
University of Mississippi University of Mississippi

eGrove eGrove

Honors Theses Honors College (Sally McDonnell Barksdale
Honors College)

5-9-2019

Creating an Internet of Things Platform for Storing Smart Sensor Creating an Internet of Things Platform for Storing Smart Sensor

Data Using Amazon Web Services Data Using Amazon Web Services

Jin Hyeok Noh
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis

 Part of the Management Information Systems Commons

Recommended Citation Recommended Citation
Noh, Jin Hyeok, "Creating an Internet of Things Platform for Storing Smart Sensor Data Using Amazon
Web Services" (2019). Honors Theses. 1050.
https://egrove.olemiss.edu/hon_thesis/1050

This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell
Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized
administrator of eGrove. For more information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/hon_thesis
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/hon_thesis?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F1050&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F1050&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/hon_thesis/1050?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F1050&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

	

CREATING AN INTERNET OF THINGS PLATFORM FOR
STORING SMART SENSOR DATA USING

AMAZON WEB SERVICES

A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of
the requirements of the Sally McDonnell Barksdale Honors College.

 by
 Jin Hyeok Noh

Oxford

May 2019

Approved by

Advisor: Professor Brian J Reithel

 Reader: Professor Bart L Garner

 Reader: Professor Tony Ammeter

	

2

 © 2019
 Jin Hyeok Noh

ALL RIGHTS RESERVED

	

3

DEDICATION
For Yeon Seob Noh, Kyung Lan Moon

	

4

ACKNOWLEDGEMENTS

 I want to thank Dr. Brian Reithel for his inexpressible guidance during the work on this

thesis. In addition, I want to thank Dr. Bart Garner and Dr. Tony Ammeter for being

readers of this thesis. In addition, I want to thank my parents for supporting the decision

I chose. In addition, I want to thank my friends Khoa Tran and Amber Izzard for

inspiring this thesis.

	

5

ABSTRACT

Creating an Internet of Things Platform for Storing Smart Sensor Data using

Amazon Web Services

by Jin Hyeok Noh

(Under the direction of Professor Brian J Reithel)

Water is one of the essential resources that we should be aware of conserving, but lawn

sprinkler systems in Mississippi have inefficient resource management systems. During my

fundamental research, I read an article about IoT (Internet of Things) and how important it will

be in the future. Both of these topics inspired prototype research.

In order to create the prototype, a Raspberry Pi, breadboard, keyboard, monitor, and cables

were used. Using the Raspberry Pi, monitors, and keyboard, the software was developed in

order to create a RESTFUL API gateway to connect to AWS (Amazon Web Service). In the

AWS console, an AWS Lambda function was created to store data to AWS DynamoDB. Then,

a breadboard and sensor were connected to the Raspberry Pi.

When the sensor detects water, the data is transferred to the Raspberry Pi, and the Raspberry Pi

sends the data to the AWS API Gateway. The API Gateway then sends the data to AWS

Lambda, and the process continues from AWS Lambda to AWS DynamoDB. DynamoDB can

display the type of sensor, date, IP address, user id, and eventid. This platform will make it

easy to monitor energy efficiency and water waste.

	

6

TABLE OF CONTENTS

LIST OF TABLES .. 7

LIST OF ABBREVIATIONS ... 8

INTRODUCTION .. 9

CHAPTER I: BRIEF OVERVIEW OF CHAPTERS .. 10

CHAPTER II: PREVIOUS RESEARCH .. 11

CHAPTER III: RESEARCH METHODOLOGY ... 15

CHAPTER IV: DISCUSSION OF RESULTS .. 16

CHAPTER V: CONCLUSION .. 22

CHAPTER VI: DIRECTION FOR FUTURE THESIS ... 23

	

7

LIST OF FIGURES

 Figure 1 Picture of prototype

Figure 2 Raspberry Pi code setup with Python

Figure 3 Raspberry Pi GPIO Header block

Figure 4 Raspberry Pi GPIO Pin diagram

Figure 5 AWS API gateway interface setup to AWS Lambda

 Figure 6 AWS Lambda function code to send data to AWS DynamoDB to store

data

 Figure 7 The result of AWS DynamoDB

	

8

 LIST OF ABBREVIATIONS

• AWS Amazon Web Service

• IoT Internet Of Things

• IaaS Infrastructure as service

• PaaS Platform as service

• SaaS Software as service

• UI User Interface

• IP Internet Protocol

• RESTFUL Representational state transfer	

• API Application program interface

• OS Operating System	

	

	

	

	

	

	

	

	

	

	

	

9

INTRODUCTION

The Internet of Things (IoT) is a form of technology that produces data then

interacts, exchanges, and connects to the Internet and stores data to a database. For

example, a smartwatch is a favorite IoT device these days. It produces medical

information such as heartbeats and contains a step tracker for users to check their health

status. IoT devices must be connected to the Internet with a distinguishable IP address.

The IoT has become more sophisticated and technologically advanced, the computer.

With the growth of IoT devices, our lives are often more connected to data. We have the

capability now to check the weather, download photos, make phone calls, and more

through our IoT smartwatches. However, people still think IoT devices are considered

expensive equipment to upgrade their lives, even though through our daily lives there is

much energy wasted due to automated systems. The cost for an IoT Sprinkler, for

example, is more than $200. While watching a lawn sprinkler system operate during a

rainstorm, I found my inspiration to create a budget-friendly, water sensing device that

connects with the IoT.

Can we create an affordable, functional prototype of an inexpensive IoT device that

stores sensor data through a serverless cloud environment in order to observe the sensor’s

data? That is the research question that will be explored in this thesis.

	

10

Ch. 1 BRIEF OVERVIEW OF CHAPTERS

This chapter describes a brief overview of the chapters that make up this thesis.

Chapter 2 explains the previous knowledge learned before conducting the research.

Chapter 3 describes the prototype research methodology. First, it explains how the

research question originated and describes the methodology used to proceed with

research. Chapter 4 discusses, and the results and shows that the prototype is viable, as

well as the lessons learned in this research. Chapter 5 is a summary of the research. It

provides a guideline for future researchers, discusses how this research will be practical

for society, and presents some limitations and assumptions of the research.

	

11

Ch. 2 PREVIOUS RESEARCH

As stated in the introduction, the IoT is a form of technology that allows people to

connect to the Internet to exchange and store data. It analyzes the information that it

receives and provides users the ability to access information remotely. The IoT includes a

variety of embedded systems such as home appliances, mobile equipment, and wearables.

The prospects for IoT are quite promising. Jown Woo Choi argued that according to the

research organization Machina, “IoT growth rate will be at 21.8% per year until 2022,

and total market share will be around $1.2 trillion.” “In 2020, IoT products will cover

31.8% of electric devices, IT, and service areas. Also, the development of various

platforms of IoT, data storage, and new software development is expected. In 2015,

products patented by IoT were $50 billion. The number is expected to reach $ 250 billion

by 2020,” estimated the research organization Gartner (as cited in KOTRA, 2016).

On the other hand, there are three crucial issues for IoT devices. First, there is no

standardization because everything serves a different purpose, but this is a regulatory

issue.

The second problem is the electronic waste (e-waste) issue. The IoT revolution

needs a massive amount of new electronic parts. Old parts are often discarded, and this

electronic waste will cause environmental problems. The third problem is that IoT is still

insecure. Current IoT devices are vulnerable to hackers to attack through methods such as

SQL injection attack.

For this thesis, a project was undertaken to create a prototype for an IoT device

that connects a smart sensor to a Raspberry Pi. The Raspberry Pi is an example of an

	

12

inexpensive IoT device. It was created by the Raspberry Pi Foundation to enhance the

availability of computer science in developing countries. Raspberry Pi runs on the Linux

operating system. Python is one of the available computer languages that run inside a

Raspberry Pi. Features of Python include the fact that it is easy to read and write

computer programs compared to other computer languages. Also, Python has high

compatibility with other programming languages.

Another resource used in this project is the Cloud platform, which is an approach

that provides businesses with the components to build their cloud computing

environments. It provides different services depending on the needs of the business.

Cloud computing uses, “a network of remote servers hosted on the Internet to store,

manage, and process data, rather than a local server or a personal computer” (Dillon-

Roberts, 2018). The first advantage of Cloud computing is that it has scalability because

the user does not own hardware or software. The second advantage is that it is

particularly useful for start-up and small business since they do not have to invest in

expensive infrastructure, hardware, or software.

There are different types of cloud computing services. For example, there is

Software-as-a-service (SaaS), Platform-as-service (PaaS), and Infrastructure-as-service

(IaaS). SaaS uses a web browser to deliver applications that are managed by a third-party

vendor and whose interface is accessed on the client's side. According to Apprenda, IaaS,

PaaS, SaaS (Explained and Compared), most SaaS applications can be run directly from

a Web browser without requiring any downloads or installations, although some require

plugins. PaaS is used for applications and other development while providing cloud

components to software. The advantage of PaaS is that user can develop or customize

	

13

applications for their needs. IaaS is a self-service model for accessing, monitoring, and

managing remote datacenter infrastructures, such as compute (virtualized or bare metal),

storage, networking, and networking services (e.g., firewalls). Users can use IaaS and be

charged for their consumption depending on their IaaS usage. For this research in

constructing a prototype, DynamoDB from Amazon Web Service (AWS) is a suitable

choice. DynamoDB is an IaaS cloud service provided by AWS. DynamoDB is a cloud

service that specializes in NoSQL data.

Chang-Soo Kim (2014) defines a sensor as a mechanical part that converts environmental

information such as temperature, smoke, moisture, and image changes to an electrical

signal that a person or device can identify. The configuration of the sensor consists of

three sections: sensing, signal processing, and control. The information is detected by the

sensor unit and converted into an electrical signal as either analog or digital in separate

ways in the single processing section. Then, the control section acquires advanced

information by using the software, or connects with another device and operates

immediately. The control section utilizes software to acquire advanced data or connects

with another device to function immediately. By transforming surrounding information

into electrical information, sensors can be classified into four different kinds. Pressure

and acceleration can be detected by some types of physical sensors. CIS, IR, and

illumination are converted into electrical information by optical sensors. CO2, NOx, and

Ph can be detected by chemical sensors. DNA and protein levels can be retrived by

biosensors.

	

14

Node.js is an open source development platform for running JavaScript code on the

server-side. Node.js is useful for developing applications that require a persistent

connection from the browser to the server.

RESTFUL API is an API that uses a program at the endpoint that is internet access that

other internet-connected computers can shift data to via HTTP server request to requests

to get, put, post, and delete data.

	

15

Ch. 3 RESEARCH METHODOLOGY

The water crisis is one of the most critical global issues throughout the world.

However, in the state of Mississippi, the water management system is very

inefficient. For example, Tupelo’s sprinkler systems operate even during rain.

Observation of these ineffective management systems demands a need for alternative

options. During the research, a methodology prototype was determined to be

appropriate. When constructing a prototype, it was decided that the purchase of a

wireless keyboard, a small monitor, breadboard, a moisture sensor, cables, and a

raspberry pi was necessary. First, to construct the server-side prototype, one must access

AWS API-gateway, Lambda, and DynamoDB to store data. Second, the moisture sensor

is connected to a breadboard with cables. Third, connect the breadboard and sensors to

the raspberry pi. Then raspberry pi connects to the monitor to display Python in order to

start writing the Python code to send sensor data to AWS API gateway. Then AWS API

gateway sends data to Lambda function. Inside the Lambda function, the code is written

in the Node.js format. The code stores the sensor data into DynamoDB. The DynamoDB

displays stored data about sensor events, such as water and time. Assuming this sensor is

inside of the factory, it means there is a water leak that needs to be fixed. Having a sensor

in each building could allow maintenance to identify the leak source and repair it.

	

16

Ch. 4 DISCUSSION OF RESULT

<Figure 1 Picture of prototype>

While Raspberry Pi is plugged-in, the sensor detects water and registers an electrical

signal. The electrical signals go to the raspberry pi which converts the signal into data.

	

17

<Figure 2 Raspberry Pi Python code about read signal and convert into data.>

<figure 3 Raspberry pi GPIO Header block>--

(image from https://www.raspberrypi.org/documentation/usage/gpio/	retrieved	March	27,	2019)

	

18

<figure 4 Raspberry pi GPIO Pin diagram>--

(image from https://www.raspberrypi.org/documentation/usage/gpio/	retrieved	March	27,	2019)

Figure 2 presents the client code that is executed on the Raspberry Pi, written in Python.

This code sends moisture sensor data to AWS API gateway. The client code imports

Python classes for GPIO, time, and AWS authentication. The GPIO features of a

Raspberry Pi motherboard provides an electrical connection point for external sensors

and devices that interact with Raspberry Pi. In the current project, the code senses

electrical voltages that come from the sensors to detect water and converts those voltages

to data. The AWS authentication code is sent to AWS API Gateway to store the sensor

data. The information transmitted to AWS API Gateway must be sent in the right format.

The data was transmitted with the Node.js data format in mind so that it would be

processed by AWS Lambda functions.

	

19

<Figure 5 AWS API interface setting >

Figure 5 is the UI of the AWS API gateway. The client is the raspberry pi, and it sends

the data to a method request. A method request deals with the post method to allow the

Python client to post the data. Integration request integrates the data into a particular

format. In this research, Lambda was chosen, and the data goes to AWS Lambda

function.

	

20

<Figure 6 AWS Lambda function code to send data to AWS DynamoDB to store data >

	

21

This Node.js code receives data from Raspberry Pi Python code that was received by

AWS API Gateway. This Node.js code acknowledges the event notification from

Raspberry Pi. The AWS Lambda function stores data into AWS DynamoDB. A Lambda

function is an unnamed function that can operate without backend service or application

maintenance.

The second page of the figure 6 code creates parameters in a structure for sending value

to AWS DynamoDB. For example, event.id was created for primary key value, and the

user id was from the client device for identifying the client device. The sensor type is for

describing the type of the sensor detected, DateTime is for identifying the date, and time.

SourceIP means for displaying an IP address for the client device.

<Figure 7 Displaying the result DynamoDB>

In figure 7 DynamoDB displays the converted data lists from the moisture sensors. It

displays date, time sensor type, user id number, and event id number.

	

22

Ch. 5 CONCLUSION

The prototype that was constructed can monitor data by watching incoming event

calls through AWS API Gateway. This monitoring system could be used on a mass scale

and could be building-coded to benefit maintenance workers to find out the problems

with products or buildings. The prototype constructed in AWS DynamoDB can be

extended to store other different sensor data at the same time. Another way this research

can operate daily is by modifying it in different ways. For example, implementing this

research into a fish tank would be beneficial: the only thing that has to be done is

changing the sensors and monitoring the data.

One of the unexpected outcomes was that the data transmission did not work correctly

because the cable connections sometimes could not transmit data. It was not able to store

DynamoDB. Additionally, because of bad electrical connections, the sensor was not

always able to detect water. Thus, it could send the wrong data. Therefore, further

development of the research needs a better cable in order to transfer data correctly. It also

needs to output valid IP addresses. Another limitation on the research was the discomfort

of the user interface. Because the prototype was built on Raspberry Pi, it needed a

separate monitor to interact with it. Furthermore, the Raspberry Pi needs a Wi-Fi

connection in order to operate.

	

23

Ch. 6 DIRECTION FOR FUTURE THESIS

There are some more directions for future research. Figure 5 displays that the

integration and method response was not used at the AWS API Gateway. In the future,

callback function needs to be implemented so that a user can get a notification when there

is a change. To create callback function, DynamoDB needs to be triggered to invoke

AWS Lambda function. The AWS Lambda function will be set so that it will be

redirected to AWS SNS, which stands for simple notification system, and data will be

sent from AWS SNS to the user’s mobile device or email. Future studies need to find a

better way to identify client devices from a software perspective since AWS API

Gateway does not allow the display of valid IP address. An alternative way is needed.

From a hardware perspective, it needs integrated IoT devices with sensors on it using

breadboard and cables to connect the sensor with IoT. The connection problem is one of

the main issues. Furthermore, in the future, researchers can create a mobile application in

order to check the data status more efficiently.

	

24

APPENDIX A

Soil Moisture Sensor (Raspberry Pi)

(Retrieved from https://www.instructables.com/id/Soil-Moisture-Sensor-Raspberry-Pi/)

	

25

APPENDIX B

Table structure and format for AWS DynamoDB

	

26

APPENDIX C

Simple Calculator Lambda Function

(Retrieved from https://docs.aws.amazon.com/apigateway/latest/developerguide/simple-calc-nodejs-lambda-

function.html)

	

27

REFERENCE

Choi, J.W. (2016). ����� (IoT) ��� ��� �� [Current Status and

Prospects of the Internet (IoT) Market KOTRA]. Retrieved from

http://news.kotra.or.kr/user/globalAllBbs/kotranews/list/2/globalBbsDataAllView

.do?dataIdx=148067&column=&search=&searchAreaCd=&searchNationCd=&se

archTradeCd=&searchStartDate=&searchEndDate=&searchCategoryIdxs=&searc

hIndustryCateIdx=&page=54&row=100

Dillon-Roberts, S. (2018). An overview of cloud computing.

Retrieved from http://digitalresources.nz/article/OZcgU6Y

Getting Started with REST APIs in Amazon API Gateway. (n.d.). Retrieved from

 https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-

started.html

GPIO(general-purpose input/output). (n.d.). Retrieved from

https://www.raspberrypi.org/documentation/usage/gpio

IaaS, PaaS, SaaS (Explained and Compared). (n.d.). Retrieved from

https://apprenda.com/library/paas/iaas-paas-saas-explained-compared/

Kim, C.S. (2014). ��� �� �� �� [Smart sensor technology trend].

Retrieved from http://www.elec4.co.kr/article/articleView.asp?idx=7276

	

28

notionquest (2017, March 6). AWS Lambda function write to DynamoDB [MSG 1].

Message posted to https://stackoverflow.com/questions/42623084/aws-lambda-

function-write-to-dynamodb

piddlerintheroot (n.d). Soil Moisture Sensor (Raspberry Pi). Retrieved from

https://www.instructables.com/id/Soil-Moisture-Sensor-Raspberry-Pi/

Schwarzmüller, M. (2019, April 20). AWS Serverless APIs & Apps - A Complete

 Introduction. [udemy.com online course]. Retrieved from

 https://www.udemy.com/aws-serverless-a-complete-introduction/

Simple Calculator Lambda Function. (n.d.). Retrieved from

https://docs.aws.amazon.com/apigateway/latest/developerguide/simple-calc-

nodejs-lambda-function.html

What Is AWS Lambda? (n.d.). Retrieved from

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

	Creating an Internet of Things Platform for Storing Smart Sensor Data Using Amazon Web Services
	Recommended Citation

	Creating%20an%20Internet%20of%20Things%20Platform%20for%20Storing%20Smart%20Sensor%20Data%20using%20

