structures. The MaxADs of the 2b:Mb

gradients are actually slightly smaller than the truncated 4b CCSD(T) gradients, but they

can still exceed 2.5×10−4 Eh a−10 for HF clusters larger than the tetramer. The deviations

can be systematically decreased by computing 3- and 4-body effects at the high level via the
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3b:Mb and 4b:Mb methods, respectively.

2.3.2 Harmonic Vibrational Frequencies

2.3.2.1 Water Clusters

Harmonic vibrational frequencies for water clusters were computed with the 2-body,

3-body, 2b:Mb and 3b:Mb methods. Truncated 2-body and 3-body vibrational frequencies

were computed for some of the smaller clusters, and the agreement with CCSD(T) was quite

poor. For the C1 trimer, the 2-body average absolute deviation from CCSD(T) was over 40

cm−1, and the maximum absolute deviation was over 100 cm−1. For the S4 tetramer, the

2-body maximum deviation was greater than 200 cm−1, and the 3-body maximum deviation

was more than 40 cm−1. In one case, the Hessian index (the number of negative eigenvalues

corresponding to vibrational motion) was incorrect relative to CCSD(T). Due to this un-

satisfactory performance for even the smallest water clusters in this study, the vibrational

frequencies of the other clusters were not computed with these methods.

In Table 2.3, harmonic vibrational frequencies calculated with the 2b:Mb and 3b:Mb

methods are compared to frequencies from a CCSD(T) supermolecular computation for

(H2O)n (n = 3 − 6). The first column of data gives the MaxAD in cm−1 for each (H2O)n

isomer using the 2b:Mb method. The MaxAD values are on the order of a few cm−1 for

clusters smaller than the hexamer. For the (H2O)6 structures, the largest MaxAD is 6

cm−1 for the Bag isomer. For every water structure larger than (H2O)3, the 2b:Mb MaxAD

corresponds to a bound OH stretch, where the hydrogen is participating as a hydrogen bond

donor. The “Speedup” column in Table 2.3 under 2b:Mb is simply a ratio of the CCSD(T)

wall time to the 2b:Mb wall time (both using the same single node for all computations).

For (H2O)6 isomers, the speedup reaches a factor of 175 for the Boat1 isomer. The 2b:Mb

computations could be trivially parallelized and would be over a thousand times faster than

the CCSD(T) computation with 10 dedicated nodes.

The 3b:Mb deviations demonstrate significant improvement over the 2b:Mb (3rd col-
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umn of data in Table 2.3). In fact, the MaxAD of 1.3 cm−1 for Boat1 is the only vibrational

mode in any of the (H2O)n isomers examined to exceed 1 cm−1. The 3b:Mb speedup factors

are much smaller than the 2b:Mb speedups, reflecting the large number of relatively time-

consuming CCSD(T) Hessian computations on triads of fragments (i.e., trimers) required

for the 3b:Mb approach. Again, parallelization can significantly enhance the performance of

the 3b:Mb method.

A more detailed analysis of the 2b:Mb and 3b:Mb deviations is presented in Table 2.4.

In Table 2.4, the maximum absolute deviations are separated into free OH stretches (OHf

above 3850 cm−1), bound OH stretches (OHb between 3300 and 3820 cm−1), intramolecular

HOH bends (between 1650 and 1750 cm−1) and low frequency intermolecular modes (below

1100 cm−1).(See Table S4 of the Supporting Information for the average absolute deviations

of these modes.) Table 2.4 reveals that 2b:Mb frequencies for the bends and free OH stretches

never deviate by more than 0.5 cm−1 from the CCSD(T) values. The largest deviations are

always due to the bound OH stretches and low frequency intermolecular modes. The 3b:Mb

approach reduces the deviations associated with the bound OH stretches to less than 1 cm−1

for all of the water clusters examined in this work, and again the MaxAD values associated

with the free OH stretches and intramolecular bends are significantly smaller, typically on

the order of 0.1 cm−1. Only for the low frequency and bound OH stretching modes do the

deviations approach (or exceed in the case of the Boat1 hexamer) 1 cm−1.

Finally, we have added a discussion of closely related work that was published while

the current paper was being reviewed. Miliordos, Aprà and Xantheas have reported CCSD(T)

frequencies for some of the same water clusters examined here (C1 trimer, S4 tetramer, C1

pentamer along with the Prism, Cage, Book1 and Ring hexamers).252 Their optimized struc-

tures and vibrational frequencies were obtained with the aug-cc-pVDZ basis set via finite

difference procedures. To provide a direct comparison to that work, we carried out another

set of analytical 2b:Mb and 3b:Mb frequency computations with the aug-cc-pVDZ basis

set for their optimized structures. In general, the agreement is excellent. For the cyclic
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tetramer, pentamer and hexamer, the average absolute deviation between the finite differ-

ence and 3b:Mb procedure does not exceed 0.5 cm−1, and for only one mode (in the cyclic

tetramer) did a deviation exceed 1 cm−1. For the Prism, Cage and Book1 isomers, however,

the differences grow as large as 10–20 cm−1 for a couple of intermolecular modes, while

the intramolecular modes deviate by at most 3 cm−1, corresponding to bending motions.

All 3b:Mb frequencies differing by more than 2 cm−1 from the values reported in Refer-

ence 252 are tabulated in the Supplementary Material.251 We also note that for the (H2O)n

isomers not examined in that work, CCSD(T) vibrational frequencies agree with previous

MP2 results on the nature of each stationary point (C3 and C3h trimers;253 Ci, C4 and C4h

tetramers;161 C5 and C5h pentamers254 and the Bag and Boat1 hexamers.166

2.3.2.2 Hydrogen Fluoride Clusters

Deviations of harmonic vibrational frequencies for the (HF)n clusters (n = 3 − 6)

computed with the 2b:Mb, 3b:Mb and 4b:Mb methods are summarized in Table 2.5. As

with the gradient calculations, the harmonic vibrational frequencies of (HF)n exhibit larger

deviations from CCSD(T) compared to (H2O)n results. The MaxAD for the 2b:Mb method

exceeds 6 cm−1 for the tetramer and 10 cm−1 for the pentamer. These deviations for (HF)6

isomers approach 8 cm−1. As with gradients, the vibrational frequencies computed with the

N -body:Many-body approach can be systematically improved. The MaxADs decrease to

around 2 cm−1 for the 3b:Mb frequencies and to less than 1 cm−1 for the 4b:Mb frequen-

cies. Speedups are not reported for these systems because all of the computations were not

performed on the same type of node.

2.4 Conclusions

The N -body:Many-body approach has been applied to geometry optimizations and

computation of harmonic vibrational frequencies of (H2O)n and (HF)n clusters. Combining

CCSD(T) computations to capture the leading terms in the many-body expansion and MP2

for the higher-order terms is shown to be an efficient and accurate strategy for reproducing
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CCSD(T) optimized structures and harmonic vibrational frequencies. For (H2O)n clusters

(n = 3− 7), the 2-body:Many-body CCSD(T):MP2 geometry optimizations essentially yield

CCSD(T) optimized structures when adopting a convergence criterion of 2.5× 10−4 Eh a−10

for the maximum absolute Cartesian force component. For (H2O)7 optimized structures, the

maximum absolute deviations between CCSD(T) and 2-body:Many-body Cartesian gradient

components are less than 2.4 × 10−4 Eh a0
−1 whereas the average absolute deviations are

nearly an order of magnitude smaller (≤ 4.6 × 10−5 Eh a−10 ). The 57 independent com-

putations required for the 2-body:Many-body (H2O)7 gradient (42 pairs, 14 monomers and

the cluster) require significantly less time than the single CCSD(T) supermolecular gra-

dient calculation. Each 2-body:Many-body gradient calculation for (H2O)7 was nearly 40

times faster on a single node than the full CCSD(T) computation on the same computer.

The 3-body:Many-body forces are even closer to the canonical CCSD(T) results, with the

maximum absolute deviation in Cartesian force components less than 7×10−5 Eh a0
−1. Devi-

ations are somewhat larger for the (HF)n clusters but can systematically be converged to the

CCSD(T) results by including more terms from the many-body expansion with CCSD(T)

computations.

Harmonic vibrational frequencies computed with the N -body:Many-body approaches

are also in excellent agreement with canonical CCSD(T) supermolecular results for water

clusters. The maximum absolute deviations for the 2-body:Many-body method never exceed

6 cm−1. The average absolute deviation is only 0.8 cm−1 for all modes of all the H2O clusters

examined here. Deviations for the bending modes and the free OH stretches never exceed

0.5 cm−1, and the intermolecular modes show deviations less than 1 cm−1 on average. The

largest deviations for the 2-body:Many-body frequencies are seen in the bound OH stretches,

where the maximum deviations increase from around 1 cm−1 for (H2O)3 to 6 cm−1 for (H2O)6.

The 2-body:Many-body results are obtained on a single node at a fraction of the wall time

required for the canonical CCSD(T) calculation, typically more than 100 times faster for the

hexamer isomers.
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The deviations associated with the 3-body:Many-body CCSD(T):MP2 harmonic vi-

brational frequencies are significantly smaller than those for the 2-body:Many-body method.

The 3-body:Many-body approach exhibits a maximum absolute deviation for the bound

OH stretches of only 0.9 cm−1 and 1.3 cm−1 for the low frequency intermolecular modes.

The average absolute deviation for all modes of all water clusters examined here is only 0.1

cm−1. Speedups for the 3-body:Many-body technique approach a factor of 10 for the (H2O)6

clusters, but this is easily improved with parallelization. Applied to clusters with significant

cooperative effects such as (HF)n, N -body:Many-body gradients and frequencies can demon-

strate larger deviations relative to CCSD(T), but they can be systematically improved by

including more terms from the many-body expansion at the CCSD(T) level.

These encouraging results suggest that the N -body:Many-body approach can be used

to generate benchmark-quality geometries and harmonic vibrational frequencies of clusters

with more modest computational resources and in less time than is required for supermolec-

ular CCSD(T) computations.
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Table 2.1. Maximum absolute deviations from components of CCSD(T) Cartesian gradients
(all values in Eh a−10 )

2b 3b 2b:Mb 3b:Mb
(H2O)3
C1 0.004001 – 0.000048 –
C3 0.003555 – 0.000042 –
C3h 0.002752 – 0.000032 –
(H2O)4
S4 0.008134 0.000959 0.000077 0.000030
Ci 0.006672 0.000812 0.000073 0.000024
C4 0.005936 0.000675 0.000067 0.000018
C4h 0.006107 0.000700 0.000059 0.000013
(H2O)5
C1 0.009351 0.001579 0.000106 0.000034
C5 0.008794 0.001466 0.000097 0.000027
C5h 0.007878 0.001286 0.000086 0.000016
(H2O)6
Ring 0.010280 0.001939 0.000111 0.000030
Book1 0.011707 0.001741 0.000186 0.000047
Cage 0.012049 0.001115 0.000162 0.000046
Boat1 0.009595 0.001729 0.000100 0.000030
Bag 0.015519 0.002091 0.000224 0.000061
Prism 0.014650 0.001661 0.000177 0.000052
(H2O)7
PR1 0.014149 0.001901 0.000236 0.000067
PR2 0.012684 0.001394 0.000156 0.000045
PR3 0.015040 0.001530 0.000228 0.000063

Table 2.2. Maximum absolute deviations from components of CCSD(T) Cartesian gradients
(all values in Eh a−10 )

2b 3b 4b 2b:Mb 3b:Mb 4b:Mb
(HF)3 0.005863 – – 0.000064 – –
(HF)4 0.010970 0.001380 – 0.000174 0.000045 –
(HF)5 0.017378 0.003005 0.000328 0.000256 0.000080 0.000018
Planar 0.018502 0.003629 0.000551 0.000260 0.000079 0.000028
Chair 0.017816 0.003327 0.000479 0.000265 0.000078 0.000041
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Table 2.3. Maximum absolute deviations from CCSD(T) harmonic vibrational frequencies
(in cm−1) and relative speedupsa for N -body:Many-body CCSD(T):MP2 computations

2b:Mb 3b:Mb
MaxAD Speedup MaxAD Speedup

(H2O)3
C1 1.3 6 – –
C3 1.6 7 – –
C3h 1.5 6 – –

(H2O)4
S4 2.5 11 0.7 1
Ci 2.5 9 0.6 1
C4 2.3 11 0.5 1
C4h 1.9 10 0.3 1

(H2O)5
C1 3.4 66 0.9 4
C5 3.0 94 0.7 6
C5h 2.7 83 0.5 6

(H2O)6
Ring 3.6 85 0.9 4

Book1 4.4 159 0.8 8
Cage 5.8 163 0.7 8
Boat1 3.7 175 1.3 9
Bag 6.0 162 0.8 8

Prism 5.5 145 0.5 7
a Speedup is the ratio of CCSD(T) wall time to Nb:Mb total wall time
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Table 2.4. Maximum absolute deviations (cm−1) associated with 2- and 3-body:Many-body
CCSD(T):MP2/haDZ harmonic vibrational frequencies

Low Bends OHb Str. OHf Str.
2b:Mb 3b:Mb 2b:Mb 3b:Mb 2b:Mb 3b:Mb 2b:Mb 3b:Mb

(H2O)3
C1 1.3 – 0.1 – 1.0 – 0.1 –
C3 1.6 – 0.1 – 0.8 – 0.1 –
C3h 1.5 – 0.1 – 0.6 – 0.1 –

(H2O)4
S4 1.9 0.3 0.2 0.1 2.5 0.7 0.3 0.0
Ci 1.7 0.3 0.1 0.1 2.5 0.6 0.3 0.0
C4 2.0 0.2 0.3 0.0 2.3 0.5 0.3 0.0
C4h 1.8 0.3 0.3 0.0 1.9 0.3 0.4 0.1

(H2O)5
C1 1.9 0.4 0.3 0.1 3.4 0.9 0.4 0.1
C5 2.4 0.5 0.3 0.1 3.0 0.7 0.5 0.1
C5h 1.8 0.3 0.3 0.1 2.7 0.5 0.5 0.1

(H2O)6
Ring 1.9 0.4 0.5 0.1 3.6 0.9 0.4 0.1

Book1 2.0 0.4 0.3 0.1 4.4 0.8 0.3 0.1
Cage 2.2 0.7 0.4 0.1 5.8 0.3 0.2 0.0
Boat1 1.9 1.3 0.3 0.1 3.7 0.8 0.4 0.1
Bag 1.6 0.8 0.3 0.1 6.0 0.6 0.5 0.2

Prism 2.0 0.5 0.3 0.3 5.5 0.4 0.1 0.1
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Table 2.5. Maximum absolute deviations from CCSD(T) harmonic vibrational frequencies
(cm−1) for N -body:Many-body CCSD(T):MP2 computations for (HF)n clusters (n = 3− 6)

2b:Mb 3b:Mb 4b:Mb
(HF)3 2.1 – –
(HF)4 6.3 1.4 –
(HF)5 10.3 2.1 0.5
Chair 8.0 2.4 0.5
Planar 7.7 2.3 0.7

62



CHAPTER 3

GETTING DOWN TO THE FUNDAMENTALS OF HYDROGEN BONDING:

ANHARMONIC VIBRATIONAL FREQUENCIES OF (HF)2 AND (H2O)2 FROM

AB INITIO ELECTRONIC STRUCTURE COMPUTATIONS

This work presents a systematic investigation into the basis set convergence of har-

monic vibrational frequencies of (H2O)2 and (HF)2 computed with second-order Møller-

Plesset perturbation theory (MP2) and the coupled-cluster singles and doubles method with

perturbative connected triples, CCSD(T), while employing correlation-consistent basis sets

as large as aug-cc-pV6Z. The harmonic vibrational frequencies presented here are expected

to lie within a few cm−1 of the complete basis set (CBS) limit. For these important hydrogen-

bonding prototype systems, a basis set of at least quadruple-ζ quality augmented with diffuse

functions is required to obtain harmonic vibrational frequencies within 10 cm−1 of the CBS

limit. In addition, second-order vibrational perturbation theory (VPT2) anharmonic cor-

rections yield CCSD(T) vibrational frequencies in excellent agreement with experimental

spectra, differing by no more than a few cm−1 for the intramonomer fundamental vibrations.

D0 values predicted by CCSD(T) VPT2 computations with a quadruple-ζ basis set reproduce

the experimental values of (HF)2 and (H2O)2 to within 2 cm−1 and 21 cm−1, respectively.
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3.1 Introduction

Small model systems have long provided critical insight into the nature of noncovalent

interactions. The interactions that stabilize these systems play crucial roles in a variety of

biological and environmental phenomena.3,5, 255 (H2O)2 and (HF)2 have served as prototypes

for hydrogen bonding interactions since the first ab initio quantum mechanical (QM) cal-

culations on H-bonded dimers in the 1960s.108,109,111,112,142,143,256–258 The global minimum

energy conformations of these dimers are depicted in 3.1, where a mirror plane includes the

nuclei associated with the hydrogen bond (X-H· · ·X). The hydrogen atoms in the figure are

marked to distinguish them as “donor” involved in the hydrogen bond or as a “free” or

“acceptor” atom. An accurate description of the water dimer is especially important in the

construction of reliable water potentials,121,233–240,259–261 since the stabilizing intermonomer

interactions of larger clusters are dominated by pairwise interactions.18,112,129,144,150,172,262–266

The relatively small size of these complexes makes them attractive targets for robust

electronic structure methods. The computational demands of accurate coupled-cluster30

(CC) calculations place significant limits on the number of atoms and the size of the basis

set, typically requiring excitations to be limited to singles and doubles (CCSD) and possi-

bly a perturbative treatment of the connected triple excitations as in the “gold standard”

CCSD(T) method.267 However for (H2O)2, higher orders of electron correlation through

full quadruple excitations (CCSDTQ) have been included in benchmark calculations of the

Reproduced with permission from “Getting down to the Fundamentals of Hydrogen Bonding: Anhar-
monic Vibrational Frequencies of (HF)2 and (H2O)2 from Ab Initio Electronic Structure Computations,”
J. Coleman Howard, J.L. Gray, A.J. Hardwick, L.T. Nguyen and Gregory S. Tschumper, J. Chem. Theory
Comput. 10 (12), 5426–5435. http://dx.doi.org/10.1021/ct500860v Copyright c© 2014, American Chemical
Society

Figure 3.1. Global minimum geometries of (H2O)2 and (HF)2
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dimer’s interaction energy and geometry.141,268 Relativistic and non-Born-Oppenheimer cor-

rections have been examined with CC computations as well.93

Several benchmark interaction energy databases have been compiled from high-accuracy

QM calculations on noncovalent dimer complexes.46,68,269–273 By documenting the perfor-

mance of lower-scaling ab initio methods or density functional theory (DFT) approximations

across a diverse set of chemical systems, these databases serve as useful guides for select-

ing appropriate methods for larger systems. This reference data is also of interest to those

designing DFT functionals or parameterizing semi-empirical methods. While the collection

of benchmark energetics for dimer systems in the literature is substantial, vibrational fre-

quencies of noncovalent complexes computed from high-accuracy ab initio QM methods are

far less common. Instead of comparing theory to theory, as is necessary for a quantity

like interaction energy, computed vibrational frequencies can be compared directly to an

experimentally measurable property.

The additional computational effort associated with obtaining optimized molecular

geometries and calculating force constants can be a substantial investment for a method such

as CCSD(T). Recent experimental success123,124,274–278 in the formation and spectroscopic

characterization of noncovalent clusters provides an excellent opportunity to benchmark ab

initio methods against experimentally measured properties.

Theoretical studies of the vibrational spectra of hydrogen-bonded clusters often focus

on the X-H stretching region, with particular interest in the shift to lower energy (commonly

referred to as a “red shift”) associated with the donor X-H bond lengthening upon hydrogen

bond formation. For water clusters, harmonic vibrational frequency computations indicate

that the MP2 method overestimates the shift of the donor O-H stretch to lower energy,

relative to CCSD(T) harmonic values and experiment.252 A proper comparison between cal-

culated and experimental vibrational spectra requires an appropriate anharmonic treatment

of the vibrational modes, such as Rayleigh-Schrödinger vibrational second-order perturba-

tion theory (VPT2).279–282 For the water dimer, Kjaergaard and collaborators283–289 have

65



improved on the usual double harmonic approximation to probe the O-H stretching region

with a variety of impressive techniques, using reduced dimensionality approaches such as

local modes (HCAO) and numerically solving a 1-dimensional vibrational Schrödinger equa-

tion for the the donor O-H stretch, in addition to anharmonic treatments of the complete

set of water dimer normal modes through perturbative approaches VPT2 and cc-VSCF with

high-accuracy QM methods including CCSD(T). Cremer and coworkers have also investi-

gated the (H2O)2 spectrum in terms of local and normal mode of vibrations with CCSD(T)

calculations and VPT2 corrections.290 VPT2 gives the exact energy levels of a Morse oscilla-

tor and thus is well-suited to describe O-H stretching modes. (H2O)2 stretching frequencies

computed with VPT2 in conjunction with the CCSD(T) method and a triple-ζ basis set

compare favorably with experimental values, with a maximum deviation less than 30 cm−1

in the fundamental modes.286

In addition to the water dimer, the HF dimer is a useful hydrogen-bonding model

for pursuing near-CBS vibrational frequencies with correlated QM methods. The structure

of this dimer is similar to (H2O)2, possessing Cs point group symmetry where all atoms

are contained in the mirror plane. (HF)2 has been the subject of a number of ab initio

investigations.256,258,291–306 Accurate semiempirical and ab initio potentials307–311 have been

developed from QM calculations and (HF)2 experimental spectra.

In this work, we address the issue of basis set convergence of harmonic vibrational

frequencies in these two hydrogen-bonded dimers with a systematic approach towards the

CBS limit with wavefunction methods MP2, CCSD and CCSD(T). We also make direct

comparison to experimental spectra with VPT2 computations.

3.2 Theoretical Methods

Fully optimized geometries were obtained to compute harmonic and anharmonic vi-

brational frequencies, utilizing analytic first and second geometrical derivatives. Coupled-

cluster and MP2 computations were performed with CFOUR248 and Gaussian 09,250 re-
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spectively. Anharmonic frequencies were computed within the VPT2 method by double-

sided numerical differentiation of analytic second derivatives along normal modes.312 To

examine the basis set convergence of the harmonic vibrational frequencies, we employed the

correlation-consistent family of basis sets.57 In particular, we used the cc-pVXZ (X = D−6,

i.e., D,T,Q,5,6) basis sets, as well as the fully augmented aug-cc-pVXZ (aXZ) and “heavy-

augmented” versions (haXZ), where diffuse functions were only added to the heavy (i.e.,

non-hydrogen) atoms. MP2 optimized geometries and harmonic vibrational frequencies were

also calculated on a counterpoise-corrected potential energy surface for each basis set to

firmly establish CBS estimates and to compare the convergence of the CP-corrected val-

ues to those obtained from the standard uncorrected potential energy surfaces. Spherical

harmonic d, f, g, h and i functions were used instead of their Cartesian counterparts. All

calculations were performed with the “frozen core” approximation (i.e., core electrons were

not correlated in post-HF computations). CCSD(T)/ha5Z harmonic frequencies of (H2O)2

were not calculated analytically. Instead, these frequencies were evaluated by 3-point numer-

ical differentiation of energies computed with Molpro106 at displaced geometries generated

by PSI4.313 The accuracy of this approach was calibrated using the smaller basis sets, for

which CCSD(T) analytic second derivative computations were feasible. Harmonic frequen-

cies computed via this finite difference procedure never differed from the analytic values by

more than 1 cm−1.

3.3 Results and Discussion

3.3.1 Geometries

3.1 reports key distances for each monomer and dimer system. The covalent bond

lengths are tabulated for the CCSD(T), MP2 and CCSD methods computed with the ha5Z

basis set, along with the O· · ·O distance for (H2O)2 and the F· · ·F distances for (HF)2.

Of particular interest in this study are the changes in the OH and FH bond lengths when

donating a hydrogen bond. Changes relative to the monomer are given in parentheses in
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3.1, along with the unique FH and OH covalent bond lengths in the dimers. Relative to

CCSD(T), MP2 slightly overestimates the distortion of the covalent bonds when the hy-

drogen bond is formed, whereas the CCSD method does the opposite. The CCSD method

overestimates the distance between the the heavy atoms in both dimers relative to CCSD(T)

values. The MP2/ha5Z (HF)2 geometry predicts a slightly longer F· · ·F separation relative

to CCSD(T), while the (H2O)2 O· · ·O distance is slightly shorter at the MP2 level. The

CCSD(T)/ha5Z geometries here are in excellent agreement with previous benchmark cal-

culations,93,94,141,306 with maximum deviations from previous CCSD(T) CBS estimates on

the order of 0.005 Å for the heavy atom distances, and the agreement improves by an order

of magnitude for the intramonomer distances. Cartesian coordinates are provided in the

Supporting Information.314

Table 3.1. Covalent bond lengthsa and key intermonomer distances (in Å) associated with
equilibrium monomer and dimer structures optimized with CCSD(T), MP2 and CCSD meth-
ods using the ha5Z basis set.

Parameter CCSD(T) MP2 CCSD
HF

R(FH) 0.9173 0.9183 0.9144
monomer

H2O R(OH) 0.9584 0.9583 0.9555
monomer

(HF)2

R(FHd) 0.9230 (+0.0057) 0.9246 (+0.0063) 0.9195 (+0.0051)
R(FHf ) 0.9202 (+0.0029) 0.9214 (+0.0031) 0.9172 (+0.0027)

R(F· · ·F) 2.7369 2.7413 2.7509

(H2O)2

R(OHd) 0.9647 (+0.0063) 0.9657 (+0.0074) 0.9611 (+0.0056)
R(OHf ) 0.9576 (−0.0008) 0.9574 (−0.0009) 0.9547 (−0.0009)
R(OHa) 0.9591 (+0.0007) 0.9592 (+0.0009) 0.9562 (+0.0007)

R(O· · ·O) 2.9127 2.9061 2.9319
a Changes relative to monomer given in parentheses

3.3.2 Basis Set Convergence of MP2 Harmonic Vibrational Frequencies

3.3.2.1 Estimated MP2 CBS Limit

The MP2 CBS estimate of each harmonic vibrational frequency in both the monomers

and dimers is listed in 3.2. For each normal mode, the MP2 CBS estimate was calculated
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as the mean of the MP2/a6Z and MP2/ha6Z frequencies. For the dimers, these two val-

ues were averaged along with their counterpoise-corrected counterparts (CP-MP2/a6Z and

CP-MP2/ha6Z) for the CBS limit estimate (4 values altogether). Even though the fully-

augmented a6Z basis set has more basis functions, we include the ha6Z frequencies in the CBS

estimates because these selectively augmented basis sets tend to provide interaction energies

and geometries closer to the CBS limit for hydrogen-bonded clusters.21,94 For each normal

mode, Table 2 also shows the maximum absolute deviation of the MP2/a6Z, MP2/ha6Z,

CP-MP2/a6Z and CP-MP2/ha6Z frequencies from the corresponding CBS estimate. For

the HF and H2O monomer modes, the MP2/ha6Z and a6Z harmonic frequencies agree to

within 1 cm−1. In the dimers, the MP2/ha6Z, MP2/a6Z and CP-corrected frequencies are,

on average, within 2 cm−1 of the CBS estimate for (HF)2 and 1 cm−1 for (H2O)2.

3.3.2.2 HF and H2O Monomer Modes

The basis-set convergence of the MP2 harmonic frequencies towards the CBS limit

is illustrated in Figures 2 - 4. For each normal mode, the MP2 aXZ and haXZ deviations

from the MP2 CBS limit estimates are plotted across the D−6 progression, marked by circles

and squares connected by solid lines, respectively. For the dimers, the corresponding CP-

corrected deviations are shown as triangles with dotted lines. Under the label for each normal

mode, the MP2 CBS values are given in parentheses.

3.2 illustrates the MP2 basis set convergence in the H2O and HF monomer harmonic

vibrational frequencies. The water bend (ν2) converges quickly, as the MP2/haDZ ν2 fre-

quency is within 2 cm−1 of the MP2 CBS estimate. The HF and OH stretching frequencies

converge much more slowly. The MP2/aDZ values underestimate the corresponding CBS

frequencies by more than 30 cm−1 in each stretching mode. Increasing the basis set to haTZ

or aTZ improves the predicted MP2 stretching frequencies to within ca. 10 − 20 cm−1.

Agreement to within 5 cm−1 of the MP2 CBS limit is achieved with quadruple-ζ basis sets

for each mode.
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3.3.2.3 (HF)2 and (H2O)2 Intermonomer Modes

There are 4 intermonomer modes in the HF dimer (ν5,ν4,ν6 and ν3) and 6 in (H2O)2

(ν12,ν11,ν8, ν7,ν6 and ν10). See References 286 and 311 or tables S7 and S13 in the Sup-

porting Information314 for a description of each of these intermonomer normal modes. As

can be seen in Figures 3 and 4, the basis-set convergence of the intermonomer frequencies

towards the MP2 CBS limit is very similar in both complexes. For both dimers, the slowest

basis-set convergence for the MP2 harmonic frequencies is seen in the 2 highest-frequency

intermonomer modes ca. 350−650 cm−1 (ν6 and ν3 for (HF)2 and ν6 and ν10 for (H2O)2). In

each complex, these 2 modes consist of one in-plane (a′) and one out-of-plane (a′′) bending

motion of the X-H· · ·X angle associated with the donor hydrogen involved in the H-bond.

Although MP2 frequencies computed with triple-ζ basis sets are within 10 cm−1 for the

lowest-energy intermonomer modes (< 250 cm−1), basis sets of at least quadruple-ζ quality

are required to be within 10 cm−1 of the MP2 CBS limit for the more challenging higher-

energy intermonomer modes above 350 cm−1. We note that the energetic ordering of the

nearby modes ν11 (a′′) and ν8 (a′) in (H2O)2 is reversed in the harmonic frequencies computed

using the double-ζ basis sets, with the exception of CP-MP2/aDZ.

The CP-corrected and uncorrected values tend to converge from opposite sides of the

CBS limit, reminiscent of the convergence of interaction energies.21 The net effects of the

CP procedure, however, are somewhat mixed. In (H2O)2, for example, the lowest-energy

frequencies (ν12, ν11 and ν8) computed with smaller basis sets are usually shifted closer to

the MP2 CBS limit when the procedure is applied, particularly for MP2/haDZ frequencies.

In contrast, the CP procedure increases the deviations from the CBS limit for the lowest-

frequency modes in (HF)2 (ν5 and ν4).

The largest differences in MP2 and CP-MP2 intermonomer frequencies are observed

for the two highest-frequency intermonomer modes (ca. 350−650 cm−1) in each dimer. Even

with the large a6Z basis set, the difference between CP corrected and uncorrected frequencies

for (HF)2 grows as large as 8 cm−1 for ν6 and 6 cm−1 for ν3. In (H2O)2, the largest difference
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between MP2/a6Z and CP-MP2/a6Z frequencies also occurs in the out-of-plane bending

mode (4 cm−1 for ν10).

3.3.2.4 (HF)2 and (H2O)2 Intramonomer Modes

The basis-set dependence of the intramonomer frequencies in these dimers closely

follows what was seen for the isolated monomers in Figure 2 at the MP2 level of theory.

The harmonic frequencies of the bending modes in the water dimer are within 10 cm−1 of

the MP2 CBS estimate with the double-ζ basis sets and within 5 cm−1 with the triple- ζ

basis sets. The two bending modes in (H2O)2 are excluded from Figure 4 due to this rapid

convergence, but the data can be found in the Supporting Information.314

The intramonomer stretching frequencies are underestimated with the smaller basis

sets, by more than 60 cm−1 for FH donor stretch and 38 cm−1 for the symmetric OH acceptor

stretch computed with the aDZ basis set. As with the monomers, the quadruple-ζ basis sets

are needed to obtain OH and FH stretching frequencies within 5 cm−1 of the MP2 CBS

limit.

The “red-shifted” donor hydrogen stretches (ν2 in (HF)2 and ν3 in (H2O)2) are affected

by the CP procedure much more than the other intramonomer FH and OH stretching modes

not directly participating in the hydrogen bond. As shown in 3.3 for (HF)2, the CP procedure

hardly affects the MP2 frequency of ν1, regardless of the basis set. The maximum shift caused

by the CP procedure for this free FH stretch in any basis set is less than 4 cm−1. For the

donor FH stretch ν2, on the other hand, the MP2 and CP-MP2 frequencies differ by nearly

30 cm−1 with the aDZ and haDZ basis sets. A similar trend is observed for the OH stretches

in (H2O)2. The CP procedure only noticeably affects the OH donor stretch (ν3), improving

the haDZ and aDZ frequencies by roughly 15 cm−1 relative to the MP2 CBS limit.

Although the CP procedure tends to move the double and triple-ζ donor stretch-

ing frequencies (ν2 in (HF)2 and ν3 in (H2O)2) closer to the MP2 CBS limit, it leads to

an appreciable underestimation of the shift to lower energy of these modes relative to the

monomer stretching frequencies (∆ν(FHd) and ∆ν(OHd) in Table 2). The calculated CP-

71



MP2 double-ζ and triple-ζ values underestimate the CBS shift by more than 20 cm−1 and

10 cm−1, respectively. The ∆ν(FHd) values from the standard MP2 frequencies are within

8 cm−1 and 4 cm−1 with these basis sets. The same pattern can be seen for the ∆ν(OHd) in

(H2O)2 as well.

Figure 3.2. Basis set convergence of MP2 harmonic vibrational frequencies of HF (far right)
and H2O monomers depicted as deviations from the estimated CBS limit (in parentheses)

3.3.3 Comparison of Harmonic MP2 and CCSD(T) Frequencies

Because CCSD(T) harmonic frequency computations with sextuple-ζ basis sets were

infeasible, the comparison between MP2 and CCSD(T) frequencies utilizes results obtained

with the ha5Z basis set. The MP2/ha5Z harmonic frequencies in the penultimate column

of 3.2 are within a few cm−1 of the MP2 CBS limit. Even though the effects of the CP

procedure will not be identical for the MP2 and CCSD(T) methods, the CCSD(T)/ha5Z

harmonic frequencies in the last column of 3.2 are expected to lie close to the CCSD(T) CBS

72



ν5 ν4 ν6 ν3 ν2 ν1

DTQ 5 6 DTQ 5 6 DTQ 5 6 DTQ 5 6 DTQ 5 6 DTQ 5 6
−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

20
D

ev
ia

ti
on

fr
om

M
P

2
C

B
S

li
m

it
(c

m
−

1
)

(159 cm−1) (216 cm−1) (463 cm−1) (566 cm−1) (4001 cm−1) (4094 cm−1)

MP2 haXZ

CP-MP2 haXZ

MP2 aXZ

CP-MP2 aXZ

Figure 3.3. Basis set convergence of MP2 harmonic vibrational frequencies of (HF)2 depicted
as deviations from the estimated CBS limit (in parentheses)

limit.

For the HF monomer stretch listed first in 3.2, the MP2 value agrees well with

the CCSD(T) result, underestimating the harmonic frequency by 6 cm−1. However, the

MP2/ha5Z H2O monomer harmonic frequencies show larger deviations from the correspond-

ing CCSD(T)/ha5Z values. MP2 underestimates the bending mode (ν2) by 18 cm−1 but

overestimates both of the stretching frequencies (by as much as 25 cm−1 for ν3).

Comparing the (HF)2 and (H2O)2 CCSD(T) and MP2 intermonomer modes, the

MP2 frequency values are in excellent agreement with CCSD(T). Only ν10 in (H2O)2 differs

by 10 or more cm−1 between the methods. The average absolute deviation between MP2
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Figure 3.4. Basis set convergence of MP2 harmonic vibrational frequencies of (H2O)2 de-
picted as deviations from the estimated CBS limit (in parentheses)

and CCSD(T) intermonomer frequencies is only 3 cm−1 with the ha5Z basis set for all 10

intermonomer modes (ν5, ν4, ν6 and ν3 for (HF)2 and ν12, ν11, ν8, ν7, ν6 and ν10 for (H2O)2).

For the intramonomer bending and stretching modes, much larger discrepancies are

observed between MP2/ha5Z and CCSD(T)/ha5Z harmonic frequencies, and they tend to

mimic the differences seen for the isolated monomers. MP2 consistently overestimates the

free OH stretches relative to CCSD(T). The discrepancy is as small as 5 cm−1 for the sym-

metric acceptor OH stretch (ν2), and it is large as 20−21 cm−1 for the two highest-frequency

OH stretching modes in (H2O)2 (ν9 and ν1). For the HOH bending modes in (H2O)2, the
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MP2/ha5Z harmonic frequencies are always smaller by 17 − 18 cm−1 than the CCSD(T)

results, just like the monomer. In (HF)2, the MP2 computations underestimate the free FH

stretch by 10 cm−1, while the bound FH stretch is underestimated by 24 cm−1 relative to

CCSD(T).

The last row in 3.2 for each dimer gives the shift of the donor stretching mode relative

to the monomer stretch, denoted ∆ν(FHd) and ∆ν(OHd), computed at the same level of

theory (symmetric OH stretch in the case of H2O). A negative value for ∆ν implies a shift

to lower energy (a.k.a. a red-shift). The magnitude of the shift is overestimated in both

dimer systems at the MP2 level. The overestimation is more severe in the water dimer

(−105 cm−1 vs −81 cm−1 at the MP2 and CCSD(T) levels, respectively). Recall the XH

bond lengthening (3.1) associated with hydrogen bond formation (and the red-shifted XH

stretching mode) is also larger at the MP2 level for each dimer complex here, as discussed

in Section 3.1.

3.4 Anharmonic Vibrational Frequencies and Dissociation Energies

Tables 3-6 summarize the VPT2 frequencies of the HF and H2O monomers and dimers

computed with CCSD(T), MP2 and CCSD methods and the haQZ basis set. The VPT2

results for each electron correlation method are given as deviations from the experimental

values, where the sign convention is such that a positive value implies an overestimated

frequency relative to the experimental reference. For the reference values, gas-phase values

are given when possible.

3.4.1 Monomers

The first row of data in 3.3 compares the experimental HF stretching fundamental

to VPT2 results. The CCSD(T) and MP2 values computed with the haQZ basis set are in

excellent with the experimental value of 3961 cm−1, each within 2 cm−1 of the reference. The

CCSD method overestimates the ν1 position by more than 50 cm−1. For the first overtone
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Table 3.2. CBS limit MP2 harmonic vibrational frequencies (in cm−1) of (HF)2 and (H2O)2,
along with MP2 and CCSD(T) values obtained with the ha5Z basis set

MP2 Max MP2 CCSD(T)
Mode CBS est.a Abs. dev.b ha5Z ha5Z

HF ν1 4136 0 4137 4143
H2O ν2 (a1) 1631 0 1632 1650

ν1 (a1) 3842 0 3843 3835
ν3 (b2) 3969 0 3970 3945

(HF)2 ν5 (a′) 159 2 160 161
ν4 (a′) 216 2 217 217
ν6 (a′′) 463 5 465 461
ν3 (a′) 566 4 568 566
ν2 (a′) 4001 1 4002 4026
ν1 (a′) 4094 0 4095 4105

∆ν(FHd) −135 1 −135 −117
(H2O)2 ν12 (a′′) 121 1 123 125

ν11 (a′′) 145 2 146 142
ν8 (a′) 149 1 150 148
ν7 (a′) 184 1 184 185
ν6 (a′) 351 1 352 351
ν10(a

′′) 621 2 624 614
ν5 (a′) 1632 0 1633 1650
ν4 (a′) 1651 0 1652 1670
ν3 (a′) 3738 1 3738 3754
ν2 (a′) 3834 0 3835 3830
ν1 (a′) 3937 0 3937 3917
ν9 (a′′) 3957 0 3957 3936

∆ν(OHd) −105 1 −105 −81
aMean of the MP2/ha6Z, CP-MP2/ha6Z, MP2/a6Z and CP-MP2/a6Z values for dimers and
mean of the MP2/ha6Z and MP2/a6Z values for monomers
bMaximum absolute deviation of the 2 monomer or 4 dimer values used to estimate the
MP2 CBS limit from their mean
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of the HF stretch in 3.4, the absolute deviation from experiment approximately doubles for

each method, as the CCSD(T) and MP2 2ν1 positions are are within 4 cm−1 and 2 cm−1 of

the experimental spectrum, respectively.

The H2O VPT2 fundamental frequencies are shown in the first rows of Tables 5. For

the 3 normal modes, the CCSD(T)/haQZ values are much closer to experiment than the MP2

predicted frequencies. The largest deviation with the CCSD(T) method is only a 6 cm−1

underestimation of the antisymmetric OH stretch ν3. As with the harmonic vibrational

frequencies, the MP2 method predicts OH stretching frequencies too high, compared to

CCSD(T) calculations, while the bending mode ν2 is predicted too low at the MP2/haQZ

level. The CCSD/haQZ fundamentals are the farthest from experiment, with the frequencies

of the OH stretching modes overestimated by more than 40 cm−1 on average.

The first overtones and combination bands of the H2O vibrational modes are shown

in Table 6. For the first bending overtone (2ν2) and the combination bands involving the

bending mode (ν1+ν2 and ν2+ν3), the CCSD(T)/haQZ VPT2 results are again in good

agreement with experiment. 2ν2 is within 10 cm−1 of experiment, while the two combina-

tions bands only deviate by 2 and 3 cm−1. Because the MP2 method overestimates the

fundamental stretching frequencies and underestimates the H2O bending frequency, rather

good agreement is obtained for the combination bands between 5200 cm−1 and 5350 cm−1

due to a rather favorable cancellation of errors. For example, MP2 underestimates the bend-

ing mode ν2 by −14 cm−1 and overestimates the symmetric OH stretch ν1 by +12 cm−1,

and the deviation from the experimental value of the combination band ν1+ν2 is −2 cm−1.

The first OH stretching overtones in H2O calculated with CCSD(T) show much larger

deviations relative to experiment. This is due to strong Darling-Dennison resonance,316 which

is unaccounted for in the standard VPT2 implementation used here. An approach such as

that undertaken in Reference 316 would shift the CCSD(T) 2ν1 and 2ν3 values closer to the

experiment. The OH stretching combination band ν1+ν3 is unaffected by this resonance,

and the CCSD(T)/haQZ frequency of 7239 cm−1 is in good agreement with the measured
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value of 7250 cm−1. The MP2 and CCSD methods overestimate the energy of the ν1+ν3

transition by more than 40 cm−1 and 80 cm−1, respectively.

3.4.2 (HF)2

3.3 compares VPT2 fundamental frequencies of (HF)2 computed with CCSD(T), MP2

and CCSD using the haQZ basis set to experimental results.310,311,317–323 Note, however,

that the experimental values for the lowest-energy transitions are actually indirect esti-

mates.310,311,317,318 The largest deviations from the experimental values occur for the same

intermonomer modes that exhibited the slowest convergence to the MP2 CBS limit (ν6 and

ν3 in Figure 3). MP2 overestimates the ν6 fundamental by +23 cm−1 whereas CCSD and

CCSD(T) underestimate ν3 by −34 cm−1 and −22 cm−1, respectively.

In contrast to the monomer, the CCSD(T)/haQZ VPT2 intramonomer frequencies of

(HF)2 are in far better agreement with experiment than MP2/haQZ values. The CCSD(T)

calculated FH stretching fundamentals are within 1 cm−1 of the experimental values, and

the ∆ν(FHd) is within 1 cm−1 as well. MP2 underestimates both HF stretching fundamental

frequencies by −7 cm−1 and −17 cm−1 for FHf and FHd stretches, respectively. In contrast,

the CCSD method overestimates these stretching modes by +51 cm−1 for ν1 and +65 cm−1

for ν2.

In the last row of 3.3, the calculated D0 values are compared to the experimental

value of 1062 cm−1.320 The CCSD(T) D0 is within 2 cm−1 of this reference value. Although

this remarkable level of agreement is somewhat fortuitous, it can be understood in light of

the recent work of Řezáč et al.306 They have computed the dissociation energy of the HF

dimer with a series of high-level ab initio calculations, including full quadruple excitations via

CCSDTQ, relativistic effects and a diagonal Born-Oppenheimer correction. They concluded

that the sum of those corrections to D0 amounts to less than 2 cm−1. That work also

computed CCSD(T) VPT2 frequencies with the fully augmented aug-cc-pVQZ basis set,

which overall agree with those computed here. The only substantial differences between the
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Table 3.3. Deviations between VPT2 fundamental transition energies and experimental
vibrational frequencies of HF and (HF)2 and dissociation energy (D0) (in cm−1) of (HF)2
computed with CCSD(T), MP2 and CCSD methods with the haQZ basis set

Exp CCSD(T) MP2 CCSD
HF ν1 3961a +2 +1 +52

(HF)2 ν5 (a′) 125b +7 +6 +4
ν4 (a′) 161c +11 +11 +3
ν6 (a′′) 380d +9 +23 +7
ν3 (a′) 475e −22 −14 −34
ν2 (a′) 3868f +1 −17 +65
ν1 (a′) 3931f −1 −7 +51

∆ν(FHd) −93f −1 −18 +13
D0 1062g −2 −24 −60

aReference 315 (Gas)
bReference 311 (Gas)
cReference 310 (Gas)
dReference 317 (Gas)
eReference 318 (Gas)
fReference 319 (Gas)
gReference 320 (Gas)

two calculations occur in the intermonomer modes, where ν6 is shifted 20 cm−1 higher with

the aug-cc-pVQZ basis set. However, the computed frequencies for ν6 have been shown to

be extremely sensitive to small changes in the basis set.304

Vibrational overtone and combination band transition energies for the HF dimer are

presented in 3.4. For this dimer, the CCSD(T) VPT2 energy levels predict the 2ν1 and

2ν2 transitions to within 8 cm−1 of experiment. The first overtone of the donor FH stretch

observed at 7550 cm−1 is perfectly matched at the CCSD(T)/haQZ level. The combination

bands in the 4000 - 4100 cm−1 range, corresponding to excitations in one HF stretching

mode and one intermonomer mode, are also captured very well by the CCSD(T) method,

with a maximum absolute deviation from experiment of only 6 cm−1. The combination band

involving ν3 in the last row reveals larger discrepancies, although only slightly more than

the deviation seen for the ν3 fundamental in 3.3. With the exception of the 2ν2 transition

predicted 39 cm−1 too low, the MP2 overtones and combination bands are also rather close
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Table 3.4. Select VPT2 overtone and combination levels (in cm−1) of HF and (HF)2 com-
puted with MP2, CCSD and CCSD(T) methods with the haQZ basis set

Exp CCSD(T) MP2 CCSD
HF 2ν1 7751a −4 −2 +98

(HF)2 2ν2 7550b 0 −39 +136
2ν1 7683c +8 −2 +117
ν2+ν5 4001d +5 −12 +65
ν2+ν4 4049d +6 −8 +63
ν1+ν5 4058d +4 −2 +53
ν1+ν4 4099d +3 −2 +48
ν1+ν3 4418e −27 −24 +13

aReference 315 (Gas)
bReference 322 (Gas)
cReference 323 (Gas)
dReference 321 (Gas)
eReference 319 (Gas)

to the experimental values. The CCSD method consistently overestimates the stretching

overtones and combination bands, by more than 100 cm−1 in the case of 2ν2 and 2ν1.

3.4.3 (H2O)2

3.5 compares VPT2 fundamental frequencies of (H2O)2 computed with CCSD(T),

MP2 and CCSD using the haQZ basis set to experimental results.277,324–328 Note that exper-

imental values for (H2O)2 vibrational frequencies can vary by several cm−1 due to differing

experimental conditions. For example, the rotational temperatures have been estimated to

be around 5K for gas-phase measurements of the intermonomer fundamentals,325,326 but

the vibrational degrees of freedom “may have different effective temperatures or even non-

thermal distributions”277 depending on the expansion conditions. References 285 and 324

provide thorough reviews of the various experimental vibrational frequencies that can be

found in the literature. Also note that several (H2O)2 vibrational transitions have only been

measured in Ne matrix environments, where interactions with the dimer shift (H2O)2 fun-

damentals by as much as 20% relative to gas-phase values.327,329 Lastly, the relatively large

tunneling splittings330 in (H2O)2 are unaccounted for in the VPT2 calculations.
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As with (HF)2, the CCSD(T) fundamental vibrational energies of (H2O)2 tend to

agree quite well with the measured transitions (column 3 of 3.5). For the four lowest-

energy vibrations, the CCSD(T) results show a maximum deviation from experiment of −9

cm−1 (ν12) and an average absolute deviation around 3 cm−1. For the MP2 and CCSD

VPT2 frequencies (last two columns in 3.5), the maximum deviations in these 4 modes are

appreciably larger at +39 cm−1 and −26 cm−1, respectively (ν11 and ν12).

Table 3.5. Deviations between VPT2 fundamental transition energies and experimental
vibrational frequencies and dissociation energy (D0) (in cm−1) of (H2O)2 computed with
CCSD(T), MP2 and CCSD methods with the haQZ basis set

Exp CCSD(T) MP2 CCSD
H2O ν2 1595a +3 −14 +18

ν1 3657a −2 +12 +46
ν3 3756a −6 +27 +38

(H2O)2 ν12 88b −9 −16 −26
ν11 108b +3 +39 −6
ν8 103b 0 0 0
ν7 143c 0 −1 −5
ν6 311d −18 −27 −25
ν10 523d −28 −18 −50
ν5 1599d 0 −10 +25
ν4 1616d 0 −21 +14
ν3 3602e +3 −6 +61
ν2 3651e −1 +15 +47
ν1 3730e −3 +37 +47
ν9 3745e +2 +14 +48

∆ν(OHd) −55e +6 −18 +15
D0 1105f −21 −2 −81

aHITRAN 2006 values from Reference 286
bReference 325 (Gas)
cReference 326 (Gas)
dReference 327 (Ne matrix)
eReference 277 (Gas)
fReference 328 (Gas)

The two highest-energy intermonomer vibrations (ν6 and ν10) are particularly chal-

lenging. Although all three methods consistently underestimate these frequencies with re-

spect to experiment, none of them reproduce either of the experimental ν6 or ν10 frequencies
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to within 17 cm−1. This results is perhaps not too surprising in light of the slow basis set

convergence exhibited by the MP2 harmonic frequencies for these two modes as discussed in

Section 3.2.3.

Looking at the intramonomer fundamental frequencies near the bottom of 3.5, the

CCSD(T) VPT2 transitions for these six modes show remarkable agreement with the exper-

imental values. All of the OH-stretching fundamental transitions computed with CCSD(T)

are within ±3 cm−1 of the gas-phase positions, with ∆ν(OHd) within 6 cm−1 of experi-

ment. Deviations from experimental intramonomer vibrational frequencies are significantly

larger for the VPT2 results computed with the MP2 and CCSD methods, as with the H2O

monomer. The average absolute deviation in the six intramonomer modes is 17 cm−1 with

MP2 and 41 cm−1 with CCSD. MP2 overestimates the shift associated with the donor stretch-

ing mode (∆ν(OHd)) by nearly 20 cm−1, whereas CCSD underestimates the shift by −15

cm−1. These deviations are nearly identical to those seen for the harmonic frequencies in 3.2.

It is interesting to note that the order of the two highest-energy MP2 stretching frequencies

changes with the anharmonic corrections. This reordering also occurs for VPT2 frequencies

computed with the haDZ and haTZ basis sets (see Supporting Information).314

D0 values computed with each correlated method are given in the last row of 3.5.

The D0 values computed with CCSD(T) and MP2 methods compare fairly well with the

experimental value328 of 1105 cm−1 (−21 cm−1 and −2 cm−1, respectively). With the haQZ

basis set, the CCSD(T) electronic dissociation energy (De) of 1752 cm−1 is slightly larger

than the estimated CCSD(T) CBS limit (within the frozen core approximation). With the

ha5Z basis set, the CCSD(T) De computed here is reduced to 1745 cm−1, in good agreement

with the CCSD(T) CBS estimate of 1743 cm−1 obtained by Lane141 utilizing geometries near

the CCSD(T) CBS limit. The MP2 De values obtained in the present study with the haQZ

and ha5Z basis sets are 1747 cm−1 and 1740 cm−1, respectively. Despite the much larger

errors for MP2/haQZ fundamental frequencies, some favorable error cancellation leads to an

MP2/haQZ D0 that is within 2 cm−1 of the experimental value.
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Table 3.6. Select VPT2 overtone and combination levels (in cm−1) of (H2O)2 computed with
MP2, CCSD and CCSD(T) methods with the haQZ basis set

Exp CCSD(T) MP2 CCSD
H2O 2ν2 3152a +10 −23 +38

2ν1 7202a +21 +52 +122
2ν3 7445a −43 +27 +46
ν1+ν2 5235a +2 −2 +66
ν2+ν3 5331a −3 +12 +56
ν1+ν3 7250a −11 +43 +85

(H2O)2 2ν5 3163b +5 −14 +53
2ν4 3194b +3 −37 +31
2ν3 7018b +46 +17 +172
2ν2 7193c +24 +57 +122
2ν1 7362b −49 +34 +56
2ν9 7442b −44 −18 +50
ν3+ν4 5219d −10 −41 +63
ν2+ν5 5243b −9 −5 +66
ν9+ν5 5329d −3 +4 +69
ν1+ν4 5345d −19 +1 +46
ν1+ν3 7240c +18 +57 +123
ν9+ν2 7250c −17 +17 +80

aHITRAN 2006 values from Reference 286
bReference 327 (Ne matrix)
cReference 331 (Gas)
dReference 332 (Gas)

The bottom part of 3.6 shows (H2O)2 combination band and overtone transition

frequencies for which experimental data327,331,332 is available for comparison. The CCSD(T)

bending overtones (2ν5 and 2ν4) are within 5 cm−1 of the experimental positions.327 However,

the stretching overtones (2ν3, 2ν2, 2ν1 and 2ν9) show much larger deviations at the CCSD(T)

level. As discussed for the H2O monomer overtones in Section 4.1, a Darling-Dennison

resonance is the origin of these large discrepancies.316

The VPT2 transition energies of the intramonomer combination bands are shown

near the bottom of 3.6. The CCSD(T) transitions involving the bending modes between 5200

cm−1 and 5400 cm−1 compare favorably with experiment, underestimating the energy of each

transition by a maximum of 20 cm−1 and less than 10 cm−1 on average. CCSD(T)/haQZ
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VPT2 results for the stretching combination bands in the last two rows of 3.5 are in bet-

ter agreement with experiment than the stretching overtones, reproducing the experimental

values to within 20 cm−1. The performance of MP2 for these combination bands is inconsis-

tent. Three of the MP2 transitions are predicted to within 5 cm−1 of experiment, while the

lowest-energy combination band deviates from the experimental value by −41 cm−1, and the

combination band arising from excitations in both donor stretching modes (ν1+ν3) deviates

by +60 cm−1.

3.5 Conclusions

In this work, we have established benchmark values for the harmonic vibrational

frequencies of (H2O)2 and (HF)2 with correlated wavefunction methods and large correlation-

consistent basis sets. MP2 harmonic vibrational frequencies have been computed with basis

sets as large as aug-cc-pV6Z on both standard and counterpoise-corrected potential energy

surfaces. In addition, we have calculated anharmonic vibrational frequencies with these

correlated methods and the haQZ basis set by way of VPT2 computations. The main

conclusions for this investigation are as follows:

(i) To obtain harmonic vibrational frequencies that are consistently converged to

within 10 cm−1 of the CBS limit, a basis set of quadruple-ζ quality is needed according to

our analysis at the MP2 level of theory with the haXZ and aXZ families of correlation-

consistent basis sets. For these dimers, the haQZ basis set gives frequencies exhibiting

average absolute deviations from the MP2 CBS limit of less than 3 cm−1. In particular, the

harmonic frequencies of the OH and FH stretching modes are greatly improved with these

quadruple-ζ basis sets compared to their triple-ζ counterparts. The maximum absolute

errors in the stretching modes decreases from 10 − 20 cm−1 in the haTZ basis set to 1 − 3

cm−1 with the haQZ basis set. Use of the fully augmented aQZ basis set or application of

the counterpoise procedure does not improve the MP2/haQZ harmonic frequencies relative

to the CBS values in either of the dimers, despite the additional computational effort.
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(ii) Counterpoise corrections affect the MP2 harmonic vibrational frequencies in dif-

ferent ways, depending on the nature of the normal mode. The standard MP2 harmonic

calculations tend to overestimate the frequencies of the intermonomer modes, while the CP

corrections tend to result in underestimated intermonomer frequencies. This is similar to

the convergence patterns seen for binding energies in hydrogen-bonded dimers.21 The intra-

monomer modes are hardly affected by the CP correction, with the exception of the donor

stretch. The CP procedure for the double- and triple-ζ basis sets examined here moves the

donor stretch frequency position to higher energy and closer to the MP2 CBS estimate. Un-

fortunately, the net result is an underestimated “red shift” that is farther from the estimated

CBS limit.

(iii) CCSD(T) anharmonic vibrational frequencies computed with VPT2 and the

haQZ basis set show excellent agreement with available experimental values, particularly for

the intramonomer fundamental vibrational transitions. The CCSD(T) intramonomer fre-

quencies agree with experiment to within a few cm−1 for both the (HF)2 and (H2O)2 dimers.

The low-energy intermonomer fundamental frequencies are predicted well by CCSD(T), typ-

ically within 10 cm−1, while the deviations exceed 20 cm−1 for the highest-energy inter-

monomer modes.

(iv) The accuracy of the CCSD(T) predicted anharmonic vibrational transitions de-

creases slightly for the overtones and combination bands. The combination bands and over-

tones between 3000 cm−1 and 6000 cm−1 are typically within 10 cm−1 of experiment, while

the deviations can exceed 50 cm−1 for the first OH stretching overtones located above 7000

cm−1, calculated within the standard VPT2 implementation.248 All of the (HF)2 overtones

and combination bands agree well with experimental spectra, with no computed transitions

differing by more than 20 cm−1 from experiment and only one transition differing by more

than 8 cm−1.

(v) The CCSD(T)/haQZ dissociation energies computed with VPT2 for these dimers

agree very well with experiment. The predicted D0 for (H2O)2 of 1084 cm−1 underestimates
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the experimental value by only 21 cm−1 and that for (HF)2 of 1060 cm−1 is only 2 cm−1 below

experiment. These results demonstrate the accuracy that can be realized for computing

vibrational properties of small clusters, using the CCSD(T) method in conjunction with

sufficiently large basis sets as well as an appropriate treatment of anharmonic effects with

VPT2.
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CHAPTER 4

BENCHMARK STRUCTURES AND HARMONIC VIBRATIONAL FREQUENCIES

NEAR THE CCSD(T) COMPLETE BASIS SET LIMIT FOR SMALL WATER

CLUSTERS: (H2O)n=2,3,4,5,6

A series of (H2O)n clusters ranging from the dimer to the hexamer have been char-

acterized with the CCSD(T) and the 2-body:Many-body CCSD(T):MP2 methods near the

complete basis set (CBS) limit to generate benchmark-quality optimized structures and

harmonic vibrational frequencies for these important systems. Quadruple-ζ correlation-

consistent basis sets that augment the O atoms with diffuse functions have been employed

in the analytic computation of harmonic vibrational frequencies for the global minima of

the dimer, trimer, tetramer and pentamer as well as the Ring, Book, Cage and Prism iso-

mers of the hexamer. Prior calibration [J. Chem. Phys., 139, 184113 (2013) and J. Chem.

Theor. Comput., 10, 5426 (2014)] suggests that harmonic frequencies computed with this

approach will lie within a few cm−1 of the canonical CCSD(T) CBS limit. These data are

used as reference values to gauge the performance of harmonic frequencies obtained with

other ab initio methods (e.g., LCCSD(T) and MP2) and water potentials (e.g., TTM3-F

and WHBB). This comparison reveals that it is far more challenging to converge harmonic

vibrational frequencies for the bound OH stretching modes in these (H2O)n clusters to the

CCSD(T) CBS limit than the free OH stretches, the n intramonomer HOH bending modes

and even the 6n−6 intermonomer modes. Deviations associated with the bound OH stretch-

Reproduced with permission from “Benchmark Structures and Harmonic Vibrational Frequencies
Near the CCSD(T) Complete Basis Set Limit for Small Water Clusters: (H2O)n = 2, 3, 4, 5, 6,”
J. Coleman Howard and Gregory S. Tschumper, J. Chem. Theory Comput. 11 (5), 2126–2136.
http://dx.doi.org/10.1021/acs.jctc.5b00225 Copyright c© 2015, American Chemical Society
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ing harmonic frequencies increase rapidly with the size of the cluster for all methods and

potentials examined, as do the corresponding frequency shifts relative to the monomer OH

stretches.

4.1 Introduction

Hydrogen bonding plays critical roles in a variety of biological and environmental

phenomena.3,5, 255,333–335 As the noncovalent interaction that binds together H2O molecules,

hydrogen bonding is ultimately responsible for the unique properties of water. Obtaining

reliable theoretical descriptions of the simplest water clusters is an essential step to under-

standing the complex hydrogen bonding dynamics in liquid water.336 To this end, ab initio

quantum mechanical (QM) wavefunction methods have provided valuable insight into the

structures and energetics of small water clusters.153

The water dimer is the smallest water cluster and has long served as a model for hydro-

gen bonding interactions since the first ab initio investigations into (H2O)2.
108–114,125,126,257

As a small model system, the (H2O)2 global minimum has been the focus of benchmark

electronic structure calculations,93,141,290 at levels of electron correlation typically too de-

manding for larger chemical systems. An accurate description of (H2O)2 is crucial in the

development of water potentials, as pairwise interactions are the dominant stabilizing force

in larger clusters.18,112,129,144,150,172,262–266 However, larger clusters offer insight into an im-

portant phenomenon missing in the dimer, hydrogen bonding cooperativity.18

The global minima for (H2O)n (n = 3 − 5) are characterized by cyclic homodromic

hydrogen-bonding networks (i.e., each H2O accepts and donates one hydrogen bond). En-

ergetics of these small, cyclic minima (see 4.1) have been examined at correlated levels in

detail.27–29,149,150,155–163,165,253 The efforts of Xantheas and coworkers84,129,131,193,337 have

been particularly important in establishing benchmark energetics and basis set convergence

patterns in these systems. Second-order Møller-Plesset perturbation theory (MP2)31 within

the “frozen-core” approximation is sufficient for calculating high-accuracy energetics for the
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lowest energy configurations of these small cyclic clusters, as the effect of correlating the

core electrons is of the same small magnitude but opposite sign of including higher-order

dynamical electron correlation in the valence space.152,253 Infrared vibrational spectra of the

neutral (H2O)m (m = 3 − 5) cyclic minima have been measured in the gas phase324,338 in

helium droplets,339,340 and also in solid matrix environments.341,342

When the hydrogen-bonding topology ceases to follow the homodromic pattern seen

for water trimer, tetramer and pentamer minima, MP2 is no longer sufficient for estab-

lishing benchmark-quality ab initio energies because the higher-order correlation effects can

be appreciable and quite different for each type of network.166 The water hexamer repre-

sents an important structural transition for water clusters. Six water molecules form the

smallest group for which 3-dimensional hydrogen bonding networks (see 4.2) possess lower

electronic energies than configurations exhibiting the 2-dimensional homodromic motif seen

in the trimer, tetramer and pentamer.84,166,172–174,176,177 (Note that “2-dimensional” here

refers to a planar or quasi-planar arrangement of the oxygen atoms.)

The first isolated 3-dimensional structure characterized experimentally was the “Cage”

form observed by Liu et al.175 CCSD(T) CBS limit energies166 and full-dimensional quan-

tum simulations54 of low-lying hexamer isomers suggested that the “Prism” form has a lower

electronic energy and should be nearly isoenergetic with the Cage after accounting for zero-

point vibrational energy (ZPVE). More recently both the Cage and the Prism have been

observed in broadband rotational spectra.123 The six-membered analog of the smaller ho-

modromic global minima is the higher-energy “Ring” structure in 4.2, for which IR spectra

have been recorded in liquid helium droplets167,339 and in matrix environments.341–343 Firm

assignment of vibrational transitions associated with (H2O)6 is more challenging not only

due to the increased size of the system but also due to the potential presence of multiple

isomers.122,344,345 Nevertheless, exciting progress continues to be made in the vibrational

spectroscopy of water clusters.324 In fact, the first Raman vibrational spectra of isolated

water clusters were reported in 2014.346
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While the literature contains a large volume of high-quality ab initio data for wa-

ter cluster energetics,153 computed vibrational frequencies of small water clusters at the

CCSD(T) level are scarce.236,252,347–349 Bowman and coworkers have made significant theo-

retical contributions, designing intermolecular ab initio potentials fit to CCSD(T) energies

and providing valuable insight into experimental spectra with coupled local mode mod-

els which include anharmonicity.121,122,236,347,350 Another ab initio-based water potential,

TTM3-F, has been applied to a range of water clusters from the dimer to the liquid phase.351

A reliable description of vibrational frequencies that can be systematically improved

and compared to experiment first requires a high-quality harmonic potential. A study of

(HF)2 and (H2O)2 found that anharmonic vibrational frequencies computed with CCSD(T)

and a selectively augmented quadruple-ζ basis set yields fundamental frequencies within a

few cm−1 of experiment for intramonomer modes.349 In this work, we compute benchmark

harmonic vibrational frequency values for the cyclic water trimer, tetramer and pentamer

global minima, as well as the Ring, Book, Cage and Prism isomers of the hexamer. In addi-

tion to CCSD(T) analytic harmonic frequencies,267 we use an accurate QM:QM approach348

based on the many-body expansion112 to obtain CCSD(T)-quality results analytically with

a larger correlation-consistent quadruple-ζ basis set. These current benchmark values are

compared to the results of several ab initio methods and two water potentials.

4.2 Theoretical Methods

Fully optimized geometries and harmonic vibrational frequencies for eight (H2O)m

(m = 2 − 6) minima (see 4.1 and 4.2) were computed at the MP2 level,31 employing Dun-

ning’s correlation-consistent57 cc-pVXZ (X=D,T,Q) basis set for hydrogen atoms and aug-

cc-pVXZ for the “heavy” atoms (i.e., oxygen). This application of the correlation-consistent

family of basis sets, hereafter referred to as haXZ, has been shown to provide dissociation

energies and geometries closer to the CBS limit for water clusters than their fully augmented

counterparts.21,94 For each (H2O)m isomer, optimal geometries and harmonic vibrational fre-
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quencies were also computed with the 2b:Mb CCSD(T):MP2 method (vide infra) and the

TTM3-F potential.351

All geometry optimizations and harmonic vibrational frequencies were computed with

Gaussian09,250 utilizing analytic gradients and Hessians for the MP2 and CCSD(T):MP2

methods. For the (H2O)5 and (H2O)6 clusters, MP2/haQZ vibrational frequencies were com-

puted by finite differences of gradients evaluated with MPQC249 at displacements generated

with PSI4.313 The CCSD(T) analytic gradients and Hessians needed for the CCSD(T):MP2

calculations were provided by CFOUR.248 Structures and harmonic frequencies for the TTM3-

F potential351 were computed via finite differences generated and evaluated in Gaussian09

using analytic gradients computed with a freely available copy of the potential.352 All com-

putations were performed in the “frozen core” approximation (i.e., the 1s-like core electrons

of O were not correlated in post-HF calculations). For optimized geometries, the maximum

absolute Cartesian force component never exceeds 2.5× 10−4 Eh a−10 .

To extend the computationally demanding CCSD(T) treatment of electron correlation

to larger basis sets, we have applied a QM:QM scheme, based on the traditional many-

body expansion for the interaction energy of weakly-bound clusters,112 which we refer to as

N -body:Many-body QM:QM.225–231,348 Here, the many-body expansion is carried out from

1-body (monomer) terms through N -body terms using a high-level QM method, and any

higher-order cooperativity in the cluster (> N -body) is captured with a less-demanding QM

method. While a reasonable estimate for the energy of a neutral cluster composed of m

fragments (E = E1 + E2 + · · · + Em) can sometimes be obtained by truncating the many-

body expansion after the inclusion of 2- or 3-body terms (e.g., E ≈ E1 + E2 + E3),
18,112,228

a much more accurate approximation can be realized by including the trailing terms with a

lower-level QM method.217,224,228,232,348

This N -body:Many-body (Nb:Mb) approach applied to a homogeneous or heteroge-

neous cluster composed of m fragments can be viewed as correcting a many-body expansion

truncated at order N by computing all higher-order (N + 1 through m) interactions with a
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lower level method, as in Equation 4.1.

EHi:Lo
Nb:Mb =

N∑
i=1

EHi
i +

m∑
j=N+1

ELo
j (4.1)

An alternative interpretation of the procedure is as an electron correlation correction, as

in Equation 2, where the cluster’s total supermolecular energy at a lower level of theory

(ELo) is corrected term-by-term with a more complete treatment of electron correlation in a

many-body expansion truncated at order N .

EHi:Lo
Nb:Mb = ELo +

N∑
i=1

(EHi
i − ELo

i ) (4.2)

The linear expressions in Equations 4.1 and 4.2 are easily differentiated to obtain analogous

expressions for the gradient and Hessian. Explicit expressions for the geometrical derivatives

have already been presented elsewhere.229,231,348

This study uses CCSD(T) as the “high-level” method to compute up through the

2-body (2b) terms and MP2 as the “low-level” method to capture all higher-order terms,

which defines the 2b:Mb CCSD(T):MP2 method. The 2b:Mb CCSD(T):MP2 technique was

applied to the computation of optimized geometries and harmonic vibrational frequencies of

(H2O)n clusters (n = 3− 6).348 With the haDZ basis set, 2b:Mb CCSD(T):MP2 optimized

structures and vibrational frequencies were virtually identical to canonical CCSD(T) results,

with a maximum deviation in the harmonic frequencies of less than 6 cm−1 and an average

absolute deviation less than 1 cm−1 for all normal modes in a set of 16 different water

clusters.348

In this work, we extend the 2b:Mb treatment to the larger haTZ and haQZ basis

sets. For all minima, 2b:Mb CCSD(T):MP2/haTZ and haQZ optimized geometries and

harmonic vibrational frequencies were computed. Since all of the QM:QM computations were

performed within the 2-body:Many-body approximation, CCSD(T):MP2 hereafter implies

2b:Mb CCSD(T):MP2.
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4.3 Results and discussion

4.3.1 Water cluster geometries

Since the vibrational frequencies of water clusters are sensitive to geometrical changes

(particularly for the OH stretching modes),252 we first briefly discuss the the basis set con-

vergence of the CCSD(T):MP2 geometries of in terms of the covalent bond lengths (R(OH))

and the hydrogen bond distances (R(O· · ·H)).

The R(OH) haDZ bond lengths are overestimated by 0.006 to 0.007 Å relative to

corresponding haQZ values for the dimer and trimer. In the larger clusters, the maximum

R(OH) deviations are very similar, but the deviations cover a much wider range for the clus-

ters with more hydrogen bonds (Prism and Cage). In most cases, the R(OH) haTZ deviations

relative to haQZ are roughly half the magnitude of the corresponding haDZ deviations.

The CCSD(T):MP2/haDZ optimized R(O· · ·H) distances are too long relative to

the haQZ values in every case, with the H-bond distances in the dimer and cyclic minima

overestimated by 0.01 Å to 0.02 Å. The haDZ deviations are larger in the 3-dimensional

hexamers. Maximum deviations in the Prism, Cage and Book R(O· · ·H) are 0.07 Å, 0.04 Å

and 0.03 Å. The larger haTZ basis set offers significant improvement in the intermonomer

separations, as the largest absolute deviation from the corresponding haQZ reference is only

0.004 Å (Cage). The basis set convergence of the R(OH) and R(O· · ·H) parameters can be

seen in more detail in Figure S1 of the Supporting Information.353

4.3.2 Harmonic Vibrational Frequencies

When a particular (H2O)n cluster coalesces from n monomers, a total of 6n− 6 new

low-energy vibrational modes are formed (ca. 10–1000 cm−1) that are predominantly of an

intermonomer nature. That leaves 3n higher-energy intramonomer vibrational modes: n

intramonomer bending vibrations (ca. 1600–1800 cm−1) and 2n OH stretching vibrations

(ca. 3200–3900 cm−1). The changes in the monomer OH stretching frequencies induced

by the formation of hydrogen bonds provide valuable spectral signatures for these water
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clusters. When these small H2O clusters form, the stretching frequencies of the OH groups

participating in the hydrogen bonds (i.e., the “bound OH” stretches or “H-bonded OH”

stretches) are shifted to substantially lower energies (on the order of 102 cm−1) relative to

the OH stretching frequencies of an isolated water monomer (ν1 = 3657 cm−1 and ν3 = 3756

cm−1).354 In contrast, the perturbations are much smaller (on the order of a few cm−1) if the

OH group is not participating in a hydrogen bond (i.e., the “free OH” stretches). The large

shift to lower energies of the bound OH stretches is commonly referred to as a “red shift.”

4.3.2.1 Basis Set Convergence

The accuracy of the CCSD(T):MP2 harmonic frequencies for these clusters was pre-

viously demonstrated for the haDZ basis set,348 where the largest deviations from canonical

CCSD(T) typically occurred for the lowest-energy OH stretching mode but never exceeded

a few cm−1. In the present study, it was feasible to compute canonical CCSD(T)/haTZ ge-

ometries and harmonic frequencies for the (H2O)3 and (H2O)4 clusters, The excellent agree-

ment between the canonical CCSD(T) and CCSD(T):MP2 vibrational frequencies clearly

extends to the larger haTZ basis set for which the frequencies never differ by more than 1

cm−1 for the trimer and 4 cm−1 for the tetramer. The average absolute deviation between

CCSD(T):MP2/haTZ harmonic frequencies and canonical CCSD(T) results for all of the

normal modes in these two clusters is only 0.9 cm−1. (All CCSD(T) and CCSD(T):MP2

unscaled harmonic vibrational frequencies computed with the haTZ basis set are provided

in the Supporting Information).353

The basis-set convergence of the CCSD(T):MP2 harmonic frequencies is consistent

with another study349 that examined the basis set convergence of the MP2 and CCSD(T)

harmonic vibrational frequencies for (H2O)2 and (HF)2. That work demonstrated that basis

sets of at least quadruple-ζ quality (with or without counterpoise corrections) are required

to obtain MP2 frequencies that are consistently within 10 cm−1 of the estimated CBS limit

values obtained from basis sets as large as aug-cc-pV6Z.

The absolute deviations of the CCSD(T):MP2/haDZ and haTZ frequencies relative
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to haQZ are plotted in 4.3 (all of which are provided in the Supporting Information).353 For

the dimer, the CCSD(T):MP2/frequencies are actually pure CCSD(T) frequencies computed

in Reference 349. Tabulated below the figure are the number of OH stretches (� symbols),

bending modes (× symbols) and intermonomer modes (© symbols). The deviations of the

harmonic OH stretching frequencies from haQZ values exceed 25 cm−1 with the haDZ basis

set and approach nearly 20 cm−1 with the haTZ basis set. None of the OH stretching

frequencies computed with the haTZ basis set lies within 10 cm−1 of the haQZ value. The

haTZ basis set does offer significant improvement over haDZ for intermonomer frequencies.

The maximum deviations in these modes with the haTZ basis set are typically less than half

the magnitude of the corresponding maximum deviations associated with the haDZ basis

set.

4.3.2.2 Performance of Other Electronic Structure Methods

In 4.4, harmonic vibrational frequencies of (H2O)n (n = 2−5) clusters computed with

MP2, LCCSD(T) and the CCSD(T) methods using double-, triple- and quadruple-ζ basis

sets are compared to the benchmark CCSD(T):MP2/haQZ frequencies. The deviations from

the reference values are plotted along the x-axis as vertical bars, with each bar corresponding

to a single harmonic frequency. Each row of 4.4 presents the results for a particular method

and basis set (labeled on the far right) within a particular (H2O)n cluster (labeled on the

far left). Within each of these rows, the results are further divided into the deviations for

intermonomer modes (blue bars on the top of each row), bending modes (green bars in the

middle of each row) and OH stretching modes (red bars at the bottom of each row).

For a given cluster in 4.4, the first 3 rows give the deviations for MP2/haDZ, MP2/haTZ

and MP2/haQZ values, respectively. The largest discrepancies between MP2 and the bench-

mark CCSD(T):MP2/haQZ frequencies occur for OH stretching frequencies. For example,

the very first two rows of red bars in 4.4 show that MP2/haDZ and MP2/haTZ computa-

tions underestimate the OH stretching frequencies by roughly 30 cm−1 for the dimer. With

the haQZ basis set (3rd row of red bars), the MP2 stretching frequencies are slightly closer
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to the reference values, but the largest deviations in this case are due to 2 OH stretches

overestimated by ca. 20 cm−1. For the intermonomer modes (blue bars at the top of each

row), the MP2 deviations are virtually indistinguishable for the haTZ and haQZ basis sets.

The average absolute deviation in the intermonomer modes of (H2O)2 is less than 5 cm−1

for MP2/haTZ and MP2/haQZ frequencies. The MP2 bending frequencies (green bars in

the middle of the each row) are consistently underestimated relative to CCSD(T) by 16 - 20

cm−1 in the dimer .

The MP2 results for (H2O)3, (H2O)4 and (H2O)5 indicate that the deviations from

CCSD(T) in the OH stretching frequencies (red bars) increase with cluster size. In particular,

the bound OH stretching modes are responsible for the largest discrepancies in clusters

larger than the dimer. For these (H2O)n clusters, where n = 3, 4, 5, previous comparison of

CCSD(T) and MP2 harmonic frequencies with the aug-cc-pVDZ basis set has shown that the

MP2 method overestimates the red shift of the hydrogen-bonded bound stretching modes.252

In 4.4, the n leftmost red bars on each MP2 row correspond to the deviations in bound OH

stretching frequencies for a given (H2O)n cluster (n > 2). (See Supporting Information353

for a complete list of harmonic frequencies.) In the trimer, tetramer and pentamer, the most

red-shifted OH stretching frequency is underestimated at the MP2/haQZ level by 33 cm−1,

55 cm−1 and 67 cm−1, respectively.

For the intermonomer modes (blue bars), the MP2 deviations increase more slowly

with cluster size compared to OH stretching modes (red bars). From the dimer to the pen-

tamer, the MP2/haQZ average absolute deviation only increases from 4 cm−1 to 9 cm−1 (and

from 5 cm−1 to 11 cm−1 with haTZ). In stark contrast, however, intermonomer frequencies

computed with the haDZ basis set are overestimated relative to the CCSD(T):MP2/haQZ

benchmark values by as much as 40 cm−1 in (H2O)5. The accuracy of MP2 water bending

frequencies remains consistent with increasing cluster size. Average and maximum absolute

deviations in these modes are between 16 cm−1 and 20 cm−1 for (H2O)3, (H2O)4 and (H2O)5

at the MP2/haQZ level.
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4.5 compares MP2 harmonic frequencies for the hexamer structures to benchmark

CCSD(T):MP2/haQZ values and is organized in the same manner as 4.4. The first four

rows of 4.5 give the frequency deviations for the Ring hexamer, a cyclic isomer analogous

to the global minimum configurations of (H2O)3, (H2O)4 and (H2O)5. The deviations of the

MP2 frequencies of the Ring are similar to those seen in (H2O)5. With each of the 3 basis

sets employed in the MP2 calculations, the average absolute deviation across all harmonic

frequencies (17 – 20 cm−1) is only 1 cm−1 larger in the (H2O)6 Ring than in the pentamer.

The MP2 deviations for each subset of normal modes (intermonomer with blue bars, bend

with green bars and OH stretches with red bars) are also very similar between the pentamer

and Ring structures, with the largest deviations corresponding to underestimated bound

stretching frequencies (far left red bars in each row).

The Book, Cage and Prism hexamers are not homodromic cyclic structures, instead

having 7, 8 and 9 hydrogen bonds (and bound stretching modes), respectively. Like the

cyclic minima, the largest differences between MP2 and CCSD(T) frequencies also occur

in the most red-shifted stretching modes. The most red-shifted OH stretching frequencies

computed for these 3 hexamer isomers at the MP2/haQZ level fall 79–88 cm−1 lower than the

current benchmark reference values. This discrepancy actually exceeds 100 cm−1 with the

haTZ basis set for the Cage isomer. For the bending modes and intermonomer modes, the

deviations between CCSD(T):MP2 and MP2 do not significantly increase for the hexamer

isomers relative to the cyclic pentamer. With the haQZ basis set, the average absolute

deviations for the bending frequencies are 16–17 cm−1, and the average absolute deviations

for the intermonomer modes range from 7–9 cm−1.

The CCSD(T)/aDZ bound stretching deviations in 4.5 are interesting because the

basis set incompleteness error in these modes is apparently less than the intrinsic error of the

MP2 method. For the most red-shifted OH mode in each hexamer, the CCSD(T)/aDZ values

are roughly 30–40 cm−1 closer to the benchmark reference frequencies than the MP2/haQZ

values. In addition, the intermonomer modes calculated at the CCSD(T)/aDZ level are
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closer to the reference values, with smaller average and maximum absolute deviation values

for every hexamer in 4.5. This is not the case for the free OH stretching modes, as the

CCSD(T)/aDZ harmonic frequencies are underestimated by more than 30 cm−1 in each

(H2O)6 isomer.

Harmonic vibrational frequencies have also been reported236 for (H2O)2,(H2O)3, (H2O)4

and the Prism isomer of (H2O)6 that were obtained numerically with a local treatment of

electronic correlation at the CCSD(T) level of theory, denoted LCCSD(T). The T0 approx-

imation355 was employed for the triple excitations in those computations. The deviations

between these LCCSD(T) harmonic frequencies and CCSD(T):MP2/haQZ values are also

shown in 4.4 and 4.5 below the MP2 results. The LCCSD(T) frequencies from Reference

236 were computed using fully-augmented aXZ basis sets. As such, the deviations of avail-

able canonical CCSD(T) frequencies computed with aXZ basis sets (from References 236

and 252) are also shown in the row(s) following the LCCSD(T) deviations. Together they

demonstrate that the largest deviations associated with the LCCSD(T) frequencies are not

due to the small differences in the basis set (vide infra).

For the dimer, the OH stretching frequencies computed with the LCCSD(T) method

compare favorably with the canonical CCSD(T) results obtained with the same basis set.

The maximum LCCSD(T)/aTZ deviation from the reference values is no larger than that for

CCSD(T)/aTZ. In fact, the average absolute deviation is actually of smaller magnitude for

the former than the latter. The LCCSD(T)/aQZ OH stretches for (H2O)2 are, on average,

within 5 cm−1 of the reference benchmark values. However, the largest deviation associated

with the LCCSD(T)/aQZ OH stretching modes in the dimer is due to the important bound

stretching mode that is too large by more than 13 cm−1. The free stretches at this level of

theory are all within 2 cm−1 of the CCSD(T)/haQZ values.

The LCCSD(T) frequencies of the trimer and tetramer show much larger deviations

relative to the benchmark CCSD(T):MP2/haQZ values. The maximum absolute deviations

for LCCSD(T)/aTZ and aQZ frequencies are more than twice what is seen for the same
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basis sets in (H2O)2. The LCCSD(T)/aTZ frequencies reported for (H2O)3 and (H2O)4

underestimate several intermonomer modes by more than 50 cm−1 (blue bars on the far

left). The aQZ basis set offers some improvement for these modes in the trimer, but the

largest deviation still approaches 50 cm−1. The LCCSD(T) method actually reproduces the

canonical CCSD(T) bending frequencies very well when computed with the same basis set,

always within 5 cm−1 for the clusters in 4.4.

The only LCCSD(T) values available for these hexamer isomers are the haTZ har-

monic frequencies of the Prism.236 This data helps show how the the LCCSD(T) deviations

corresponding to OH stretching modes (red bars) grow as the cluster size increases. The

largest deviations from the benchmark CCSD(T):MP2/haQZ stretching frequencies are due

to bound OH stretches (red bars to the far right of the LCCSD(T) rows in 4.4 and 4.5). The

maximum overestimation of these OH stretching frequencies increases from 33 cm−1 in the

trimer to 61 cm−1 in the tetramer with the aTZ basis set and to more than 100 cm−1 in the

Prism with the haTZ basis set. The LCCSD(T)/haTZ deviations in the other modes (green

and blue bars) of the Prism, however, are comparable to those seen for the smaller water

clusters.

For (H2O)n (n = 2−5) clusters, intramonomer frequencies computed with a modified

version356 of the Gaussian-3 composite method357 have also been reported in the literature.

The harmonic frequencies computed with this model chemistry, hereafter denoted G3*, re-

produce the CCSD(T):MP2/haQZ bending frequencies (green bars) to within ca. 10 cm−1

regardless of cluster size. The G3* OH stretching frequencies (red bars), on the other hand,

are consistently larger than the reference values, with the error increasing to nearly 100

cm−1 for the pentamer. No blue bars are plotted for the G3* method because intermonomer

frequencies were not reported.356

4.3.2.3 Comparison of Hydrogen Bond Induced Frequency Shifts

It is important to keep in mind that the deviations reported for the OH stretching

frequencies of these water clusters in Figures 4 and 5 (red bars) do not necessarily provide
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insight into the reliability of red shifts computed with the same method. For example, error

cancellation between the computed frequencies for the monomer and cluster could produce

an accurate red shift even when a method experiences large deviations for the absolute OH

stretching frequencies of a cluster.

The magnitude of the largest red shift has been calculated for each cluster by subtract-

ing the lowest-energy OH stretching frequency from ν3 of the H2O monomer computed at the

same level of theory. Note that application of the CCSD(T):MP2 scheme to a monomer is

simply a canonical CCSD(T) computation. As such, the benchmark CCSD(T):MP2/haQZ

red shifts are calculated relative to CCSD(T)/haQZ monomer frequencies. At this level of

theory, the magnitude of the largest red shift for each cluster ranges from 190 cm−1 for the

dimer to 640 cm−1 for the Prism hexamer. These benchmark values are listed at the bot-

tom of Figure 6, which shows the deviations of other methods from the reference maximum

red shifts. The large positive deviations associated with the MP2 method indicate that it

consistently overestimates the magnitude of the red shifts in these clusters by roughly 40–

120 cm−1. This trend is consistent with the MP2 data presented in Figures 4 and 5 where

the bound OH stretching frequencies were appreciably underestimated at the MP2 level of

theory (leftmost red bars in the MP2 rows).

In contrast, one sees in Figure 6 that the LCCSD(T) frequencies from Reference 236

underestimate the benchmark red shifts. With triple-ζ quality basis sets, the LCCSD(T)

deviation associated with the largest red shift exceeds 80 cm−1 for the tetramer and 130

cm−1 for the Prism. Again, this trend for the LCCSD(T) data in in Figure 6 is consistent

with the sizeable overestimation of the OH stretching frequencies seen in Figures 4 and 5

(rightmost red bars in the LCCSD(T) rows). The Supporting Information353 provides the

data needed to calculate every OH frequency shift for each cluster at each level of theory.

Regarding the basis set effects, it is interesting to note that the MP2/haTZ deviations

in the bound stretching modes are always larger than the deviations in haDZ or haQZ for

clusters larger than the dimer in 4.4 and 4.5. Examining the shifts in 4.6, the haDZ basis
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set underestimates the red shifts in these clusters, compared with triple-ζ and quadruple-ζ

basis sets in each method. Thus the use of the haDZ basis set slightly compensates for the

tendency of MP2 to overestimate the red shifts, producing somewhat smaller deviations than

the MP2/haTZ and MP2/haQZ maximum red shifts.

4.3.2.4 Performance of Water Potentials

The harmonic frequencies computed with two potentials designed by fitting to ab

initio data were also included for comparison in 4.7. The parameterization of the TTM3-F

potential351 is, in part, based on MP2/aDZ frequencies. The WHBB potential121,347 employs

an accurate semi-empirical 1-body potential358 along with fits to CCSD(T)/aTZ energies

and MP2/aTZ energies for the 2-body and 3-body potentials, respectively. In the WHBB

potential, TTM3-F is used for higher-order (beyond 3-body) interactions and long-range

interactions. Note that the construction of the WHBB potential is in some ways similar to the

2-body:Many-body CCSD(T):MP2 technique being used to generate our current benchmark

values. The WHBB harmonic frequencies used in this comparison were taken from References

236, 347 and 350.

The WHBB deviations from the benchmark reference harmonic frequencies for (H2O)2

are quite small. The maximum absolute deviation is less than 7 cm−1, corresponding to the

bound OH stretching mode. The intermonomer frequencies and bending frequencies are

within 5 cm−1 and 3 cm−1, respectively, of the reference data.

In 4.7, the results include two WHBB variants that are denoted 3b5 and 3b6, which

differ in the order of the polynomial expression for the 3-body interaction. Both forms of the

WHBB potential give overall good agreement with the CCSD(T):MP2/haQZ frequencies.

The largest change between the 3b5 and 3b6 variants is the shift in bound OH stretching

frequencies to lower energy, with the 3b6 form decreasing the average absolute deviation

from 30 cm−1 to 10 cm−1.

For larger clusters, the WHBB-3b5 harmonic frequencies overestimate the bound OH

stretches. The largest deviation from CCSD(T):MP2 bound stretches occurs in the hexamer
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Ring with one mode overestimated by more than 120 cm−1. This contrasts with the MP2

frequencies for which the largest deviations were associated with the non-cyclic hexamers.

It should be noted that among these hexamer isomers, the cooperative binding effects (i.e.,

beyond 2-body interactions) are largest in the cyclic Ring.18 Given the accuracy of this

potential for the dimer, the treatment of cooperative effects in WHBB is the most likely

source of these large discrepancies.

For the bending modes, the WHBB potential shows excellent agreement with the

benchmark values, with a maximum absolute deviation less than 12 cm−1 for the Ring

isomer. The WHBB intermonomer frequencies are only available for comparison in (H2O)3,

and these are similar to CCSD(T)/aTZ deviations. The TTM3-F vibrational frequencies

show much larger deviations. This is not surprising since the potential was parameterized

based on MP2/aDZ values. As with the MP2 values, the bound OH stretching frequencies

are shifted too low. The largest deviation actually occurs in the (H2O)3 with the lowest

bound stretch predicted over 240 cm−1 too low. The TTM3-F deviations for the larger

clusters are all less than 200 cm−1.

4.4 Conclusions

The 2b:Mb CCSD(T):MP2 method has been applied to water clusters ranging from

(H2O)3 to (H2O)6 with basis sets as large as haQZ. Based on results for (H2O)2 and (HF)2
349

and prior calibration,348 we expect these harmonic vibrational frequencies to lie close to the

CCSD(T) CBS limit. These benchmark-quality harmonic vibrational frequencies served as

a reference point to gauge the performance of other harmonic frequencies reported in the

literature from other high-level ab initio computations and various water potentials.

MP2 harmonic vibrational frequencies of these water clusters depart significantly

from the current benchmark values, particularly for the red-shifted hydrogen-bonded OH

stretching modes, where MP2/haQZ computations underestimate the frequencies by more

than 80 cm−1 and the corresponding red shifts by more than 100 cm−1 in the 3-dimensional
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water hexamer structures. CCSD(T) and CCSD(T):MP2 harmonic frequencies computed

with modest double-ζ basis sets are in better agreement with benchmark reference values

than MP2 frequencies computed with quadruple-ζ basis sets. Compared to the bound OH

stretches, MP2 intermonomer, bending and free OH stretching harmonic frequencies com-

puted with the haQZ basis set are in much better agreement with the benchmark values,

never differing by more than 25 cm−1, 20 cm−1 and 21 cm−1 respectively.

For n ≥ 3, LCCSD(T) harmonic frequencies from the literature deviate substantially

from the benchmark values in both intermonomer modes and bound OH stretches due to

underestimated red shifts. We plan to investigate how the definition of orbital domains and

the degree of electron correlation can be improved to obtain harmonic frequencies in better

agreement with canonical CCSD(T) values for these clusters.

The values calculated in this work should guide development and refinement of water

potentials. In particular, comparison between CCSD(T)-quality harmonic vibrational fre-

quencies and those from two semi-empirical potentials (TTM3-F and WHBB) suggests that

the treatment of cooperative effects in water potentials warrants further investigation.
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Figure 4.1. (H2O)n minima (n = 2− 5) examined in this study
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(a) Ring [S6]

(b) Book [C1]

(c) Cage [C1]

(d) Prism [C1]

Figure 4.2. (H2O)6 minima examined in this study with point group symmetries in square
brackets
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Figure 4.3. Deviations between 2b:Mb CCSD(T):MP2/haQZ harmonic vibrational
frequencies and corresponding haDZ values (top) and haTZ values (bottom). The
connecting lines only serve as visual aids. (The number of OH stretches, bends and
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CHAPTER 5

ASSESSING THE ACCURACY OF SOME POPULAR DFT METHODS FOR

COMPUTING HARMONIC VIBRATIONAL FREQUENCIES OF WATER CLUSTERS

A wide range of density functional theory (DFT) methods (37 altogether), including

pure, hybrid, range-separated hybrid, double-hybrid and dispersion-corrected functionals,

have been employed to compute the harmonic vibrational frequencies of eight small water

clusters ranging in size from the dimer to four different isomers of the hexamer. These

computed harmonic frequencies have been carefully compared to recently published bench-

mark values that are expected to be very close to the CCSD(T) complete basis set (CBS)

limit. Of the DFT methods examined here, ωB97 and ωB97X are the most consistently

accurate, deviating from the reference values by less than 20 cm−1 on average and never

more than 60 cm−1. The performance of double-hybrid methods including B2PLYP and

mPW2-PLYP is only slightly better than more economical approaches, such as the M06-L

pure functional and the M06-2X hybrid functional. Additionally, dispersion corrections offer

very little improvement in computed frequencies.

5.1 Introduction

The vibrational frequencies of a water molecule are particularly sensitive to the sur-

rounding environment. Consequently, vibrational spectroscopy represents a powerful tool

for investigating both molecular structure and dynamics of aqueous systems from the gas to

Reprinted with permission from “Assessing the Accuracy of Some Popular DFT Methods for Computing
Harmonic Vibrational Frequencies of Water Clusters” J. Coleman Howard, Jordan D. Enyard and Gregory
S. Tschumper, J. Chem. Phys. 143 (21), 214103. http://dx.doi.org/10.1063/1.4936654 Copyright c© 2015,
American Institute of Physics

112



the condensed phases.336,359–366 However, a unique assignment of the spectra measured for

water under different conditions and in different environments is often nontrivial due to the

dynamical nature of the underlying hydrogen-bonding network in which both the number

and the strength of the hydrogen bonds continually fluctuate.367 The difficulty in making

an unambiguous assignment of the observed spectroscopic features has led to numerous con-

troversies, including those about the nature of association bands,368–370 and the relationship

between structural order and spectral intensity at the air/water interface.365,371–375

Since the advent of computer simulations, a myriad of molecular models for water

based on either force fields (including different degrees of empiricism) and ab initio represen-

tations have been proposed. Although a quantitative assessment of the accuracy of several

common PESs for water has been reported based on the many-body expansion of the inter-

action energy,240 a quantitative assessment of the associated spectroscopic accuracy remains

elusive. The scaling of accurate wavefunction methods necessarily limits their application

for computing benchmark-quality properties of water clusters, useful for calibrating more

economical approaches including water PESs and density functional theory (DFT) methods.

DFT calibration studies on water clusters52,179,376–383 often focus on interaction or binding

energies since vibrational frequencies computed with the “gold standard” CCSD(T) method

are rare in the literature.236,252,347–349 Recently, however, accurate ab initio reference har-

monic frequencies for small water clusters have been obtained through 2-body:Many-body

CCSD(T):MP2 calculations225,226,228–231,348 with the aug-cc-pVQZ basis set for O and cc-

pVQZ for H,384 which are expected to lie within a few cm−1 of the CCSD(T) complete

basis set (CBS) limit. In this work, we compute harmonic vibrational frequencies of small

water clusters with a large number of DFT methods for comparison with the benchmark

2-body:Many-body CCSD(T):MP2 values.

The water clusters examined in this study are shown in Figure 1. The global minima

of (H2O)n (n = 3 − 5) consist of cyclic structures with each water monomer donating and

receiving one hydrogen bond.153 The “free” hydrogens not participating in hydrogen bonds
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alternately lie above and below the quasi-plane composed of oxygen atoms. In terms of

electronic energy, Figures 1(f)-1(h) show the 3 most stable hexamer isomers in decreasing

electronic energy, with the Cage and Prism essentially isoenergetic.166 In helium and neon

expansions, the Prism:Cage:Book ratio was observed to be 1:1:0.25,123 while only the Cage

has been observed in argon expansions.123,175 In addition, at temperatures over 150 K,

the Book isomer is predicted to become the most prevalent hexamer isomer,54 while cyclic

structures with six hydrogen bonds have lower Gibbs free energies above 200 K.28 Since the

isomer compositions are so dependent on experimental conditions, an accurate theoretical

treatment is crucial to distinguishing among them.

5.2 Computational Methods

For eight isomers of (H2O)n clusters (n = 2 − 6), full geometry optimizations and

harmonic frequency computations were performed with the analytic gradients and Hessians

available in the Gaussian09 software package.250 For each optimized minimum, the maximum

Cartesian force component was less than 1×10−5 Eh a0
−1. For the numerical integrations, the

computations implemented a pruned grid of 99 radial shells and 590 angular points per shell.

In one case (the M11 (H2O)5 harmonic frequency computation), a larger grid of 150 radial

shells and 974 points per shell was needed to remove a spurious imaginary frequency. Dun-

ning’s correlation-consistent57 basis sets were used with diffuse functions added to only oxy-

gen atoms (aug-cc-pVXZ for O and cc-pVXZ for H). These basis sets are hereafter referred to

as haXZ basis sets and, in this study, include haDZ and haTZ, with 33 and 74 basis functions

for a single water molecule, respectively. A variety of DFT methods were employed, includ-

ing M06-L,385 M11-L,386 N12,387 MN12-L,388 PBE,389 BLYP,390–392 SOGGA11,393 B97D,394

B3LYP,391,392,395 X3LYP,396 M06-2X,397 PBE0,398 SOGGA11-X,399 ωB97,400 ωB97XD,401

CAM-B3LYP,402 LC-ωPBE,403–405 MN12-SX,406 M11,407 HSEH1PBE,408–413 HISSbPBE,414

N12-SX,406 B2PLYP415 and mPW2-PLYP.416 In addition, the same methods were used in

conjunction with a dispersion correction using Grimme’s original D3 damping function417
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for those functionals with D3 parameters as defined in Gaussian09.250

5.3 Results and discussion

For each (H2O)n isomer, the DFT harmonic vibrational frequencies computed with

the haTZ basis sets were compared to the corresponding benchmark values from Reference

384. All DFT frequencies, including those obtained with the smaller haDZ basis set, are

reported in the Supplementary Material.418 The average and maximum absolute deviations

(AvgADs and MaxADs, respectively) were determined by directly comparing the DFT haTZ

and benchmark frequencies when ordered by energy because the character of the normal

modes, particularly the low-energy intermolecular vibrations, can vary appreciably across

the range of DFT methods utilized here. As such, it is possible the deviations could increase

slightly in some cases if the order of the DFT vibrational modes is different than that of the

reference computations. For the important redshifted “bound” OH stretching frequencies

which are useful in differentiating water cluster isomers, we have verified that in ordering

those vibrational modes by energy, the normal mode character of each bound stretching

vibration remains consistent across all methods used here.

The AvgADs and MaxADs are collected in Table 1 and Figure 2 along with the

corresponding MP2/haTZ deviations from Reference 384 The functionals are grouped into 4

classes according to their functional type. From top to bottom in Table 1 and left to right in

Figure 2, these groups are the pure functionals, hybrid functionals, range-separated hybrids

and the double-hybrid functionals. For easy reference, the smallest AvgAD and MaxAD

values in Table 1 associated with each functional class for each isomer are in bold font.

5.3.1 Pure Functionals

The first 4 rows in Table 1 give the AvgAD values for the pure functionals. These are

followed by variants which include long-range corrections (LC),419 Grimme’s D3 dispersion

corrections (D3)417 or both. For these clusters, M06-L is clearly the most accurate pure

functional considered here. The AvgAD values all fall between 18 and 22 cm−1, whether or
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not dispersion corrections are included. Notice that the dispersion correction has essentially

no effect on the M06-L AvgAD values (≤ 1 cm−1). The MaxAD values in Table 1 show that

the M06-L and M06-L-D3 deviations reach a maximum of 110 cm−1 for the (H2O)6 Book

isomer, which still represents the best performance of any of the pure functionals, as seen

by the first group of bars in the right panel of Figure 2. The M06-L functional’s accuracy

for computing binding energies of water clusters has been noted previously.380 In terms of

the different types of vibrational modes, the M06-L functional has the lowest AvgAD values

of the pure functionals in each case of intermolecular modes (11 cm−1), bending modes (4

cm−1) and OH stretching modes (46 cm−1). An analysis of the AvgAD and MaxAD values

for different types of modes (intermolecular, bending and OH stretching) can be found in

the Supplementary Material.418

The M11-L functional is the second-most accurate of these pure functionals, with

AvgAD values between 34 cm−1 and 37 cm−1. The rest of the pure functionals in Table 1

exhibit larger deviations. For these other methods, the AvgAD values are never smaller than

43 cm−1 for clusters larger than the dimer. The largest deviations are seen for the PBE and

BLYP functionals, where the AvgAD exceeds 70 cm−1 even for the smallest cluster. As seen

in Table 1, the AvgAD for PBE harmonic frequencies reaches 100 cm−1 for the tetramer and

larger isomers, while maximum deviations exceed 500 cm−1 for the Book and Prism isomers

(Figure 2).

We note that there are three additional DFT methods tested with which we were

unable to locate all of the minima. These include SOGGA11, B97D3 and LC-B97D3. In

these cases, stationary points corresponding to some of the cyclic structures in Figure 1 were

saddle points with 1 or more imaginary frequencies that remained even when more dense

numerical integration grids were employed. The data for these functionals can be found in

the Supplementary Material418 even though they’ve been omitted from Table 1 and Figure

2.
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5.3.2 Hybrid Functionals

The AvgAD and MaxAD values for the hybrid functionals investigated here are in-

cluded in the second section of Table 1, as well as the second section of Figure 2. These

include B3YLP, X3LYP, M06-2X and PBE0. In the case of the hybrid functionals, a Min-

nesota functional once again is the most accurate, with M06-2X yielding AvgAD values

between 13 and 22 cm−1 for each isomer, regardless of the dispersion treatment. For the

Book, Cage and Prism isomers, the M06-2X MaxADs (142 cm−1 – 162 cm−1) are actually

much larger than the corresponding M06-L values. As with the M06-L harmonic frequencies,

the M06-2X AvgAD values are hardly affected by the dispersion treatment, as the largest

difference in M06-2X and M06-2X-D3 values is less than 1 cm−1. The M06-2X functional

is particularly effective for computing the intermolecular frequencies, as the M06-2X and

M06-2X-D3 AvgAD values for these modes (6 cm−1) is the lowest of all methods tested here.

A breakdown of the intermolecular, bending and stretching frequencies can be seen in Table

S1 of the Supplementary Material.

The B3LYP and X3LYP functionals produce harmonic frequencies near the accuracy

of M06-2X in (H2O)2, but the AvgAD values quickly increase with cluster size, reaching 36

cm−1 and 45 cm−1, respectively, for the (H2O)5 global minimum. The AvgAD values for

B3LYP and X3LYP are always within 2 cm−1 of each other, except in the case of (H2O)5.

The PBE0 functional gives the best agreement with the reference values for (H2O)2 with an

AvgAD of 18 cm−1 but becomes less accurate with cluster size. For each cluster larger than

(H2O)3, the AvgAD exceeds 40 cm−1 for the PBE0 harmonic frequencies. For the B3LYP

and PBE0 functionals, the D3 correction consistently increases the AvgAD values slightly

for each isomer. The SOGGA11-X hybrid functional is an interesting case. This is the least

accurate hybrid functional for the harmonic frequencies of (H2O)2 with an AvgAD just below

30 cm−1. The SOGGA11-X AvgAD values decrease for the larger clusters, becoming the

most accurate functional for (H2O)5 and the Ring and Book (H2O)6 isomers. The SOGGA11-

X MaxAD values in Table 1 are remarkably consistent across the 8 isomers, always from 66
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cm−1 to 68 cm−1. For the Book, Cage and Prism isomers, the MaxAD values of all other

hybrid functionals are more than double the corresponding SOGGA11-X values, as can be

seen in Figure 2.

5.3.3 Range-separated Hybrids

The third block of Table 1 gives the results for the range-separated hybrid functionals.

The first 3 range-separated hybrid functionals in Table 1 are the ωB97 functionals of Head-

Gordon and coworkers. ωB97X differs from ωB97 by including a small amount of short-range

Hartree-Fock exchange, and ωB97XD includes Grimme’s D2 dispersion correction.394 These

three functionals demonstrate consistent accuracy for these small water clusters. The ωB97

and ωB97X AvgADs range from 13 cm−1 to 20 cm−1. The inclusion of dispersion corrections

typically increases the deviations for these water clusters. However, the ωB97XD method

tends to yield more reliable binding energies400,401,420 and geometries421 for a more diverse

set of hydrogen-bonded complexes and noncovalent interactions. In the more compact Prism

and Cage (H2O)6 structures, the ωB97X AvgAD values of 13 cm−1 and 15 cm−1, respectively,

are the lowest of any of the DFT methods considered in this study, excluding double-hybrid

methods. In addition, the AvgAD values of the OH stretching modes for these 3 DFT

methods range from 30 cm−1 to 37 cm−1, while that value is never smaller than 40 cm−1 for

other DFT methods considered in this work, except for mPW2-PLYP (see Table S1 in the

Supplementary Material). Table 1 shows that the smallest MaxAD values for every cluster

larger than (H2O)2 are given by either ωB97 or ωB97X. On this metric, these functionals

even outperform MP2 relative to the benchmark harmonic frequencies.

Also worth noting in this group of functionals is M11, for which the harmonic fre-

quencies produce AvgAD values between 19 and 21 cm−1, comparable to the accuracy of

M06-L and M06-2X, while maximum deviations are below 150 cm−1 for the (H2O)6 isomers.

The performance of the other range-separated hybrids is uneven. For example, CAM-B3LYP

has the smallest AvgAD value for (H2O)2 apart from the double-hybrid methods. However,
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the AvgAD increases more than twofold for the water tetramer. As indicated by Figure 2,

the CAM-B3LYP MaxAD value across all 8 isomers is the second-largest among the range-

separated hybrids.

5.3.4 Double-hybrid Functionals

The double-hybrid functionals B2PLYP and mPW2-PLYP compose the last class

of functionals. The B2PLYP harmonic frequencies show consistent accuracy with no Av-

gAD values above 23 cm−1, but this performance is no better than many of the more com-

putationally efficient methods of the other functional categories. The B2PLYPD method

demonstrates good accuracy for the water dimer. Of the other classes of functionals, only

CAM-B3LYP has a smaller AvgAD for (H2O)2 than the B2PLYP value of 17 cm−1. The

accuracy of B2PLYPD decreases with cluster size as the AvgAD values exceed 30 cm−1 for

each cluster larger than (H2O)3 except for the Prism. With the D3 correction, the har-

monic frequencies are improved relative to B2PLYPD, and the AvgAD values do not exceed

26 cm−1. However, this is only an improvement over B2PLYP for one isomer, the water

tetramer mimimum. Both B2PLYPD and B2PLYP-D3 produce harmonic frequencies with

MaxAD values larger than B2PLYP for every isomer.

The double-hybrid mPW2-PLYP functional produces harmonic frequencies in better

agreement with the reference values by a few cm−1 for each isomer, never more than 20

cm−1. These AvgAD values are competitive with the MP2/haTZ values listed at the bottom

of Table 1. When considering all of the vibrational frequencies of all the isomers in this study,

the mPW2-PLYP AvgAD value is actually smaller than that of MP2 (last section in Figure

2). The maximum deviations for mPW2-PLYP are smaller than those from MP2 compu-

tations for every isomer. The addition of a D2 dispersion correction in the mPW2-PLYPD

method only increases the AvgAD and MaxAD values, but to a lesser extent than observed

for B2PLYP. When looking at the different types of vibrational modes, the most accurate

double-hybrid depends on the nature of the mode. For intermolecular frequencies, B2PLYP
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is slightly more accurate than mPW2-PLYP with an AvgAD of 10 cm−1 across all isomers in

this study. However, the bending and stretching vibrational frequencies are computed more

accurately with the mPW2-PLYP functional (see Table S1 in the Supplementary Material).

5.4 Conclusions

37 DFT methods were employed to compute harmonic vibrational frequencies of

(H2O)n clusters ranging from 2 to 6 water molecules. A variety of functionals including

pure functionals, hybrids, range-separated hybrids and double-hybrid functionals along with

variants including empirical dispersion corrections were tested for their accuracy in compar-

ison with benchmark harmonic vibrational frequencies expected to lie close to the CCSD(T)

CBS limit.

Among the pure functionals, the M06-L functional is the most accurate, yielding

harmonic vibrational frequencies within 20 cm−1 of the reference values on average. M06-2X

is the most consistently accurate of the hybrid functionals investigated here, typically on

par with the pure M06-L functional. Among the hybrids, SOGGA11-X demonstrates the

worst agreement with the benchmark values for (H2O)2 but yields frequencies with maximum

absolute deviations always from 66 cm−1 to 68 cm−1, less than half of what is seen for the

other hybrid functionals in the Book, Cage and Prism (H2O)6 isomers.

Two range-separated hybrid functionals perform the most consistently of all methods

in this study, ωB97 and ωB97X, with AvgAD values never exceeding 20 cm−1 for any of

the water cluster isomers. For (H2O)3 and larger clusters, the smallest MaxAD value of any

method in this study is always that of ωB97 or ωB97X (< 60 cm−1). In comparison, the

MP2 harmonic frequencies exhibit MaxAD values exceeding 80 cm−1 for every cluster larger

than (H2O)4. The ωB97 and ωB97X deviations are also much smaller than those for some

flexible water potentials parameterized with ab initio data.384 However, a paper appeared

during the preparation of this manuscript that demonstrated the outstanding performance of

the MB-pol potential, which deviates from the reference values by only 11 cm−1 on average
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(a) (H2O)2 (b) (H2O)3 (c) (H2O)4

(d) (H2O)5 (e) Ring (f) Book

(g) Cage (h) Prism

Figure 5.1. (H2O)n minima (n = 2− 6) examined in this study

(AvgAD) and never by more than 50 cm−1 (MaxAD).422

Of the two double-hybrid DFT methods investigated, B2PLYP and mPW2-PLYP,

the mPW2-PLYP frequencies are in better agreement with the CCSD(T)-quality reference

data, with accuracy comparable to that of MP2 computations. However, this accuracy is

not significantly better than many of the more economical functionals examined here. The

empirical dispersion corrections applied to the functionals in this study generally have a very

small effect on AvgAD values and, in most cases, only slightly increase the deviations from

the reference harmonic frequencies.

Acknowledgments

This material is based upon work supported by the National Science Foundation

under Grant numbers EPS-0903787 and CHE-1338056. The authors would also like to thank

the Mississippi Center for Supercomputing Research for providing computational resources.

The authors also thank Prof. Francesco Paesani and Greg Medders from the University of

California, San Diego for helpful comments and suggestions.

121



Table 5.1. Average absolute deviations (in cm−1) of DFT harmonic frequencies computed
with the haTZ basis set from benchmark harmonic frequencies of (H2O)n clusters
(n = 2− 6). Horizontal lines separate the methods from top to bottom into classes of pure
functionals, hybrid functionals, range-separated hybrids, double-hybrid functionals and
MP2 values. The smallest values within each class for each isomer appear in bold.

Functional (H2O)2 (H2O)3 (H2O)4 (H2O)5 Ring Book Cage Prism
M06-L 18 22 20 20 18 19 20 18
M11-L 36 37 35 34 36 33 34 34
N12 32 57 66 69 69 65 58 59
MN12-L 48 43 50 48 48 49 49 50
BLYP 75 80 83 84 81 79 74 80
PBE 71 96 105 106 103 102 95 94
B97D 53 67 79 81 76 75 67 60
M06-L-D3 18 21 19 19 19 18 19 17
LC-B97D 45 54 57 58 59 59 61 63
PBE-D3 72 96 107 109 104 106 99 90
BLYP-D3 76 81 85 84 80 83 81 74
B3LYP 22 30 34 36 35 33 28 26
X3LYP 21 29 34 45 36 34 29 26
M06-2X 19 13 19 21 22 20 18 19
PBE0 18 32 41 44 44 40 33 27
SOGGA11-X 29 24 20 19 18 19 19 20
B3LYP-D3 24 31 35 37 36 36 32 28
M06-2X-D3 19 13 19 20 22 20 18 19
PBE0-D3 20 33 42 45 44 43 36 30
ωB97 18 20 17 16 16 16 15 14
ωB97X 19 19 18 19 19 17 15 13
ωB97XD 22 20 25 25 24 24 21 17
CAM-B3LYP 16 29 35 37 38 35 31 27
LC-ωPBE 20 21 27 28 29 25 20 19
MN12-SX 35 33 38 36 35 36 37 38
M11 20 19 21 21 19 20 21 20
HSEH1PBE 20 37 43 45 44 43 37 31
HISSbPBE 45 39 34 35 36 34 32 32
N12-SX 35 29 40 43 44 38 32 29
B2PLYP 13 18 21 23 23 22 18 16
mPW2-PLYP 10 14 18 20 20 18 14 11
B2PLYPD 17 27 31 32 31 31 28 24
B2PLYP-D3 14 20 19 26 25 25 22 19
mPW2-PLYPD 12 20 25 26 26 25 21 17
MP2 10 13 17 18 18 18 16 14
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Table 5.2. Maximum absolute deviations (in cm−1) of DFT harmonic frequencies computed
with the haTZ basis set from benchmark harmonic frequencies of (H2O)n clusters
(n = 2− 6). Horizontal lines separate the methods from top to bottom into classes of pure
functionals, hybrid functionals, range-separated hybrids, double-hybrid functionals and
MP2 values. The smallest values within each class for each isomer appear in bold.

Functional (H2O)2 (H2O)3 (H2O)4 (H2O)5 Ring Book Cage Prism
M06-L 55 90 104 105 104 110 103 87
M11-L 74 76 126 134 141 146 152 172
N12 57 136 235 257 263 283 287 318
MN12-L 92 105 140 153 151 150 178 167
BLYP 224 268 327 347 351 360 340 401
PBE 218 318 428 462 469 501 487 516
B97D 177 214 320 343 340 359 301 312
M06-L-D3 54 89 102 105 104 110 102 86
LC-B97D 104 143 214 249 263 263 191 225
PBE-D3 218 320 436 474 477 522 516 521
BLYP-D3 221 273 342 355 355 390 406 395
B3LYP 72 95 138 155 162 160 145 143
X3LYP 67 93 138 176 165 164 151 148
M06-2X 36 35 64 91 102 142 162 158
PBE0 30 80 148 173 181 191 181 180
SOGGA11-X 68 65 67 67 68 68 67 68
B3LYP-D3 71 102 144 161 165 177 178 174
M06-2X-D3 36 35 62 90 103 141 160 155
PBE0-D3 29 83 151 178 184 202 200 201
ωB97 28 34 46 48 51 57 56 43
ωB97X 39 38 40 43 48 53 50 40
ωB97XD 47 54 50 49 54 73 68 53
CAM-B3LYP 41 81 135 156 166 169 165 161
LC-ωPBE 50 45 68 85 94 95 88 87
MN12-SX 74 94 117 119 116 118 122 128
M11 57 52 67 79 86 109 144 133
HSEH1PBE 42 98 159 181 188 199 193 192
HISSbPBE 125 124 127 127 127 127 126 125
N12-SX 82 80 81 107 118 120 113 109
B2PLYP 44 60 89 103 108 110 104 99
mPW2-PLYP 19 34 64 78 84 84 79 72
B2PLYPD 56 77 124 139 141 152 139 136
B2PLYP-D3 46 66 102 115 119 127 124 118
mPW2-PLYPD 27 62 88 103 108 114 104 99
MP2 29 45 72 83 87 97 105 98
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CHAPTER 6

CONCLUSIONS

The work presented here has focused on the computation of high-accuracy molecu-

lar properties with ab initio wavefunction methods, particularly vibrational frequencies and

dissociation energies of small hydrogen-bonded clusters. It was demonstrated that CCSD(T)-

quality geometries and harmonic frequencies could be computed efficiently through a many-

body approach via the N -body:Many-body QM:QM technique. For (HF)n and (H2O)n

(n = 3 − 6) clusters, 2-body:Many-body CCSD(T):MP2 optimized geometries were essen-

tially identical to those from canonical CCSD(T). When applied to harmonic vibrational

frequencies, 2-body:Many-body CCSD(T):MP2 values differed from CCSD(T) results by an

average of only 0.8 cm−1 for all water clusters examined. In addition, the 2-body:Many-body

frequencies were obtained on a single node over 100 times faster than CCSD(T) computations

for (H2O)6 isomers. The independent nature of the many-body calculations could further

increase this speedup to a thousandfold.

The research here has also used the (H2O)2 and (HF)2 dimers to investigate the basis

set convergence of harmonic vibrational frequencies with basis sets as large as aug-cc-pV6Z.

This project served the purposes of both establishing benchmark values for these systems

and also determining the most economical basis sets for computing harmonic frequency

values that lie near the complete basis set (CBS) limit. It was determined that a basis set

of at least quadruple-ζ quality was needed to yield values within ca. 10 cm−1 of the CBS

limit. When the haQZ basis set was employed in conjunction with CCSD(T) and VPT2 to

compute anharmonic vibrational frequencies, it was demonstrated that this approach could

predict fundamental frequencies to within a few cm−1 of experimental values for both (HF)2

126



and (H2O)2. In addition, dissociation energies calculated within this approach also were in

excellent agreement with experiment, as the errors relative to experiment were only 21 cm−1

and 2 cm−1 for (H2O)2 and (HF)2, respectively.

Having established the reliability of the 2-body:Many-body CCSD(T):MP2 approach

as well as the basis set convergence trends in harmonic frequency computations, the conclu-

sions from the previous studies were combined to establish an effective strategy for computing

benchmark harmonic frequency values for a series water clusters up to the size of the water

hexamer. 2-body:Many-body CCSD(T):MP2/haQZ values were computed for 8 water clus-

ter isomers and used to calibrate the accuracy of other ab initio methods (LCCSD(T) and

MP2), ab initio-based water potentials and, lastly, a variety of DFT methods. When compar-

ing other ab initio methods to the benchmark values, an interesting result was that CCSD(T)

computations with small basis sets were actually in better agreement with the benchmark

data when compared to MP2/haQZ computations. LCCSD(T) harmonic frequencies showed

much larger deviations, particularly for bound OH stretches and intermonomer modes. Nei-

ther of these methods yielded satisfactory red shifts for the bound stretches as MP2 and

LCCSD(T) overestimated and underestimated their magnitudes, respectively. For the two

water potentials tested (TTM3-F and WHBB), the WHBB values were in much better agree-

ment with the reference data. However, the performance of that potential deteriorated with

increasing cluster size, likely reflecting an inadequate description of many-body effects. For

the DFT methods investigated, the ωB97 and ωB9X functionals were the most consistently

accurate across all water cluster isomers, comparable to the accuracy of MP2. Also encour-

aging was the performance of the M06-L functional, which, as a pure functional, offers a

very attractive accuracy-to-cost ratio.

What is perhaps most important in the work presented here is that it establishes a

clear strategy for efficiently computing reliable properties of clusters that will be used to

predict the results of experiments that have not yet been performed and also to aid in the

interpretation of experimental data where robust theory is needed. One example is in the vi-
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brational spectra of water clusters, where assignment of spectral features can be challenging.

With the N -body:Many-body QM:QM approach to compute harmonic vibrational frequen-

cies and an understanding of what is required to compute accurate anharmonic vibrational

frequencies with vibrational perturbation theory, all of the tools needed are present to ex-

tend ab initio wavefunction methods to larger chemical systems, with a level of accuracy

previously unattainable.
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[38] P. Hobza and J. Šponer, Chem. Rev. 99, 3247 (1999)

[39] M. Sinnokrot, E. Valeev, and C. Sherrill, J. Am. Chem. Soc. 124, 10887 (2002)

[40] B. W. Hopkins and G. S. Tschumper, J. Phys. Chem. A 108, 2941 (2004)

[41] E. J. Carrell, C. M. Thorne, and G. S. Tschumper, J. Chem. Phys. 136, 014103 (2012)

[42] K. E. Riley and P. Hobza, WIREs Comput. Mol. Sci. 1, 3 (2011)

[43] E. G. Hohenstein and C. D. Sherrill, WIREs Comput. Mol. Sci. 2, 304 (2012)

131



[44] C. D. Sherrill, in Reviews in Computational Chemistry, Vol. 26, edited by K. B. Lip-
kowitz and T. R. Cundari (Wiley-VCH, Inc., Hoboken, NJ, 2009) pp. 1–38

[45] K. E. Riley, M. Pitonák, P. Jurecka, and P. Hobza, Chem. Rev. 110, 5023 (2010)

[46] P. Hobza, Acc. Chem. Res. 45, 663 (2012)

[47] T. Janowski and P. Pulay, Chem. Phys. Lett. 447, 27 (2007)

[48] J. Olsen, O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 105, 5082 (1996)

[49] A. Halkier, H. Larsen, J. Olsen, and P. Jørgensen, J. Chem. Phys. 110, 7127 (1999)

[50] M. L. Leininger, W. D. Allen, H. F. Schaefer, and C. D. Sherrill, J. Chem. Phys. 112,
9213 (2000)

[51] I. Gurtubay and R. Needs, J. Chem. Phys. 127, 124306 (2007)

[52] B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, and C. Filippi, J. Chem. Phys.
129, 194111 (2008)
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[150] O. Mó, M. Yáñez, and J. Elguero, J. Chem. Phys. 97, 6628 (1992)

[151] S. Xantheas and T. Dunning, J. Chem. Phys. 98, 8037 (1993)

[152] I. Nielsen, E. Seidl, and C. Janssen, J. Chem. Phys. 110, 9435 (1999)

[153] J. C. Howard and G. S. Tschumper, WIREs Comput. Mol. Sci. 4, 199 (2014)

[154] J. A. Anderson, K. Crager, L. Fedoroff, and G. S. Tschumper, J. Chem. Phys. 121,
11023 (2004)

[155] N. Pugliano and R. Saykally, Science 257, 1937 (1992)

[156] K. Liu, J. Loeser, M. Elrod, B. Host, J. Rzepiela, N. Pugliano, and R. Saykally, J. Am.
Chem. Soc. 116, 3507 (1994)

[157] D. Wales, J. Am. Chem. Soc. 115, 11180 (1993)

136



[158] J. Fowler and H. Schaefer, J. Am. Chem. Soc. 117, 446 (1995)

[159] D. Wales and T. Walsh, J. Chem. Phys. 105, 6957 (1996)

[160] T. Taketsugu and D. Wales, Mol. Phys. 100, 2793 (2002)
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[189] L. Darré, M. R. Machado, and S. Pantano, WIREs Comput Mol Sci 2, 921 (2012)

[190] H. Lee, S. Suh, J. Lee, P. Tarakeshwar, and K. Kim, J. Chem. Phys. 112, 9759 (2000)
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[306] J. Řezáč and P. Hobza, J. Chem. Theory Comput. 10, 3066 (2014)

143



[307] M. Kofranek, H. Lischka, and A. Karpfen, Chem. Phys. 121, 136 (1988)

[308] P. Bunker, M. Kofranek, H. Lischka, and A. Karpfen, J. Chem. Phys. 89, 3002 (1988)

[309] P. Bunker, P. Jensen, A. Karpfen, M. Kofranek, and H. Lischka, J. Chem. Phys. 92,
7432 (1990)

[310] M. Quack and M. A. Suhm, Chem. Phys. Lett. 171, 517 (1990)

[311] M. Quack and M. A. Suhm, J. Chem. Phys. 95, 28 (1991)

[312] W. Schneider and W. Thiel, Chem. Phys. Lett. 157, 367 (1989)

[313] J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista,
J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, N. J. Russ,
M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer, R. A. King,
E. F. Valeev, C. D. Sherrill, and T. D. Crawford, Wiley Interdisciplinary Reviews:
Computational Molecular Science 2, 556 (2012)

[314] See Supporting Information at http://dx.doi.org/10.1021/ct500860v for optimized
molecular geometries, harmonic vibrational frequencies, VPT2 fundamental frequen-
cies and zero-point vibrational energies.

[315] K. von Puttkamer and M. Quack, Chem. Phys. 139, 31 (1989)

[316] D. A. Matthews, J. Vázquez, and J. F. Stanton, Mol. Phys. 105, 2659 (2007)

[317] M. Quack and M. A. Suhm, Theor. Chim. Acta 93, 61 (1996)

[318] D. T. Anderson, S. Davis, and D. J. Nesbitt, J. Chem. Phys. 104, 6225 (1996)

[319] A. S. Pine, W. J. Lafferty, and B. J. Howard, J. Chem. Phys. 81, 2939 (1984)

[320] R. Miller, Acc. Chem. Res. 23, 10 (1990)

[321] D. T. Anderson, S. Davis, and D. J. Nesbitt, J. Chem. Phys. 105, 4488 (1996)

[322] M. Hippler, L. Oeltjen, and M. Quack, J. Phys. Chem. A 111, 12659 (2007)

[323] M. A. Suhm, J. T. Farrell Jr., A. McIlroy, and D. J. Nesbitt, J. Chem. Phys. 97, 5341
(1992)

[324] F. Huisken, M. Kaloudis, and A. Kulcke, J. Chem. Phys. 104, 17 (1996)

[325] L. Braly, K. Liu, M. Brown, F. Keutsch, R. Fellers, and R. Saykally, J. Chem. Phys.
112, 10314 (2000)

[326] F. N. Keutsch, L. B. Braly, M. G. Brown, H. A. Harker, P. B. Petersen, C. Leforestier,
and R. J. Saykally, J. Chem. Phys. 119, 8927 (2003)

[327] Y. Bouteiller and J. Perchard, Chem. Phys. 305, 1 (2004)

144



[328] B. E. Rocher-Casterline, L. C. Ch’ng, A. K. Mollner, and H. Reisler, J. Chem. Phys.
134, 211101 (2011)

[329] F. Huisken, M. Kaloudis, and A. Vigasin, Chem. Phys. Lett. 269, 235 (1997)

[330] G. Groenenboom, P. Wormer, A. van der Avoird, E. Mas, R. Bukowski, and K. Sza-
lewicz, J. Chem. Phys. 113, 6702 (2000)

[331] S. A. Nizkorodov, M. Ziemkiewicz, and D. J. Nesbitt, J. Chem. Phys. 122, 194316
(2005)

[332] I. V. Ptashnik, K. M. Smith, K. P. Shine, and D. A. Newnham, Quarterly Journal of
the Royal Meteorological Society 130, 2391 (2004)

[333] S. Scheiner, Hydrogen Bonding: A Theoretical Perspective (Oxford University Press,
New York, 1997)

[334] E. Grabowski, S.J., Hydrogen Bonding - New Insights, in Challenges and Advances in
Computational Chemistry and Physics (Springer, New York, 2006)

[335] G. Gilli and P. Gilli, The Nature of the Hydrogen Bond- IUCr Monographs on Crys-
tallography - 23 (Oxford University Press New York, 2009)

[336] F. N. Keutsch and R. J. Saykally, Proceedings of the National Academy of Sciences
98, 10533 (2001)

[337] S. S. Xantheas and T. H. Dunning Jr., J. Chem. Phys. 98, 8037 (1993)

[338] J. Paul, C. Collier, R. Saykally, J. Scherer, and A. O’keefe, J. Phys. Chem. A 101,
5211 (1997)

[339] C. Burnham, S. Xantheas, M. Miller, B. Applegate, and R. Miller, J. Chem. Phys.
117, 1109 (2002)

[340] M. Slipchenko, K. Kuyanov, B. Sartakov, and A. Vilesov, J. Chem. Phys. 124, 241101
(2006)

[341] S. Hirabayashi and K. M. Yamada, J. Mol. Struct 795, 78 (2006)

[342] S. Hirabayashi and K. M. Yamada, Chem. Phys. Lett. 435, 74 (2007)

[343] M. E. Fajardo and S. Tam, J. Chem. Phys. 115, 6807 (2001)

[344] E. Diken, W. Robertson, and M. Johnson, J. Phys. Chem. A 108, 64 (2004)

[345] C. Tainter and J. Skinner, J. Am. Chem. Soc. 137, 104304 (2012)

[346] K. E. Otto, Z. Xue, P. Zielke, and M. A. Suhm, Phys. Chem. Chem. Phys. 16, 9849
(2014)

145



[347] Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys.
134, 94509 (2011)

[348] J. C. Howard and G. S. Tschumper, J. Chem. Phys. 139, 184113 (2013)

[349] J. C. Howard, J. L. Gray, A. J. Hardwick, L. T. Nguyen, and G. S. Tschumper, J.
Chem. Theory Comput. 10, 5426 (2014)

[350] Y. Wang and J. M. Bowman, J. Chem. Phys. 136, 144113 (2012)

[351] G. S. Fanourgakis and S. S. Xantheas, J. Chem. Phys. 128, 074506 (2008)

[352] TTM3-F program download link at http://www.pnl.gov/science/ttm3f.asp (accessed
January 28, 2015)

[353] See Supporting Information at http://dx.doi.org/10.1021/acs.jctc.5b00225 for opti-
mized geometries and harmonic vibrational frequencies

[354] G. Herzberg, Molecular Spectra and Molecular Structure Vol III - Electronic Spectra
and Electronic Structure of Polyatomic Molecules (Krieger, Florida, 1991) p. 585
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