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ABSTRACT

DG-CVS (Discontinuous Galerkin Cell-Vertex Scheme) is an efficient, accurate and

robust numerical solver for general hyperbolic conservation laws. It can solve a broad range

of conservation laws such as the shallow water equation and magnetohydrodynamics equa-

tions. DG-CVS is a Riemann-solver-free high order space-time method for arbitrary space

conservation laws. It fuses the Discontinuous Galerkin (DG) method and the Conservation

Element/Solution Element (CE/SE) method to take advantage of the best features of both

methods. Thanks to the CE/SE method, the time derivative of the solution is treated as an

independent unknown, which is amendable to GPU’s parallel execution.

In this thesis, we use a CPU-GPU heterogeneous processor to accelerate DG-CVS to

demonstrate that complex scientific applications can benefit from a heterogeneous comput-

ing system. There are challenges that such scientific program poses on the GPU architecture

such as thread divergence and low kernel occupancy. We developed optimizations to address

these concerns. Our proposed optimizations include thread remapping to minimize thread

divergence and register pressure reduction to increase kernel occupancy. Our experiment

results show that DG-CVS on GPU outperforms CPU by up to 57% before optimization

and 145% afterwards. We also use DG-CVS as a real world application to explore the pos-

sibility of using Shared Virtual Memory (SVM) for tighter collaboration between CPU and

GPU. However, SVM did not help improve the performance due to the overhead of address

translation and atomic operations. We developed a microbenchmark to better understand

the performance impact of SVM.
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CHAPTER 1

INTRODUCTION

A Riemann-solver-free high order space-time method has recently been developed to

solve arbitrary space conservation laws (Tu, 2015) (Tu, 2013) (Tu et al., 2012). It is referred

to as Discontinuous Galerkin Cell Vertex Scheme (DG-CVS). The DG-CVS is a highly ac-

curate and efficient computational tool based on an unconventional numerical algorithm to

simulate shallow water flows. The term DG means Discontinuous Galerkin method. It is a

class of numerical methods for solving differential equations, recently widely used to solve

fluid dynamic or electromagnetic problems. The DG provides DG-CVS with the benefit of

high order accuracy. CVS means Cell-Vertex Scheme, which is inspired by Conservation Ele-

ment/Solution Element (CE/SE) method (Chang and To, 1991). The CE/SE is a numerical

framework for solving conservation laws in continuum mechanics. It employs a staggered

space-time mesh. The DG-CVS enjoys the feature of Riemann-solver free from CE/SE.

The details of DG-CVS are well summarized in (Tu, 2015): The core idea of the

method (DG-CVS) is to construct a staggered space-time mesh through alternating cell-

centered (CE) and vertex-centered CEs within each time step. Inside each SE, the solution

is approximated using high-order spacetime DG basis polynomials. The spacetime flux

conservation is enforced inside each CE using the DG discretization. The unknowns are

stored at both vertices and cell centroids of the spatial mesh. The solutions at vertices

and cell centroids are updated at different time levels within each time step in an alternate

fashion. The DG-CVS method involves processing a large number of mesh nodes. It solves

a small non-linear equation system at each mesh node. There are millions of mesh nodes

to be solved at each time step and each small system is independent from each other. Such

characteristics make DG-CVS amendable to GPU’s computation model.
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GPU has proven to be an ideal platform for accelerating data and compute inten-

sive applications in many fields (Krakiwsky et al., 2004) (Rodrigues et al., 2008) (Ta et al.,

2015) (Tubbs and Tsai, 2011). Its large number of cores provides unprecedented computing

power. A well-tuned program can reach up to several orders of magnitude of speedup (Mun-

shi, 2009). However, based on SIMT (Single Instruction Multiple Thread) execution model,

GPU requires all threads within a wavefront to execute in lock step. If threads within a

wavefront have different execution paths caused by control flow (e.g., conditional branch), it

causes thread divergence which drops hardware utilization significantly.

Moreover, the per-thread memory latency of GPU is significantly higher than that of

CPU. Therefore, GPU uses zero-cost thread switching to hide latency among threads rather

than shortening it to achieve good performance speedup. In order to hide the long latency, it

is best to launch a large number of threads to provide GPU with enough candidate wavefronts

to switch to when active wavefront is waiting for data to arrive (AMD, 2015b). A metric to

measure whether there are enough candidate wavefronts is called occupancy. Occupancy is

the ratio of the number of active wavefronts to the maximum number of wavefronts allowed

per Compute Unit (CU) (AMD). A higher occupancy rate usually means a larger number of

candidate wavefronts to keep the Arithmetic Logic Unit (ALU) busy.

A recent trend in industry is to manufacture CPU and GPU on a single die, combining

host and device memory space both physically and logically. This hardware architecture,

together with software support (e.g., OpenCL 2.0 specifications), introduces a new memory

model to achieve true heterogeneous computing. Shared Virtual Memory (SVM) allows CPU

and GPU to access the same memory space at the same time, enabling a tighter collaborative

relationship between CPU and GPU. Also, data structures that rely on pointers such as trees

and graphs are accessible between CPU and GPU without flattening the whole structure.

At the same time, SVM eliminates the data transfer overhead. The benefit that SVM brings

is tremendous. However the address translation overhead can be a performance bottleneck

for applications that uses SVM (Vesely et al., 2016).
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In this thesis, we present the acceleration of DG-CVS on CPU-GPU heterogeneous

processors. We address the challenges that DG-CVS poses on the GPU architecture such

as thread divergence and low kernel occupancy. We also explore the impact of SVM on

accelerating DG-CVS. The contributions of this thesis are summarized below:

• We analyze DG-CVS in detail and demonstrate that a complex scientific solver such

as DG-CVS can benefit from CPU-GPU heterogeneous computing.

• We propose to minimize the impact of control flow within kernel by thread remap-

ping. By pre-checking condition and grouping threads on the same execution path

together, thread remapping can effectively eliminate or minimize thread divergence

within wavefront.

• We propose to address low kernel occupancy caused by high register pressure with a

number of techniques, including code change, Local Data Share (LDS), and volatile

keyword.

• Lastly, we explore the effect of using SVM feature to enable CPU-GPU collaboration

in DG-CVS. We also developed microbenchmark to understand the reason for perfor-

mance degradation caused by SVM.
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CHAPTER 2

BACKGROUND

In this chapter, we first introduce the background of DG-CVS solver, and then show

the computation flow of DG-CVS, followed by the details of GPU architecture regarding

thread divergence, kernel occupancy and shared virtual memory.

2.1 Background of DG-CVS

Shallow water equation is widely used as a mathematical model to numerically sim-

ulate dam break, river inundation, long wave run-up and tide of ocean in coastal and civil

engineering. There is close mathematical and physical analogy between the shallow water

flows and compressible flows. The hydraulic jumps and bores are analogous to the station-

ary and moving shock waves in compressible gas flows. Therefore, the numerical methods

used to solve the SWE often mimic those for solving the compressible Euler equations. Such

methods usually employ some (approximate) Riemann solvers to provide numerical fluxes.

Riemann solvers are used to provide unique interface fluxes in solvers based on the

finite volume method, discontinuous Galerkin method and some other methods. Numerical

methods based on Riemann solvers have achieved tremendous success in solving hyperbolic

systems (e.g., compressible Euler equations, where the eigen structure of the system is clearly

known) in the past several decades. However, when physical process gets more complicated,

for example, magnetohydrodynamics (MHD), the success of Riemann-solvers is far from

satisfactory. For example, the Roe scheme has been modified to solve the MHD system.

Roe’s scheme requires eigen-decomposition and becomes very complicated in MHD equations.

Moreover, due to the complexity and non-strict hyperbolicity of the MHD system, the validity

of the eigen-system of the MHD system is not unanimously agreed upon among researchers.
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Therefore, Riemann-solver free approaches are highly desirable to avoid the uncertainties

caused by imperfect Riemann solvers.

DG-CVS is a novel high order Riemann-solver-free numerical method for general hy-

perbolic conservation laws. It provides several important features. It has arbitrary high-order

accuracy in both space and time because space and time are handled in a unified way based

on space-time flux conservation and high-order space-time discontinuous basis functions. It

does not need a (approximate) Riemann solver to provide numerical fluxes as needed in

finite volume or traditional Discontinuous Galerkin (DG) methods. The Riemann-solver-

free feature offers two-fold advantages. First the Riemann-solver-free approach eliminates

some pathological behaviors associated with some Riemann solvers. Second, it is suitable

for any hyperbolic Partial Differential Equation (PDE) systems whose eigen structures are

not explicitly known. The DG-CVS based solvers have been successfully applied to solve

scalar advection-diffusion equations, compressible Euler equations, shallow water equations,

the level set equation and magnetohydrodynamics equation. It is also reconstruction-free

and suitable for arbitrary spatial meshes. DG-CVS only needs information at the immediate

neighboring nodes to update the solutions at the new time level, which makes it easy to

parallelize the solver. More details on the features of DG-CVS are found in (Tu, 2015).

DG-CVS is inspired by the spacetime Conservation Element/Solution Element (CE/SE)

method and the Discontinuous Galerkin (DG) method. The solver integrates the best fea-

tures of the two methods, i.e. the Riemann-solver-free feature of the CE/SE method and the

high-order accuracy of the DG method. The solver constructs a staggered spacetime mesh

through alternate cell-centered CEs and vertex-centered CEs (Figure 2.1 (right)) within each

time step. Note that CEs at the vertex level are defined via the dual mesh obtained by con-

necting the surrounding cell centers and face centers. The difference between SEs and CEs

is that the SE includes the volume-less vertical spike. Inside each SE (Figure 2.1 (left)), the

solution is approximated using high-order spacetime DG basis polynomials. The spacetime

flux conservation is enforced inside each CE using the DG discretization. The unknowns
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Figure 2.1. Solution Element (SEs) and conservation elements (CEs). Left: solution ele-
ments. Right: conservation elements.

are stored at both vertices and cell centroids of the spatial mesh. However, the solutions at

vertices and cell centroids are updated at different time levels within each time step in an

alternate fashion. Due to the alternate cell-vertex solution updating strategy and its DG

ingredient, the method has been termed as the Discontinuous Galerkin Cell-Vertex Scheme

(DG-CVS).

2.2 Computation Flow of DG-CVS

The computation flow of DG-CVS is shown in Figure 2.2. The solver starts off by

reading in input, which contains spacetime mesh information. Such information is processed

and then populates a list of cells, vertices, and faces with corresponding information such

as their positions and components. When all information is stored in place, simulation is

launched. This is the most time consuming part of DG-CVS solver. There are multiple

time steps, during which the solution is updated with two steps: The first step updates the

solution based on the known cell-centroid solution at the previous time level (a function

named SolutionCell()). The second step updates the solution based on the known vertex

solution at the previous time level (a function named SolutionVert()). Initial values for

solutions are given at the first time step, and the rest of time step will use the previous time

step’s solutions.

There are three loops in SolutionCell(), each of which iterates through the list of faces,

6



Figure 2.2. A simplified computation flow of DG-CVS.

quads, and cells of the mesh. Similarly, there are also three loops in SolutionVert() that go

through the list of cell, quads and vertices. This thesis targets the face loop in SolutionCell().

In every iteration of the face loop, the first step is to gather input for computation for faces.

Once input is ready, the solver will check whether this face is a boundary or non boundary

face because boundary faces require a different set of functions to update solutions. Non

boundary faces are the majority iterations of the for loop. Each face is independent therefore

this loop is suitable for GPU acceleration. After face loop finishes, the solver has two more

loops for quad and cell, which are the future targets of GPU acceleration.

When face, quad, cell loop finish, the solver continues to update solution with known

vertex, which consists of three similar loops as the ones in cell solutions. Then output is

written to a buffer and the solver finishes one time step. After the solver runs a set number of

time steps, the simulation process is done and the rest of the program takes care of cleaning

up.

7



2.3 CPU-GPU Heterogeneous Computing

GPU offers unprecedented level of computing power by launching a massive number

of threads that run in parallel. More and more applications benefit from GPU’s computing

power as GPUs become more general-purpose. Well-tuned applications can receive several

orders of magnitude of speedup.

However, due to its different architecture, programming model, and memory spaces,

GPU faces some challenges that can seriously hurt the performance if not used correctly.

DG-CVS also faces several performance challenges. This chapter focuses on the background

information particularly associated with these challenges.

2.3.1 Terminology

Before we discuss the challenges that DG-CVS poses on GPU, some terminology used

in this thesis needs to be cleared up. GPU takes advantage of SIMD execution model. It

launches massive number of threads to execute functions in parallel to gain speedup. Such

functions are referred to as kernels. Threads are called work items in OpenCL terminology.

However, in this thesis, we use threads and work items interchangeably depending on context.

Work items are grouped in work groups to execute in a Compute Unit. The size of work

groups can be determined by programmers. However, Compute Unit divides work groups

into equal-sized thread groups called wavefronts to run in parallel. The size of wavefront is

hardware dependent and can not be changed by programmers.

There are several memory regions on the GPU. Private memory is the fastest and

is only accessible to individual work items. However, if one allocates more private memory

than hardware limitation, part of this allocation will be spilled to global memory, which is

much slower than the on-chip private memory. Local memory is also on-chip memory, which

can be equally fast as private memory if handled correctly. It is accessible to work items

within the same work group. Global memory is visible to all work items but is very slow

compared to on-chip memory.

8



2.3.2 Thread Divergence

GPU’s massive parallel processing power takes advantage of the Single Instruction

Multiple Data (SIMD) execution model. Such model simplifies the hardware, however, the

complexity of control flow can seriously impact performance (AMD, 2015a). After kernel

is launched on GPU, the hardware scheduler schedules work-groups to a Compute Unit

(CU). Once scheduled, work-groups cannot migrate to other CUs. A workgroup is then

divided into equal-sized thread groups called wavefronts. Our test hardwares, AMD GPUs,

have a work-group size of 64 work-items. Work items inside a wavefront will execute the

instruction in a SIMD fashion, meaning that all work items inside a wavefront will execute

the same instruction at the same time. In some situations where some work items follow one

direction and other work items follow another, the wavefront executes each direction serially.

Figure 2.3 is an example of thread divergent code, and the visualization of its execution.

Figure 2.4 visualizes the execution of two wavefronts for the code snippet in Figure 2.3.

Threads that will execute if branch are marked in blue, and those executing else branch are

marked in red. And it is clearly shown that thread divergence happens within wavefront.

In Figure 2.3, each work item is assigned an ID, namely the global ID, and it is put in

local variable tid. The built-in function get global id(0) returns the global ID in the first

dimension for each work item. All work items evaluate whether the condition Array[gid]

is positive or not. Then all of them go through the if path. The work items that do not

satisfy the condition are invalidated. The same thing happens for the else path. In the end,

all work items converge and write the result back to Array[gid]. In this case, the hardware

utilization becomes 50% on average.

Thread divergence can severely impact the performance of GPU, depending on degree

of divergence. It is one of the most important issues that must be addressed if we want to

achieve the maximum speedup for this application.

9



tid = get_global_id(0);

if(Array[tid] >= 0){

Array[tid]++;

}else{

Array[tid]--;

}

Figure 2.3. Divergent kernel code.

Figure 2.4. Visualization of divergent kernel code.
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2.3.3 Kernel Occupancy

Kernel occupancy is the ratio of active wavefronts to the theoretical maximum con-

current wavefronts per CU. It is an easy way to measure the hardware resources utilization.

To understand kernel occupancy, we need to briefly explain the underlying hardware

execution model. GPU hardware architecture is designed to hide memory latencies by dis-

patching a large number of threads and low cost thread switching. When memory access

from the active wavefront stalls the kernel execution, CU switches to another ready wave-

front while waiting for data. It is therefore important to schedule enough workgroups for

each CU to keep it busy. GPU dispatches work items into workgroups to execute kernel

code. The size of work group is configured from host code, which is recommended to be a

multiple of wavefront size to best utilize the hardware. The size of wavefront is architecture

specific. For our experiment machines from AMD, the wavefront size is 64 work items. The

number of wavefronts can be assigned to one CU is constrained by three factors.

2.3.3.1 Work group size

The first factor is the granularity of workgroup size. It is important to properly

configure the workgroup size because one workgroup cannot be separated into different CUs.

For example, the theoretical maximum number of wavefronts per CU is 40 on the hardware

we tested. If we configure workgroup size to be 6*64 work items, there are 6 wavefronts per

work group. Then, each CU can contain maximum of 6 work groups, resulting 36 wavefronts

in total. The leftover 4 wavefronts are wasted. However, if workgroup size is 4*64 work items,

each CU can schedule a maximum of 10 work groups, then all 40 wavefronts are scheduled.

2.3.3.2 Register count

The latter two factors are hardware constraints. One is the number of registers

needed by each work item. In our experiment setup, each SIMD in a CU has 16384 registers

available. They are shared by work items in one wavefront. So every work item can use

a maximum of 256 registers. One CU consists of 4 SIMDs, so when calculating occupancy

11



in terms of CU, we need to scale the number by 4. For example, if every work item in a

wavefront uses 255 registers, we can schedule 1 wavefront (64 work items) per SIMD, so there

are 4 wavefronts per CU. In this example, kernel occupancy is 10%. A “simple” kernel can

reach up to 100% kernel occupancy since it may use the small number of registers, while a

computation intensive kernel with large amount of work to be done by each work item would

need lots of registers, and therefore the occupancy is usually low.

2.3.3.3 Local memory (LDS)

The other hardware constraint is local memory, also known as LDS (local data share)

on AMD platforms. In GPU memory system, there are three memory spaces: global memory,

local memory, and private memory. Local memory is memory space shared by work items

within one workgroup, and cannot be accessed by work items outside of this work group. It

can be just as fast as registers if managed properly. Therefore, it is also regarded as software

managed cache. Besides fast access time, it also allows work items in the same work group

to cooperate, or share data. However, if each work item tries to allocate more LDS, the

amount of LDS needed for one work group increases, resulting less number of work groups

per CU.

One last thing to note for kernel occupancy is that it increases or decreases in steps

rather than linearly. Because even by tweaking work group size or modifying the kernel,

extra resources in a CU are freed up. If such resources are not enough to schedule another

work group, occupancy would remain the same. In the example case in subsection 2.3.3.2,

the number of registers used by each work item needs to below 128 in order to get 20%

occupancy. Fine tuning the configurations across work group size, LDS and registers is the

key to increase kernel occupancy.

12



CHAPTER 3

OPENCL IMPLEMENTATION AND OPTIMIZATION

To identify candidate loops to offload to the GPU, we first profile the program and

acquire the running time of each section. The profile information is shown in Figure 3.1.

As we can see, the majority of the time in the main program is for simulation. Simulation

process can be further divided into two parts: SolutionCell and SolutionVertex. There are

three for loops each in SolutionCell and SolutionVertex. We accumulate the running time of

each loop in each time step. This thesis targets the most time consuming one: the for loop

that iterates through all faces (referred to as face loop) to update unknowns in SolutionCell()

function, which is highlighted in red box in Figure 3.1.

In this section we first demonstrate the work flow of the implementation of DG-

CVS on a GPU. Then we present our optimizations targeting thread divergence, low kernel

occupancy, and analysis on SVM.

3.1 Work Flow of OpenCL Program

In order to launch a kernel on the GPU, the CPU must set up the OpenCL platform,

device configuration as well as kernel creation in the host code. This is a one time cost for

the GPU program regardless of how many kernels are launched later in the program. The

subsequent steps follow the work flow shown in Figure 3.2 which is executed repeatedly for

ts times, where ts is the number of time steps. The first step is to copy data from original

data structure to the memory buffer allocated on GPU. Then, CL MEM USE HOST POINTER

flag is used when creating memory buffer to enable zero copy feature, which minimizes data

transfer time. Next step is to set memory buffers as kernel arguments. After this step, host

code is ready to launch kernel and let GPU execute. When kernel code finishes execution,

13



Figure 3.1. Breakdown of DG-CVS execution time.

Figure 3.2. Work flow of OpenCL program.

the host copies output back to original data structure, and releases memory buffer on GPU.

3.2 Optimization on Thread Divergence

Section 2.3.2 explains the underlying architecture of GPU, and the reason of thread

divergence. In the past, researchers have tried to minimize thread divergence impact by

software techniques (Han and Abdelrahman, 2011) (Zhang et al., 2010) or hardware mod-

ification (Brunie et al., 2012) (Fung et al., 2007) (Narasiman et al., 2011). In many cases,
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algorithm redesign is often needed to achieve the most optimal performance (Chakroun

et al., 2013). In this thesis, we approach divergence issue with slight modification of original

algorithm.

Threads inside a wavefront execute the same instruction in lock step. Based on this

architecture and execution model, we can remap thread ID to minimize number of divergent

wavefronts down to only one wavefront or even completely remove divergence happening in

this function. It is an effective way to minimize the divergence (Yoshitake and Keiji, 2015).

Thread remapping requires the host to pre-check data for GPU kernels, then gather the

index of threads taking if path and else path. After thread remapping, work items within

one work group execute either if path or else path. If the number of if path is a multiple

of 64, thread remapping completely removes divergence. Otherwise, this method only leaves

one divergent wavefront, which is not a significant factor for performance.

To implement thread remapping, first, we created an array that records the index

that is used to remap threads, referred to as idx arr. The host checks the condition where

the divergence happens. In an example case, it is to check if Array[tid] is greater than or

equal to zero, and writes the index of elements that satisfies the condition check (taken) to

idx arr. Repeat the same steps for elements that fails the condition check (non-taken) and

pass idx arr to kernel.

After passing idx arr to kernel as an argument, threads are mapped to this index

array idx arr instead of the index of Array by executing the code shown in Figure 3.3.

Figure 3.4 shows the visualization of thread execution path after remapping.

3.3 Optimization on Low Kernel Occupancy

Kernel occupancy refers to the ratio of active wavefronts to the theoretical maximum

concurrent wavefronts per compute unit (CU). In general, a high occupancy kernel can

better hide the global memory access latency, therefore often leads to better performance.

Optimizing kernel occupancy requires the programmer to find the balance between the three
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tid = get_global_id(0);

idx = idx_arr[tid];

if(Array[idx] >= 0){

Array[idx]++;

}else{

Array[idx]--;

}

Figure 3.3. Kernel code after thread remapping.

Figure 3.4. Thread remapping.
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limiting factors discussed in Chapter 2.3: work group sizing, LDS, and registers.

To find out which factor is a constraint for kernel occupancy, we use a profiler tool

such as CodeXL (AMD, 2012). According to the profiling result, VGPR (vector general

purpose register) is a limiting factor for kernel occupancy. Each work group uses 169 VGPR,

which limits the number of wavefronts to 4 out of 40 which is the device limit. Kernel

occupancy is only 10% because of high register pressure. Based on the analysis of kernel

code, we use three techniques to minimize the use of VGPR: code change, use of LDS, use

of volatile keyword.

The original DG-CVS source code declares all local variables at the first line of func-

tion. Such programming style can lengthen register life, which in turn creates register pres-

sure. Furthermore, it does not provide compiler proper scope information of some variables

for optimizations. Code change is required to reduce the live ranges of register. We declare

local variables only when initialized with value, and within proper scope. Some tempo-

rary variables are replaced with either recomputation, or completely eliminated in case of

redundancy.

Some programmers also use LDS to alleviate register pressure (Gaster et al., 2012) (Polle-

feys) . LDS is also referred to as software managed cache. It is slightly slower than register,

but much faster than global memory access. Programmer can identify the highly reused

data and manually “cache” them in LDS. However, just like other parameters that affect

performance, LDS and register are antagonists: one is improved at the cost of the other. In

unoptimized version of GPU kernel in DG-CVS, use of LDS is none. As we mentioned in

Chapter 2.3, kernel occupancy is limited by register and LDS, also it changes in steps. As

we increase the use of LDS, LDS quickly rises up to become a limiting factor. When register

count decreases to allow next level of occupancy which is 20%, but due to the limitation of

LDS, occupancy only increases to 12.5%.

Using volatile keyword is another way to decrease register use. If a variable is declared

as volatile, the compiler assumes that this variable is likely to be modified by other threads.
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Every reference to this variable would be loaded from its declared memory region, either in

global memory or shared memory, instead of being kept in registers.

3.4 Shared Virtual Memory

A recent trend in GPU computing is transitioning from discrete GPU that are phys-

ically separated from CPU to tightly integrated CPU and GPU on a single die. Physically

connecting CPU and GPU memory opens up an opportunity to share memory address be-

tween CPU and GPU. SVM is the landmark feature of OpenCL 2.0 (Howes and Munshi,

2015). The benefits of SVM are the following: It removes the overhead of data copy. GPU

can read pointer type data structures such as graph and trees, that are declared in CPU

and directly work on such data structures without flattening them. Lastly, atomic opera-

tion is available on SVM which enables synchronization between CPU and GPU to allow

tighter collaboration between the two. If used correctly, SVM can boost performance by

30% comparing to using regular memory buffer in OpenCL 1.2 (Robert Ioffe) (Mukherjee

et al., 2016).

The difference between regular memory buffer and SVM buffer is shown in Figure 3.5.

Figure 3.5a shows traditional memory address and data transfer in OpenCL 1.x style code.

In 1.x OpenCL, memory buffer is first created on host side and passed to device side. If host

wishes to read a memory buffer, a read request must be enqueued on the command queue.

This extra step is an overhead at host code. SVM allows CPU and GPU to seamlessly access

the same data structure without copying back and forth.

The overlapping area in Figure 3.5b shows SVM memory region. A SVM buffer is no

longer owned just by device. Both host and device can read or write to this memory region

at any given point. The programmer does not need to worry about coherence between the

two because underlying hardware takes care of it.

SVM also enables GPU to directly work on pointer type data structures such as trees

or linked lists that are created in SVM region, by simply passing the root pointer to the
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(a) Separate Memory of CPU and GPU.

(b) Shared Virtual Memory.

Figure 3.5. Separate Memory VS Shared MemoryIntel (2015).
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device. Before this feature was introduced, the programmer had to flatten the tree to one

dimension and calculate indexes to access nodes.

Combined with atomic operations, SVM allows fine-grained lightweight synchroniza-

tion between host and device. Concurrent modification on the same address is visible to both

host and device, and memory consistency is guaranteed without issuing new commands to

the command queue. SVM brings out new collaboration relationships between CPU and

GPU other than traditional master and slave relationship (Ta et al., 2017).

SVM is a landmark feature from OpenCL 2.0 that would bring performance and

programmability impact to many applications. It has success in accelerating shallow water

equations (Mukherjee et al., 2015) and in image processing (Junkins, 2015). However DG-

CVS experiences slow down after incorporating SVM. We developed micro benchmark for

deeper understanding on this negative impact. Micro benchmark and analysis are shown in

Chapter 4.6.
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CHAPTER 4

EXPERIMENT RESULTS

Our performance evaluation considers both CPU implementation and an unoptimized

vanilla version of GPU implementation as base cases. In this chapter, we first explain our

test environment, and then show the impact of applying optimization techniques mentioned

in Chapter 3 along with analysis of the impact of each proposed method. Our test results

are summarized as follow:

• Our unoptimized GPU version achieves performance gain up to 57% speedup compared

to CPU implementation.

• By minimizing thread divergence, we increase kernel speedup significantly across all

test cases by up to 56% when compared to unoptimized GPU kernel, and 145% compare

to CPU version.

• Kernel occupancy increases from 10% to 12.5%.

• SVM (Shared Virtual Memory) enables CPU and GPU collaboration at a finer granu-

larity. However, the address translation overhead of SVM and cost of atomic operations

on this memory region outweighs the benefit it brings, causing the kernel to run up to

significantly longer than on regular buffers.

4.1 Description of Test Cases

We included 24 test cases from DG-CVS. Each test case provides a different set of

mesh information, which affects the performance. Table 4.1 lists all test cases. There are two

main categories of test cases: one that solves the advection equation (denoted as adv-sin),
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and the other solves the burgers equation (denoted as burgers). Each category can be further

divided into 2 groups, p1 and p3. P1 stands for second order accuracy, and P3 for fourth

order accuracy. p1 has four unknowns at each space time node, while p3 has 15 unknowns

at each space time node. Therefore, p3 produces more accurate results than p1 with the

price of being more expensive. Next, two shapes of mesh cell are considered: quadrilateral

and triangle. Next level of division is the granularity of mesh cell size, which increases from

10 to 40. Generally, for the same domain, finer meshes have larger number of mesh cells.

However, the given test cases are of different domains. The number of cells increases as the

mesh cell size increases. The number of GPU threads launched is mapped to the number of

mesh cells, because the solutions stored in each cell are independent, which can be done in

parallel.

4.2 Experiment Setup

We consider serial CPU version and an unoptimized GPU version as our base cases.

To measure the performance, wall clock timer and OpenCL event are used to get the overall

time and kernel time respectively. CodeXL is used to get hardware counter information. We

check the correctness by comparing the output of serial version and every GPU version.

We use AMD A10-7850K APU (code name “Kavari”) to test all versions of imple-

mentation. This tightly coupled heterogeneous processor combines 4 CPU cores running at

3.7 GHz and 8 Radeon R7 GPU compute units running at 720 MHz. The machine is running

Ubuntu 14.04 64-bit Operating System with 12 GB main memory. We run the CPU version

base case on the same quad-core CPU on the APU. OpenCL 1.2 is used for both unoptimized

and optimized GPU versions, while OpenCL 2.0 is used for SVM GPU version. SVM is a

feature in OpenCL 2.0. Therefore, OpenCL 2.0 flag is required in order to use SVM. The

compiler will produce different assembly code using different OpenCL version.
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Equation Order of Accuracy Cell Shape Cell Size Number of Faces

adv-sin

p1

quadrilateral
10x10 220
20x20 840
40x40 3280

triangle
tri-10 404
tri-20 1576
tri-40 6224

p3

quadrilateral
10x10 220
20x20 840
40x40 3280

triangle
tri-10 404
tri-20 1576
tri-40 6224

burgers

p1

quadrilateral
10x10 220
20x20 840
40x40 3280

triangle
tri-10 380
tri-20 1480
tri-40 5840

p3

quadrilateral
10x10 220
20x20 840
40x40 3280

triangle
tri-10 380
tri-20 1480
tri-40 5840

Table 4.1. A list of test cases.
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4.3 Impact of Using GPU for Acceleration

In this section we show the performance improvement of using GPU for acceleration.

In short, after porting and optimizing GPU kernel, DG-CVS achieves performance gain up to

147% compared to CPU version, and 57% speedup if overhead is included. Figure 4.1 shows

all performance comparison between CPU version and unoptimized GPU version (denoted

as vanilla). The X-axis is execution time in micro seconds, while the Y-axis is test cases.

All improved cases fall into p1 cases. Test cases with a smaller mesh size (i.e., less

number of faces) did not show speed up because the overhead of data copy and launching

GPU kernel can not be justified with small input size. As the mesh size gets larger, the

benefit of using GPU becomes more obvious. All accelerated cases are of large mesh size

cases. This shows that given large enough data set and parallelism, the overhead of using

GPU pays off.

P3 cases experience worse performance on GPU. As mentioned in Chapter 4.1, p3

cases produce more accurate results at the cost of being more expensive. The kernel code

remains the same for p1 and p3 cases. However, there are several loops inside kernel code,

and the control variable for those loops are 4 times bigger in p3 cases than that of p1 cases.

Within these loops, global memory access quadruples for p3 cases. Moreover, such global

memory access has a larger stride for p3 cases which result in poor cache hit. Lastly, these

global memory accesses happen inside a tight nested loop, leaving GPU little choice to switch

to other wavefront to hide the latency since they are in similar code region. These are reasons

why p3 cases did not get acceleration on GPU.

4.4 Impact of Minimizing Thread Divergence

In this section we show the improvement of kernel performance after thread remap-

ping.

In DG-CVS face kernel, thread divergence happens because the threads that works on

both boundary faces and non boundary faces are interleaved. We move condition checking
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(a) Test cases adv-sin. Left graph is p1 cases, right graph is p3 cases.

(b) Test cases burgers. Left graph is p1 cases, right graph is p3 cases.

Figure 4.1. Performance comparison between CPU version and unoptimized GPU version.
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out side of kernel body and record the indexes of non boundary faces to the first part of

an index array and the indexes of boundary faces to the second part of array. This step

groups threads that takes non-boundary path together, and threads that takes boundary

path together, so that threads within the within the same wavefront takes the same path.

Thread remapping significantly boosts kernel performance and the overhead from

condition checking and passing an additional memory buffer is negligible. The degree of

improvement depends on the severeness of divergence (i.e., the number of divergent paths

and whether divergence occurs within a wavefront). In DG-CVS, there are two divergent

paths in face kernel: boundary and non boundary, and they are interleaved which causes

divergence to happen within wavefronts. Figure 4.2 shows performance comparison of kernel

before thread remapping (denoted as vanilla) and after thread remapping (denoted as no-

div). The X-axis is execution time in micro seconds, while the Y-axis is test cases. Comparing

to vanilla GPU version, there is a 56% increase in best case, and 22% on average for all 24

test cases. Comparing to CPU version, there is up to 145% speed up. We also see an

interesting trend which is that as the number of concurrent threads increases, the impact of

thread remapping rises.

4.5 Impact of Higher Kernel Occupancy

Multiple techniques have been used to lower register pressure in order to increase

the kernel occupancy. The vanilla version of GPU kernel uses 169 registers, limiting the

kernel occupancy to 10%. Kernel occupancy changes in steps rather than continuously, and

is affected by multiple factors such as group size, register, and local data share (LDS). To

reach the next level of occupancy, which is 20%, register count must be lower than 129.

We did the following changes to reduce the use of registers. The first is to change the

location of local variable declaration. Instead of declaring all local variables at the top of

function, we declare them when they are used, and place them in appropriate scope. These

changes can shorten register life, giving compiler more information to produce machine code
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(a) Test cases adv-sin. Left graph is p1 cases, right graph is p3 cases.

(b) Test cases burgers. Left graph is p1 cases, right graph is p3 cases.

Figure 4.2. Performance comparison between vanilla GPU version and no divergence GPU
version.
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with fewer registers. This code change lowers the VGPR count from 169 down to 149.

Secondly, using volatile keyword drops register count from 149 to 142. Lastly we use LDS to

alleviate register pressure. LDS is on chip memory region shared by threads within a work

group. It is visible to all threads within a work group and accessing speed is much shorter

than global memory but slightly longer than registers. Note that LDS is also one of the

limiting factor for occupancy. After moving some local data to LDS, we successfully lowered

register count down to 126. However, the increased use of LDS quickly rises up to be the

limiting factor for kernel occupancy. The best occupancy rate we can get by balancing LDS

and register is 12.5%.

Optimizing kernel occupancy is an art of balancing the use of limited resources. With

slight increase in occupancy, we did not observe remarkable change in kernel running time.

4.6 Analysis on SVM (Shared Virtual Memory)

Shared Virtual Memory (SVM) is a landmark feature of OpenCL 2.0. Multiple works

reported performance increase when using SVM. On the contrary, the kernel for DG-CVS

runs longer when using SVM. In this section we first show the performance of DG-CVS face

kernel after using SVM. Then we describe our micro benchmark to understand the reason

of this performance hit.

Figure 4.3 shows performance comparison between vanilla GPU version and SVM

version. The X-axis is execution time in micro seconds, while the Y-axis is test cases.

After switching regular buffer to SVM on DG-CVS solver, total execution time increased

significantly. There are two reasons. One is due to AMD’s compiler redesign. The compiler

for OpenCL 2.0 produces quite different assembly than for OpenCL 1.x. We compared the

assembly code and execution time using different compiler flags to verify the result. The

same kernel code runs 30% slower using -cl-std=CL2.0 flag than using -cl-std=CL1.2 flag.

Hardware vendor needs to address this issue in future compiler design.

Another reason for the performance hit is due to using atomic on SVM. We developed
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(a) SVM adv sin p1 and p3 cases.

(b) SVM burgers p1 and p3 cases.

Figure 4.3. Performance comparison between vanilla GPU version and SVM version.

microbenchmark to analyze the cost of atomic on SVM.

4.6.1 Microbenchmarking

In order to understand the reason why DG-CVS slows down after using SVM to

replace OpenCL regular memory buffers, we developed a micro benchmark to test the speed

of atomics on SVM.

In this test, we created an array of size 6144. We launch 6144 threads from GPU,

with each thread performing an atomic operations on its corresponding array element. Each

work group contains 64 threads. We test different operations on both regular memory buffer

and SVM buffer, with the flags specified as below:
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0. __kernel void atomic_test ( __global int * Array){

1. int tid = get_global_id(0); // no op

2. Array[tid] ++; // add

3. atomic_add(Array + tid, 1); //atomic_add

4. }

Figure 4.4. Kernel code for SVM microbenchmark.

• Regular memory buffer is created with clCreateBuffer() command, using the flag

CL MEM READ WRITE and CL MEM USE HOST POINTER. First flag sets this

buffer to grant threads read and write access. Second flag utilizes zero copy for this

memory buffer. This configuration is denoted REG BUF.

• SVM buffer is created with clSVMAlloc() command, with two options:

– using the flag CL MEM READ WRITE, CL MEM SVM FINE GRAIN BUFFER.

Second flag allocates fine grain memory buffer region, which is shared by both

CPU and GPU. we denote this configuration as SVM (FINE GRAIN).

– using the flag CL MEM READ WRITE, CL MEM SVM FINE GRAIN BUFFER,

and CL MEM SVM ATOMICS. Second flag and third flag are both needed for

atomic operation to work on a SVM region because atomic is a feature added on

fine grained sharing. This configuration is referred to as SVM (ATOMIC).

Kernel code is shown in Figure 4.4. In a real world application, such access does not

need atomic operation because we know for a fact that there is no concurrent access here

since each thread operates on their own array element. But in order to test for the true

cost for atomic operation on SVM, we eliminate the cost of contention. Contention is when

multiple threads concurrently modify a single variable, they will compete for the ownership

for this variable.

No op means the kernel only gets the global ID of each thread and returns. It only

executes line 1 in Figure 4.4. Add is a regular increment on one element on Array. It executes
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Operations REG BUF SVM (FINE GRAIN) SVM (ATOMIC)
No op 3 us 3 us 2 us
add 11 us 15 us 22 us

atomic add 14 us x 180 us

Table 4.2. Time comparison of different operation on SVM and regular buffer.

line 1 and 2 in Figure 4.4. Atomic add does line 1 and 3 in Figure 4.4. We test all operations

on above mentioned memory spaces. Test result is shown in Table 4.2.

4.6.2 Experiment result and analysis

Kernel time for no op remains the same for all configurations. It does not ac-

cess any global memory. For add, we observe a slight increase from REG BUF to SVM

(FINE GRAIN), then to SVM (ATOMIC), because an add operation requires read and

write to global memory space. The increase is due to the address translation overhead that

occurs on SVM region. Maintaining coherence between CPU and GPU consumes memory

bandwidth as well.

There is a significant jump for atomic add from REG BUF to SVM (ATOMIC).

Atomic add operation on SVM takes 12 times longer than in regular buffer. Finding out the

reasons for this performance hit is a future research topic. We speculate that when atomic

operation is done on REG BUF, GPU can finish the atomic operation then write it to L2

cache, which is shared across all GPU cores. On the other hand, SVM region indicates

that variables declared in this memory space could be modified by both CPU and GPU. An

atomic modification will be cached to Last Lower Cache (LLC) which is visible to the whole

platform. The overhead of going lower to the cache hierarchy contributes to the lengthened

kernel time.

Our benchmark shows that performing atomic operation on SVM incurs significant

overhead. It can become a serious bottleneck of an application if no attention is paid.
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CHAPTER 5

CONCLUSION

In this thesis, we present the acceleration of DG-CVS using CPU-GPU heterogeneous

processors. We first show the benefit of offloading computation intensive parts of DG-CVS

to many core GPU processors by comparing performance of the program on serial processors

and GPUs. Moreover, we developed further optimizations for GPU kernel after understand-

ing the underlying hardware execution model. Our result shows that an improved thread

mapping that reduces thread divergence further improves performance. We also address low

kernel occupancy caused by register pressure and used multiple techniques to reduce register

pressure. However, due to hardware resource limitations, kernel occupancy slightly increases

and does not show impact on execution time. Lastly, we observe performance decrease after

using SVM to enable collaboration between CPU and GPU. We develop micro benchmark

to analyze the reason for such negative results.

This thesis demonstrates the benefit of using heterogeneous processor to accelerate

computation intensive applications such as DG-CVS using OpenCL implementation. How-

ever, future research is needed to minimize the overhead of using SVM for the community

to truly take advantage of the benefits that SVM brings to heterogeneous computing.
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