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ABSTRACT

The first essay estimates the degree of monopsony power in the college football labor

market. Previous literature suggests that the marginal revenue product of top performing

college football players significantly exceeds their compensation. Such estimates overstate

rents on labor because they estimate the marginal revenue product as a function of ex post

realized labor quality, which is more information than is available ex ante. For 114 Foot-

ball Bowl Subdivision participant schools from 2004-2011, I estimate the marginal revenue

product for players grouped into three ex post quality tiers. Using talent ratings prospective

players spanning 2002-2008, I then estimate the probability of each ex post quality outcome

given a prospect’s rating. Together these yield estimates of expected marginal revenue prod-

uct as a function of ex ante promise, which are more appropriate for inference regarding

monopsony power.

The second essay builds on a multi-market approach to second-degree price discrim-

ination which treats each successive unit sold by the monopolist as a separate good sold

in an independent market. For each unit of the good, the monopolist chooses a marginal

type (lowest type served) subject to a constraint: the schedule of marginal types must be

monotonically non-decreasing in the amount of the good being sold. I show that the monop-

olist’s problem can be treated like a finite horizon multi-stage decision problem, and solved

by backward induction using Bellman’s equation. This approach identifies the optimal non-

linear price schedule whether or not the monotonicity constraint binds, and highlights the

economic intuition behind the construction of an optimally ironed marginal type schedule

an the corresponding marginal price schedule.

The third essay looks at the optimal pricing behavior of a monopolist screening con-

sumers on a single type parameter, when the single crossing condition is violated. I show
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that under standard assumptions of one-dimensional screening problems, violation of the sin-

gle crossing condition can allow for positive and globally incentive compatible assignments

through which the monopolist extracts all equilibrium surplus. This sharply contrasts with

the case of second-degree price discrimination when the single crossing condition is satisfied.
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CHAPTER 1

ARE YOU HIRING JOHNNY FOOTBALL OR JOHNNY DOE? THE EFFECTS OF

UNCERTAIN LABOR QUALITY ON EMPLOYER MONOPSONY IN COLLEGE

FOOTBALL.

Few labor markets in the United States (US) have received as much media attention

and public scrutiny of late, as the market for college football players. The collegiate football

industry in the US has long been offered as an example of a monopsonistic labor market,1

primarily because National Collegiate Athletic Association (NCAA) amateurism rules limit

player compensation to a full-tuition scholarship and the coverage of some additional ex-

penses, restricting wage competition among employers. In recent years, several challenges to

these rules have been mounted. For example, Gregory (2013, September 16), the cover story

of Time magazine, advocates allowing player payment beyond the current limit. In April

of 2014, football players at Northwestern University voted on the certification of a players’

union, a move which the University is presently challenging 2 In August of 2014, the NCAA

voted to allow member institutions of the “power five” conferences (65 schools in all), a

degree of autonomy in determining the amount of expenses these schools offer to cover for

athletes as part of their compensation package [see Terlep (2014, August 7)]. In January of

2015, these “power five” member schools approved adding a stipend to scholarships for 98

male athletes (85 football, 13 basketball), and a matching number of female athletes, begin-

ning in August 2015. On average, these stipends are expected to amount to $2,500 annually

1See for instance Koch (1973), Becker (1983, September 30), or Fleisher et al. (1992). I use ‘monopsony’
to broadly refer to labor markets in which a sole employer or several employers possess some degree of market
power.

2See Wolken (2014, April 24). The results of the vote are sealed and currently unknown while the legal
challenge pends.
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[see Berkowitz (2015, January 17)]. Also in August of 2014, a US District Court ruled in

the O’Bannon v. NCAA class action suit, issuing an injunction against NCAA rules that

prohibit schools from offering athletes a share of revenue generated from the commercial use

of their images or likenesses. The NCAA intends to appeal the ruling [see Romney (2014,

August 8)]. These challenges to the amateurism rules typically contend that players gener-

ate revenue for their institution which exceeds their capped compensation; and moreover,

that the imposed compensation cap reflects an exercise of monopsony power by the NCAA

member institutions, which allows them to systematically under-compensate college foot-

ball players. Despite some evidence from Brown (1993) and Brown (2011) that elite college

football players are currently under-compensated, the effect of the existing system on the

average player’s compensation, is unclear. In particular, the existing literature overstates

the degree of monopsony power exercised over elite players, by implicitly treating the future

quality of prospective labor as known at the time of hiring.
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Brown (1993) is often cited as evidence of employer monopsony in college football.3

Brown estimates that the marginal revenue product of labor (henceforth MRP) for an elite

college football player is greater than $500,000 annually, substantially more than the market

value of the typical compensation package.4 Using the 2004 to 2005 season, Brown (2011)

suggests that a premium player generates more than $1,000,000 annually. However, the data

used to generate such estimates are from a selected sample of players who went on to be

drafted in the National Football League (NFL). The majority of scholarship players partic-

ipating at FBS programs do not graduate into the NFL.5 As such, estimates based on this

select sample do not reflect the value of the average player; and for the purposes of NCAA

policy evaluation, are not applicable to the wider population of interest. More importantly,

since the elite status of these players (as defined by a future NFL draft selection) was un-

known at the time they participated in the college football labor market, the Brown (1993)

MRP estimates are inappropriate for assessing the exercise of monopsony power, even as it

relates to the most productive players in college football.

In order to assess the exercise of monoposony power, it is necessary to differentiate

information available prior to hiring (henceforth ex ante), and information available after

hiring (henceforth ex post). A monopsony rent on labor is the employer’s return on a worker

beyond what his return would be, given a competitive labor market. Wages and employ-

ment decisions are based only on the information available ex ante, and competitive wages

approach ex post realized MRP only if future labor quality is fully known ex ante. Among

college football players, ex ante promise imperfectly correlates with ex post realized quality.

Many of the ex ante most promising players are not among the ex post highest quality, and

many of the ex post highest quality players were not among the ex ante most promising. So

MRP estimates from the ex post highest quality players overstate the expected MRP of even

3See for instance Boal and Ransom (1997) or Kahn (2007).
4Brown (1993) uses survey responses from 39 Division I-A football programs for the 1988 college football

season. He correlates school football revenue with the number of players on each team that were drafted
into the NFL within four years.

5I estimate that from 2004 to 2011, eventual NFL draft picks accounted for roughly 9% of all FBS
scholarship players.
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the ex ante most promising players. Therefore, in the college football labor market (and

any other in which the future quality of labor is uncertain), a monopsony rent on labor is

appropriately defined as the difference between ex ante expected MRP and wage. The degree

of exercised monopsony power then, can be measured as the fraction of expected MRP that

employers retain as rents, following Pigou (1924).

Nonetheless, there is practical justification for following Brown (1993), following

Brown (2011), and others, in estimating marginal productivities using ex post realized qual-

ity rather than ex ante expected quality.6 Given the imperfect correlation between ex ante

promise and ex post quality, ex post quality will necessarily be a less noisy signal of a player’s

productive contribution. Thus, marginal product estimates will be more precise if estimated

using ex post realized quality as opposed to ex ante promise. MRP estimates as a function

of realized quality possess more information than employers have ex ante, and necessarily

overstate the expected value of the most promising prospective players. Consequently, infer-

ence regarding employer monopsony power necessitates that such estimates be adjusted to

reflect the ex ante uncertainty of labor quality.

For the empirical exercise, I collect a panel of annual institution-level revenue and

winning percentage data from 114 NCAA member institutions, who competed in FBS foot-

ball from 2004 to 2011. Treating on-the-field success as the output of a college football team

I first estimate team winning percentage as a function of ex post realized labor quality, and

then estimate school revenue as a function of team winning percentage. Within the institu-

tion, I proxy for differences in realized labor quality by sorting players into three separate

ex post quality tiers. Players that go on to be drafted in the NFL constitute the ex post top

tier.7 An ex post middle tier is constructed using annual rankings of NFL draft prospects

from CBS Sports.8 Specifically, this middle tier consists of players who were ranked among

6This empirical approach is adopted in Brown (1994) for men’s collegiate basketball, Brown and Jewell
(2006) for women’s collegiate basketball, and Kahane (2012) for men’s collegiate hockey.

7NFL draft results are available at: nfl.com/draft/history/fulldraft, as well as many other sources. A
total of 253 players are typically selected in each year’s NFL draft.

8Data were retrieved from http://www.cbssports.com/nfl/draft/prospectrankings.
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the top 500 draft prospects by CBS Sports, but not drafted. A bottom tier of all remaining

scholarship players is implied. I estimate team winning percentage as function of the number

of players a team employs within the ex post quality tiers. However, per NCAA regulations,

FBS programs may have no more than 85 scholarship players annually.9 Programs typically

operate at the limit, making a team’s annual counts of top, middle, and bottom tier players

linearly dependent. The marginal product of labor (henceforth MP) for ex post top, mid-

dle and bottom tier players are therefore, not separately estimable. Instead, the estimated

production equation identifies the difference in MP between top, middle, and bottom tier

players. I am able to correct for this issue by establishing plausible upper and lower bound

estimates for the MP of ex post bottom tier players. This yields interval estimates of MP,

and subsequently MRP, for ex post top, middle, and bottom tier players.

To account for the information schools possess ex ante, I incorporate scouting data

generated prior to player recruitment by Rivals.com.10 Using Rivals ratings for 6,604 prospec-

tive college football players recruited from 2002 to 2008, I sort players into tiers according

to ex ante promise. I estimate the probability that a player will belong to each of the ex

post quality tiers, conditional on Rivals prospect ratings which serve as ex ante forecasts

of player quality. The conditional probability and MRP interval estimates then combine to

yield estimates of expected MRP as a function of ex ante promise. These estimates permit

inference about the degree of monopsony power exercised across the college football labor

market.

The results of this paper show that labor quality in college football involves consid-

erable uncertainty ex ante. An initial picture of this labor quality uncertainty is found in

Table 1.1. Note for instance, that of the 6604 prospects included in the 7-year sample of ex

ante forecasts, 201 (about 3%) were given Rivals’ top rating of 5-star, making this a very

select group.11 Of those top 201 prospective players, only 93 (46%) went on to be drafted,

9The NCAA’s current Division I manual can be downloaded at: ncaapublications.com.
10Rivals is a scouting agency that annually rates and ranks thousands of prospective college football players

based on talent. Data are retrieved from footballrecruiting.rivals.com/
11As a reference point 253 players are selected annually in the NFL draft. A complete description of the
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and only 125 (62%) of the 5-star players were selected into the ex post groups of middle or

top tier players (see Table 1.2). This ex ante uncertainty is quantitatively important. Thus,

the MRP estimates for ex post top tier players, exceed the ex ante expected MRP estimates

for 5-star prospects, by at least $251,393 and 76.56% of the expected MRP estimate.12

Table 1.1. Draft Outcomes by Rivals Ratings 2002-08

Rivals Rating # with Rating % with Rating* # Drafted % Drafted*
5-star 201 3.04% 93 46.27%
4-star 1839 27.84% 353 19.20%
3-star 4564 70.46% 402 8.81%
Total 6604 100% 848 12.84%

*% of 6604 player sample

Table 1.2. Ranked or Drafted by Rivals Ratings 2002-08

Rivals Rating # with Rating # Ranked/Drafted % Ranked/Drafted*
5-star 201 125 62.19%
4-star 1839 596 32.41%
3-star 4654 868 19.02%
Total 6604 1589 24.06%

*% of 6604 player sample

My results also challenge any notion that the average performer in FBS college foot-

ball generates revenue for his school that significantly exceeds his compensation. Over this

8-year period, ex post top tier players accounted for approximately the top 9% of scholarship

players participating at the 114 FBS institutions sampled. Middle tier players accounted for

roughly the top 9% to 18%, with bottom tier players accounting for the remaining 82%. The

NCAA reports that the average out-of-state tuition scholarship at a public university carries

a market value of approximately $25,000 per year. Figuring conservatively and taking that

figure as the annual value of the compensation package, this paper’s results do suggest that

over a four year collegiate career, NFL quality players generate revenue for their institutions

in excess of their compensation by an economically significant amount (consistent with the

Rivals rating scale and all other data are found in Section 1.2.
12These estimates are of a player’s MRP over a four year collegiate career.
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findings of Brown (1993), although my annual estimates are about $370,000 less). MRP es-

timates for ex post middle tier players are economically significant as well, but the difference

in MRP and the compensation’s market value is statistically insignificant.

Overall, my findings suggest that market-wide, NCAA member institutions do not

enjoy as great a degree of monopsony power as some contend. Moreover, the current compen-

sation may meet or even exceed the amount that a player of average ability would command

in a competitive labor market. These results have interesting implications as courts and

member institutions consider policy reforms. They are also notable as the potential players’

union at Northwestern pends, and players nationwide weigh the merits of unionization. It

appears that the current system might actually benefit a majority of FBS scholarship play-

ers, at the expense of a highly productive minority. Ironically, this result would also be

consistent with the presence of a strong labor union.
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1.1 The College Football Labor Market

Monopsony power in the college football labor market results primarily from NCAA

amateurism rules, which limit player compensation to a full-tuition scholarship and the

coverage of certain expenses.13 These rules effectively restrict wage competition among

schools.

Two different policies restrict labor mobility in the college football industry, although

only one restricts mobility ex ante. Per NFL rules, players are not eligible to play in the NFL

until 3 years after their senior year of high school. Thus collegiate football is effectively the

only option for high school graduates who seek employment in the US as football players. It

should be noted however that more than 1000 college football prospects receive scholarships

from FBS schools each year, whereas only 253 players are selected annually in the NFL draft.

Therefore, the NFL’s eligibility requirement realistically restricts labor mobility only for the

most promising college football prospects. The other policy limiting labor mobility is an

NCAA rule that requires players to sit out one football season if they wish to transfer to

another FBS program. Since this policy only applies to players ex post, it is not a source

of monopsony power in the primary college football labor market, where prospective players

are free to accept scholarship offers from any school they choose. Were the amateurism rules

lifted, these transfer restrictions would prevent secondary labor markets from materializing.

As mentioned, Brown (1993, 2011) find that the realized MRP of an ex post NFL

caliber player exceeds the market value of his compensation package significantly. Note

however, that FBS programs typically award full scholarships to 85 players annually, the

maximum allowed by NCAA rules.14 Thus, within a school, wages are identical for the ex

ante most and least promising players. Therefore, the rents implied by MRP estimates such

as Brown’s, overstate monopsony power in two regards. Due to the effectively uniform wage

within schools, rents will necessarily be higher on players of above average ex ante promise.

13Among these expenses are room and board, textbooks, and medical insurance.
14NCAA regulations limit FBS schools to 85 scholarship players under normal circumstances. That limit

is sometimes reduced for programs placed on probation.
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Moreover, as a consequence of uncertain labor quality, MRP estimates from the ex post

highest quality players overstate the expected MRP for even the ex ante most promising

players. This therefore overstates rent on the ex ante most promising players as well.

Finally, a note on the annual provision of football scholarships by FBS schools. FBS

institutions are not required to provide full scholarships to all 85 players, or even meet the

85 player limit, but they typically do.15 My results suggest that the ex ante expected MRP

for many FBS players is less than the cost of the scholarship. Thus, the annual provision of

85 full scholarships suggests that schools may not maximize expected profits from football.

It is important to remember that football programs operate within athletic departments,

which in turn operate within much larger universities as a whole. University presidents and

chancellors likely have objectives beyond simply maximizing expected profits from football

or even athletics. The fact that these same schools often fund scholarships for several men’s

sports known to operate at losses, would seem to support this notion. While decisions

regarding the allocation of football scholarships to certain players are made by head coaches

or members of their staff, coaches likely lack the authority to divert scholarship funds to

other purposes that might yield a greater return. Thus, the provision of a scholarship to a

football player does not necessarily imply that his expected MRP is greater than or equal to

the cost of the scholarship.

15Although a player receiving a partial scholarship would count against the 85 player limit.
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1.2 Data Description

The data used in this paper are collected at both the individual or player-level, as well

as the university or institution-level. In this section I give a detailed explanation of these

data, beginning with those collected at the player-level, and followed by those collected at

the institution-level.

1.2.1 Player-Level Data

I collect Rivals.com data for 6604 college football players who meet the following

criteria: they were rated 3-star or higher by Rivals, and they were recruited out of high

school between 2002-2008, to one of the 114 institutions sampled. Rivals ratings are first

available for the year 2002, and I collect them only up through 2008 to allow players sufficient

time to matriculate to the NFL. Rivals describes a five-star prospect as “one of the nation’s

top 25-30 players”, a four-star prospect as “a top 250-300 or so player”, and a three-star

prospect as “a top 750 player.” I also collect the player’s position as listed by Rivals, the

school that recruited him, and his recruitment year. These data are available online at:

footballrecruiting.rivals.com.

All FBS scholarship players are sorted into three ex post quality tiers. Recall that

players drafted in the NFL following their collegiate careers constitute the top tier; and

players ranked among the top 500 draft prospects by CBS Sports, but not drafted, make

up the middle tier. Players neither ranked top 500, nor drafted, constitute the bottom

tier. Historical NFL draft records are available from numerous sources, including online at:

nfl.com/draft/history/fulldraft. CBS Sports first published draft prospect rankings following

the 2004 college football season, for the 2005 NFL draft. Two things should be noted about

the data I collect from CBS Sports. First, in some years CBS sports ranked slightly more

than 500 players. For example, prior to the 2006 NFL Draft they ranked the top 540

prospects. For consistency I use their rankings up to the same cutoff point every year, which

10



is the top 499.16 Thus, the middle tier actually consists of players ranked among the top 499

prospects, but not drafted. I call it the “top 500” for convenience of exposition. The other

note is that players are sorted into these tiers based only on their ranking in the year they

finished their collegiate careers. That is, juniors ranked among the top 500 prospects who

stay in college for their senior season instead of entering the draft, are not thereby counted

as middle tier players. They are instead sorted to one of the ex post tiers based on their

ranking or draft outcome following their senior season. The CBS Sports prospect rankings

are available online at: cbssports.com/nfl/draft/prospectrankings.

1.2.2 Institution-Level Data

Institution-level data are collected on 114 NCAA member schools whose football pro-

grams have participated in Division I-A/FBS since the 2004 college football season.17 Data

are collected annually from 2004-2011.

Annual football revenue figures come from the US Department of Education (US-

DOE). Beginning in 2003, the athletic departments of NCAA member institutions were

required to submit annual financial reports to the USDOE, in compliance with the Equity

in Athletics Disclosure Act of Congress. These reports are publicly available online at the

USDOE’s website: ope.ed.gov/athletics. The football revenue measure is fairly comprehen-

sive. The USDOE describes it as: “revenues from appearance guarantees and options, an

athletic conference, tournament or bowl games, concessions, contributions from alumni and

others, institutional support, program advertising and sales, radio and television, royalties,

signage and other sponsorships, sport camps, state or other government support, student ac-

tivity fees, ticket and luxury box sales, and any other revenues attributable to intercollegiate

athletic activities.” The revenue data I collect is attributable only to the “intercollegiate

athletic activity” of football. I report all revenue figures in 2005 USD, using the US GDP

16They only ranked 499 prospects in 2004, the smallest number in any year.
17There were 120 FBS programs by the 2011 college football season. The six additional programs joined

the FBS during the sample period, and are excluded from the sample for that reason.
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deflator. Note that revenue was not reported for the University of Maryland in years 2005-

2007, leaving three missing revenue observations, which are skipped in estimation.

A school’s annual winning percentage is the number of games won in a season, as a

percentage of the total number of games played. Such information is available from a wide

range of sources. I collect this information from the Stassen College Football Information

database, which is accessible online at: football.stassen.com.18

18The Stassen Database credits: jhowell.net/cf/scores/ScoresIndex.htm, as their initial source.
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1.3 Methodology

I estimate MRP by ex post player quality in two steps. I first estimate expected

winning percentage as function of ex post realized player quality, which yields estimates of

marginal product by ex post quality tier. I then estimate expected revenue as a function of

winning percentage, which yields estimates of the change in expected revenue given changes

in winning percentage. MRP estimates by ex post quality tier are imputed as products of the

two sets of estimates. This two step approach is consistent with Scully (1974) and Kraut-

mann (1999), who estimate MRP in professional baseball and football respectively. At the

player level, I then estimate the probability that a player will be selected into each of the ex

post quality tiers conditional on his ex ante Rivals rating. I combine the estimates of MRP

by ex post quality tier with these estimated conditional probabilities to impute expected

MRP by ex ante Rivals rating.

Finally, I test the sensitivity of these results to a narrower definition of the college

football labor market. I restrict my sample to players and institutions that participated

in Bowl Championship Series (BCS) “automatic qualifier” conferences. The BCS, an as-

sociation of the four most lucrative post-season bowl games, had agreements with these

conferences which guaranteed the conference champions an invitation to one of those four

(and eventually five) games.19 Over the 2004 to 2011 sample period, the BCS “automatic

qualifier” conferences were analogous to the current “power five” conferences. I then esti-

mate MRP by ex post player quality, and expected MRP by ex ante player promise, for this

subsample.

19The “automatic qualifier” schools were members of the Atlantic Coast Conference, the Big East, the Big
Ten, the Big Twelve, the Pacific Ten, the Southeastern Conference, and the University of Notre Dame.
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1.3.1 Production Equation

I measure output in a given year through winning percentage.20 WPCTi,t denotes

winning percentage for school i in season t.21 TOPi,t denotes the count of players from

school i that were selected in the NFL Draft immediately following season t; that is, the

number of ex post top tier players at school i who finish their collegiate careers in season

t. MIDi,t denotes the count of players from school i, who were ranked among the top 500

prospects by CBS Sports in year t, entered the draft immediately following season t, but

were not drafted; that is, the number of ex post middle tier players at school i who finish

their collegiate careers in year t. The estimated production equation is,

WPCTi,t = ai + [TOPi,t,MIDi,t]α+ εi,t. (1.1)

Here, TOPi,t denotes the vector [TOPi,t, TOPi,t+1, TOPi,t+2, TOPi,t+3], and MIDi,t denotes

the vector [MIDi,t,MIDi,t+1,MIDi,t+2,MIDi,t+3]. In any year, teams consist of players

who are at different stages in their college careers. I include one, two, and three year leads of

TOPi,t and MIDi,t. This accounts for the contribution of top and middle tier players on a

school’s year t football team, who would complete their careers in later years. For instance,

TOPi,t+1, which is the count of players at school i drafted following season t+1, is effectively

the number of top tier players at school i who were juniors in year t. I include institution

fixed effects to control for school specific characteristics such as quality of practice facilities

and coaching staffs, which correlate with both winning percentage and ex post player quality.

Note that while these features may not be entirely time invariant, they tend to vary at a

much slower frequency than winning percentage and the composite labor quality of the team.

20Measuring output quality in commercial sports through winning percentage is consistent with Scully
(1974); Atkinson et al. (1988); and Krautmann (1999).

21Index t denotes the calendar year in which the college football season began, and includes all bowl games
and the NFL Draft immediately following that season. For instance t = 2004 begins with the open of the
2004 college football season, and ends with NFL draft immediately following, which actually took place in
April 2005.
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1.3.2 Revenue Equation

Revenue from football for institution i in season t is denoted REVi,t. The estimated

revenue equation is,

REVi,t = bi + β1WPCTi,t + β2WPCTi,t−1 + z′i,tβ + υi,t. (1.2)

Again, WPCTi,t is the winning percentage for school i in the given season, and WPCTi,t−1 is

winning percentage for i in the previous year’s season. The components of revenue that likely

vary the most from year to year are ticket sales, bowl appearances, and alumni contributions.

All three directly correlate with the success of the team, which is accounted for by WPCTi,t.

Some ticket sales occur before the start of the season. Conceivably, most variation in pre-

season ticket sales for an institution, depends on expected performance of the team among

its fans. I include WPCTi,t−1 to account for pre-season expected performance. This is

consistent with Atkinson et al. (1988) who model variation in current revenue for an NFL

team, as a function of the number of wins the team had in the previous season.

The vector of control variables zi,t contains year dummies and the count of home

games school i played in year t, against opponents ranked in the Associated Press Top

25 poll, denoted HRi,t. This is included to control for any annual variation in a school’s

revenue that might be due to variation in the quality of the teams it hosts. I include school

fixed effects to control for characteristics that correlate with both winning percentage and

revenue. These would be features such as stadium size, regional substitutes for college

football, conference membership, and especially historic success of the program. All of these

features are essentially fixed, or vary at a substantially slower frequency than annual winning

percentage, and are likely absorbed in school intercept estimates.
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1.3.3 Selection Equation

Equations (1.1) and (1.2) allow estimation of realized MRP for ex post top and middle

tier players. A prospective player j, is recruited to institution i in year s, and finishes his

collegiate career in s+ h. Let the latent variable q∗j(i),s+h denote the ex post realized quality

of player j, recruited to school i in year s, and completing his career in year s + h. Let the

ordinal variable TIERj(i),s+h indicate the ex post quality tier of player j, recruited to school

i in year s and completing his career in year s+ h. It takes the values

TIERj(i),s+h =


2, if top tier

1, if middle tier

0, if bottom tier

 . (1.3)

The latent measure of ex post quality is modeled as the following function of information

available ex ante (in year s),

q∗j(i),s+h = γ1FV STj(i),s + γ2FRSTj(i),s + z′j(i),sγ + ci + ψj(i),s+h. (1.4)

Variation in q∗j(i),s+h, is observed through TIERj(i),s+h, and from equation (1.4), I estimate

the conditional probability of each TIER outcome, under both the logit and linear prob-

ability specifications. FV STj(i),s and FRSTj(i),s are dummy variables indicating whether

or not players were rated 5-star by Rivals or 4-star by Rivals, respectively. The vector of

control variables zj(i),s, contains dummy variables indicating the position that j played when

recruited, and the year in which he was recruited. The effect of the school attended on a

player’s ex post quality, ci, likely correlates with his Rivals rating. Prospective players self-

select into a school by choosing from their available scholarship offers. Players of greater ex

ante promise have more options, and are likely able to self-select into schools with higher

values of ci.

To account for this school specific effect, ci, I utilize two possible approaches. One
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approach is to assume a linear probability specification, include school fixed effects, and

estimate (1.4) twice; first with a dummy dependent variable indicating whether or not the

player was realized as ex post top or middle tier, and then with a dummy dependent vari-

able indicating whether or not he was realized as top tier. The linear probability model has

notable drawbacks, but does permit ci to be completely controlled for through linear fixed

effects estimation. A logit or probit specification implies a non-linear estimation equation,

meaning ci cannot be transformed away as in the linear model.22 As an alternative, I es-

timate (1.4) under a logit specification, and partially control for ci using the approach of

Mundlak (1978). If a linear relationship exists between ci and the explanatory variables in

(1.4), then ci can be expressed as a linear function of school averages of the explanatory

variables in (1.4). That is, one can let the heterogeneous effect be

ci = θ0 +X
′
iθ + κi, (1.5)

where the vector X i = [FV ST i, FRST i, zi] contains averages of the explanatory variables

from all players recruited to school i over the full sample period. The reduced form selection

equation for the Mundlak estimation approach is then

q∗j(i),s+h = θ0 + γ1FV STj(i),s + γ2FRSTj(i),s + z′j(i),sγ +X
′
iθ + κi + ψj(i),s+h. (1.6)

A residual school specific effect, ei, remains. However, since variations in school means of the

explanatory variables are now removed from ci, ei is less likely to correlate with individual

rating and position than is ci. That is, the school means, X i, should project onto the

component of ci that is correlated with the explanatory variables, thereby controlling for any

school specific effects with which the explanatory variables would otherwise be correlated.

I estimate the conditional probabilities of each TIER outcome implied by (1.6), under an

22Moreover, estimates of ci are inconsistent due the incidental parameters problem. See Neyman and
Scott.
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ordered logit specification. Conditional probability estimates from both the linear probability

and ordered logit Mundlak approaches are reported in Section 1.4.4, and used in Section 1.4.5

to impute estimates of ex ante expected MRP.
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1.4 Results

In this section, I begin by using fixed effects estimates of equation (1.2) to establish

upper and lower bound estimates for the MP of a bottom tier player. These boundary

estimates then imply upper and lower bound estimates for the MP of a middle tier and top

tier player. I then use these MP estimates, along with estimates of fixed effects estimates

of Equation (1.2), to impute upper and lower bound estimates of MRP for players of each

ex post quality tier. These ex post MRP estimates are then adjusted using estimates of the

probability that a player is realized within each ex post quality tier, conditional on his ex ante

Rivals rating, football position, and school selection. The adjusted values are estimates of ex

ante expected MRP. Finally, these steps are repeated for the subsample of BCS automatic

qualifier schools (and players attending those schools).

1.4.1 Marginal Product Estimates

Production equation estimates are reported in Table 1.3. Column (1) reports random

effects estimates of equation (1), and column (2) reports the estimates including school fixed

effects. The reported “Average FE” estimate in column (2) is an average of the 114 different

school-specific intercept estimates. That is,

Average FE = â =
1

114

114∑
i=1

âi. (1.7)

Standard errors, clustered by school, are given in parentheses. WPCT is measured in per-

centage points. Recall that TOP and MID are counts of ex post top and middle tier players,

respectively. Also remember that the leads of TOP and MID are included to account for

ex post top and middle tier players who are part of the team in year t, but complete their

collegiate careers in later seasons. For instance, TOPi,t+1 can be thought of as the count of

top tier juniors at school i in year t, and so on. The column (2) estimates suggest that top

tier players in their final three seasons, and middle tier players in their final two seasons, are

19



significantly more productive than bottom tier players.

Table 1.3. Production Equation Estimates

(1) (2)
Variable WPCT WPCT
TOPt 3.064*** 3.419***

(0.363) (0.531)

TOPt+1 2.376*** 2.711***
(0.372) (0.495)

TOPt+2 1.177*** 1.534***
(0.371) (0.481)

TOPt+3 0.269 0.685
(0.365) (0.494)

MIDt 1.405*** 1.468**
(0.476) (0.595)

MIDt+1 1.343*** 1.452***
(0.436) (0.518)

MIDt+2 0.704 0.659
(0.455) (0.558)

MIDt+3 -0.955** -0.961*
(0.450) (0.579)

Intercept/Average FE 33.378*** 30.218***
(1.877) (3.503)

School FE N Y
N 570 570

***p < .01, **p < .05, *p < .1

The fact that the contribution of ex post bottom tier players is not separately identi-

fied from the school intercepts presents a complication. The coefficient on TOPi,t for instance

does not estimate the MP of an ex post top tier senior, but rather the difference between the

MP of an ex post top tier senior and the MP of an ex post bottom tier player. To handle this

issue I infer upper and lower bound estimates for the MP of an ex post bottom tier player.
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From these boundary estimates of bottom tier MP, I am able to construct interval estimates

for the MP of ex post top and middle tier players.

Establishing upper and lower bounds for the MP of a bottom tier player reduces to

an interpretation of the school intercept average. Note that the school specific intercepts

may be interpreted as the conditional expectation

ai = E[WPCTi,t|(TOPi,t,MIDi,t) = 01×6]. (1.8)

That is, α̂i estimates expected winning percentage, if all 85 players at school i in year t were ex

post bottom tier. The average fixed effect of 30.218% reported in Table 1.3 is the industry-

wide average of said estimates. The question is what portion of that estimated 30.218%

is attributable to the 85 ex post bottom tier players, and what portion is attributable to

coaches, practice facilities, and other school capital?

The natural lower bound for the annual MP of ex post bottom tier players is zero.

This credits the 85 bottom tier players with none of the 30.218% expected WPCT . In this

extreme, the coefficients reported in column (2) of Table 1.3 can be interpreted as marginal

product estimates. Since the career MP for bottom tier players is taken to be zero, it follows

that the lower bound estimate of career MP for an ex post top tier player is

α̂1 + α̂2 + α̂3 + α̂4 = 8.348%. (1.9)

Analogously, the upper bound treatment is to credit the 30.218% WPCT entirely to the 85

bottom tier players. The upper bound estimate of annual MP for bottom tier player is then

α̂

85
= 0.356%, (1.10)
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and the upper bound estimate for MP over a 4-year career is simply

4 ·
(
α̂

85

)
= 1.422%. (1.11)

It follows then that the upper bound estimate of career MP of an ex post top tier player is

(
4 ·
(
α̂

85

))
+ (α̂1 + α̂2 + α̂3 + α̂4) = 9.77%. (1.12)

The lower and upper bound estimates of career MP for a middle tier player are calculated

the same as in equations (1.9) and (1.12), but with the coefficients (α̂5, α̂6, α̂7, α̂8) replacing

(α̂1, α̂2, α̂3, α̂4).

Table 1.4 reports these boundary estimates of marginal product for ex post top,

middle, and bottom tier players, over four year careers. Standard errors for the boundary

estimates are reported in parentheses, and 95% confidence intervals are reported in brack-

ets. Recall that the dependent variable being estimated in Tables 1.3 and 1.4, is WPCT

from a single season (approximately 12 games). As a reference point for interpreting these

coefficients, a single game is 8.333% of 12 game season. Thus, the career MP estimates for

an ex post top tier player can be loosely interpreted as one additional win.

An initial observation from Table 1.4 is that the ex post top, middle, and bottom

tiers appear to be appropriately defined. As expected, MP estimates increase from bottom

to middle tier, and middle to top tier. Comparison of the confidence intervals on both the

upper and lower bound point estimates, shows that a top tier player is significantly more

productive than a middle tier player. Moreover these differences do seem substantial. At the

upper bounds, ex post top and middle tier players are more productive than bottom play-

ers, by factors of approximately 7.25 and 2.9 respectively. At the upper and lower bound

estimates, ex post top tier players are more productive than middle tier players by factors

of roughly 2.47 and 3.23 respectively.
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Table 1.4. Marginal Product Estimates: Career Contributions

Ex post Quality Lower Bound Upper Bound
Top Tier 8.348*** 9.770***

(1.327) (1.226)

[5.720, 10.977] [7.342, 12.199]

Middle Tier 2.617* 4.039***
(1.447) (1.343)

[-0.250, 5.484] [1.379, 6.699]

Bottom Tier —— 1.422***
—— (0.165)

—— [ 1.095, 1.749]
[95% Confidence Interval]

1.4.2 Revenue Equation Estimates

Revenue equation estimates are reported in Table 1.5. Column (1) reports random

effects estimates of equation (1.2), and column (2) reports the estimates including school

fixed effects. The estimated marginal effects of current and lagged winning percentage are

economically significant in column (2). The reported two-year effect of winning percentage is

the sum of the coefficients on WPCTt and WPCTt−1. This sum suggests that an additional

win, or approximately 8.3% increase in WPCTt, generates an additional $490,408 in revenue

over two years.23

23All revenue figures are measured in 2005 USD.
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Table 1.5. Revenue Equation Estimates

(1) (2)
Variable REV REV
WPCTt 44,873.67*** 36,304.79***

(9,809.89) (10,987.41)

WPCTt−1 30,898.58*** 22,780.56**
(9383.06) (10,473.30)

2-year effect WPCT 75,772.25*** 59,085.35***
95% C.I. [39,676.15, 99,862.90] [35,209.52, 82,961.18]

(15,169.05) (17,191.07)

HR 166,951.90 -16,381.40
(120,121.80) (133,014.00)

Intercept/Average FE 12,465,219.70*** 13,531,982.1***
(1,451,299.90) (869,716.7)

Year FE Y Y
School FE N Y

N 795 795
***p < .01, **p < .05, *p < .1

1.4.3 MRP Estimates by Ex Post Quality

MRP estimates for ex post top, middle, bottom tier players are reported in Table 1.6.

These values come from the fixed effects estimates of equations (1.1) and (1.2). Standard

error estimates, clustered by school, are reported in parentheses; and 95% confidence intervals

based on those standard errors are reported in brackets. These standard error estimates are

based on delta method approximate distributions for the MRP estimates, which are nonlinear

combinations of product and revenue equation estimates.
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Table 1.6. MRP Estimates by Ex Post Quality: Career Contributions

Ex post Quality Lower Bound Upper Bound
Top Tier $493,271.90*** $577,292.20***

($148,444.10) ($166,488.10)
[$202,326.80, $784,217.10] [$250,981.60, $903,602.90]

Middle Tier $154,635.90* $238,656.20***
($87,117.40) ($95,995.71)

[-$16,329.47, $326,917.80] [$50,508.05, $426,804.3]

Bottom Tier — $84,020.29***
— ($24,048.93)
— [$36,885.26, $131,155.30]

Weighted Average $74,285.82*** $143,157.20***
($21,138.63) ($38,316.10)

[$32,854.87, $115,716.80] [$68,059.07, $218,255.40]
N 912 912

[95% Confidence Interval]

Consider the lower bound marginal product parameter for an ex post top tier senior,

α1. An increase in expected WPCTi,t of α1 percentage points, increases expected REVi,t by

α1 · β1 dollars. Recall that β1 is the equation (1.2) parameter on WPCTi,t. The increase in

expected WPCTi,t also increases expected REVi,t+1 by α1 · β2 dollars. The same follows for

the other three seasons he plays. Thus, the lower bound estimate of MRP for an ex post top

tier player, over a 4-year career, is

(α̂1 + α̂2 + α̂3 + α̂4) · (β̂1 + β̂2). (1.13)

The upper bound MRP estimate for an ex post top tier player, over a 4-year career, is

[(
â · 4

85

)
+ α̂1 + α̂2 + α̂3 + α̂4

]
· (β̂1 + β̂2). (1.14)

The upper and lower bound MRP estimates for ex post middle tier players are imputed in

the same way, but with the fixed effects coefficients on MIDi,t replacing the fixed effects
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coefficients on TOPi,t. The upper bound MRP estimate for ex post bottom tier players is

simply (
â · 4

85

)
· (β̂1 + β̂2). (1.15)

Note that
(
â · 1

85

)
was the upper bound estimate of the annual MP for a bottom tier player.

The implied four year upper bound MP estimate for a bottom tier player is then
(
â · 4

85

)
.

In Table 1.6 we see that both the upper and lower bound estimates of the four-

year MRP for an ex post top tier player are economically significant. Note also that both

point estimates are significantly different from the approximate compensation measure of

$100,000. The upper bound MRP estimates for ex post middle and bottom tier players

are both economically significant. However, neither estimate is significantly different from

$100,000. This begins to call into question the notion that the average performer in FBS

football generates revenue in excess of his compensation.

Over the 2004-2011 sample period, there were a total of 1,788 ex post top tier players,

and 1,705 ex post middle tier players. Given the scholarship player limit of 85 per year,

and accounting for the instances when schools faced reduced limits, there were a total of

77,436 rosters spots in my sample.24 Assuming four year careers, and dividing that total

by 4, suggests there were approximately 19,380 different scholarship players, and a total of

15,866 ex post bottom tier players, at the 114 institutions from 2004-2011. Based on this

estimated ex post quality distribution, I compute the weighted average of the MRP’s and

report them toward the bottom of Table 1.6. Notice especially that even the upper bound

weighted average estimate is not significantly different from $100,000. These estimates fail

to reject the hypotheses that the average FBS performer generates revenue in excess of his

compensation.

24Information on scholarship limit reductions are from the NCAA’s Legislative Service Database. This
database records cases of major rules infractions and respective penalties, and is available online at
web1.ncaa.org/LSDBi/exec/miSearch.
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1.4.4 Selection Equation Estimates

Table 1.7 reports selection equation estimates under the linear probability model

specification. Column (3) reports estimates from the full model with the dummy dependent

variable, I(TIERj(i),s+h ≥ 1); which indicates whether or not player j was ex post top or

middle tier quality. Column (6) reports estimates from the full model with the dummy de-

pendent variable, I(TIERj(i),s+h = 2), which indicates whether or not player j was ex post

top tier quality. In both columns (3) and (6), the coefficients on FV ST and FRST are

statistically significant.

Table 1.8 reports selection equation estimates under the ordered logit specification.

Column (3) reports estimates of the full model, which includes school averages of the ex-

planatory variables as additional regressors. The coefficients on FV ST and FRST are

statistically significant. Under both specifications however, the parameters of interest are

the conditional probabilities of each ex post TIER outcome, which are reported in Tables

1.9, 11.10, and 1.11.

Table 1.9 reports estimated probabilities of being ex post top tier quality, conditional

on an ex ante Rivals rating. Table 1.10 reports estimated probabilities of being ex post top

or middle tier quality, given an ex ante Rivals rating. In both tables, linear probability

model estimates are reported in columns (1) and (2), and ordered logit model estimates are

reported in columns (3) and (4). Column (1) excludes school fixed effects, while column (2)

includes them. Column (3) excludes the Mundlak school averages, and column (4) includes

them. All columns in both tables include fixed effects for year recruited and position played.

Under both specifications, controlling for heterogeneous school effects somewhat decreases

the estimated probability of being ex post top or middle tier for 5-star and 4-star players,

but somewhat increases the estimated probability of being ex post top or middle tier for

3-star players. This suggests that players of greater ex ante promise, and therefore more

choices as to which school they attend, self-select into programs more capable of developing

their ex post quality. Probability estimates of all ex post outcomes, conditioned on ex ante
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rating, are reported in Table 11. In Tables 1.9, 1.10, and 1.11, note the similarity between

the conditional probability estimates under the linear probability specification with school

fixed effects, and ordered logit specification with the Mundlak (1978) school averages. Going

forward, I use the linear probability model estimates reported in the first three columns of

Table 1.11, since imputed values for ex ante expected MRP will be essentially the same

under both specifications.

Table 1.8. Selection Equation Estimates: Ordered Logit

(1) (2) (3)
Variable TIER TIER TIER
FV ST 2.045*** 2.063*** 1.701***

(0.161) (0.165) (0.172)

FRST 0.747*** 0.755*** 0.481***
(0.0680) (0.0674) (0.0610)

FV ST i — — -0.008
— — (2.697)

FRST i — — 1.870***
— — (0.485)

Top Tier Threshold† 0.804*** 0.805*** 0.815***
(0.028) (0.028) (0.028)

Year Recruited Y Y Y
Position N Y Y

Mundlak Averages N N Y
N 6604 6604 6604

†Middle Tier threshold set to 0, ***p < .01
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Table 1.9. Estimated Probability of being Drafted

Rivals Rating (1) (2) (3) (4)
5-star 0.4637 0.4274 0.4468 0.4178

4-star 0.1916 0.1722 0.1793 0.1670

3-star 0.0882 0.0976 0.0931 0.0945
Linear Probability Y Y N N

Ordered Logit N N Y Y

School FE N Y N N
Mundlak Averages N N N Y

Table 1.10. Estimated Probability of being Ranked or Drafted

Rivals Rating (1) (2) (3) (4)
5-star 0.6220 0.5668 0.6437 0.6171

4-star 0.3251 0.2906 0.3282 0.3104

3-star 0.1898 0.2061 0.1868 0.1899
Linear Probability Y Y N N

Ordered Logit N N Y Y

School FE N Y N N
Mundlak Averages N N N Y
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1.4.5 Expected MRP Estimates

Estimates of ex ante expected MRP are reported in Tables 1.12 and 1.13. Table 1.12

reports estimates of ex ante expected MRP, rents on labor, and rent-to-MRP ratios. Rent

estimates assume a four-year compensation of $100,000. Table 1.13 compares the estimates

of realized MRP as a function of ex post quality with estimates of expected MRP as a

function of ex ante promise. These results emphasize the effect that uncertain labor quality

has on the ability of employers to exercise monopsony power, and thus, the importance

of accounting for potential quality uncertainty when empirically assessing monopsony in

labor markets. Looking at the upper bound estimates, MRP for an ex post top tier player

overstates expected MRP by $260,891 or 82.46% (of expected MRP) for an ex ante 5-star

prospect, and $388,328 or 205.5% (of expected MRP) for an ex ante 4-star prospect.

Table 1.12. Expected MRP and Rent Estimates by Ex Ante Rating: LPM with School FE

Expected MRP
Rivals Rating Lower Bound Upper Bound

5-star $232,380.65 $316,400.95

4-star $104,943.49 $188,963.78

3-star $64,921.33 $148,941.62

Rent on Labor†
Rivals Rating Lower Bound Upper Bound

5-star $132,380.65 $216,400.95
(Rent/MRP) (0.570 ) (0.684 )

4-star $4,943.49 $88,963.78
(Rent/MRP) (0.047 ) (0.471 )

3-star -$35,078.67 $48,941.62
(Rent/MRP) (-0.540 ) (0.329 )

†Assuming $100,000 career compensation

The ex post top tier player’s compensation falls short of the revenue he generates by

approximately 80% to 83% of his realized MRP. Yet, his school retains approximately 57%
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Table 1.13. Comparison: MRP by Ex Post Realized Quality and Ex Ante Promise

Ex post Quality Lower Bound Upper Bound
Top Tier $493,271.90 $577,292.20

Middle Tier $154,635.90 $238,656.20

Bottom Tier — $84,020.29

Weighted Average $74,285.82 $143,157.20

Rivals Rating
5-star $232,380.65 $316,400.95

4-star $104,943.49 $188,963.78

3-star $64,921.33 $148,941.62

to 69% of his expected MRP as a rent, if he is a 5-star prospect. The school retains anywhere

from 4% to 47% of his expected MRP, if he were a 4-star prospect. Finally, if rated 3-star

or lower ex ante, it is not clear that the school exercises any monopsony power over him at

all. If he were a 3-star prospect, his school might retain as much as 33% of his expected

MRP. Yet, at the other extreme, he may ultimately be compensated more than his ex ante

expected value.

These results are limited in two ways. First, they depend on an assumed wage. I have

assumed what I believe to be a conservative compensation value, in the interest of providing

strong inference to the conclusion that employer monopsony power in the college football

industry has been substantially overstated, not only in the degree exercised over players of

average quality, but even in the degree exercised over the highest quality players.25 The

other limitation is that the sample of Rivals rated players is a selected sample, drawing only

from players rated 3-star or higher. Consequently, the average player from this sample is of

greater ex ante promise than the average player from the population. However, this does not

conflict with the conclusion that employer mononopsony power in college football is limited.

25That is, I err on the side of possibly overstating rents.
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1.5 Robustness Checks

In this section, I test the robustness of the preceding estimates to two alternative

specifications. First, in light of the recent NCAA decision to allow players from “power five”

conference schools to receive a stipend, I estimate expected MRP for only those players who

attended a very similar set of schools to the present “power five” conference member. Then,

I consider a more general specification of the revenue equation in which REVi,t is dependent

on REVi,t−1.

1.5.1 A Narrower Definition of the Labor Market

As previously mentioned, this paper’s data come from a period in which the BCS had

agreements with six major conferences guaranteeing an invitation to one of the four or five

most lucrative post-season bowl games to the champion team of those conferences.26 There

were 62 BCS “automatic qualifier” (henceforth AQ) schools in 2004, and 65 thereafter.27

Over this period, AQ schools were analogous to the present-day “power-five” conference

schools. On average, the return on labor at an AQ school is likely higher than the return to

a non-AQ school. For this reason, I test the robustness of the preceding results to a narrower

definition of the labor market, in which AQ schools are the only employers.

Similar to Table 1.4, Table 1.14 reports lower and upper bound estimates for career

MP given ex post quality. Columns (1) and (2) report estimates from the subsample of

AQ schools only, while columns (3) and (4) report estimates from the subsample of non-AQ

schools only. These values come from estimates of equation (1.1) with school fixed effects.

Table 1.15 reports lower and upper bound estimates of career MRP by ex post realized

quality. Columns (1) and (2) report estimates the subsample of AQ schools only, and columns

(3) and (4) report estimates from the subsample of non-AQ schools only. Similar to the MRP

26The University of Notre Dame was also included in this agreement. Although their football program is
independent, it was guaranteed an invitation it finished the regular season ranked among the top eight by
the BCS.

27The University of Cincinnati, the University of Louisville, and the University of South Florida accepted
invitations to join the Big East, beginning in 2005.
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estimates reported in Table 1.6, these values come from fixed effects estimates of equations

(1) and (2). Between AQ and non-AQ schools, there is considerable disparity in MRP across

all ex post quality levels, and this disparity is widest at the top tier. An ex post top tier player

at an AQ school, appears to generate anywhere from four to five times as much revenue as

a top tier player at a non-AQ school. The evidence that players generate significantly more

revenue at AQ schools than at non-AQ schools is not surprising. From the 95% confidence

interval, note that for AQ schools, the weighted average upper bound MRP estimate is

significantly greater than $100,000. Among non-AQ school, there is no evidence that player

compensation falls short of the MRP of an ex post top tier player, even at the upper bound.

Table 1.16 reports conditional probability estimates of all ex post outcomes for the

subsample of prospects recruited to AQ schools only. The conditional probability estimates

are not markedly different for this subsample. This is not surprising as 5,826 (or about 88%)

of the 6,604 prospect sample, were recruited to one of the AQ schools.

Similar to Table 1.12, Table 1.17 reports ex ante expected MRP estimates for the

subsample of prospects recruited AQ schools only. Rent estimates based on the assumed

$100,000 compensation are reported in the bottom portion of Table 1.17. For the purpose

of comparison, MRP estimates as a function of both ex post realized quality and ex ante

promise, for the subsample of AQ schools only, are reported in Table 1.18. Again, the effect

of uncertain labor quality is substantial. Looking at the upper bound estimates, MRP for an

ex post top tier player overstates expected MRP by $403,878 or 84.97% (of expected MRP)

for an ex ante 5-star prospect, and $597,029 or 211.6% (of expected MRP) for an ex ante

4-star prospect.

If analyses are restricted to AQ schools only, two results stand out. The first is that

better football performance generates a much greater return to AQ schools than non-AQ

schools. Thus, the potential “upside” on a prospective player is greater at AQ schools. From

Table 1.15 we see that over a four year career, an ex post top tier player may be worth

as much as $666,000 more to an AQ school than a non-AQ school. However, the issue of
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Table 1.17. Expected MRP and Rent Estimates if Attending AQ School: LPM with School
FE

Expected MRP
Rivals Rating Lower Bound Upper Bound

5-star $338,911.16 $475,296.06

4-star $145,760.65 $282,145.55

3-star $87,672.03 $224,056.93

Rent on Labor†
Rivals Rating Lower Bound Upper Bound

5-star $238,911.16 $375,296.06
(Rent/MRP) (0.705 ) (0.790 )

4-star $45,760.65 $182,145.55
(Rent/MRP) (0.314 ) (0.646 )

3-star -$12,327.97 $124,056.93
(Rent/MRP) (-0.141 ) (0.554 )

†Assuming $100,000 career compensation

ex ante uncertainty regarding labor quality is no different for this subsample. The ex ante

most promising players are still realized as ex post top tier less than half of the time. This

uncertainty inhibits the degree to which schools are able to exercise monopsony power in the

college football labor market.

1.5.2 Dynamic Revenue Function

As an alternative to the revenue equation specified by (1.2), suppose REVi,t depends

on past values of itself. Replacing lagged winning percentage with lagged revenue, consider

the dynamic revenue specification given by

REVi,t = bi + ρREVi,t−1 + β1WPCTi,t + z
′

i,tβ + vi,t. (1.16)

Note that equation (1.2) restricts ρ = 0.
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Table 1.18. Comparison: MRP by Ex Post Realized Quality and Ex Ante Promise at AQ
Schools

Ex post Quality Lower Bound Upper Bound
Top Tier $742,789.70 $879,174.60

Middle Tier $154,635.90 $238,656.20

Bottom Tier — $136,384.90

Weighted Average $116,135.60 $252,520.50

Rivals Rating
5-star $338,911.16 $475,296.06

4-star $145,760.65 $282,145.55

3-star $87,672.03 $224,056.93

First differencing (1.16) removes the school-specific term bi and gives

∆REVi,t = ρ∆REVi,t−1 + β1∆WPCTi,t + ∆z
′

i,tβ + ∆vi,t. (1.17)

I treat all explanatory variables as potentially endogenous, and estimate equation (1.17),

following Arellano and Bond (1991). This approach estimates equation (1.17) for t ≥ 3

only. Arellano and Bond (1991) show that if E(vi,tvi,t+h) = 0 for all h ≥ 2, then level

values of the dependent variable from 2 or more time periods prior are valid instruments

the differenced equation (1.17). These estimates are reported in Table 1.19. The reported

two-year effect of winning percentage on revenue is the estimate of β1 ·(1+ρ). The estimated

two-year effect is larger than that reported in column (2) of Table 1.2. Note however that the

95% confidence interval on two-year effect reported in Table 1.19 contains the corresponding

confidence interval from column (2) of Table 1.2. Thus, estimates of this two year effect are

not significantly different these two alternative specifications. The reported long-run effect

is the estimate of β1

(1−ρ)
. This estimate is not significantly different from zero at the 95%

significance level.
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Table 1.19. Revenue Equation: Arellano-Bond Two-Step Estimates

Variable REV
REVt−1 0.670***

(.100)

WPCTt 55,612.32**
(25,383.16)

Two year effect WPCTt 92,872.71**
(42,232.39)

95% C.I. [10,098.76, 175,646.70]

Long run effect WPCTt 168,523.40*
(88,329.49)

[-4,599.206, 341,646]

HRt 408,548.10
(424,920.1)

Year 3 778,208.80
(547,550.20)

Year 4 1,651,051***
(424,966.30)

Year 5 1,107,829**
(485,293.40)

Year 6 1,444,776**
(590,289.50)

Year 7 1,592,330***
(563,515.40)

Year 8 2,391,274***
(712,506)

N 680
Sargan Stat. 59.64384

Critical Value (p = .05) 76.778
(d.f.) (58)

Rejects H0 N
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The estimates reported in Table 1.19 restrict the matrix of available instruments

to lagged values of revenue only, since all explanatory variables are treated as potentially

endogenous. A matrix of 67 instruments is utilized in the estimation of (1.17). Since the

number of instruments is greater than the number of endogenous explanatory variables, the

model is over-identified by the 67 assumptions that each instrument is uncorrelated with ∆vi,t

in the appropriate time periods. The lower panel of Table 1.19 reports test statistics for the

Sargan (1958) test of over-identifying restrictions. Under the null hypothesis of the test, the

matrix of available instruments is exogenous and the test statistic is distributed chi-square

with 58 degrees of freedom.28 The test statistic reported in Table 1.19 fails to reject the null

hypothesis. Rejection of the null would suggest that at least some of the 67 instruments are

endogenous, and call all estimates in Table 1.19 into question. A limitation of the Sargan

test is that the test statistic can only fail to reject that the instruments are exogenous. This

should not be seen as rejecting the hypothesis that an instrument is endogenous.

Arellano and Bond (1991) propose a test for autocorrelation of the first-differenced

error term. Note that ∆vi,t will always be autocorrelated of order one, since ∆vi,t and

∆vi,t−1 both contain the level error vi,t−1. However, the absence of autocorrelation of order

two or higher will be consistent with the assumption that E(vi,tvi,t+h) = 0 for all h ≥ 2.

Thus, autocorrelation in ∆vi,t of order two or more calls the specification and estimates into

question. Test statistics for zero autocorrelation of orders one, two, three, four, and five, are

reported in Table 1.20. Under the null hypothesis of no autocorrelation, the test statistics

are distributed standard normal.29 As it should, the test rejects the null hypothesis of no

autocorrelation of order one. The test fails to reject the null hypothesis of no autocorrelation

of order two or higher. Thus, these test statistics do not call the specification into question.

However, this does not reject the hypothesis of no higher order autocorrelation in ∆vi,t.

28The degrees of freedom are given by the number of identifying assumptions (67) minus the number of
explanatory variables (9).

29A detailed explanation of the calculation of these test statistics and a proof of asymptotic normality can
be found in Section 3 and the Appendix of Arellano and Bond (1991), respectively.
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Table 1.20. Arellano-Bond Test of No Autocorrelation in ∆vi,t

Order Test statistic p-value Rejects H0

1 -4.3343 ≈0 Y
2 -0.0979 0.9220 N
3 0.3234 0.7464 N
4 -0.3491 0.7270 N
5 0.4484 0.6539 N

Given the failure to reject the revenue function specification given in 1.16, it is worth

comparing the ex ante expected MRP implied by the estimates reported in Table 1.19 with

the initial estimates reported in Table 1.12. These alternative estimates of ex ante expected

MRP based on the long-run effect of WPCT are reported in columns (1) and (2) of Table

1.21. Recall from Table 1.19 that the long-run effect is not significantly different from zero.

Thus, values reported in columns (1) and (2) should be viewed with some skepticism. The

alternative estimates of ex ante expected MRP based on the two-year effect of WPCT are

reported in columns (2) and (3) of Table 1.21. The initial estimates are reported in the

columns (3) and (4) for comparison.
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1.6 Concluding Remarks

My results suggest that the degree of monopsony power held by member institutions

is more limited than Brown (1993, 2011) suggests. The ex post highest quality players do

generate revenue that is well in excess of their compensation’s market value. However, the

employers’ ability to exercise monopsony power over these elite performers is weakened by ex

ante uncertain labor quality. Moreover, the current compensation may meet or even exceed

the amount that a player of average ex ante promise would command in a competitive labor

market. As courts and NCAA member institutions consider policy changes, and as some

players propose them; these results have interesting implications. Among them, elite players

would likely benefit from more comprehensive reforms, such as permitting competitive wage

offers throughout the labor market. Yet, the below average performer could be made worse

off by such reforms, and see at least the market value of his compensation decrease. It would

seem that more modest policy changes, such as maintaining or slightly increasing the uniform

wage; are more favorable to the average and below average players, than a competitive labor

market alternative.
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CHAPTER 2

OPTIMAL IRONING MADE EASY

In this chapter, I explore an implementability problem that arises in the construction

of optimal nonlinear price schedules. I show that the one-dimensional screening problem of

a monopolist practicing second-degree price discrimination, can be treated like a dynamic

programming problem and solved by backward induction using Bellman’s equation.1 This

approach builds on a multi-market treatment of nonlinear pricing problems developed in

Goldman et al. (1984), and Wilson (1993).

The standard model of second-degree price discrimination involves a monopolist sell-

ing different amounts of a singe good to many consumers who are privately informed of their

heterogeneous preferences for the good. Consumer preferences are ordered by a single pa-

rameter, their “type”. The higher a consumer’s type, the more she is willing to pay for any

positive amount of the good. The monopolist sets a schedule, assigning prices to bundles

of different amounts of the good. By offering quantity discounts, the monopolist’s optimal

price schedule serves as a screening mechanism, inducing higher types to buy larger bundles

than lower types.

Implicit in a monopolist’s price schedule are marginal prices for each unit of the good.

For example, if the monopolist prices a 1-unit bundle at $3 and a 2-unit bundle at $5, this

is equivalent to pricing the 1st unit at $3 and the 2nd at $2. The multi-market approach to

the problem treats each unit that a consumer buys as though it is a different good, sold in a

different market. The price of each of these “goods” is the marginal price for that unit. This

approach to the search for an optimal price schedule is advantageous, as it allows a complex

1Dynamic programming and the Bellman equation were developed in a series of works by Richard Bellman,
notably Bellman (1956) and Bellman (1957). Since then their application in economics has been widespread.
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problem to be broken up into simpler subproblems of great familiarity in economics. Rather

than searching for an optimal nonlinear price schedule in a single market, the monopolist

is seen a searching for optimal uniform prices in many independent markets. However, an

issue arises: these different markets are not in fact independent. A consumer’s demand for

the ith unit depends on her having consumed all units up to that point. The subproblems

overlap, and in some instances, the monopolist’s optimal price schedule cannot be completely

constructed from the optimal uniform prices treating each market in isolation. It is this issue

that motivates the dynamic programming treatment developed here.

The monopolist’s problem is shown to be one of choosing the set of customers he

sells to in each market. The optimal marginal price which induces that set of consumers to

buy, is implied. The minimum consumer type sold to in the market for a given unit will be

referred to as the marginal consumer type, or “marginal type”, of that market. Recall that

the consumer type is just a parameter ordering consumer preference or willingness-to-pay

for any given amount of the good. It follows that in a given market, the marginal type buys,

as do all consumers of higher types. Thus, the monopolist’s problem is modeled as one of

choosing a schedule of marginal types to maximize his profits across all markets. Goldman

et al. (1984) show that the monopolist is constrained in the following way: he must choose a

marginal type schedule that is monotonically non-decreasing in the quantity being sold. For

the monopolist to sell the ith unit to a consumer type, he must induce her to buy all units

leading up to the ith unit. This is not achieved in any region where a marginal type schedule

is decreasing in the quantity being sold.

One approach to the solution is to solve the monopolist’s “relaxed problem” (that is,

solve the problem ignoring the monotonicity constraint), and hope that the solution satisfies

the monotonicity constraint. In the event that the relaxed solution violates the constraint

it must be “ironed”. That is to say, the relaxed solution must be modified so as to make it

monotonically decreasing in quantity. This is typically done by way of an ironing procedure.

This procedure involves choosing a monotonic modification of the relaxed solution from the
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set of all possible monotonic modifications, that maximizes the monopolist’s profit over the

region of quantities where the schedule is modified. In instances where the relaxed solution

violates the monotonicity constraint, this ad hoc approach arrives at the monopolist’s solu-

tion in a manner that is indirect and somewhat unintuitive.

Alternatively, I show that the monopolist’s problem can be solved by backward in-

duction. When searching for the monopolist’s optimal marginal type schedule, the relaxed

solution is sometimes insufficient because the monopolist is not actually selling in indepen-

dent markets. The markets are interdependent in the following way: the set of consumers

that can be sold to the market for a given unit is determined by the set sold to in the market

for the previous unit, and the set sold to in the market for a given unit determines the set

that can be sold to in the market for the following unit. The structure of this dependence is

highly conducive to a dynamic programming solution. By incorporating Bellman equations,

the problem can be in a way that reflects the interdependence of the markets. The backward

induction solution method constructs the monopolist’s optimal schedule over a sequence of

stages. As needed, it irons the candidate schedule along the way to maintain monotonicity.

Ultimately, it identifies the monopolist’s optimal marginal price schedule even in instances

where the solution to the relaxed problem violates the monotonicity constraint. Most impor-

tantly, this approach exhibits why ironed mechanisms like the monopolist’s marginal type

schedule might be optimal, and it highlights the economic intuition behind the construction

of an optimally ironed schedule.

The paper proceeds as follows. In Section 2.1, I provide two very simple examples of

the sort of problem being addressed. These examples highlight the relevance of the mono-

tonicity constraint. They are also used to contrast the ad hoc approach to ironing (and the

problem in general), with the systematic approach developed here. Section 2.2 presents a

formal version of the problem, in which the monopolist sells discrete amounts of the good to

a continuum of heterogeneous consumer types. Section 2.3 presents the solution by backward

induction. Finally Section 2.4 presents some early results and shows that ironed schedules
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solved by this method satisfy a summation condition. This condition is analogous to an

integral condition used to identify the optimal range of units over which to iron the schedule

in the ad hoc approach. This summation condition establishes that the backward induction

approach solves for the monopolist’s optimal schedule, even when the solution to the relaxed

problem violates the monotonicity constraint.
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2.1 Two Simple Examples

Consider first a monopolist selling discrete quantities q of a single good, to two con-

sumers. For simplicity assume he produces these units at zero marginal cost. The consumers’

heterogeneous preferences for the good are private information and ordered by the type pa-

rameter θ ∈ {θL, θH}, where θL < θH . The monopolist knows that one of the consumers

is type θL and the other is type θH , but does not know which is which. Let u(θ, q) be the

dollar value of the utility that type θ gets from consuming a bundle of q units. The marginal

utility of the ith unit to type θ, is u(θ, i)− u(θ, i− 1), denoted uq(θ, i) by abuse of notation.

2.1.1 Example I

Suppose the two types have the utility and marginal utility schedules given in Table

1, and that this is known to the monopolist. The monopolist will set a profit maximizing

price schedule which will serve as a screening mechanism by offering quantity discounts. This

is just a standard second degree price discrimination problem.

Table 2.1. Utility and Marginal Utility Schedules by Type: Example I

i u(θL, i) u(θH , i) uq(θ
L, i) uq(θ

H , i)
1 $4 $7 $4 $7
2 $5 $10 $1 $3
3 $5 $11 $0 $1
4 $5 $11 $0 $0

Let P (q) be the price for a bundle of q units. The marginal price of the ith unit is

P (i) − P (i − 1), and is denoted pi. In this first example the monopolist will sell at most

three units because neither type is willing to pay for more than a third unit. The monopolist

wishes to set the price schedule (P (1), P (2), P (3)) that will maximize profit from sale of

the good. Note that any price schedule like this, can be represented by a corresponding

schedule of marginal prices (p1, p2, p3) = (P (1), P (2) − P (1), P (3) − P (2)). Thus, one way

to think about the monopolist’s problem is to treat each successive unit as a separate good

with its own market, where the monopolist will simply set an optimal uniform price in each
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of the markets, which in this case will be the marginal price. This multi-market treatment

of nonlinear pricing problems is developed in Goldman et al. (1984) and Wilson (1993). To

facilitate this approach, let the ith market profit be the monopolist’s profit from the sale of

the ith unit only, as a function of the marginal price for the ith unit, denoted πi(pi).

In this first example the monopolist’s optimal price schedule will be (p∗1, p
∗
2, p
∗
3), where

p∗i is the argument chosen to maximize πi(pi). Recalling the marginal utility schedules in

Table 2.1, the solution in this example easy. Note that since the monopolist knows each type’s

marginal utility value for each unit, only those marginal utility values need be considered as

marginal prices. If the monopolist sets a marginal price for the 1st unit of $4, both consumers

will buy the 1st unit yielding a 1st market profit of $8. At a marginal price of $7, only the

consumer with type θH will buy the 1st unit yielding a 1st market profit of $7. So the optimal

1st market price is p∗1 = $4. At a marginal price of $1 for the 2nd unit, he will sell to both

consumers for 2nd market profit of $2. At a marginal price of $3 he will sell only to type θH

for a 2nd market profit of $3. Thus, the optimal 2nd market price is p∗2 = $3. The optimal

3rd market marginal price is p∗3 = $1 by the same logic.

Table 2.2. Solving for the Optimal Price Schedule: Example I

q uq(θ
L, i) uq(i, θ

H , i) πi(uq(θ
L, i)) πi(uq(θ

H , i)) p∗i πq(p
∗
i )

1 $4 $7 $8 $7 $4 $8
2 $1 $3 $2 $3 $3 $3
3 $0 $1 $0 $1 $1 $1

Total $12
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A schedule of optimal prices for each market has been identified. A monotonicity

constraint must be met. The monopolists must set a price schedule such that the lowest

consumer type that is willing to buy in each market, is monotonically non-decreasing in q.

This is because a consumer will consider buying the 2nd only if the monopolist induces her to

buy the 1st unit. This first example was crafted in such a way that the monopolist’s optimal

price schedule could be identified without consideration of the latter monotonicity constraint.

In the second example, I use small changes to the problem show how this constraint can easily

be violated by the ad hoc search for an optimal price schedule just employed.

2.1.2 Example II

Consider a similar problem with the utility schedules are amended as in Table 2.3.

Table 2.4 reports the optimal price schedule solved using the same method as in the first

example.

Table 2.3. Utility and Marginal Utility Schedules by Type: Example II

i u(θL, i) u(θH , i) uq(θ
L, i) uq(θ

H , i)
1 $4 $9 $4 $9
2 $7 $13 $3 $4
3 $8 $15.50 $1 $2.50
4 $8 $15.50 $0 $0

Table 2.4. Solving for the Optimal Price Schedule: Example II

i uq(θ
L, i) uq(θ

H , i) πi(uq(θ
L, i)) πi(uq(θ

H , i)) p∗i πq(p
∗
i )

1 $4 $9 $8 $9 $9 $9
2 $3 $4 $6 $4 $3 $6
3 $1 $2.50 $2 $2.50 $2.50 $2.50

Total $17.50

The same approach as employed in the first example implies the optimal price schedule

($9, $3, $2.50) here. However it should be clear that the resulting allocation is not realistic.

The monopolist intends that both consumers buy in the 2nd market, when in fact, they

won’t. At this price schedule, θL prefers her outside option to any bundle offered, and buys
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none of the good. Type θH buys 3 units, and the monopolist’s total profit is in fact only

$14.50, as opposed to $17.50. This result is clearly suboptimal. One need only note that the

monopolist could extract a profit of $15.50 from the same allocation, by raising p2 from $3

to $4. This suboptimal outcome results because lowest consumer type that the monopolist

intends will buy in each market is not monotonically non-decreasing in q. The monopolist’s

intended outcome, in which a total profit of $17.50 is generated, is not feasible.

This example serves to highlight the importance of the monotonicity constraint.

Therefore, treating the minimum type sold to in each market as the monopolist’s choice

variable will make it easier to keep track of the monotonicity constraint.

2.1.2.1 The Marginal Consumer Type

For any implementable allocation of quantities to types, the monopolist’s optimal

price schedule with which to implement the allocation is immediate. Thus, an alternative

way to approach this profit maximization problem is to focus, not the price schedule chosen by

the monopolist, but instead on the resulting allocation. Specifically, suppose the monopolist

chooses the lowest consumer type to whom he will sell each unit. The optimal marginal price

in the market for each unit, is just the marginal utility of the lowest type sold to in the market

for that unit. The marginal type in the ith market will be the lowest type the monopolist

induces to buy the ith unit, denoted θi. Rather than considering a schedule of prices, the

monopolist’s decision problem can be represented as choosing a schedule of marginal types.

For any schedule of marginal types, an optimal schedule of marginal prices is implied, as

pi(θi) = uq(θi, i). The relevant monotonicity restriction is that this schedule of marginal

types must be monotonically non-decreasing in q. The monopolist can’t induce a consumer

to buy a 2nd unit unless he makes her willing to buy the 1st. Thus, the monopolist’s cannot

possibly implement a marginal type schedule that is non-monotonic in q.

It turns out that the schedule of marginal types, corresponding to the optimal price

schedule identified in Table 2, is (θL, θH , θH). Since θL < θH = θH , this schedule satisfies the

monotonicity constraint that θ1 ≤ θ2 ≤ θ3, so this is the monopolist’s optimal marginal type
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schedule in the first example. The schedule of marginal types corresponding to the optimal

price schedule identified in Table 4, is (θH , θL, θH). This clearly violates the monotonicity

constraint and must be “ironed”; that is, it must be modified in some way to be made

monotonic. This schedule can be made monotonic in two possible ways. The marginal type

for the second unit, θ2, can pulled up to make the schedule (θH , θH , θH); or the marginal type

for the first unit θ1 can be pushed down, making the schedule (θL, θL, θH). Recalling that

the optimal pi(θi) = uq(i, θi); the marginal type schedule (θH , θH , θH) will mean a 1st market

profit of $9, a 2nd market profit of $4, and a 3rd market profit of $2.50, for a total profit of

$15.50. Alternatively, The marginal type schedule (θL, θL, θH) will mean a 1st market profit

of $8, a 2nd market profit of $6, and a 3rd market profit of $2.50, for a total profit of $16.50.

Thus, the optimal schedule of marginal types that can actually be implemented through a

price schedule is (θL, θL, θH).

This is a simplified version what I will call an ad hoc approach to ironing. In a

setting where the preference parameter θ is continuous, this approach amounts to finding

the schedule of marginal types that satisfy the first order conditions for maxima in the

different markets, ignoring the monopolist’s constraint. This schedule is then checked to

see if it satisfies the monotonicity constraint. If it does, the problem is solved. If not, the

schedule must be ironed to be implementable. The ironed version of the schedule which

maximizes the monopolist’s profit across all markets, is his optimal implementable schedule.

2.1.3 An Alternative Approach

In these two examples, the monopolist’s search for an optimal implementable screen-

ing mechanism, can be modeled using Bellman equations and solved by backward induction.

Like the multi-market approach already adopted, this dynamic programming treatment is a

useful tool for solving and better understanding the problem. The multi-market approach

treats the monopolist as though he is selling different goods, in independent markets. The

appeal of this approach is that it breaks up the monopolist’s problem into several simple
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subproblems. The only issue is that the subproblems are overlapping. By incorporating

Bellman equations, the problem can be modeled more realistically, as a monopolist selling

different goods in markets that are interdependent. The structure of this dependence is that

the demand for the ith unit depends on the marginal type in the market for (i − 1)th unit.

In the above examples it is apparent in the 3rd market that the set of marginal types from

which the monopolist can chose (or the “‘state” of the 3rd market), is determined by the

marginal type implemented in the 2nd market; and the set of marginal types from which

he chooses in the 2nd market, is determined by the marginal type implemented in the 1st

market.

Reconsider the second example. Given the monotonicity constraint that θ3 ≥ θ2, the

set from which the monopolist can choose θ3, depends on the marginal type chosen in the 2nd

market, θ2. However, since the monopolist sells no units beyond the 3rd, the 3rd market is

his terminal market. This means that only π3 depends on θ3. Therefore, his optimal choice

of θ3 conditional on θ2 can be solved easily. Given any θ2, his optimal choice of θ3 is θH ,

yielding a market profit of $2.50. This is because θ3 = θH , satisfies monotonicity given either

choice of θ2. Let the maximum possible π3 given any θ2 be represented by the value function

V3(θ2). Thus,

V3(θ2) = $2.50,∀θ2 ∈ {θL, θH}. (2.1)

In addition to V3, the choice of θ2 also determines his 2nd market profit, π2. Assuming

an optimal choice of θ3 in the resulting state of the 3rd market, the monopolist’s total profit

as a function of θ2 is given by the Bellman equation,

π2(θ2) + V3(θ2) =

 $4 + $2.50 = $6.50, θ2 = θH

$6 + $2.50 = $8.50, θ2 = θL

 . (2.2)

From equation (2.2), the monopolist’s optimal choice in the 2nd market given θ1, can
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be solved. If θ1 = θL, so θL is the state of the 2nd market, the optimal choice of θ2 is θL

(with the implication that θ3 = θH), yielding a profit of $8.50 from the 2nd and 3rd markets.

If θ1 = θH , his only implementable choice for θ2 will be θH , yielding a profit of $6.50 from

the 2nd and 3rd markets. The maximum possible π2 + π3 conditional on the choice of the θ1

is represented by the value function,

V2(θ1) =

 $6.50, θ1 = θH

$8.50, θ1 = θL

 . (2.3)

Finally, his choice of θ1 determines π1 in addition to V2. Assuming that θ2 and θ3 are

chosen optimally in the resulting states of the 2nd and 3rd markets, the monopolist’s total

profit over all units as a function of θ1 can be expressed by the Bellman equation.

π1(θ1) + V2(θ1) =

 $9 + $6.50 = $15.50, θ1 = θH

$8 + $8.50 = $16.50, θ1 = θL

 . (2.4)

It follows from (2.4) that the monopolist’s optimal choice of θ1, denoted θ∗1, is θL.

The optimal θ2 and θ1 implied by θ∗1, are (θ∗2, θ
∗
3) = (θL, θH). Altogether, the monopolist’s

optimal schedule is (θL, θL, θH). This is of course the same schedule identified in Section

2.1.2, when (θH , θL, θH) was “ironed”. However, the ad hoc search for the optimal schedule

from Section 2.1.2 arrives at the solution indirectly, and irons only after a complete schedule

for the monopolist has been proposed.

In the following section, this problem is generalized to consider not just two consumer

types, but a continuum of types θ ∈ [θ, θ]. The backward induction approach, with the use

of Bellman’s equation, exhibits why an ironed marginal type schedule might be optimal.
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2.2 The Monopolist’s Problem

Consider a monopolist selling successive discrete quantities q of a single good, to a

continuum of consumer types θ ∈ [θ, θ]. Consumer utility depends on quantity of the good

consumed and the consumer’s type, u = u(q, θ). The marginal utility of the ith unit for type

θ, is u(θ, i)−u(θ, i−1), denoted uq(θ, i), by abuse of notation. Assume diminishing marginal

utility (A1), and a single crossing condition (A2).

Assumption (A1). uq(θ, i) ≥ uq(θ, j)∀i < j.

Assumption (A2). uq(θ
A, i) < uq(θ

B, i),∀θA < θB ∈ [θ, θ], i = 1, ..., N .

The distribution of θ is f(θ) = F ′(θ), where F (θ) is the CDF, so

F (θ) =

θ∫
θ

f(t)dt, (2.5)

and F (θ) = 1. The price a consumer pays for a bundle of i units is P (i). The monopolist

sets a price schedule (P (1), P (2), ..., P (N)), and the marginal price of the ith unit, denoted

by pi, is,

pi = P (i)− P (i− 1). (2.6)

The practice of second-degree price discrimination can be thought of in two different

ways. The monopolist can be treated as searching for a price schedule (P (1), P (2), ..., P (N)),

for a single good in a single market. However this price schedule will also imply N marginal

prices. By treating each successive unit i, as a separate good with its own market, the

monopolist can be seen as searching for N uniform prices (p1, p2, ..., pN), in N independent

markets. I adopt the latter. This multi-market treatment developed in Goldman et al.

(1984), and Wilson (1993), has the advantage of breaking the monopolist’s problem into

several simpler subproblems of great familiarity in economics.
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2.2.1 The Marginal Consumer Type

A concept central to the multi-market approach is that of the marginal consumer

type. In the market for the ith unit, there will be a minimum consumer type that is willing

to buy, given pi. Let this marginal type for the ith unit be denoted θi, where,

θi = min{θ ∈ [θ, θ] : uq(i, θ) ≥ pi}. (2.7)

In the ith market, it will be optimal for the monopolist to extract all surplus from the marginal

type θi. Therefore the relationship between a marginal type θi and the corresponding optimal

pi which implements it, is one-to-one; and any search for the optimal price schedule with

which to implement a marginal type schedule, is trivial: the optimal marginal price as a

function of marginal type is

pi(θi) = uq(θi, i). (2.8)

Therefore, the monopolist’s problem can focus solely on the choice of a marginal type sched-

ule.

Assume the monopolist faces a constant marginal cost function in production of the

good, so c(q) = cq. Given the single crossing condition (A2), and the implicit marginal price

in (2.8), for a given marginal type θi, all θ ∈ [θi, θ] are willing to buy in the ith market. The

monopolist’s profit in the ith market as function of θi is then,

πi(θi) = [uq(θi, i)− c] · [1− F (θi)]. (2.9)

The monopolist sells up the N th unit, which is simply the last successive unit for which there

exists some θi ∈ [θ, θ] such that πi(θi) is non-negative. The monopolist chooses a schedule

of marginal types (θ1, θ2, ..., θN) to maximize the sum of profits across all markets. The
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monopolist’s objective function is then,

Π =
N∑
i=1

πi(θi). (2.10)

The monopolist’s problem, however, involves an important restriction regarding the set of

marginal type schedules that can be implemented by way of a price schedule.

2.2.2 Monotonicity Constraint

Although the nonlinear pricing problem is being treated as a multi-market monopolist

problem, it must be noted that the N markets are not independent. Only those consumers

induced to buy the 1st will consider buying the 2nd unit, and so on. Thus, the set of

consumers that the monopolist can sell to in the ith market, is determined by the marginal

type he chooses in the (i− 1)th market. The monopolist must choose a schedule of marginal

types that is monotonic in q. In other words, the monopolist must choose from the feasible

set,

{(θ1, θ2, ..., θN) : θ1 ≤ θ2 ≤ ... ≤ θN}. (2.11)

For a consumer type to be the marginal type in the ith market, she must be made willing

buy up to the (i− 1)th unit. That is, a marginal type θi < θi−1 is not feasible.

2.2.3 The Monopolist’s Objective

The monopolist’s objective is to choose the implementable schedule of marginal types

that will maximize his profit over all N markets,

max
θ1≤···≤θN

N∑
i=1

πi(θi). (2.12)

Finally, to ensure a global solution assume that πi(θi) is concave in θi for all markets,

Assumption (A3).

Assumption (A3). πi(θi) is concave in θi on [θ, θ],∀i = 1, ..., N .
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2.3 The Monopolist’s Solution

The monopolist’s subproblems of maximizing profit in each market, overlap in the

context of his broader problem which is the maximization of his profit across all markets.

The monotonicity constraint reflects that. He can choose θ1 from the interval [θ, θ]. However,

subject to the monotonicity constraint, θ2 must then be chosen from [θ1, θ], and so on. The

choice of marginal type in a given market therefore, not only determines the profit in that

market, but also the state of the proceeding market, since θi is the implementable lower

bound for θi+1.

The monopolist does have a terminal market. Since he only sells up to the N th unit,

the marginal type θN is not a state variable. That is, it does not determine the state of

the monopolist’s next market, because there no (N + 1)th market. This means that the

monopolist’s problem can be solved by backward induction, beginning with a solution for

the optimal choice of θN in any state of the N th market.

2.3.1 Solution Stage N

The solution begins with what will be called Stage N . The monopolist is ultimately

searching for a schedule (θ∗1, ..., θ
∗
N) which solves the problem given in (12). Note that θ∗N

cannot be solved for without knowing θ∗N−1. Thus, Stage N begins by solving for something

of a placeholder, or opening conjecture as to what θ∗N might be. Let,

θ∗N(N) = arg max
θN

πN(θN). (2.13)

The search for the optimal schedule begins with θ∗N(N). It is denoted θ∗N(N) to reflect that

it is the Stage N candidate for θ∗N . As the search for the solution continues, the candidate

for θ∗N may need to be modified to maintain implementability, depending on what value θN−1

takes. Let the best (profit maximizing and implementable) response of θN to any value of
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the state variable θN−1 be,

θBRN |N−1(θN−1) ≡ arg max
θN≥θN−1

πN(θN),∀θN−1 ∈ [θ, θ]. (2.14)

For any θN−1 ≤ θ∗N(N), the best response is clearly θ∗N(N). Also, by (A3), πN is decreasing

in θN on the interval [θ∗N(N), θ]. Therefore the best response of θN to any value of the state

variable θN−1 is,

θBRN |N−1(θN−1) = max[θ∗N(N), θN−1]. (2.15)

This best response of θN to any choice of θN−1, allows the maximum profit in the N th market,

given any choice of θN−1, to be expressed as a value function,

VN(θN−1) ≡ max
θN≥θN−1

πN(θN) = πN(θBRN |N−1(θN−1)). (2.16)

2.3.2 Stage N-1

As in the preceding stage, the Stage N − 1 objective is to find an opening conjecture

for θ∗N−1 as well as an updated candidate for θ∗N . These will be denoted as θ∗N−1(N − 1) and

θ∗N(N − 1), respectively. The Stage N − 1 candidates for θ∗N−1 and θ∗N will be,

arg max
θN−1≤θN

[πN−1(θN−1) + πN(θN)] (2.17)

Assuming a best response of θN to any choice of θN−1, the initial candidate for θ∗N−1 is then

θ∗N−1(N − 1) = arg max
θN−1

[πN−1(θN−1) + VN(θN−1)]. (2.18)

This in turn implies the updated candidate for θ∗N ,

θ∗N(N − 1) = θBRN |N−1(θ∗N−1(N − 1)) = max[θ∗N(N), θ∗N−1(N − 1)]. (2.19)
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The final step of (2.19) follows from (2.15).

As the search continues, the candidate for θ∗N−1 might need to be modified to satisfy

monotonicity, depending on the value that state variable θN−2 takes. Additionally, if the

θ∗N−1 candidate is modified in response to state variable θN−2, then the candidate for θ∗N

might need to be modified in response to the θ∗N−1 candidate response. Assuming a best

response of θN to θN−1, the best response of θN−1 to any value of state variable θN−2, is,

θBRN−1|N−2(θN−2) = arg max
θN−1≥θN−2

[πN−1(θN−1) + VN(θN−1)]. (2.20)

Implicit in (2.20) is a best response of θN to the best response of θN−1 to θN−2. This

composition of two best response functions, is the best response of θN to state variable θN−2,

which is denoted by θBRN |N−2(θN−2).

Assumption (A3) implies that VN is concave in θN−1 on [θ, θ]. Since πN−1 and VN

are both concave in θN−1 on the same range, it follows that the sum of those two functions

is concave in θN−1 on that range. By the same reasoning used to express θBRN |N−1(θN−1) in

(2.15),

θBRN−1|N−2(θN−2) = max[θ∗N−1(N − 1), θN−2]. (2.21)

Using (2.21), a similar expression for θBRN |N−2(θN−2) can be derived as follows,

θBRN |N−2(θN−2) = θBRN |N−1(θBRN−1|N−2(θN−2)) = θBRN |N−1(max[θ∗N−1(N − 1), θN−2]). (2.22)

Using the function θBRN |N−1 from (2.15) gives,

θBRN |N−2(θN−2) = max{θ∗N(N),max[θ∗N−1(N − 1), θN−2]}. (2.23)

Note that maxima have a distributive property such that,

max{θ∗N(N),max[θ∗N−1(N − 1), θN−2]} = max{max[θ∗N(N), θ∗N−1(N − 1)], θN−2}. (2.24)
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Recognizing (max[θ∗N(N), θ∗N−1(N − 1)]) as the Stage N − 1 candidate for θ∗N , it follows that

the best response of θN to any value of state variable θN−2 is then,

θBRN |N−2(θN−2) = max[θ∗N(N − 1), θN−2]. (2.25)

Assuming best responses of θN−1 and θN , the maximum possible πN−1 + πN as function of

θN−2 is then,

VN−1(θN−2) = πN−1(θBRN−1|N−2(θN−2)) + VN(θBRN−1|N−2(θN−2)). (2.26)

From (2.16) note that

VN(θBRN−1|N−2(θN−2)) = πN [θBRN |N−1(θBRN−1|N−2(θN−2))] = πN(θBRN |N−2(θN−2)). (2.27)

Thus the value function in (2.27) can be rewritten as

VN−1(θN−2) = πN−1(θBRN−1|N−2(θN−2)) + πN(θBRN |N−2(θN−2)). (2.28)

Naturally the value function VN−1 sets up Stage N−2 and the solution by backward induction

continues, with each remaining stage solved in the same manner just shown for Stage N − 1.

From here, discussion of the solution is generalized to any such stage.

2.3.3 General Stage

For any j < N , the Stage j + 1 objective is to find an initial candidate θ∗j+1 as well

as updated candidates for (θ∗j+2, .., θ
∗
N). The Stage j + 1 candidates will be,

arg max
θj≤···≤θN

N∑
i=j+1

πi(θi). (2.29)
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The value function Vj+2 is defined,

Vj+2(θj+1) ≡ max
θj+1≤θj+2≤···≤θN

N∑
k=j+2

πk(θk) =
N∑

k=j+2

πk(θ
BR
k|j (θj)). (2.30)

Assuming best responses of (θj+2, ..., θN) to any choice of θj, the initial candidate for θ∗j+1 is

then,

θ∗j+1(j + 1) = arg max
θj+1

[πj+1(θj+1) + Vj+2(θj+1)]. (2.31)

Implicit in (2.31) are updated candidates for (θ∗j+2, ..., θ
∗
N), which are,

θ∗k(j + 1) = θBRk|j+1(θ∗j+1(j + 1)),∀k > j + 1. (2.32)

The initial candidate θ∗j+1(j+ 1) may need to be modified to satisfy the monotonicity

condition, depending on the value that state variable θj. The best response of θj+1 to any

value of θj is then,

θBRj+1|1(θj) = arg max
θj+1≥θj

[πj+1(θj+1) + Vj+2(θj+1)]. (2.33)

By Assumption (A3), πj+1 and Vj+2 are both concave in θj+1 on [θ, θ], which implies that

πj+1 + Vj+2 is concave in θj+1 on the same range. It follows that,

θBRj+1|j(θj) = max[θ∗j+1(j + 1), θj]. (2.34)

From (2.34), a proof by induction shows that the best response function of θk to state vari-

able θj have a similar form, for all k ≥ j + 1.

Proposition 1. θBRk|j (θj) = max[θ∗k(j + 1), θj],∀k ≥ j + 1.

Proof. To initialize, note that by (2.34), the proposition is true for k = j + 1. Note also
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that,

θBRk|j (θj) = θBRk|k−1(θBRk−1|j(θj)). (2.35)

Next, for any k > j + 1, assume that the proposition is true for k − 1. From (2.35),

it then follows that,

θBRk|j (θj) = θBRk|k−1(max[θ∗k−1(j + 1), θj]) = max{θ∗k(k),max[θ∗k−1(j + 1), θj]}. (2.36)

The first step of (2.36) follows from the inductive assumption. The second step follows from

(2.34) with k replacing j + 1. Next, maximums have a distributive property such that,

θBRk|j (θj) = max{θ∗k(k),max[θ∗k−1(j + 1), θj]} = max{max[θ∗k(k), θ∗k−1(j + 1)], θj}. (2.37)

Finally note that,

max[θ∗k(k), θ∗k−1(j + 1)] = θBRk|k−1[θ∗k−1(j + 1)] = θBRk|k−1[θBRk−1|j+1(θ∗j+1(j + 1))]

= θBRk|j+1(θ∗j+1(j + 1)) = θ∗k(j + 1).
(2.38)

The first step of (2.38) is implied by (2.34) with k replacing j + 1. The second follows from

(2.32), with k − 1 replacing k and j + 1 replacing j. The third step follows from (2.35),

and the final step follows from (2.32), with j + 1 replacing j. Substituting (2.38) into (2.37)

gives,

θBRk|j (θj) = max{θ∗k(j + 1), θj}. (2.39)

Thus if the proposition is true for any k−1 ≥ j+1, it is true for k. Therefore the proposition

is true for all k ≥ j + 1, since it is true for k = j + 1. QED

Assuming optimal responses of (θj+1, ..., θN) to state variable θj, the value function

Vj+1 is,

Vj+1(θj) = πj+1[θBRj+1|j(θj)] + Vj+2[θBRj+1|j(θj)] =
N∑

k=j+1

πk(θ
BR
k|j (θj)). (2.40)
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2.3.3.1 The Optimal Schedule

The monopolist’s optimal schedule is solved in Stage 1. The initial candidate for θ∗1

is,

θ∗1(1) = arg max
θ1

[π1(θ1) + V2(θ1)]. (2.41)

This implies Stage 1 candidates for (θ∗2, ..., θ
∗
N), which are,

θ∗k(1) = θBRk|1 (θ∗1(1)),∀k = 2, ..., N. (2.42)

By construction (θ∗1(1), ..., θ∗N(1)) belongs to the feasible set given by (2.11), in other words,

it satisfies the monotonicity constraint. Therefore it is the solution to the monopolist’s

problem (2.12),

(θ∗1(1), ..., θ∗N(1)) = (θ∗1, ..., θ
∗
N). (2.43)
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2.4 Optimal Ironing

An ironed region of a monopolist’s optimal schedule is a sequence of markets over

which the optimal marginal type is constant. That is, if the monopolist’s optimal schedule

is ironed from the jth to the kth market, then,

(θ∗j = · · · = θ∗k). (2.44)

This constant portion of the monopolist’s schedule reflects a bunching of units j through k at

a single consumer type. That is, the monopolist is making a single consumer type indifferent

between a bundle of j units and bundle of k units.

Recall that the multi-market approach employed here, treats each unit as a different

good that the monopolist sells in an independent market. The markets however depend on

each other through the monotonicity constraint. It is this dependence that the backward

induction approach builds into the solution. If the monopolist’s optimal schedule is such that

the monotonicity constraint does not bind, then the N markets are effectively independent

or separable. That is, nothing would be lost from the ad hoc approach of searching for N

different marginal types θi, to maximize N different market profit functions πi. However,

when the monopolist’s optimal monotonic schedule contains ironed regions as in (2.44), this

indicates that the jth through to kth markets should not be treated as independent. Sepa-

rately solving for optimal types in these markets will lead to a violation of the monotonicity

constraint. Instead, it turns out to be optimal for the monopolist to chose only one marginal

type for this sequence of markets, to maximize the sum of profits from sale of the jth to

the kth market. In this section, I establish that the backward induction approach identifies

the inseparable markets and chooses a constant marginal type that is optimal over them.

This optimal type, in turn, is shown to satisfy a “summation condition”. If the monopolist’s

optimal schedule is such that (θ∗j−1 < θ∗j = θ∗j+1 = · · · = θ∗k < θ∗k+1), then θ∗j = · · · = θ∗k = θ̂,
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where,
k∑
i=j

π′i(θ̂) = 0. (2.45)

This summation condition is Proposition 5 below. First, I prove three propositions that will

help to show the summation condition.

Proposition 2. For all j < k ≤ N , the derivative of the best response function θBRk|j (θj)

with respect to θj is,

(θBRk|j )′(θj) =

 0, θj < θ∗k(j + 1)

1, θj > θ∗k(j + 1)

 .

Proof is immediate from Proposition 1.

Proposition 3. For all j < N , Vj+1(θj) is continuously differentiable with respect to θj,

and this derivative is given by,

V ′j+1(θj) =

 0, θj ≤ θ∗j+1(j + 1)

π′j+1(θj) + V ′j+2(θj), θj ≥ θ∗j+1(j + 1)


.

Proof. First, note that by the first order condition for θ∗j+1(j + 1),

π′j+1(θ∗j+1(j + 1)) + V ′j+2(θ∗j+1(j + 1)) = 0. (2.46)

Next, recall that Vj+1 can be expressed,

Vj+1(θj) = πj+1(θBRj+1|j(θj)) + Vj+2(θBRj+1|j(θj)). (2.47)

The derivative of Vj+1 with respect to θj is then,

V ′j+1(θj) = [π′j+1(θBRj+1|j(θj)) + V ′j+2(θBRj+1|j(θj))] · (θBRj+1|j)
′(θj),∀θj 6= θ∗j+1(j + 1). (2.48)
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It follows from Proposition 2, that for all θj < θ∗j+1(j + 1),

V ′j+1(θj) = [π′j+1(θBRj+1|j(θj)) + V ′j+2(θBRj+1|j(θj))] · (0) = 0. (2.49)

By Propositions 1 and 2, for all θj > θ∗j+1(j + 1),

V ′j+1(θj) = [π′j+1(θj) + V ′j+2(θj)] · (1) = π′j+1(θj) + V ′j+2(θj). (2.50)

To establish that this derivative is continuous at θ∗j+1(j + 1), note that from (2.49),

limθj↑θ∗j+1(j+1) V ′j+1(θj) = 0. (2.51)

From (2.50) it can be seen that,

limθj↓θ∗j+1(j+1) V ′j+1(θj) = π′j+1(θ∗j+1(j + 1)) + V ′j+2(θ∗j+1(j + 1)) = 0. (2.52)

Therefore, for all j < N , Vj+1 is continuously differentiable with respect to θj, and this

derivative is given by,

V ′j+1(θj) =

 0, θj ≤ θ∗j+1(j + 1)

π′j+1(θj) + V ′j+2(θj), θj ≥ θ∗j+1(j + 1)

 . (2.53)

QED

Proposition 4. For all j < N , Vj+1(θj) is continuously differentiable with respect to θj,

and this derivative is given by,

V ′j+1(θj) =

 0, θj ≤ θ∗j+1(j + 1)

π′j+1(θj) + V ′j+2(θj), θj ≥ θ∗j+1(j + 1)


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. By Proposition 3, Vj+2 is continuously differentiable with respect to θj, and this derivative

is given by,

V ′j+2(θj) =

 0, θj ≤ θ∗j+2(j + 1)

π′j+2(θj) + V ′j+3(θj), θ∗j+2(j + 1) ≤ θj

 . (2.54)

Substituting (2.54) into (2.53) gives,

V ′j+1(θj) =


0, θj ≤ θ∗j+1(j + 1)

π′j+1(θj), θ∗j+1(j + 1) ≤ θj ≤ θ∗j+2(j + 1),

π′j+1(θj) + π′j+2(θj) + V ′j+3(θj), θ∗j+2(j + 1) ≤ θj

 . (2.55)

Thus for any j < k ≤ N , evaluated at θj such that θ∗k(j + 1) ≤ θj < θ∗k+1(j + 1), it follows

from Proposition 3 that

V ′k(θj) = π′k(θj) + V ′k+1(θj) = π′k(θj) + 0 = π′k(θj). (2.56)

Therefore, Vj+1 is continuously differentiable with respect to θj, and the derivative is given

by,

V ′j+1(θj) =

 0, θj ≤ θ∗j+1(j + 1)∑k
i=j+1 π

′
i(θj), θ∗k(j + 1) ≤ θj < θ∗k+1(j + 1)

 . (2.57)

QED

Proposition 5 (summation condition). For some 1 ≤ j < k ≤ N , if the monopolist’s

solution is such that θ∗j−1 < θ∗j = θ∗j+1 · · · = θ∗k = θ̂ < θ∗k+1, then,

k∑
i=j

π′i(θ̂) = 0.

Proof. The monopolist’s optimal schedule is given by the Stage 1 candidates from the so-

lution by backward induction. That is, (θ∗1, ..., θ
∗
N) = (θ∗1(1), ..., θ∗N(1)). By showing that the

proposition’s assumption implies that (θ∗j (1), ..., θ∗N(1)) = (θ∗j (j), ..., θ
∗
N(j)), the proposition
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can be proved using Proposition 4, and the first order condition for θ∗j (j).

First, recall that,

θ∗j (1) = θBRj|1 (θ∗1(1)) = θBRj|j−1[θBRj−1|1(θ∗1(1))] = θBRj|j−1(θ∗j−1(1)) = max[θ∗j (j), θ
∗
j−1(1)]. (2.58)

Since θ∗j (1) > θ∗j−1(1), then it must be the case that

θ∗j (1) = max[θ∗j (j), θ
∗
j−1(1)] = θ∗j (j). (2.59)

It follows that for all k > j,

θ∗k(1) = θBRk|j (θ∗j (1)) = θBRk|j (θ∗j (j)) = θ∗k(j). (2.60)

Therefore it has been established that, (θ∗j (1), ..., θ∗N(1)) = (θ∗j (j), ..., θ
∗
N(j)).
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From the assumption of the proposition, it follows that (θ∗j (j) = · · · = θ∗k(j) <

θ∗k+1(j)). This along with Proposition 4 imply that V ′j+1(θj) evaluated at θ∗j (j), is given by,

V ′j+1(θ∗j (j)) =
k∑

i=j+1

π′i(θ
∗
j (j)). (2.61)

By the first order condition for θ∗j (j),

π′j(θ
∗
j (j)) + V ′j+1(θ∗j (j)) = π′j(θ

∗
j (j)) +

k∑
i=j+1

π′i(θ
∗
j (j)) = 0. (2.62)

Finally, recall that (θ∗j (j), ..., θ
∗
k(j)) = (θ∗j (1), ..., θ∗k(1)) = (θ∗j , ..., θ

∗
k). By assumption

the monopolist’s optimal schedule is such that (θ∗j = · · · = θ∗k = θ̂). Therefore, (2.62) implies

that
k∑
i=j

π′i(θ
∗
j (j)) =

k∑
i=j

π′i(θ
∗
i ) =

k∑
i=j

π′i(θ̂) = 0. (2.63)

QED

72



CHAPTER 3

MONOPOLY PRICING UNDER SINGLE CROSSING VIOLATIONS

In this chapter, I look at the optimal pricing behavior of a monopolist screening con-

sumers on a single “type” parameter, when the single crossing (or Spence-Mirrlees) condition

is violated.1 Following Araujo et al. (2011), and Schottmüller (2015), I focus on one-time

violations of this condition. I show that under standard assumptions of one-dimensional

screening problems, violation of the single crossing condition can allow for positive and glob-

ally incentive compatible assignments through which the monopolist extracts all equilibrium

surplus. That is, the monopolist can implement positive assignments such that individual

rationality constraints bind for all consumer types at their respective assignments. This

assignment schedule is formally introduced as Qx(θ) in Section 3.3. In that section, Propo-

sition 1B is proven to show that an uninformed monopolist can implement this schedule and

extract all surplus from the resulting allocation.2

Note, that this implementable assignment schedule, which extracts all equilibrium

surplus, is not necessarily the monopolist’s optimal assignment schedule. I say that this

schedule extracts all equilibrium surplus to emphasize that; while this assignment schedule

does extract all social welfare from its resulting allocation, it does not necessarily maximize

social welfare. This assignment schedule will, however, often be a component of the monop-

olist’s optimal assignment schedule.

The existence of an assignment schedule that is implementable with binding indi-

vidual rationality constraints for all consumer types, sharply contrasts with the case of

1See Mirrlees (1971) and Spence (1973)
2By referring to the monopolist as “uninformed”, I mean that consumers are privately informed of their

type.
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second-degree price discrimination when the single crossing condition is satisfied. When

the single crossing condition holds, such an assignment schedule can only be implemented

when consumer type is known to the monopolist and he practices perfect first-degree price

discrimination. If consumers are privately informed of their type, the individual rationality

constraint can bind only for the lowest type receiving a positive assignment. All higher types

will receive informational rents. Thus, relaxation of the single crossing condition can have

substantial implications for nonlinear pricing.

I show that in a special scenario, the implementable and total equilibrium surplus

extracting assignment schedule (later denoted Qx(θ)), is also the monopolist’s optimal as-

signment schedule. In that scenario, the monopolist’s marginal cost function is such that

this assignment schedule assigns “first-best” quantities to all consumer types, and thus is

also socially efficient. Note that when the single crossing condition holds, the monopolist’s

optimal assignment schedule is socially efficient only when he is informed of his consumers’

types (perfect first-degree price discrimination).

Finally, I evaluate how this assignment schedule, which is implementable and extracts

all equilibrium surplus, relates to the monopolist’s optimal assignment schedule in more gen-

eral cases. I argue that it composes part of the monopolist’s optimal assignment schedule

under a wide range of conditions.
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3.1 Model

I model the optimal pricing behavior of a monopolist producing a single good q at

a cost c(q). For simplicity, I assume a constant marginal cost, c(q) = cq. The monopolist

offers a menu of quantity bundles and corresponding prices to a set of consumers with het-

erogeneous preferences for the good. The total price of q units is given by P (q) =
∫ q

0
p(v)dv,

where p(q) = P ′(q), is the marginal price of the qth unit.

Consumer preferences are differentiated by a single parameter, their “type” θ ∈

[θ
¯
, θ̄] = Θ, of which they are privately informed. According to the monopolist’s prior proba-

bility distribution, type θ has probability density f(θ). The cumulative distribution function,

evaluated at θ, is given by

F (θ) =

θ∫
θ
¯

f(t)dt. (3.1)

Consumer utility u = u(θ, q) is a function of the quantity consumed and the consumer’s type.

Before introducing the assumptions of the model, it will help to establish some notation.

For a given type of consumer θ, let q0(θ) be the minimum quantity for which the

marginal utility of type θ, denoted uq(θ, q), is equal to zero. That is,

q0(θ) ≡ inf{q : uq(θ, q) = 0}. (3.2)

For all consumer types, assume uq(θ, q) is decreasing in quantity over [0, q0(θ)], and equal to

zero for all q ≥ q0(θ). If uq(θ, q) > 0 for all q > 0, then q0(θ) =∞.

Assumption (A1): uqq(θ, q) < 0, for all q < q0(θ), and all θ in Θ.

Let q̄(θ) denote the quantity at which the marginal utility for type θ is exactly equal

to marginal cost. That is, q = q̄(θ) solves

uq(θ, q) = c. (3.3)
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The assumptions of constant marginal cost and decreasing marginal utility imply that q̄(θ)

is a unique quantity.

Finally, for any θA 6= θB, let qx(θA, θB) denote a quantity at which the marginal

utility curves of types θA and θB intersect. Note that such a quantity may not exist. The

Spence-Mirrlees or single crossing condition (henceforth SCC) implies that marginal utility

is increasing in type for all quantities, in which case qx(θA, θB) does not exist for all θA 6= θB.

Single Crossing Condition (SCC): uqθ(θ, q) > 0, ∀q ≥ 0, θ ∈ Θ. (3.4)

Thus, when the SCC is satisfied,

∀θA 6= θB ∈ Θ, 6 ∃ q such that uq(θ̂, q) = uq(θ, q). (3.5)

In this paper, I relax the SCC and focus on a specific violation where the marginal

utility curves intersect exactly once for every pair of types in Θ. The type parameter θ,

which under the SCC orders consumer preferences over all quantities of the good, will instead

order consumer preferences only over initial quantities. That is, consumers with higher θ

have higher marginal utilities for initial amounts of the good, but their marginal utilities also

decrease at faster rates. To avoid potential confusion, I will refer to consumers with greater

values of θ as “steeper” types, and consumers with lesser values of θ as “flatter” types.3

Assumption (A2): For all θ in Θ, uqθ(θ, q)|q=0 > 0. For all θ in Θ and q > 0, uθθ(θ, q) < 0,

uqqθ(θ, q) < 0, and uqθθ(θ, q) < 0.

3The conventional “high” and “low” type terminology is less appropriate when the SCC is violated, since,
e.g., in this paper, consumers with higher θ ultimately demand less of the good than consumers with lower
θ.
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Assumption (A3): For all θA > θB in Θ, there exists a quantity 0 < qx(θA, θB) < q̄(θA),

such that: ∀q ∈ [0, qx(θA, θB)], uq(θ
A, q) ≥ uq(θ

B, q), and ∀q > qx(θA, θB), uq(θ
A, q) ≤

uq(θ
B, q).

These assumptions imply a one-time violation of the SCC for every pair of types

in Θ. Note also that, since qx(θA, θB) is assumed less than q̄(θA) < q0(θ), it follows that

q̄(θA) < q̄(θB), and q0(θA) < q0(θB), for all θA > θB in Θ. That is, steeper types are willing

to pay more for initial quantities, but willing to buy less q overall at a marginal prices of c

and zero.

A pair consisting of a marginal price schedule and an assignment schedule, is imple-

mentable if the incentive compatibility (henceforth IC) constraint is satisfied for all types in

Θ. An implementable marginal price and assignment schedule pair is feasible if the individ-

ual rationality (henceforth IR) constraints are satisfied for all types in Θ. The IC and IR

constraints for type θ are given by ICC(θ) and IRC(θ) as follows:

ICC(θ): u(θ, x(θ))− P (x(θ)) ≥ u(θ, x(θ′))− P (x(θ′)), ∀θ′ ∈ Θ.

IRC(θ): u(θ, x(θ))− P (x(θ)) ≥ 0.

The monopolist chooses a feasible and implementable pair (p(q), x(θ)) to maximize

profit. That is, he maximizes profit subject to the ICC(θ) and IRC(θ) for all θ ∈ Θ. The

monopolist’s profit function for a pair (p(q), x(θ)), is given by

Π =

θ̄∫
θ
¯

f(t)

 x(t)∫
0

[p(v)− c] dv

 dt =

θ̄∫
θ
¯

[(P (x(t)− c · x(t)))f(t)]dt. (3.6)

3.1.1 Consumer Surplus Under Marginal Cost Pricing

Suppose the monopolist were regulated such that p(q) = cq for all q > 0. All θ ∈ Θ

will purchase q̄(θ) and receive a surplus. Let C̃S(θ, q̄(θ)) represent the first-best consumer

surplus that type θ receives under the hypothetical imposition of marginal cost pricing. That
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is,

C̃S(θ, q̄(θ)) ≡
q̄(θ)∫
0

[uq(θ, v)− c]dv = u(θ, q̄(θ))− c · q̄(θ). (3.7)

This hypothetical first-best consumer surplus helps to illustrate how the monopolist’s opti-

mal pricing behavior can dramatically differ when the SCC is violated.

In standard price discrimination models, where the SCC holds, higher consumer types

have larger first-best quantities, and higher utilities at first-best quantities. Consequently,

the monopolist’s optimal price and assignment schedules exhibit well-known properties when

the SCC holds. Most notably, the monopolist must pay informational rents to induce con-

sumers to truthfully reveal their type. This is a consequence of the monopolist’s imperfect

information. The IR constraint binds at the assigned quantity only for the lowest type served

(i.e. the lowest type served receives no informational rent). All other types served receive

informational rents, and the rent is increasing in type. This is because the monopolist must

prevent higher types from pretending they are lower types, but typically needn’t worry about

lower types pretending to be higher types. Finally, the highest type is the only type assigned

her first-best quantity, x(θ) = q̄(θ), giving the “no distortion at the top” property.

When the SCC is violated, the monopolist’s optimal marginal price and assignment

schedules can produce some markedly different results. The violation of the SCC specified

by assumptions (A2) and (A3), implies that q̄(θ) is instead decreasing in θ. Thus, the hypo-

thetical first-best surplus C̃S(θ, q̄(θ)) may be increasing, decreasing, or constant in consumer

type. Under the SCC violation, incentive compatibility can have a variety of implications,

because flatter types may be willing to pay more, less, or the same amount as steeper types,

for greater assignments of the good. When the SCC is violated, the monopolist’s optimal

marginal price and assignment schedules can result in allocations with characteristics very

different from those discussed in the preceding paragraph. In one such scenario (discussed

in Section 3.2), the monopolist’s optimal assignment schedule offers the first-best, q̄(θ) to all

θ in Θ. This is a “no distortion from top to bottom” result, if you will.
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3.2 Scenario 1: Constant First-Best Surplus

Consider a scenario where C̃S(θ, q̄(θ)) is the same across all types in Θ. That is,

Scenario 1: C̃S(θ, q̄(θ)) = C̃S(θ′, q̄(θ′)), ∀θ, θ′ ∈ Θ. (3.8)

In this scenario the monopolist’s optimal marginal price schedule is surprisingly straightfor-

ward. The monopolist can extract all first-best surplus from consumers with the marginal

price schedule

p(q) =

 uq(θ̄, q), q ∈ [0, q̄(θ̄)]

c, q ≥ q̄(θ̄)

 . (3.9)

That is, the marginal price is equated to the highest type’s marginal utility up to q̄(θ̄) units,

and marginal price is equated to marginal cost thereafter. See Figure 3.1.

The assignment schedule of quantities to types, implied by (3.9), is

x(θ) = q̄(θ), ∀θ ∈ Θ. (3.10)

I will show that the marginal price schedule and the assignment schedule given by (3.9)

and (3.10) respectively, are incentive compatible and satisfy the IR constraints for all types,

making (3.9) and (3.10) implementable, and feasible. I will also show that for all types,

the IR constraint is binding at the type’s assigned quantity x(θ) = q̄(θ). Since all types

are assigned their first-best quantities it follows that the marginal price and assignment

schedules (3.9) and (3.10) maximize social welfare, and since the IR constraint binds for all

types, all of this social welfare is extracted by the monopolist. From this, it is immediate

that (3.9) and (3.10) are the monopolist’s optimal marginal price and assignment schedules

under Scenario 1.

Proposition 1A. If hypothetical first-best surplus is constant in θ over Θ, the marginal price

schedule given in (3.9), and the implicit assignment schedule given in (3.10), are incentive
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Figure 3.1. Marginal Price Scedule (constant first-best surplus)

compatible for all θ in Θ. Additionally, the IR constraint is binding at x(θ) = q̄(θ), for all θ

in Θ.

Proof. First, for a given total price schedule P (q), the consumer surplus that type θ actually

gets from consuming q units is denoted CS(θ, q), and given by

CS(θ, q) = u(θ, q)− P (q). (3.11)

Note that the actual consumer surplus given in (3.11), is a different function than the

hypothetical first-best surplus defined in (3.7), as indicated by the removal of the tilde in

(3.11). Each consumer type solves

max
q>0

[CS(θ, q) = u(θ, q)− P (q)], (3.12)

and then purchases the quantity solving (3.12) if it satisfies their IR constraint.

Consider first the steepest consumer type, θ̄. It is immediate from (3.9) that CS(θ̄, q)
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is equal to zero for all q ≤ q̄(θ̄). Therefore, for any q > q̄(θ̄),

CS(θ̄, q) = [u(θ̄, q̄(θ̄))−P (q̄(θ̄))] +

q∫
q̄(θ̄)

uq(θ̄, v)dv−
q∫

q̄(θ̄)

cdv =

q∫
q̄(θ̄)

uq(θ̄, v)dv−
q∫

q̄(θ̄)

cdv, (3.13)

where the second step of (3.13) makes use of [u(θ̄, q̄(θ̄)) − P (q̄(θ̄))] = 0. By definition

uq(θ̄, q̄(θ̄)) = c, and uq(θ, q) is decreasing in q over [q̄(θ̄), q0(θ̄)] and equal to 0 thereafter

by Assumption (A1). It follows then that uq(θ̄, q) is strictly less than c for any q greater

than q̄(θ̄). Therefore, CS(θ̄, q) is equal to 0 for all q ≤ x(θ̄) = q̄(θ̄), and less than 0 for all

q > x(θ̄) = q̄(θ̄). Thus, θ̄ weakly prefers her assignment to any other positive quantity. Note

also that her IR constraint is binding at her assigned quantity, since CS(θ̄, q̄(θ̄)) = 0.

Turning now to θ less than θ̄, consider the derivative of CS(θ, q) with respect to q,

given by

∂[u(θ, q)− P (q)]

∂q
=

 uq(θ, q)− uq(θ̄, q), 0 < q ≤ q̄(θ̄)

uq(θ, q)− c, q > q̄(θ̄)

 , (3.14)

and shown in the lower panel of Figure 3.2. The first order condition for a local maximum

is satisfied at q equal qx(θ̄, θ), and q̄(θ).

The second derivative of CS(θ, q) with respect to q is given by,4

∂2[u(θ, q)− P (q)]

∂q2
=

 uqq(θ, q)− uqq(θ̄, q), 0 < q < q̄(θ̄)

uqq(θ)− c, q > q̄(θ̄)

 . (3.15)

Recall that qx(θ̄, θ) is less than q̄(θ̄) by Assumption (A3), and uqq(θ, q) is greater (smaller

negative) than uqq(θ̄, q) by Assumption (A2). Thus, equation (3.15) when evaluated at

q = qx(θ̄, θ), is positive and clearly violates the second order condition for a local maximum.

Now, recall that c is a positive constant, and by Assumption (A1), uqq(θ, q) is negative

for all q > 0. Since q̄(θ) is greater than q̄(θ̄), equation (3.15) is negative when evaluated at any

4Note that the second derivative of CS(θ, q) with respect to q does not exist at q = q̄(θ̄). This can seen
in the lower panel of Figure 3.2 by the kink in CSq(θ, q) at q = q̄(θ̄).
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Figure 3.2. Derivative of CS(θ, q) with respect to q
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q > q̄(θ̄). Thus, q̄(θ) satisfies the second order condition sufficient for a local maximum. Note

however that the consumer can always choose a quantity of zero which yields a consumer

surplus of zero. In the following paragraph, I verify that the IR constraint for type θ is

satisfied at q̄(θ), which turns out to imply that q̄(θ) is a global maximum for CS(θ, q).

Turning to the IR constraints, for any θ less than θ̄, consumer surplus evaluated at

x(θ) = q̄(θ), is

CS(θ, q̄(θ)) = u(θ, q̄(θ))− P (q̄(θ)) =

q̄(θ)∫
0

uq(θ, v)dv −
q̄(θ̄)∫
0

uq(θ̄, v)dv −
q̄(θ)∫
q̄(θ̄)

cdv. (3.16)

Recognizing that q̄(θ̄) < q̄(θ), the first integral in (3.16) can be separated into two integrals,

as

CS(θ, q̄(θ)) =

q̄(θ̄)∫
0

uq(θ, v)dv +

q̄(θ)∫
q̄(θ̄)

uq(θ, v)dv −
q̄(θ̄)∫
0

uq(θ̄, v)dv −
q̄(θ)∫
q̄(θ̄)

cdv. (3.17)

Since the second and fourth integrals in (3.17) are evaluated over the same interval, they

can be combined, giving

CS(θ, q̄(θ)) =

q̄(θ̄)∫
0

uq(θ, v)dv +

q̄(θ)∫
q̄(θ̄)

[uq(θ, v)− c]dv −
q̄(θ̄)∫
0

uq(θ̄, v)dv. (3.18)
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Without changing the equality,
∫ q̄(θ̄)

0
cdv can be added and subtracted to the right-

hand side of (3.18), giving

CS(θ, q̄(θ)) =

q̄(θ̄)∫
0

uq(θ, v)dv +

q̄(θ)∫
q̄(θ̄)

[uq(θ, v)− c]dv −
q̄(θ̄)∫
0

uq(θ̄, v)dv +

q̄(θ̄)∫
0

cdv −
q̄(θ̄)∫
0

cdv. (3.19)

The first, third, fourth, and fifth integrals of (3.19) are all evaluated over the same interval.

Thus, the fifth integral can be combined with the first, and the fourth integral can be

combined with the third, giving

CS(θ, q̄(θ)) =

q̄(θ̄)∫
0

[uq(θ, v)− c]dv +

q̄(θ)∫
q̄(θ̄)

[uq(θ, v)− c]dv −
q̄(θ̄)∫
0

[uq(θ̄, v)− c]dv. (3.20)

The first and second integrals in (3.20) have the same integrand. Since the first

integral is also evaluated over [0, q̄(θ̄)], and the second integral is evaluated over [q̄(θ̄), q̄(θ)],

they can be combined, giving

CS(θ, q̄(θ)) =

q̄(θ)∫
0

[uq(θ, v)− c]dv −
q̄(θ̄)∫
0

[uq(θ̄, v)− c]dv. (3.21)

Finally, recall that the first integral in (3.21) is the first-best surplus for θ, and the

second integral is the first-best surplus for θ̄. Therefore, the constant first-best surplus

condition implies that

CS(θ, q̄(θ)) = C̃S(θ, q̄(θ))− C̃S(θ̄, q̄(θ̄)) = 0, ∀θ < θ̄. (3.22)

That is, the IR constraint binds at x(θ) = q̄(θ) for all θ less than θ̄. Recall that the IR

constraint has been shown to bind for the steepest type θ̄ at q̄(θ̄). Thus, the IR constraint

binds at x(θ) = q̄(θ), for all θ in Θ.
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Recall that for all θ, CS(θ, q) was shown to have local maxima at q = 0 and q = q̄(θ).

Consumer surplus equals zero when evaluated at q = 0, and since the IR constraint binds at

q̄(θ), consumer surplus equals zero when evaluated at q = q̄(θ). Thus, q = 0 and q = q̄(θ) are

both global maxima, and all θ in Θ weakly prefer their assignment x(θ) = q̄(θ) to any other

q ≥ 0. Therefore, the marginal price schedule given in (3.9) and the assignment schedule

given in (3.10), are globally incentive compatible, and the IR constraint binds at x(θ) = q̄(θ),

for all θ in Θ. QED

Corolarry 1A. If the hypothetical first-best surplus is constant for in θ over Θ, the marginal

price schedule given in (3.9), and the assignment schedule given in (3.10), are optimal for

the monopolist, and the resulting allocation is socially efficient.

Proof. First-best assignments x(θ) = q̄(θ) for all θ in Θ, maximize social welfare. By Propo-

sition 1A, the first-best assignments are globally incentive compatible and leave CS(θ, q̄(θ)) =

0, for all θ in Θ. Since all consumer types receive no surplus at their assignments, it follows

that all social welfare is extracted by the monopolist. Therefore, the pair (p(q), x(θ)) speci-

fied by (3.9) and (3.10) must be optimal for the monopolist, and the resulting allocation is

socially efficient. QED
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3.3 Two Important Functions of Quantity and Type

In this section, I introduce two functions which map types to quantities and help to

understand the monopolist’s problem. Recall that for θA > θB, qx(θA, θB) was introduced

as the quantity such that uq(θ
A, q) = uq(θ

B, q), while uq(θ
A, q) is greater than uq(θ

B, q) for

quantities less than qx(θA, θB), and uq(θ
A, q) is less than or equal to uq(θ

B, q) for quantities

greater than qx(θA, θB). Consider a simple extension of this concept, denoted qx(θ). For

each type, qx(θ) < q0(θ) is the quantity at which the cross-partial derivative of the utility

function is equal to zero. That is,

uqθ(θ, q
x(θ)) = 0, ∀θ ∈ Θ. (3.23)

Another way to think of qx(θ) is as qx(θ, θ+dθ), using the notation from Section 3.1. Figure

3.3 shows that qx(θ) is a threshold which divides the (θ, q) plane into two regions. Marginal

utility is constant in type along qx(θ). In the region below qx(θ), marginal utility is increas-

ing in type over [θ
¯
, θ], and in the region above qx(θ), marginal utility is decreasing in type

over [θ, θ̄]. Notice that for q ≤ qx(θ̄), marginal utility is increasing in type over Θ, and for

q ≥ qx(θ
¯
) marginal utility is decreasing in type over Θ. That is, consumer preferences are

completely ordered by θ on [0, qx(θ̄)] and for q ≥ qx(θ
¯
).

The function denoted in this paper as qx(θ), is the function denoted “q0(θ)” in

Araujo et al. (2011), and denoted “s(θ)” by Schottmüller (2015). Both Araujo et al. (2011)

and Schottmüller (2015) focus on qx(θ) in relation to the first-best quantity schedule q̄(θ).

Schottmüller (2015) deals only with cases where qx(θ) lies entirely above q̄(θ). Araujo et al.

(2011) deal with cases where qx(θ) and q̄(θ) intersect once. An implication of qx(θ) and q̄(θ)

crossing once is that implementable assignment schedules will not be monotonic. Following

Schottmüller (2015), I focus on cases where q̄(θ) lies entirely above qx(θ), or,

q̄(θ) > qx(θ), ∀θ ∈ Θ. (3.24)
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Figure 3.3. The threshold qx(θ)

This is implicit in Assumption (A3).

Lemma 1. qx(θ) is decreasing in θ over Θ.

Proof. By definition,

uqθ(θ, q
x(θ)) = 0. (3.25)

Implicitly differentiating (3.25) with respect to θ gives

uqθθ(θ, q
x(θ)) + uqqθ(θ, q

x(θ)) ·
[
(qx)

′
(θ)
]

= 0, (3.26)

where (qx)
′
(θ) denotes the derivative of qx(θ) with respect to θ.

Rearranging (3.26) gives

(qx)
′
(θ) =

−uqθθ(θ, qx(θ))
uqqθ(θ, qx(θ))

. (3.27)
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By Assumption (A2), uqθθ(θ, q
x(θ)) and uqqθ(θ, q

x(θ)) are negative. Thus, the numerator of

(3.27) becomes a positive, while the denominator remains negative. It follows that

(qx)
′
(θ) < 0. (3.28)

That is, qx(θ) is decreasing in θ over Θ. QED

Another important concept in these problems, is the division of Θ × q into regions

where total utility is increasing and decreasing in type. For each θ, let Qx(θ) denote the

quantity at which the partial derivative of the utility function with respect to θ is equal to

zero. That is,

uθ(θ,Q
x(θ)) = 0, ∀θ ∈ Θ. (3.29)

The function Qx(θ) divides the (θ, q) plane into two regions. For each θ, total utility is

increasing in type at any q < Qx(θ), constant in type at q = Qx(θ), and decreasing in type

at any q > Qx(θ). Recall that qx(θ) can be thought of as the quantity that solves5

uq(θ, q) = uq(θ ± dθ, q). (3.30)

Similarly, Qx(θ) can be thought of as the quantity at which θ has the same total utility as

those types infinitesimally close to θ. That is, Qx(θ) is the quantity that solves

u(θ, q) = u(θ ± dθ, q), (3.31)

with footnote 5 applying again to (3.31).

5 The “±” becomes a “+”, when (3.30) is evaluated at θ
¯
, and becomes a “−” when (3.30) is evaluated

at θ̄.
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Lemma 2. If Qx(θ) exists for all θ ∈ Θ, then Qx(θ) is decreasing in θ over Θ.

Proof. By definition,

uθ(θ,Q
x(θ)) = 0. (3.32)

Implicitly differentiating (3.32) with respect to θ gives

uθθ(θ,Q
x(θ)) + uqθ(θ,Q

x(θ)) ·
[
(Qx)

′
(θ)
]

= 0, (3.33)

where (Qx)
′
(θ) denotes the derivative of Qx(θ) with respect to θ. Rearranging (3.33) gives

(Qx)
′
(θ) =

−uθθ(θ,Qx(θ))

uqθ(θ,Qx(θ))
. (3.34)

By Assumption (A2), uθθ(θ,Q
x(θ)) is negative. If Qx(θ) exists, it must be greater than qx(θ).

This means that uqθ(θ,Q
x(θ)) is also negative by Assumption (A2). Thus, the numerator of

(3.34) becomes a positive, while the denominator remains negative. It follows that

(Qx)
′
(θ) < 0. (3.35)

That is, if Qx(θ) exists for all θ in Θ, then Qx(θ) is decreasing in θ over Θ. QED

Now, I turn attention to the inverse function of Qx(θ). Over [Qx(θ̄), Qx(θ
¯
)], let θx(q)

denote the inverse function of Qx(θ). That is, θx(q) = θ solves Qx(θ) = q. In general let

x−1(q) denote the inverse function of any x(θ) that is one-to-one on Θ. I will show that

for q ∈ [Qx(θ̄), Qx(θ
¯
)], θx(q) is the argument in Θ which maximizes u(θ, q). Expanding this

concept to all q > 0, let

θ•(q) = arg max
θ∈Θ

u(θ, q), ∀q > 0. (3.36)
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Lemma 3. If Qx(θ) is one-to-one on Θ, then arg maxθ∈Θ u(θ, q) is given by

θ•(q) =


θ̄, q ≤ Qx(θ̄)

θx(q), q ∈ [Qx(θ̄), Qx(θ
¯
)]

θ
¯
, q > Qx(θ

¯
)

 . (3.37)

Proof. First, for q ≤ Qx(θ̄), the derivative of total utility with respect to θ is such that

uθ(θ, q) ≥ 0, ∀θ ∈ Θ. (3.38)

It follows that for any q ≤ Qx(θ̄) total utility is increasing in θ. Thus, θ•(q) = θ̄ for all

q ≤ Qx(θ̄).

Next, recall that by definition Qx(θ) is the q that solves

uθ(θ, q) = 0. (3.39)

It follows that the inverse function, θx(q), gives

uθ(θ
x(q), q) = 0, (3.40)

for q in [Qx(θ̄), Qx(θ
¯
)]. From (3.40), note that θx(q) satisfies the first order condition for a

maximum. By Assumption (A2), uθθ(θ, q) is negative for all θ, which is the second order

condition for a global maximum at θx(q). Thus,

θ•(q) = θx(q), ∀q ∈ [Qx(θ̄), Qx(θ
¯
)]. (3.41)
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Finally, for q ≥ Qx(θ
¯
), the derivative of total utility with respect to θ is such that

uθ(θ, q) ≤ 0, ∀θ ∈ Θ. (3.42)

It follows that for any q ≥ Qx(θ
¯
), total utility is decreasing in θ. Thus θ•(q) = θ

¯
for all

q ≥ Qx(θ
¯
). Therefore,

θ•(q) =


θ̄, q ≤ Qx(θ̄)

θx(q), q ∈ [Qx(θ̄), Qx(θ
¯
)]

θ
¯
, q > Qx(θ

¯
)

 . (3.43)

QED
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3.4 An Envelope Theorem Result

In this section, I make use of Lemma 3 to show that an assignment schedule x(θ) =

Qx(θ), can be implemented such that the IR constraints bind for all θ in Θ. Scenario 1,

covered in Section 3.2, is seen to be a special case of this result where the first-best quantities

q̄(θ) are equal to Qx(θ).

Proposition 1B.6 If Qx(θ) exists for all θ in Θ, the assignment schedule x(θ) = Qx(θ) is

implementable through the marginal price schedule

p(q) =

 uq(θ̄, q), q ∈ [0, Qx(θ̄)]

uq(θ
x(q), q), q ∈ [Qx(θ̄), Qx(θ

¯
)]

 ,

and the IR constraint binds at x(θ) = Qx(θ), for all θ in Θ.

Proof. Consider momentarily the following total price schedule,

P (q) =

 u(θ̄, q), q ∈ [0, Qx(θ̄)]

u(θx(q), q), q ∈ [Qx(θ̄), Qx(θ
¯
)]

 . (3.44)

I will show that under the price schedule given in (3.44), the IR constraint is binding at

x(θ) = Qx(θ), for all θ in Θ. Then, I will show that under (3.44), each type weakly or

strictly prefers their assignment x(θ) = Qx(θ) to any other q. Finally, I will show that the

price schedule from (3.44) is also given by the marginal price schedule p(q) stated in the

proposition.

Recall that each consumer type solves the objective,

max
q≥0

[CS(θ, q) = u(θ, q)− P (q)]. (3.45)

6This proposition is denoted 1B, since it generalizes proposition 1A from Section 3.2.
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Under the price schedule given in (3.44), consumer surplus evaluated at x(θ) = Qx(θ), is

given by

CS(θ,Qx(θ)) = u(θ,Qx(θ))− P (Qx(θ)) = u (θ,Qx(θ))− u (θx(Qx(θ)), Qx(θ)) . (3.46)

Recall that θx(q) is the inverse function of Qx(θ), meaning θx(Qx(θ)) = θ. Therefore,

equation (3.46) reduces to

CS(θ,Qx(θ)) = u (θ,Qx(θ))− u (θ,Qx(θ)) = 0, ∀θ ∈ Θ. (3.47)

That is, under the total price schedule given in (3.44), the individual rationality constraints

bind at x(θ) = Qx(θ), for all θ in Θ.

Next, recall that by Lemma 3, the value of θ that maximizes u(θ, q) is given by

θ•(q) =


θ̄, q ≤ Qx(θ̄)

θx(q), q ∈ [Qx(θ̄), Qx(θ
¯
)]

θ
¯
, q > Qx(θ

¯
)

 . (3.48)

It follows that the total price schedule given in (3.44) is also given by,

P (q) = u(θ•(q), q) = max
θ∈Θ

u(θ, q), ∀q ≤ Qx(θ
¯
). (3.49)

Since the total price schedule given in (3.44) is equal to the maxθ∈Θ u(θ̃, q) for all q ≤ Qx(θ
¯
),

it follows that

CS(θ, q) = u(θ, q)− P (q) = u(θ, q)−max
θ̃∈Θ

u(θ̃, q) ≤ 0, ∀q ≤ Qx(θ
¯
), θ ∈ Θ. (3.50)
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The IR constraint has already been shown to bind for all θ in Θ. Therefore, equation

(3.50) implies that all θ in Θ weakly prefer their assignment x(θ) = Qx(θ) to any other q in

[0, Qx(θ
¯
)]. The total price schedule given by (3.44) feasibly implements x(θ) = Qx(θ), for all

θ in Θ.

Finally, note that for q ∈ [0, Qx(θ̄)], the marginal price schedule implied by (3.44) is

given by

p(q) =
dP (q)

dq
=

d

dq
u(θ̄, q) = uq(θ̄, q). (3.51)

For q ∈ [Qx(θ̄), Qx(θ
¯
))], the marginal price schedule implied by (3.44) is given by

p(q) =
dP (q)

dq
=

d

dq
u(θx(q), q) = uq(θ

x(q), q) +
[
uθ(θ

x(q), q) · (θx)
′
(q)
]
. (3.52)

Recall that for q ∈ [Qx(θ̄), Qx(θ
¯
))],

uθ(θ
x(q), q) = 0, (3.53)

by the definition of Qx(θ). It follows that equation (3.52) reduces to

p(q) = uq(θ
x(q), q) +

[
(0) · (θx)

′
(q)
]

= uq(θ
x(q), q), (3.54)

where (θx)
′
(q) denotes the derivative of θx(q) with respect to q. Thus, the total price schedule

given in (3.44) implements x(θ) = Qx(θ) with IR constraints binding at x(θ) for all θ ∈ Θ,

and (3.44) is also given by the marginal price schedule

p(q) =

 uq(θ̄, q), q ∈ [0, Qx(θ̄)]

uq(θ
x(q), q), q ∈ [Qx(θ̄, Qx(θ

¯
))]

 . (3.55)

QED

Proposition 1B shows that when the SCC is violated as it is in this paper, it is
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possible for the monopolist to feasibly implement an assignment schedule which extracts all

equilibrium surplus, despite being uninformed of the consumer’s type. Moreover, note that

the constant first-best surplus scenario is in fact a special case where Qx(θ) = q̄(θ) for all θ

in Θ.
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3.5 Properties of Feasible and Implementable Assignment Schedules

In this section I establish two lemmas regarding properties of implementable assign-

ment schedules. Lemma 4 shows that if x(θ) is greater than qx(θ) for all θ in Θ, imple-

mentability will require that flatter types receive greater assignments. Lemma 5 shows that

at the monopolist’s optimum, the steepest consumer type, θ̄, is always served.

Lemma 4. Any assignment schedule, x(θ), that is continuously differentiable and one-to-

one on Θ, implementable by P (q), and greater than qx(θ) for all θ in Θ, will be strictly

decreasing in θ.

Proof. The objective function for each θ is given by

u(θ, q)− P (q). (3.56)

The first order condition for a maximum of this objective function, gives the following nec-

essary condition for P (q) to implement x(θ),

uq(x
−1(q), q) = p(q), q ∈ {x(θ) : θ ∈ Θ}. (3.57)

A second order necessary condition for implementability is given by,

uqq(x
−1(q), q)− d

dq
p(q) ≤ 0, q ∈ {x(θ) : θ ∈ Θ}. (3.58)

This second order condition, evaluated at the marginal price schedule implied by the first

order condition, is given by

uqq(x
−1(q), q)− d

dq
uq(x

−1(q), q) ≤ 0, q ∈ {x(θ) : θ ∈ Θ}. (3.59)
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The derivative with respect to q of uq(x
−1(q), q) is given by

uqq(x
−1(q), q) + uqθ(x

−1(q), q) ·
[
(x−1)

′
(q)
]
, (3.60)

where (x−1)
′
(q) denotes the derivative of x−1(q) with respect to q. It follows then that the

second order condition reduces to

− uqθ(x−1(q), q) ·
[
(x−1)

′
(q)
]
≤ 0, q ∈ {x(θ) : θ ∈ Θ}. (3.61)

Recall that uqθ(θ, q) is less than 0 at any q > qx(θ). Since x(θ) > qx(θ) for all θ in

Θ, it follows that (−uqθ(x−1(q), q)) is strictly greater than zero over {x(θ) : θ ∈ Θ}, and can

therefore be divided out of (3.61) without changing the inequality. Thus, the second order

condition further reduces to

(x−1)
′
(q) ≤ 0, q ∈ {x(θ) : θ ∈ Θ}. (3.62)

The inverse function theorem implies that

(x−1)
′
(q) =

1

x′(θ)
. (3.63)

Therefore, (3.62) must hold as a strict inequality,7 given by

1

x′(θ)
< 0, q ∈ {x(θ) : θ ∈ Θ}. (3.64)

This also implies that

x
′
(θ) < 0, q ∈ {x(θ) : θ ∈ Θ}. (3.65)

7The inequality must be strict since 1
x′ (θ)

can’t equal zero.
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That is x(θ) is strictly decreasing in θ. QED

Lemma 5. If the monopolist’s optimal pair (p(q), x(θ)) that is both implementable and

feasible, assigns a positive quantity to θ̂, it also assigns positive quantities to all θ ∈ [θ̂, θ̄].

That is, if it is optimal to sell to a given type, then it is optimal to sell to all steeper types.

Proof. Suppose P◦(q) is an optimal total price schedule that feasibly implements x(θ) = 0

for all θ > θ̂, and x(θ) > 0 for all θ in [θ
¯
, θ̂]. If so, then I show that: (a) x(θ̂) is greater

than or equal to Qx(θ̂), (b) P◦(q) is greater than or equal to u(θ̂, q) for q ≥ Qx(θ̂), (c) the

IR constraint for θ̂ binds at x(θ̂), and (d) no θ < θ̂ is willing to buy a positive q ≤ Qx(θ̂).

To verify (a), recall that the IR constraint for θ̂ requires P◦(x(θ̂)) to be less than or

equal to u(θ̂, x(θ̂)). Note also that uθ(θ̂, q) is greater than zero for all q < Qx(θ̂). This means

that for all q < Qx(θ̂), u(θ̂, q) is less than u(θ, q) for some θ > θ̂. Thus, at any q < Qx(θ̂),

if P◦(q) ≤ u(θ̂, q), then P◦(q) < u(θ, q) for some θ > θ̂. Therefore, the monopolist cannot

feasibly implement a positive x(θ̂) < Qx(θ̂) as well as zero assignments for all θ > θ̂. The

assignment x(θ̂) must therefore be greater than or equal to Qx(θ̂), proving (a).

Next, note that if P◦(q) < u(θ̂, q) at q ≥ Qx(θ̂), then P (q) > u(θ + ε, q) for ε > 0

small, by the continuity of u(θ, q) in θ. Therefore, P◦(q) must be greater than or equal to

u(θ̂, q) for all q ≥ Qx(θ̂), proving (b). It follows that the IR constraint for θ̂ binds at x(θ̂),

or P◦(x(θ̂)) = u(θ̂, x(θ̂)), proving (c).

Finally, note that for q < Qx(θ̂), P◦(q) must be greater than u(θ•(q)) to prevent θ > θ̂

from buying. By Lemma 3 θ•(q) > θ̂ for q < Qx(θ̂). It follows that no θ in Θ is willing to

buy q < Qx(θ̂), proving (d).

Now, consider an alternative total price schedule, denoted PA(q) and given by

PA(q) =

 u(θ̂, q), q < Qx(θ̂)

P◦(q), q ≥ Qx(θ̂)

 . (3.66)

Since PA(q) is equal to u(θ̂, q) for all q < Qx(θ̂), type θ̂ still weakly prefers x(θ̂), to any

other quantity. Recall that u(θ̂, q) > u(θ, q) for all θ < θ̂ and q < Qx(θ̂). Since PA(q) equals
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u(θ̂, q) for q < Qx(θ), and PA(q) equals P◦(q) at q = Qx(θ̂), all θ < θ̂ are still unwilling to

buy a positive q < Qx(θ̂). Finally, since PA(q) is the same as the initial total price schedule

for q ≥ Qx(θ̂), it follows that all θ ≤ θ̂ buy their initial assignments and pay the initial total

price. Notice however that all θ > θ̂ now strictly prefer a positive q < Qx(θ) to q = 0.

All θ ≤ θ̂ still buy the same amount under PA(q) as they do under P◦(q), and they

pay the same total price. Thus, the monopolist’s profit from θ ≤ θ̂ remains the same under

PA(q). Additionally, all θ > θ̂ now buy a positive q < Qx(θ̂) and pay a positive total price.

It follows that the monopolist’s profit is greater under PA(q) than under P◦(q), and P◦(q)

therefore cannot be optimal. If the monopolist’s optimal assignment schedule gives x(θ̂) > 0,

then x(θ) > 0 for all θ ≥ θ̂. QED
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3.6 The Monopolist’s Optimum: A preliminary characterization

The monopolist’s objective is to chose a pair (p(q), x(θ)) that is implementable, fea-

sible, and maximizes profit given by

Π =

θ̄∫
θ
¯

f(t)

 x(t)∫
0

[p(v)− c] dv

 dt. (3.67)

The monopolist’s optimal schedule that is both implementable and feasible is denoted x∗(θ).

Recall that if q̄(θ) = Qx(θ) for all θ in Θ, then x∗(θ) = Qx(θ). In any scenario where

q̄(θ) may or may not equal Qx(θ), the monopolist’s maximum profit is less than or equal to

first-best profit. If q̄(θ) ≥ Qx(θ) for all θ in Θ, then x∗(θ) should be greater than or equal

Qx(θ) for all θ in Θ. To see this, recall that for all θ in Θ, total utility is strictly increasing

in q on [0, q0(θ)]. By proposition 1B, the monopolist can feasibly implement x(θ) = Qx(θ)

for all θ in Θ and extract all surplus from said assignment. Suppose the monopolist were to

decrease x(θ) below Qx(θ) for a given θ. The most the monopolist can possibly extract from

θ at that decreased assignment, is less than he can certainly extract from θ at the larger

Qx(θ) assignment. Thus, the direct effect on profit of assigning a quantity less than Qx(θ)

must be negative. It follows that assigning a quantity less than Qx(θ) can only be optimal

if it allows the monopolist to increase the assignment of other types and extract enough

additional surplus to dominate the direct effect.

For a given θ̂ < θ̄, the monopolist can implement x(θ) > Qx(θ) for all θ ≤ θ̂ through

the marginal price schedule,

p(q) =



uq(θ̄, q), q ∈ [0, Qx(θ̄)]

uq(θ
x, q), q ∈ [Qx(θ̄), Qx(θ̂)]

uq(θ̂, q), q ∈ [Qx(θ̂), x(θ̂)]

uq(x
−1(q), q), q ∈ [x(θ̂), x(θ

¯
)]


. (3.68)

100



Note that all θ > θ̂ still prefer Qx(θ) to any other quantity, and the monopolist still extracts

all surplus from said assignments. For θ ≤ θ̂, the total price P (q) is greater than u(θ, q)

for all q < Qx(θ̂). Note also that P (q) is equal to u(θ̂, q) over [Qx(θ̂), x(θ)]. Moreover,

CS(θ, x(θ)) will be positive at x(θ) and decreasing in quantity thereafter, for all θ < θ̂.

Thus, the marginal price schedule given in (62) feasibly implements x(θ) > Qx(θ) for all

θ ≤ θ̂, while still feasibly implementing x(θ) = Qx(θ) with binding IR constraints, for all

θ > θ̂. It follows that the monopolist can increase assignments above Qx(θ) for flatter types

without decreasing assignments below Qx(θ) for steeper types.

Conversely, the monopolist can feasibly implement x(θ) > Qx(θ) for all θ ≥ θ̂ through

the marginal price schedule

p(q) =

 uq(θ̄, q), q ∈ [0, x(θ̄)]

uq(x
−1(q), q), q ∈ [x(θ̄), x(θ̂)]

 . (3.69)

The monopolist needn’t decrease the assignments of flatter types below Qx(θ) to do so. It

follows that when q̄(θ) ≥ Qx(θ), assigning x(θ) < Qx(θ) for any θ always has a negative

direct effect, and never has a positive direct effect. Therefore, assignments strictly less than

Qx(θ) can never be optimal in these circumstances.
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