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ABSTRACT 

 

 The current technical practice for doing classification has limitations when using 

gene expression microarray data. For example, the robustness of Top Scoring Pairs does 

not extend to some datasets involving small data size and the gene set with best 

discrimination power may not be involve a combination of genes. Hence, it is necessary to 

construct a discriminative and stable classifier that generates highly informative gene sets. 

As we know, not all the features will be active in a biological process. So a good feature 

selector should be robust with respect to noise and outliers; the challenge is to select the 

most informative genes. In this study, the Top Discriminating Pair (TDP) approach is 

motivated by this issue and aims to reveal which features are highly ranked according to 

their discrimination power. To identify TDPs, each pair of genes is assigned a score based 

on their relative probability distribution. Our experiment combines the TDP methodology 

with information gain (IG) to achieve an effective feature set. To illustrate the effectiveness 

of TDP with IG, we applied this method to two breast cancer datasets (Wang et al., 2005 

and van’t Veer et al., 2002). The result from these experimental datasets using the TDP 

method is competitive with the baseline method using Random Forests. Information gain 

combined with the TDP algorithm used in this study provides a new effective method for 

feature selection for machine learning. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Gene expression classification and feature selection are commonly used techniques 

to diagnose diseases using microarray technology.  In recent years, numerous classifiers 

have been pursued for correctly identifying cancer tumors based on numerical molecular 

information. The objective of this study is to find important marker gene pairs to 

differentiate cancerous samples from non-cancerous ones and build a classifier that can 

accurately classify the diagnostic cancer subtypes of a sample using microarray expression 

data. Popular techniques for solving this problem include Support Vector Machine [Vapnik, 

1995], Decision Tree [Quinlan, 1993], Prediction Analysis of Microarrays [Tibshirani, 

2002], Top Scoring Pair [Geman, 2004], and k-Top Scoring Pair [Tan, 2005]. In fact, there is 

no evidence to show that there is a single classifier has the best performance over the other 

methods for all the microarray datasets.  

The significance of this paper is to introduce a novel approach that improves 

classification accuracy of the existing methods with a better selection of informative gene 

sets. This algorithm is named Top Discriminating Pairs classifiers, simplified as TDP. We 

can achieve competitive performance by constructing rule-based gene pairs, instead of 

inspecting individual genes. The classification rules can be constructed using a four or nine 
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set methods. In the next chapter, we discuss and evaluate the existing gene classification 

methods using microarray datasets. In chapter 3, we introduce our Top Discriminating 

Pairs (TDPs) classifier. In chapter 4, we discuss the experimental results of our approach 

on two datasets involving human cancer. Finally, we conclude our results and the 

advantages and disadvantages of the TDP approach. We start with a brief review of 

commonly used gene classification techniques. 
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CHAPTER 2 

 

RELATED WORK 

 

This section introduces the most commonly used related classification methods, 

which includes Tops Scoring Pairs (TSPs), k-TSP, Hybrid k-TSP+SVM, TSP Decision Tree, 

and Chi-TSG. For more detailed tutorials of these methods, we refer readers to Geman et al. 

[2004], Tan et al. [2005], Shi et al. [2011], Czajkowski et al. [2011], and Wang et al. [2013].  

 

2.1 Top Scoring Pairs (TSPs) Classifier 

In gene expression profiles, we consider G genes whose expression levels can be 

assigned as X = {X1, X2, … , XG}. Each profile X has a true class label in C = {1, 2, … , c}. In our 

implementation, we only consider two classes (C = 2), either class 1 or class 2. Geman et al. 

summarized the general process of calculating expression values for each pair of genes – 

they detected “marker gene pairs” (i, j) under the rule when Xi < Xj from class 1 to class 2 

[Geman et al., 2004]. The classification is based on the distinguished pairs and the 

quantities of interest are, 

    (1)  

The score of each pair of genes is calculated as, 
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   (2) 

Then the paired genes are ranked based on the Δij values (Eq. (2)) in descending order and 

the TSP classifier only selects the top scoring pairs.  

 

2.2 k-TSP Classifier 

The Top Scoring Pairs (TSPs) may change when the training data are perturbed by 

adding or deleting a few examples [Geman et al., 2004]. In Tan’s work, they introduced the 

k-TSP classifier which increases the accuracy of the TSP classifier and generates a more 

stable classifier. The motivations of using k-TSP classifier are: 1) there are many top 

scoring pairs with the same informative ordering (same score Δ); 2) it combines the 

discriminating power of many ‘weaker’ rules; 3) it achieves better combined scores [Tan et 

al. 2005].  

The k-TSP algorithm is similar to TSP method. In the prediction of TSP classifier 

(hTSP), we suppose pij(1) > pij(2) and Xnew is a new  sample, Then, the decision rule is [Tan et 

al. 2005], 

hTSP(Xnew) =    (3) 

The k-TSP classifier selects K-top disjoint pairs of genes in prediction according to 

(3). It simply chooses the class receiving the majority votes and consists of a list of ranked 

TSPs genes from largest scores to smallest scores in equations (4) and (5), 

hk-TSP(Xnew) = hi(Xnew) = C)  (4) 

and 
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I(hi(Xnew) = C) =   , C = {1, 2} (5) 

Ties are broken by sorting the pairs that achieve the same score Δ using the secondary 

ranking score Γ (Gamma) [Tan et al. 2005], which is based on the ranking differences in 

each sample in each class, 

Γij = |ij(1) − ij(2)|   (6) 

 

where the ‘average rank difference’ is, 

ij(C) =    (7) 

Sc denotes the number of samples in class C and the score of the pair of genes is defined in 

Eq. (6). The k disjoint pairs of genes with the largest score values Γ are selected from those 

pairs with the highest value Δij in TSP classifier (Eq. (2)). Both original TSP and k-TSP 

techniques perform competitively with prediction analysis of microarrays (PAM) and 

support vector machine (SVM) classifiers. However, the TSP-family classifiers are easier to 

interpret and involve fewer genes. 

 

2.3 Hybrid k-TSP+SVM 

The k-TSP technique is computationally efficient and enhances performance for 

feature selection in machine learning. However, it does not extend to some difficult 

datasets due to its relatively simple voting scheme [Shi et al. 2011]. For solving this issue, a 

powerful classifier such as the support vector machine (SVM) is needed. Support vector 

machines are powerful and elegant linear classifiers [Vapnik, 1998] and also can be 



 

6 

extended to nonlinear cases. The examples are represented as points in space by SVM 

model and mapped with each associated category, thus the examples can be separated as 

wide as possible with a clear gap.  SVMs can efficiently perform linear and nonlinear 

classification and map the examples into high-dimensional feature spaces [Cortes, 1995]. 

Shi et al. implemented the hybrid scheme k-TSP + SVM, which integrate the k-TSP 

algorithm with multivariate classifier, SVM. They compared the classification performance 

of the hybrid scheme with other TSP-family methods involving human cancer datasets. The 

experiments were repeated 50 times to generate averaged test error rates as they reported 

in their previous paper [Shi et al. 2011]. The results show the hybrid k-TSP+SVM achieves 

better performances compared with the original TSP, k-TSP and SVM techniques on four 

cancer prognosis datasets.   

 

2.4 TSP Decision Tree (TSPDT)  

Czajkowski et al. borrowed the idea of decision trees (DT), which are also known as 

classification trees and represent one of the main techniques for classification analysis in 

data mining and knowledge discovery [Czajkowski, 2011]. The approach is based on top-

down greedy search. The name of this newly presented approach is TSPDT, which the test 

attribute is known as the decision node when put all gene information in a tree format. 

Then each value is separated based on the decision rules as event nodes and each subset 

goes to the corresponding branches after qualifying each rule and reach the endpoints of 

the decision tree. The endpoints are known as terminal nodes and each terminal node has 

an associated terminal value. In the TSPDT method, the terminal value is either 1 (Class 1) 
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or 2 (Class 2). Figure 1 compares the individual performance between the original k-TSP 

algorithm and the TSPDT approach. The comparison is shown using a flow chart which is 

easier to read and understand. In Figure 1(b), the decision nodes, event nodes and terminal 

nodes are represented by squares, circles and triangles, respectively [Quinlan, 1986].  This 

approach is a combination of TSP technique with decision trees, which splits the sample 

based on pairwise comparisons of its gene expression values [Czajkowski, 2011]. It has 

been tested on 11 public domain gene expression datasets and the results are promising 

compared with the original TSP and decision trees classifiers  

 

Figure 1. Comparison of outcome for k-TSP and TSPDT methods. 

 

 

 

 

 

(a) (b) 
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2.5 Chisquare-statistic-based Top Scoring Genes (Chi-TSG) 

 One of the challenges in feature selection of cancer expression data is to establish an 

effective method that can accurately diagnose disease. The existing pairwise classification 

methods always use an even number of genes and the gene set with the best discriminating 

power may not be the selected marker gene pairs. An improved classifier, Chisquare-

statistic-based Top Scoring Genes (Chi-TSG) is introduced by Wang et al. [2013] and it 

works for both binary and multi-class classification.  Consider a gene expression data of M 

genes and N samples. The data can be expressed as a matrix of dimension N by M. The 

expression value of the jth gene in the ith sample can be represented as xij. To assess 

whether the marker gene pairs i and j are informative for classification of disease 

diagnosis, this method redefines the scoring function for gene pairs and the classification 

rules by incorporating the sample size information in equation (8). 

   (8) 

Above, the fqpij is the frequency counts of the samples in each class for each pair of genes i 

and j; np is the row totals from the pth row and Tq is the column totals from the qth column. 

These changes can lead to a better feature selection algorithm and eliminates the concern 

about bias on preprocessing different samples [Wang et al., 2013].  
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CHAPTER 3 

 

METHODOLOGY 

 

 In this chapter, we introduce our Top Discriminating Pairs (TDPs) classifier starting 

with data preprocessing and then use it to analyze two human cancer datasets [Wang et al., 

2005; van’t Veer et al., 2002]. Then we briefly describe the design and implementation 

strategies for defining classification rules and marker gene pairs. Finally, we adapt the 

purity measurement, Information Gain (IG), to select the top ranked marker gene pairs 

with largest information gain.  

 

3.1  Datasets 

 The datasets we use are from published resources [Wang et al., 2005; van’t Veer et 

al., 2002; Shi et al., 2010] and have been pre-processed by Shi et al. 2010. The sample size, 

number of genes, number of samples in each class and source are summarized in Table 1 

Table 1. Information of gene expression datasets. 

Dataset 
No. of 

samples 
No. of 
genes 

Good/Poor 
prognosis samples 

Source 

Wang Breast Cancer 209 22283 138/71 
Wang et al., 

2005 

van’t Veer Breast Cancer 78/19 23624 51/46 
van’t Veer 
et al., 2002 
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1. Wang Breast Cancer: the original dataset is derived from Wang at al. [2005], which 

contains estrogen-receptor-positive and lymph node-negative patients without 

receiving any adjuvant treatment. Shi et al.  [2011] preprocessed the raw intensity 

Affymetrix CEL files and normalized the data by Robust Multi-array Average (RMA) 

procedures. The pre-processed expression matrix comprises 209 samples and 

22283 features [Shi et al., 2010]. It is available at 

http://math.bu.edu/people/sray/software/prediction.  

2. van’t Veer Breast Cancer: the second dataset is originally obtained from Rosetta 

Inpharmatics and is also available at http://math.bu.edu. The dataset is already 

partitioned into training and test sets. In our work, we first apply the training data 

consisting of 78 samples, 34 have poor prognosis (died) and 44 have good prognosis 

(remain healthy) for an interval of 5 years after treatment. Shi et al. [2011] 

normalized the raw training data using a log-transformed ratio and removed two 

samples that contained more than 50% missing values. The final matrix contains 76 

samples and 23624 features for the training dataset. The test dataset contains a 

total of 19 samples with 12 poor diagnosis patients and 7 good diagnosis patients. 

 

3.2   Data Analysis and Preprocessing 

 Microarray-based assays of gene expression have become a mainstay of basic and 

translational cancer research [Nicholas et al., 2012]. Scientists commonly assume the gene 

expression data is distributed normally; this assumption has both empirical [Giles et al., 
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2003; Irizarry et al., 2003] and theoretical support. However, the possibility of non-normal 

distribution for gene expression data presented has been discussed in recent publications 

[Hardin and Wilson, 2009]. Before we apply our Top Discriminating Pairs classifier to the 

above two cancer datasets, we first examine the distributions of the entire expression 

dataset as a whole. Nicholas et al. [2012] introduce two related types of expression 

datasets under the assumption of normality. The first dataset examines the distributions of 

the complete set of individual expression values across all genes and all samples, which is 

useful for downstream clustering and class discrimination analyses. The second dataset 

considers a single gene across the entire range of experimental samples. It is advantageous 

to provide descriptive behavior of this specific gene over multiple samples [Nicholas et al., 

2012]. In our pre-processing step, we examine the distributions of a single gene across all 

samples, which is known as the individual gene level. In Figure 2, the source data for these 

graphs are averaged gene (the average value of all genes in each sample) across all samples 

from each cancer dataset. The histograms display the mean, standard deviation, median 

values on each data.  The p-value represents whether the test considers the data do not 

follow a normal distribution based on the significance level of alpha = 0.05. In other words, 

if p > 0.05, there is no presumption against the null hypothesis and the data is considered 

as normal distribution.  
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Figure 2. Cancer gene expression datasets are not normally distributed. Red curve 
represents the best fit normal distribution for comparison with the non-normal 
distribution for each of the datasets on the histogram. Three normality tests are 
Kolmogorov-Smirnove (KS), Lilliefors, and Jarque-Bera (JB). 
 

 

 The distributions of Wang and van’t Veer breast cancer datasets are not normal, as 

shown in Figure 2. The p-value of the KS, Lilliefors and JB tests are small, which states that 

the observed data are inconsistent with strong assumption against the null hypothesis. In 

Figure 3, the graph displays the averaged gene across all samples of preprocessed datasets.  

After data preprocessing, both the cancer datasets tend to be normally distributed. Two of 

the three normality tests claim that the observed data is with the assumption that the null 

hypothesis is true. Only Kolmogorov-Smirnove (KS) contains very strong presumption 

against null hypothesis. Thus we look closely at the distribution of a single gene, not the 
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averaged gene, across all samples. This single gene is selected based on our Top 

Discriminating Pair (TDP) algorithm, which is the most informative gene among others 

(Figure 4). We detect the single gene has a larger standard deviation compared with the 

averaged gene of both original and preprocessed datasets. We believe the features that 

differentiate between the two classes should be relatively sparse. Thus, in our approach, we 

consider the genes with high variance and are known as outliers. 

 

Figure 3.  Cancer gene expression datasets are normally distributed after 
preprocessing. Red curve represents the best fit normal distribution for comparison with 
the non-normal distribution for each preprocessed datasets on the histogram. Three 
normality tests are Kolmogorov-Smirnove (KS), Lilliefors, and Jarque-Bera. 
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Figure 4. Distribution of a single gene selected based on TDP approach across all 
samples.  

 

Our data preprocessing step uses the MATLAB Bioinformatics Toolbox 

http://www.mathworks.com.  We filter out the genes that exhibit variance less than the 

75th percentile in their profiles and obtain a final expression data comprising 5665 features 

for the Wang breast cancer dataset and 6005 features for the van’t Veer breast cancer data 

(Table 2).  
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Table 2.  Feature space reduced cancer gene expression datasets summary.  

Dataset Total no. of genes No. of genes remained 
Percentage 
remaining 

Wang Breast Cancer 22283 5665 25.422% 

van’t Veer Breast Cancer 23624 6005 25.419% 

 

 

3.3 Top Discriminating Pairs (TDPs) 

For generality, we describe the method in terms of marker gene pairs, which 

represent the most informative paired genes. Consider a training dataset of M genes whose 

expression levels can be assigned as X = {X1, X2, …, XM} and a  total of N samples {1, …, N}. 

The data can be represented as a matrix of M by N dimension in which the ith gene 

expression value of the kth sample is denoted by Xik. Each profile X has a true class label in C 

= {1, 2, …, C}. In our method, we only consider two classes (C = 2).  

 

 

3.3.1  Four-Rule based TDP 

For each single gene expression value, we define labeling rules based on two 

conditions first. If Xik is less than or equal to the mean value of individual gene (ith gene) 

across all samples, then we label Xik as Low, represented by symbol L. Otherwise, Xik is High, 
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represented by symbol H. We call this the Four-Rule based TDP approach. 

Before calculating expression values for each marker gene pair, we clarify the 

comparison rules for every pair of genes i and j,  

 Rij    (9) 

The classification is based on the probability of the distinguished marker gene pairs and 

the quantities of interest,  

 pij( ) =  , C = {1, 2}   (10) 

 

3.3.2  Nine-Rule based TDP  

Similarly, we extend the Four-Rule based TDP approach to a Nine-Rule based 

method by plugging in the variance and standard deviation. We believe the best 

informative marker genes would involve the genes overly expressed and down-regulated. 

In this approach, we are interested in outlier genes and detect those genes based on nine 

comparison rules in Equation (11), 
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Above, the Low (L) area contains the genes whose expression values are less than the 

difference of mean and standard deviation. The expression values that fall between the 

difference and sum of the mean and standard deviation are labeled as neutral (N). The rest 

of the genes whose expression values are greater than the sum of these two numbers are 

labeled as high (H).  

The probability is estimated by the relative frequencies of occurrences of each 

classification rules, 

  pij( ) =    (12) 

 

In Figure 5, we visualize these two approaches in distribution graphs and table 

charts. Figure 5(a) is four-rule based TDP classifier. Each gene expression value is 

compared with the mean value across all samples for an individual gene and labeled into 

two categories: low or high. Figure 5(b) represents nine-rule based TDP classifier. Each 

gene expression value is compared with the value of variance ± standard deviation and falls 

into either low or neutral or high area.  

 

(11) 

. 
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Figure 5. Four-Rule based TDP classifier vs. Nine-Rule based TDP classifier.   
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3.4  Information Gain (IG) 

 In machine learning, Information Gain (IG) is a measurement of the amount of 

information in bits about the class prediction [Roobaert et al., 2006]. We use entropy to 

measure the level of impurity and information gain to determine which pair of genes is 

most useful for discriminating between the classes. Equation (13) is known as Shannon 

entropy [Shannon, 1951], Entropy(X) is defined as, 

Entropy(X) = -     (13) 
 

where  is the probability mass function and the overall impurity is the sum of the 

individual impurities. Information gain measures the expected reduction in entropy 

[Kullback et al., 1951] and is defined as, 

 
Gain = Entropy (X) - Entropy (X|Y)    (14) 
 

For each cancer dataset we select the marker gene pairs with highest information gain; 

basically, it is a score in the range from 0 to 1. The score is the amount of bits of 

information we have gained about the dataset by choosing each marker gene pair. Thus, the 

higher the information gain the more effective the marker gene pairs in classifying.  
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

 

 In this chapter, we present the experimental performance and obtain the 

comparison results of all approaches. In section 4.1, we recall the two datasets mentioned 

in chapter 3. In section 4.2, we apply our proposed approaches to both of the datasets, four-

rule based k-TDP and nine-rule based k-TDP and compare them with baseline method. 

Finally, we discuss the performance based on the accuracy results in section 4.3. 

 

4.1 Method of Comparison 

 The performance of our proposed Top Discriminating Pair (TDP) classification 

method is evaluated on binary class gene expression data. We consider the two breast 

cancer datasets that were used for assessment of TSP, k-TSP and k-TSP+SVM classifiers in 

Shi et al. 2011. The number of classes is 2; class 1 represents the good diagnosis samples 

and class 2 is poor diagnosis samples. The number of samples per class ranges from 50 to 

138.  

First, we consider comparison of the baseline method and k-TDP for the Wang 

breast cancer dataset based on 5-fold cross-validation, where each class is partitioned into 
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5 subsets, the training set is formed from 4 subsets of each class and the remaining subset 

serves as test data.  Another breast cancer dataset is derived from van’t Veer et al. 2005, 

that contains both training and test sets. Beacause, the van’t Veer dataset has its own 

individual test set, the results presented in Table 4 are the error rate on the test set.  The 

model is built from the van’t Veer traning set, which contains 76 samples. We only perform 

5-fold cross-validation on the Wang breast cancer dataset and the final accuracy result is 

averaged from ten 5-fold experiments.  

 Both of the datasets are tested on four learning algorithms, ADTree, BFTree, SVM 

and Random Forests. Overall, the Random Forests (RF) algorithm has the best performance 

and ran efficiently. Hence, we compare the baseline method of all features and TDP for 

feature selection using Random Forests as the class predictor. The Random Forests 

algorithm uses a combination of tree predictors which generate a random number of trees 

with the same distribution [Breiman, 2001].  

 

4.2 Accuracy for Gene Expression Data on Each Approach 

 The classification results for the proposed datasets are shown in Table 3. The 

parameter ntree for RF is optional and we range the number of trees to generate from 10 to 

500 based on the number of features we use on each experiment. The parameter mtry for 

RF is the number of variables in each split and should not be larger than the number of 

features. It is chosen according to the default setting which in the MATLAB Bioinformatics 

Toolbox is the nearest integer to the square root of the number of total features of the 

dataset. The randomForest package we use is developed in R by Andy Liaw et al. [2012].  
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The results below in Table 3 and Table 4 demonstrate the competitive performance of the 

four and nine rules k-TDP against the other approaches. In the Wang breast cancer dataset, 

the k-TDP approach significantly improves the performance, achieving an error rate of 

30.9% and 28.8%. In the case where sample size is small or moderate, the k-TDP 

approaches on van’t Veer breast cancer dataset achieves similar performance, achieving an 

error rate of 29.3% and 31.9% with only half the number of the samples of Wang breast 

cancer dataset. The improvement of four rules k-TDP and nine rules k-TDP appears 

constant no matter whether the sample size is small or moderate or large.  

 

Table 3. Error rate on various classifiers in Wang breast cancer dataset.  

Error Rate on 10X 5-Fold Cross-Validation (%) 

Dataset 
Random 
Forests 

TSP k-TSP SVM k-TSP+SVM 
k-TDP 
(Four) 

k-TDP 
(Nine) 

Wang Breast 
Cancer 

32.6±3.1 41.4±2.5 37.3±2.8 30.1±1.8 32.9±3.0 30.9±2.9 28.8±2.1 

 

 

Table 4. Error rate on various classifiers in van’t Veer breast cancer dataset. This 
dataset has separate training and test sets. The error rate on the test set was achieved at 
the same gene selection level (k) at which the training set obtains the best performance.  

Error Rate on the Test Dataset (%) 

Dataset 
Random 
Forests 

TSP k-TSP SVM k-TSP+SVM 
k-TDP 
(Four) 

k-TDP 
(Nine) 

van’t Veer Breast 
Cancer 

39.2 42.9 28.6 31.6 10.5 29.3 31.9 
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Furthermore, we compare the k-TDP approach against other methods such as 

Random Forests, Top Scoring Pair (TSP), k-TSP, SVM, and k-TSP+SVM. Random Forests, 

TSP, k-TSP, SVM and k-TSP+SVM methods using both the human breast cancer datasets, 

which are available at http://math.bu.edu. The k-TDP method uses the same gene 

expression data with extra pre-processing, the description of pre-processing given in 

Chapter 3 section 2. Since our prognosis datasets are directly from Shi et al. [2011], we 

observe that the original results [Table 5] from Shi et al. [2011] publication on k-TSP+SVM 

outperforms k-TSP in most cases and the performance on van’t Veer breast cancer dataset 

using TSP is low. However, we ran the TSP technique using the same dataset provided by 

Shi et al. [2011]; it achieves a better error rate of 42.9% and 28.6%, as compared to 68.4% 

and 47.3% in Table 5, which was reported in Shi et al. [2011]. 

 
Table 5. Comparison of various classifiers in cancer prognosis datasets. In the van't 
Veer breast cancer dataset where there is an independent test set, the error rate on the test 
set was obtained at the gene selection level at which the training set achieves its minimum 
LOOCV error rate. In the other datasets where there is no separate test set, the error rates 
(mean ± SE) were obtained from two experiments of five-fold cross validation.  

Dataset Error rate on 2X 5-fold CV (%) Error rate on the test set (%) 

 TSP k-TSP SVM k-TSP+SVM TSP k-TSP SVM k-TSP+SVM 

van't Veer Breast cancer     68.4 47.3 31.6 10.5 

Wang Breast cancer 41.4 ± 2.5 37.3 ± 2.8 30.1 ± 1.8 32.9 ± 3.0     

 

The number of genes used by each classifier is important when the number of samples is 

finite [Wang et al. 2013]. The classifier with a small number of genes tends to be more 

preferred in microarray studies.  Hence, we restrict the rest of the discussion to our four 

rules k-TDP and nine rules k-TDP classifiers. 



 

24 

Figure 6. The error rate of k-TDP methods on breast cancer datasets. The x-axis is the 
number of top ranked pairs of genes. (a) It shows the error rate on Wang breast cancer 
dataset at various level of top ranked pairs of genes. (b) It shows the error rate on van’t 
Veer breast cancer dataset at various level of top ranked pairs of genes.  
 

 
 

 
  

(a) 

(b) 
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Meanwhile, we plot the error rate of these classifiers with different selection level 

(k) of disjoint pairs of genes (k = 10, 20, 30, …, 300) in Figure 6. As shown in Figure 6(a), all 

the classifiers improve their performance when the selection level (k) is small. The best 

performance of both four rules and nine rules k-TDP classifiers occur when the size of k is 

less than 50 on Wang breast cancer dataset.  Similarly, in the other dataset [van’t Veer et al., 

2002] the classifiers achieve best performance when the number of marker gene pairs is 

10, shown in Figure 6(b). 

In general, prognostic datasets are more challenging than the regular diagnostic 

datasets. The samples with poor and good prognosis usually share the same 

pathophysiological characteristics [Shi et al., 2011] and the features are relatively sparse to 

distinguish between the two classes. Our experiments show that compared to other feature 

selection methods, the TSP family techniques seem not to be successful in all real 

microarray datasets. This may be caused by the relatively simple voting scheme in 

choosing the marker genes and the datasets involving small sample size. Hence, we believe 

that in such cases performance can be improved constantly with k-TDP technique among 

various sizes of datasets. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

In current microarray studies, an effective and stable gene classification method is 

critical in disease diagnosis. In this work, we integrated the feature selection method of k-

TDP with Information Gain and evaluated this combination approach in real human breast 

cancer datasets. We compared the four rules and nine rules k-TDP methods with the 

baseline method using Random Forests. We also tested the performance of these two 

approaches with different levels of k, the number of disjoint marker gene pairs. In terms of 

the number of genes used, TDP uses many fewer genes than the baseline method. Also, the 

error rate increases as the number of genes being selected increases.   

The most challenging problems in this work are stabilization and scalability when dealing 

with large-scale datasets and multi-class classification. Additional work is needed to extend 

the idea of TDP method and generate a family of TDP algorithms that can handle multiple 

classes. 
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