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ABSTRACT 

HOANG NGUYEN: Portfolio Optimization Methods: The Mean-Variance Approach and the 

Bayesian Approach 

(Under the direction of Dr. Andrew Lynch) 

This thesis is a discussion on the mean-variance approach to portfolio optimization and 

an introduction of the Bayesian approach, which is designed to solve certain limitations of the 

classical mean-variance analysis. The primary goal of portfolio optimization is to achieve the 

maximum return from investment given a certain level of risk. The mean-variance approach, 

introduced by Harry Markowitz, sought to solve this optimization problem by analyzing the 

means and variances of a certain collection of stocks. However, due to its simplicity, the mean-

variance approach is subject to various limitations. In this paper, we seek to solve some of these 

limitations by applying the Bayesian method, which is mainly based on probability theory and 

the Bayes’ theorem. These approaches will be applied to form optimal portfolios using the data 

of 27 Dow Jones companies in the period of 2008-2017 for a better comparison. The topic of 

portfolio optimization is extremely broad, and there are many approaches that have been and are 

being currently researched. Yet, there is no approach that is proven to perform most efficiently. 

The purpose of this paper is to discuss two potential and popular approaches in forming optimal 

portfolios. 
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Chapter 1: An Overview of Portfolio Optimization 

1.1 Definition of risk: 

One of the major advances of investment research in the 20th century is the recognition 

that we cannot obtain an optimum portfolio by simply combining numerous individual 

securities that have desirable risk-return characteristics.1 In fact, multiple parameters of 

investment choices must be considered in order to build an efficient portfolio. The 

primary goal of portfolio optimization is to achieve the maximum return from investment 

given a certain level of risk.  

 For simplicity, in most financial literature, risk has been understood as uncertainty 

of future outcomes. An alternative definition might be the probability of an adverse 

outcome.2 Risk could be categorized into different types, including market risk, credit 

risk, liquidity risk or non-financial risks. However, for the purpose of this paper, risk is 

treated as the volatility of a stock’s return. Risk premium is the amount of excess return 

required by the investor to compensate for this uncertainty. By excess return, the 

portfolio’s return is compared to the risk-free rate. Risk-free rate is the rate of return that 

can be earned with certainty.3 In this paper, U.S. 10-year Treasury Rate is used as the 

risk-free rate, which will be explained in a later chapter. 

1.2 Measure of risk: 

The most well-known measure for risk is variance. Variance is a measure of dispersion, 

which is the variability around the central tendency.4 Some other measures of dispersion 

                                                           
1 2 Reilly & Brown (2012), p. 181, 182 
 

3 Bodie et al. (2008), p. 123 
4 DeFusco et al. (2018), p. 430 
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include the range of returns, the mean absolute deviation, the coefficient variation and the 

Sharpe ratio. In this paper, the variance and the Sharpe ratio of a portfolio are the two 

most important measures of risk. The Sharpe ratio is a measure of relative dispersion and 

is more inclusive than the variance. It is the ratio of excess return to standard deviation of 

return for a portfolio, formed by William F. Sharpe:5 

𝑆p = 
µp − 𝑟𝑓

σp
 

where µp is the mean return of the portfolio, 𝑟𝑓 is the mean return of a risk-free asset, and 

σp is the standard deviation of return on the portfolio. 

In statistics, the variance is the second central moment of a random variable X 

around its mean µ, where the rth central moment of X is:6 

µr = E[(X − µ)r] 

Mean and variance do not adequately describe an investments’ distribution of 

returns. We need further measures of returns in order to evaluate the distribution, such as 

skewness, the third central moment, or kurtosis, the fourth central moment of the random 

variable. However, these further measures are difficult and complicated to evaluate. 

Additionally, the mean and variance of a random variable already capture its most 

important information. Therefore, we will use the mean and variance of a portfolio in 

order to evaluate its distribution in this paper.7 

                                                           
5 DeFusco et al. (2018), p. 445 
6 Mukhopadhyay (2000), p. 77 
7 For the Bayesian method, we assume normal distributions for stock returns, which also have only two 
parameters, mean θ and variance σ2 
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1.3 Optimization formulations: 

Optimization problems specify the random variables that could be changed in the process 

and the objective to find with certain constraints. In portfolio optimization, the random 

variables are usually the weights of the chosen stocks, which are (𝑤1, 𝑤2, … , 𝑤n). The 

objective of the optimization problem depends on the parameters being evaluated. And 

the constraints on random variables vary based on the scenario of the problem. Some 

common and basic optimization problems include: 

1.3.1 Maximizing portfolio expected return: 

𝑃 = argmax
{𝑤: ∑ 𝑤i = 1 & other constraints}n

1

µp 

1.3.2 Minimizing portfolio volatility: 

𝑃 = argmin
{𝑤: ∑ 𝑤i = 1 & other constraints}n

1

σp 

1.3.3 Maximizing portfolio’s Sharpe ratio: 

𝑃 = argmax
{𝑤: ∑ 𝑤i = 1 & other constraints}n

1

µp − 𝑟𝑓

σp
 

1.3.4 Maximizing risk-adjusted return: 

𝑃 = argmax
{𝑤: ∑ 𝑤𝑖 = 1 & other constraints}n

1

µp − τσp
2  

where τ is the risk aversion parameter of the investor. 
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Chapter 2: The Mean-Variance Approach of Portfolio Optimization 

The mean-variance portfolio optimization method was one of the foundations of portfolio 

selection modelling recommended by Markowitz along with the concept of 

diversification and the efficient frontier of a portfolio.8 In order to understand the mean-

variance approach of portfolio optimization, we need several measures and assumptions. 

2.1 Return: 

The existence of risk means that the investor can no longer associate a single number or 

payoff with investment in any asset. In fact, it must be described by a set of outcomes and 

each of their associated probability of occurrence, which could be called return 

distribution.9 Hence, we reflect the return of a certain stock by its expected rate of return: 

R =  ∑PiRi

n

i=1

 

where Ri is the stock’s return in scenario i and Pi is the probability of scenario i 

happening. 

 We can generalize the computation of the expected rates of return for a portfolio 

as follows: 

E(Rp) =  ∑𝑤𝑖Ri

n

i=1

 

                                                           
8 Agarwal (2015), p. 20 
9 Elton et al. (2003), p. 44 
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where 𝑤i is the weight of asset i in the portfolio and Ri is the corresponding expected rate 

of return of that asset. 

2.2 Variance: 

In probability theory and statistics, the variance of a random variable is a measure of the 

spread of that random variable about its expected value.10 Hence, the variance of a 

random variable X can be written as: 

Var(X) = E[(X − E(X))
2
] 

 For a certain asset, its variance is a measure of the variation of possible rates of 

return Ri from the expected rate of return R where R = E(Ri). The variance σ2 of an 

asset is: 

σ2 = ∑Pi(Ri − E(Ri))
2

n

i=1

= ∑Pi(Ri − R)2

n

i=1

 

where Ri is the stock’s return in scenario i and Pi is the probability of scenario i 

happening. 

2.3 Covariance: 

Covariance is used to represent the relationship between two random variables. The 

covariance between random variables X and Y is defined by:11 

Cov(X, Y) =  E[(X − E(X))(Y − E(Y))] 

For two assets, i and j, we define the covariance of rates of return as:12 

                                                           
10 11 Finan (2018), p. 286 
 

12 Reilly & Brown (2012), p. 185 
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Covij = E{[Ri − E(Ri)][Rj − E(Rj)]} 

Covariance of two assets measure the extent to which their rates of return move 

together during a certain time period. In fact, covariance is affected by the variability of 

the two individual return indexes.13 It is difficult to compare the covariances of different 

assets. To standardize the measure of variables’ relationship, we use another measure 

called correlation. The correlation ρij of two assets i and j is measured as follows: 

ρij =
Covij

σiσj
 

where σi and σj are the standard deviations of assets i and j respectively. The standard 

deviation of a certain asset is the square root of its variance: 

σ = √σ2 = √∑Pi(Ri − R)2

n

i=1

 

2.4 Covariance matrix of a n-asset portfolio: 

For a n-asset portfolio, its covariance matrix ∑ is a n × n matrix formulated as follows: 

∑ =

[
 
 
 
 
Cov11 Cov12 Cov13 ⋯ Cov1n

Cov21 Cov22 Cov23 ⋯ Cov2n

Cov31 Cov32 Cov33 ⋯ Cov3n

⋮ ⋮ ⋮ ⋱ ⋮
Covn1 Covn2 Covn3 ⋯ Covnn]

 
 
 
 

 

where ∑i,j = Covij is the covariance of asset i and asset j in the portfolio. 

                                                           
13 Reilly & Brown (2012), p. 188 
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2.5 Variance of a portfolio: 

Markowitz derived the formula for the variance of a n-asset portfolio as follows:14 

σp = ∑∑𝑤i𝑤j

n

j=1

n

i=1

Covij 

= ∑𝑤i
2

n

i=1

σi
2 + ∑∑𝑤i𝑤j

n

j=1

n

i=1
i≠j

Covij 

= W ∑ WT 

where: 𝑤i is the weight of asset i in the portfolio 

 σi
2 is the variance of asset i in the portfolio 

 Covij is the covariance between asset i and asset j in the portfolio 

 ∑ is the covariance matrix of the n-asset portfolio 

 W = [𝑤1 𝑤2 𝑤3 ⋯ 𝑤n] is the 1 × n weight vector of the portfolio 

  WT is the transposition of W 

2.6. Mean-variance optimal portfolio: 

Some assumptions for the mean-variance analysis include: the investors make decisions 

based on the expected return and variance, and all investors have the same information; 

investment decisions are made for a single period.15 The mean-variance optimal portfolio 

is achieved when the risk is minimized for a certain goal of expected return. Hence, the 

optimization problem is: 

                                                           
14 Agarwal (2015), p. 57 
15 Kim et al. (2016), p. 13 
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𝑃 = argmin
{𝑤: ∑ 𝑤𝑖 = 1 & µp=µ}n

1

W ∑ WT 

where µ is the target return and W ∑ WT is the variance of the portfolio, which is the 

measure of risk, as we showed in the previous section. 
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Chapter 3: An Overview of the Bayesian Approach for Portfolio 

Optimization 

3.1 Likelihood function: 

The method of maximum likelihood is used to estimate a certain parameter given an 

observed set of data with known distributions. Let X1, X2, …, Xn are independent and 

identically distributed with common probability mass function or probability density 

function f(x, θ). Let X = (x1, x2, …, xn) be an observed data set. Then the likelihood 

function for parameter θ is:16 

𝐿(θ) = ∏𝑓(X = xi, θ)

n

i=1

 

The likelihood function of parameter θ given observed data set X could also be used 

to derive the maximum likelihood estimate MLE of θ by the following formula: 

MLE(θ) = argmax
θ

𝐿(θ) 

3.2 Bayes’ theorem: 

First, we need to understand the conditional probability of a certain event A given the 

knowledge that another event B has occurred. The new information about event B causes 

us to update the probability that event A occurs in the same sample space. The 

conditional probability of A given B, denoted by P(A|B) is:17 

P(A|B) =
P(A ∩ B)

P(B)
 

                                                           
16 Mukhopadhyay (2000), p. 345 
17 Finan (2018), p. 88 
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 Hence, we will also have the probability of B given A, P(B|A) as follows: 

P(B|A) =
P(A ∩ B)

P(A)
 

 By the above formulas, we can write: 

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A) 

P(B|A) =
P(A|B)P(B)

P(A)
   (1) 

 Formula (1) is known as the Bayes’ formula. Bayes’ formula uses the occurrence 

of the event to infer the probability of the scenario generating it, thus, it is sometimes 

called an inverse probability.18 Hence, the Bayes’ formula could be written as: 

Updated probability given new information

=
Probability of new information given event

Unconditional probability of the new information

× Prior probability of event 

3.3 The Bayesian method in finding posterior distribution: 

Applying the Bayes’ formula to continuous random variable θ with known prior 

distribution and a sample data set X as new information, we can obtain the posterior 

distribution of θ by rewriting the Bayes’ theorem:19 

𝑓(θ|X) =
𝑓(X|θ)𝑓(θ)

𝑓(X)
 

                                                           
18 DeFusco et al. (2018), p. 502 
19 Rachev et al. (2008), p. 19 
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=
𝐿(θ|X)𝑓(θ)

𝑓(X)
 

where: 𝑓(θ|X) denotes the density function for the posterior distribution of θ 

 𝐿(θ|X) =  𝑓(X|θ) is the likelihood function of θ given data set X 

 𝑓(θ) is the prior distribution of the unknown parameter θ 

 𝑓(X) is the unconditional probability of the data set X 

Since 𝑓(X) does not depends on θ, we can rewrite the above formula as: 

𝑓(θ|X) ∝ 𝐿(θ|X)𝑓(θ) 

 Given the above formula, we can find the posterior distribution of θ. For an 

estimator of parameter θ, the maximum likelihood estimator as discussed in section 3.1 is 

often used. 
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Chapter 4: Bayesian Application on Normal Distributions 

Recall that the Bayesian formula is: 

𝑓(µ|ν) =  
𝑓(ν|µ)𝑓(µ)

𝑓(ν)
 

Using 5 years of stock returns data, we obtained the mean and standard deviation 

of the prior distribution. For simplicity, the prior distribution and the updated data 

distribution are assumed to be normal. Let the prior mean be µ0 and the prior standard 

deviation be σ0. The prior distribution follows N(µ0, σ0). Hence, the prior distribution’s 

probability density function is: 

𝑓(µ) =  
1

√2𝜋𝜎0

𝑒
−(µ − µ0)2

2𝜎0
2

 

Call the updated data set V with mean µ1 and standard deviation σ1. Then the 

updated data distribution follows N(µ1, σ1). Since V = (ν1, ν2, …, νn) is a collection of 

known stock returns and the updated data distribution follows normal distribution with 

known parameters, 𝑓(V) is a constant. By the Bayesian formula, we obtain the following 

relation: 

𝑓(µ|ν)  ∝  𝐿(µ|ν) 𝑓(µ) 

where L(µ|ν) = 𝑓(ν|µ) is the likelihood function of the data set V based on parameter µ 

and 𝑓(µ) is the prior distribution. In fact, ν1, ν2, …, νn of the data set V are independent 

and identically distributed and follow the distribution N(µ1, σ1). Therefore, the likelihood 

function of V given unknown parameter µ is: 

𝐿(µ|ν) = 𝑓(ν|µ) = 𝑓(x1 = ν1, x2 = ν2, … , xn = νn) 
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= 𝑓(x1 = ν1)𝑓(x2 = ν2)…𝑓(xn = νn) 

= ∏
1

√2πσ1

e
−(νi − µ)2

2σ1
2

n

i=1

 

Notice that we can write 𝑓(x1 = ν1, x2 = ν2, … , xn = νn) = ∏ 𝑓(xi = νi)
𝑛
i=1  

since ν1, ν2, …, νn  are independent. By plugging in the above formulas for 𝑓(µ) and 

𝑓(µ|ν), we obtain the following relation: 

𝑓(µ|ν)  ∝ (∏
1

√2πσ1

e
−(νi − µ)2

2σ1
2

n

i=1

)( 
1

√2πσ0

e
−(µ − µ0)2

2σ0
2

) 

∝ 
1

σ1
nσ0

exp (−
(µ − µ0)

2

2σ0
2 − ∑

(νi  −  µ)2

2σ1
2

n

i=1

) 

∝ 
1

σ1
nσ0

exp (−𝑔(µ)) 

where 𝑔(µ) =  
(µ − µ0)2

2σ0
2 + ∑

(νi − µ)2

2σ1
2

n
i=1  is a function of a single variable µ. 

𝑔(µ) =  
(µ − µ0)

2

2σ0
2 + ∑

(νi  −  µ)2

2σ1
2

n

i=1

 

= 
µ2  + µ0

2 − 2µµ0

2σ0
2 + ∑

νi
2 + µ2  −  2νiµ 

2σ1
2

n

i=1

 

= 
µ2  + µ0

2 − 2µµ0

2σ0
2 + 

∑ νi
2n

i=1 +  nµ2 −  2∑ νiµ
n
i=1

2σ1
2  

= 
µ0

2

2σ0
2  +  

∑ νi
2n

i=1

2σ1
2 + 

µ2 − 2µµ0

2σ0
2 + 

nµ2 −  2∑ νiµ
n
i=1

2σ1
2  

Since 𝐶 =  
µ0
2

2σ0
2  +  

∑ νi
2n

i=1

2σ1
2  is a constant and does not depend on µ, we write 𝑔(µ) as 

follows: 
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𝑔(µ) =  𝐶 + 
µ2 − 2µµ0

2σ0
2 + 

nµ2 −  2∑ νiµ
n
i=1

2σ1
2  

= 𝐶 + 
µ2σ1

2 − 2µµ0σ1
2 +  nµ2σ0

2 − 2∑ νiµσ0
2n

i=1

2σ0
2σ1

2  

= 𝐶 + 
µ2(σ1

2 + nσ0
2) − 2µ(µ0σ1

2 + ∑ νiσ0
2)n

i=1

2σ0
2σ1

2  

The updated data set V with mean µ1 and standard deviation σ1. Hence, 

∑ νi = n
i=1 nµ1. 

𝑔(µ) =  𝐶 + 
µ2(σ1

2 + nσ0
2) − 2µ(µ0σ1

2 + nµ1σ0
2)

2σ0
2σ1

2  

=  𝐶 + 

µ2 − 2µ
(µ0σ1

2 + nµ1σ0
2)

(σ1
2 + nσ0

2)
⁄

2σ0
2σ1

2

(σ1
2 + nσ0

2)
⁄

 

Since  µ2 − 2µ
µ0σ1

2+nµ1σ0
2

σ1
2+nσ0

2   can be rewritten as (µ − 
µ0σ1

2+nµ1σ0
2

σ1
2+nσ0

2 )
2

− 𝐶′ where 𝐶′ 

is a constant and does not depend on µ. Therefore, 𝑔(µ) can be written as follows: 

𝑔(µ) =  𝐶 −
𝐶′

2σ0
2σ1

2

(σ1
2 + nσ0

2)
⁄

+ 

(µ −
(µ0σ1

2 + nµ1σ0
2)

(σ1
2 + nσ0

2)
⁄ )

2

2
σ0

2σ1
2

(σ1
2 + nσ0

2)
⁄

 

=  𝐶 − 𝐶′′ + 

(µ −
(µ0σ1

2 + nµ1σ0
2)

(σ1
2 + nσ0

2)
⁄ )

2

2
σ0

2σ1
2

(σ1
2 + nσ0

2)
⁄
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where  𝐶′′ = 
𝐶′

2σ0
2σ1

2

(σ1
2+nσ0

2)
⁄

 is also a constant. This result shows that the posterior 

distribution 𝑓(µ|ν) follows a normal distribution with mean 
µ0σ1

2+nµ1σ0
2

σ1
2+nσ0

2  and variance 

σ0
2σ1

2

σ1
2+nσ0

2. 
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Chapter 5: Mean-Variance Optimal Portfolio of the Dow Jones 

Industrial Average stocks 

We identify the 30 constituent members of the Dow Jones Industrial Average as of 

December 31, 2018 and download monthly returns for each company for the prior 10 

years from the Center for Research in Security Prices. Three of these companies, Visa, 

DowDupont, and Goldman Sachs, experience substantial mergers and/or restructuring 

during this period. We therefore remove them from our sample, leaving us with 27 large, 

liquid stocks in our sample. With a time-horizon of 10 years and the data collected on 27 

Dow Jones Industrial Average component companies’ returns from 2008 to 2017, we 

apply the mean-variance approach to obtain an optimal portfolio. Starting from 2013, we 

use the data of each company’s monthly returns in the previous five years. Considering a 

data set of 60 statistics, we have sufficient amount of information to evaluate the mean 

and variance of each company’s stock movement and evaluate the covariance matrix of 

27 companies. The goal of this approach is to maximize the Sharpe ratio of the portfolio, 

which is: 

𝑆p = 
µp − 𝑟𝑓

σp
 

where µp is the portfolio’s rate of return, 𝑟𝑓 is the risk-free rate and σp is the portfolio’s 

total volatility. 

5.1 Risk-free rate: 

Based on the time horizon, U.S. 10-year Treasury Rate is used as the risk-free rate. T-bill 

returns are effectively risk-free, since we know what interest rate we will earn when 
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buying the bills.20 This rate does not change for the lifetime of the bills and the agency 

who issues the bills, the U.S. government, is assumed to not default, at least in the next 

10 years. Furthermore, treasury bills are extremely liquid, and the other risks such as 

credit risk or non-financial risks are irrelevant. Therefore, this rate is the most suitable for 

risk-free rate in this context. U.S. 10-year Treasury Rate in the period of 2008-2017 is: 

2017 2.43% 

2016 2.09% 

2015 1.88% 

2014 2.86% 

2013 1.91% 

2012 1.97% 

2011 3.39% 

2010 3.73% 

2009 2.52% 

2008 3.74% 

Table 1. U.S. 10-year Treasury Rate in the period of 2008-201721 

5.2 Technique explanation and constraints: 

Most of the data calculations and evaluations of this paper are done on Microsoft Excel. 

The optimal portfolios of certain years are found using the Solver tool to maximize the 

Sharpe ratio with certain assumptions and constraints. The Sharpe optimal portfolio 𝑃∗ is: 

                                                           
20 Bodie et al. (2008), p. 10 
21 U.S. Department of the Treasury (2019) 
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𝑃∗ = argmax
{𝑤: ∑ 𝑤i = 1}n

1

µp − 𝑟𝑓

σp
 

where 𝑤i’s are the weights of 27 stocks. Hence, a constraint while building the optimal 

portfolio is that the sum of 27 weights must be 1. For each 5-year period, two optimal 

portfolios are constructed: One is built without further constraint, and one is built based 

on the assumption that no short-sales are allowed. No short-sales constraint is assumed to 

consider the fact that the use of short-sales is limited and strictly regulated for certain 

investors. 

 Additionally, another notice while using Solver tool is that this tool solves for the 

local maxima or minima of the objective variable. Here, the objective variable is the 

portfolio’s Sharpe ratio. Hence, we need to run Solver multiple times in order to verify 

that the found portfolios maximize the Sharpe ratio globally. Finally, Solver at times 

gives unreasonable portfolio results. For example, a portfolio with 10000% weight 

invested a certain stock was found. To solve this problem, we added another constraint 

that limits the weight of each stock to be in the interval [-10, 10]. Therefore, the Sharpe 

optimal portfolio 𝑃∗ with short-sales allowed is: 

𝑃∗ = argmax
{𝑤: ∑ 𝑤i = 1,   −10≤𝑤i≤10}n

1

µp − 𝑟𝑓

σp
 

and the Sharpe optimal portfolio 𝑃∗ with no short-sales is: 

𝑃∗ = argmax
{𝑤: ∑ 𝑤i = 1,   0≤𝑤i≤10}n

1

µp − 𝑟𝑓

σp
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5.3 Sharpe optimal portfolio of 2008-2012 period: 

A notice while evaluating 2008-2012 data is the positivity of the covariance matrix. This 

could be due to the fact that Dow Jones stocks are all large cap companies22. 

Furthermore, the financial crisis of 2007-2008 had strong impact on the U.S. economy 

during that period, which increased the companies’ systematic risk and correlation. 

Especially, the considered 27 Dow Jones companies are large, publicly owned companies 

based in the United States, which make them more volatile to a downturn of the 

economy.23 The risk-free rate used in this period is the arithmetic mean of the 10-year 

Treasury Rates from 2008-2012 divided by 12 for monthly consistency.24 Using solver, 

the Sharpe optimal portfolio with short-sales allowed for the period of 2008-2012 is: 

AAPL AXP BA CAT CSCO CVX DIS HD IBM 

0.437 0.045 -0.229 0.054 -0.520 0.135 -0.025 0.654 0.929 

INTC JNJ JPM KO MCD MMM MRK MSFT NKE 

-0.632 0.025 -0.269 -0.197 0.726 0.159 0.053 -0.224 0.222 

PFE PG TRV UNH UTX VZ WBA WMT XOM 

0.169 -0.356 0.569 -0.128 0.127 -0.205 -0.248 0.111 -0.381 

Table 2. 2008-2012 Sharpe optimal portfolio with short-sales allowed 

By investing in this portfolio, we obtained a Sharpe ratio of 0.709 with a monthly 

return of 0.046 and portfolio’s total volatility of 0.061. On the other hand, Sharpe optimal 

portfolio with no short-sales is: 

                                                           
22 Chen (2019) 
23 Wikipedia (2019) 
24 See Table 1 
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AAPL AXP BA CAT CSCO CVX DIS HD IBM 

0.086 0.000 0.000 0.000 0.000 0.000 0.000 0.283 0.160 

INTC JNJ JPM KO MCD MMM MRK MSFT NKE 

0.000 0.000 0.000 0.000 0.384 0.000 0.000 0.000 0.000 

PFE PG TRV UNH UTX VZ WBA WMT XOM 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.086 0.000 

Table 3. 2008-2012 Sharpe optimal portfolio with no short-sales 

 This portfolio achieves a Sharpe ratio of 0.294, with a monthly return of 0.014 

and portfolio’s total volatility of 0.039 specifically. Notice that the Sharpe ratio of the 

optimal portfolio with no short-sales is much lower than the Sharpe ratio of the optimal 

portfolio with short-sales. This is reasonable since we added more constraint and 

restricted the weight of every stock to be positive. In fact, for the portfolio with short-

sales allowed, the variables are (𝑤1, 𝑤2, … , 𝑤27) which vary in the interval [-10, 10].25 In 

contrast, the range of the variables (𝑤1
′ , 𝑤2

′ , … , 𝑤27
′ ) for the portfolio without short-sales 

is [0, 10]. Hence, with the same stocks’ mean returns and covariance matrix, the Sharpe 

optimal portfolio with short-sales allowed is expected to achieve higher Sharpe ratio. 

To make a better comparison, the following graph shows the Sharpe optimal 

portfolios of 27 Dow Jones stocks for the period of 2008-2012: 

                                                           
25 Recall that the constraint |𝑤1| ≤ 10 ∀𝑖 is to help eliminate unreasonable portfolios 
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Figure 1. 2008-2012 Sharpe optimal portfolios 

From the graph, we can observe that the stocks with higher positive weights in the 

optimal portfolios with short-sales allowed tend to have positive weights in the portfolio 

without short-sales. Contrarily, stocks that are shorted or have low positive weights tend 

to have zero weight when short-sales are not allowed. 

5.4 Sharpe optimal portfolio of 2009-2013 period: 

A consideration for this period is that the covariance matrix is no longer positive 

everywhere compared to the covariance matrix in the previous 5-year period. As 

explained above, the chosen 27 stocks are expected to have higher correlation when there 

is a big movement in the whole economy. In 2009-2013, the economy had recovered, 

which lowered the correlation among these large cap companies’ stocks. Following the 

similar process, we obtain the following Sharpe optimal portfolios for the period of 2009-

2013: 
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Figure 2. 2009-2013 Sharpe optimal portfolios 

Here, the risk-free rate used in this period is the arithmetic mean of the 10-year 

Treasury Rates from 2009-2013 divided by 12. The optimal portfolio with short-sales 

realizes a Sharpe ratio of 0.796 with a monthly return of 0.027 and portfolio’s total 

volatility of 0.031. On the other hand, the optimal portfolio with no short-sales acquires a 

Sharpe ratio of 0.543 with a monthly return of 0.022 and portfolio’s total volatility of 

0.037. 

5.5 Sharpe optimal portfolio of 2010-2014 period: 

The Sharpe optimal portfolios for the period of 2010-2014 are: 
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Figure 3. 2010-2014 Sharpe optimal portfolios 

Here, the risk-free rate used in this period is the arithmetic mean of the 10-year 

Treasury Rates from 2010-2014 divided by 12. The optimal portfolio with short-sales 

achieves a Sharpe ratio of 0.796 with a monthly return of 0.029 and portfolio’s total 

volatility of 0.033. On the other hand, the optimal portfolio with no short-sales obtains a 

Sharpe ratio of 0.579 with a monthly return of 0.019 and portfolio’s total volatility of 

0.029. 

5.6 Sharpe optimal portfolio of 2011-2015 period: 

The Sharpe optimal portfolios for the period of 2011-2015 are: 
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Figure 4. 2011-2015 Sharpe optimal portfolios 

Here, the risk-free rate used in this period is the arithmetic mean of the 10-year 

Treasury Rates from 2011-2015 divided by 12. The optimal portfolio with short-sales 

realizes a Sharpe ratio of 0.839 with a monthly return of 0.039 and portfolio’s total 

volatility of 0.045. On the other hand, the optimal portfolio with no short-sales acquires a 

Sharpe ratio of 0.622 with a monthly return of 0.021 and portfolio’s total volatility of 

0.030. 

5.7 Sharpe optimal portfolio of 2012-2016 period: 

The Sharpe optimal portfolios for the period of 2012-2016 are: 
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Figure 5. 2012-2016 Sharpe optimal portfolios 

Here, the risk-free rate used in this period is the arithmetic mean of the 10-year 

Treasury Rates from 2012-2016 divided by 12. The optimal portfolio with short-sales 

achieves a Sharpe ratio of 0.800 with a monthly return of 0.070 and portfolio’s total 

volatility of 0.086. On the other hand, the optimal portfolio with no short-sales obtains a 

Sharpe ratio of 0.578 with a monthly return of 0.019 and portfolio’s total volatility of 

0.030. 
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Chapter 6: Update Sharpe Optimal Portfolio Using the Bayesian 

Approach 

6.1 Technique explanation and constraints: 

Using the Bayesian method, we update the Sharpe optimal portfolio every year from 

2013 to 2017. Let us exemplify the process by taking the 2008-2012 period portfolio and 

update it using the new data collected in 2013. A core assumption of this method is that 

stock returns follow normal distribution. Hence, for each stock of the 27 Dow Jones 

companies, the prior distribution is formed by 2008-2012 data with mean µ0 and standard 

deviation σ0. The prior distribution of that stock follows N(µ0, σ0). The updated data V is 

the 12 monthly returns in the year of 2013. ν1, ν2, …, ν12 of the data set V follow the 

distribution N(µ1, σ1), where µ1 is the mean and σ1 is the standard deviation of V. 

Therefore, the posterior distribution of the stock is N(
µ0σ1

2+12µ1σ0
2

σ1
2+12σ0

2 ,  
σ0

2σ1
2

σ1
2+12σ0

2).26 

 Using this posterior distribution, we have updated the mean and standard 

deviation of each stock in the 27-asset portfolio. By updating the portfolio using the 

Bayesian method instead of following the standard mean-variance approach, we expect to 

obtain a more accurate posterior distribution since it captures the information of the most 

recent data more significantly. Furthermore, if we follow the mean-variance process, we 

would have used five-year data during the period of 2009-2013 to form a new portfolio, 

which omit potentially significant data in 2008. By the Bayesian approach, we maintain 

the information within the last five-year period, including the data in 2008. One might 

argue that we could use six-year period data for the mean-variance approach to solve this 

                                                           
26 See Chapter 4 
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problem. However, this approach would lower the weight of the most recent data, the 

year of 2013, even further, which is the most important information in forming new 

portfolio. 

 A problem that we face during the process is the resulted new variance of each 

stock. In fact, notice that the formula for the posterior variance is: 

σ0
2σ1

2

σ1
2 + nσ0

2 =
σ0

2

1 + n
σ0

2

σ1
2

≪ σ0
2 

σ0
2σ1

2

σ1
2 + nσ0

2 =
σ1

2

σ1
2

σ0
2 + n

≪ σ1
2 

Hence, the larger n is, the closer the new variance is to zero. This is reasonable 

since the more data we collected for the updated distribution, the more information we 

have on the posterior distribution, which lower the uncertainty and thus the posterior 

variance. Nevertheless, the fact that the posterior variances of the stocks are all closer to 

zero may make the calculation of the portfolio’s total volatility inaccurate. In fact, since 

we need the new covariance matrix to run Solver and apply the mean-variance 

optimization on the posterior data, we will derive each stock’s variance from this updated 

covariance matrix. Because the posterior variance of each stock alone is insufficient to 

measure the uncertainty of the portfolio’s variance,27 it would be more consistent to use 

the variance derived from the new covariance matrix. The updated variances we use for 

27 stocks form the horizontal line of the updated covariance matrix, which is: 

                                                           
27 Recall that the variance of a n-asset portfolio is σp = ∑ ∑ 𝑤i𝑤j

n
j=1

n
i=1 Covij 
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∑∗ =

[
 
 
 
 
 
Cov1,1

∗ Cov1,2
∗ Cov1,3

∗ ⋯ Cov1,27
∗

Cov2,1
∗ Cov2,2

∗ Cov2,3
∗ ⋯ Cov2,27

∗

Cov3,1
∗ Cov3,2

∗ Cov3,3
∗ ⋯ Cov3,27

∗

⋮ ⋮ ⋮ ⋱ ⋮
Cov27,1

∗ Cov27,2
∗ Cov27,3

∗ ⋯ Cov27,27
∗
]
 
 
 
 
 

 

where Covi,j
∗
 is the new covariance of stock i and stock j. 

Here are the two methods we use to update the covariance matrix: 

1. Using the five-year period data of 2009-2013 to form a new covariance matrix. 

2. Using the correlation matrix formed by the covariance matrix in the period of 

2008-2012 and using the posterior variances to derive the new covariance matrix: 

The correlation matrix of the 27-asset portfolio is: 

R =

[
 
 
 
 
ρ1,1 ρ1,2 ρ1,3 ⋯ ρ1,27

ρ2,1 ρ2,2 ρ2,3 ⋯ ρ2,27

ρ3,1 ρ3,2 ρ3,3 ⋯ ρ3,27

⋮ ⋮ ⋮ ⋱ ⋮
ρ27,1 ρ27,2 ρ27,3 ⋯ ρ27,27]

 
 
 
 

 

where ρi,j =
Covi,j

σiσj
 is the correlation between stock i and stock j in the portfolio. 

We calculate the variance of each stock by the above formula using the Bayesian 

approach: 

σi
∗2 =

σi,0
2 σi,1

2

σi,1
2 + 12σi,0

2  

where σi
∗2

 is the posterior variance of stock i, σi,0
2  is its prior variance and σi,1

2  is its 

variance on the updated data. Assuming that the correlation matrix does not change when 

we move forward one year, we obtain the covariance matrix using the formula: 
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Covi,j
∗ = ρi,jσi

∗σj
∗ 

where Covi,j
∗
 is the new covariance of stock i and stock j, σi

∗and σj
∗
are the posterior 

standard deviations of stock i and stock j respectively. 

 Therefore, we achieved the posterior means and the posterior covariance matrix of 

the 27-asset portfolio. Applying the same approach as we showed in Chapter 5, we find 

the Sharpe optimal portfolios for the new data set under two circumstances: short-sales 

allowed and no short-sales. 

6.2 Updated optimal portfolio of 2008-2012 period given 2013 data set: 

6.2.1 Method 1: 

Using method 1 and the updated data set of 12 monthly returns in the year of 2013, we 

obtain the new covariance matrix using all the data in the period of 2009-2013. The new 

mean return of each stock is found using the formula: 

µ∗ =
µ0σ1

2 + 12µ1σ0
2

σ1
2 + 12σ0

2  

where µ∗ is the new monthly return of the stock, µ0 and σ0
2 are the monthly return and 

variance of the stock in the period of 2008-2012 respectively, µ1 and σ1
2 are its monthly 

return and variance in the year of 2013.  

 Another notice while calculating the updated mean return for the stock is: 

µ∗ =
µ0σ1

2 + 12µ1σ0
2

σ1
2 + 12σ0

2  
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=

µ0σ1
2

12σ0
2 + µ1

σ1
2

12σ0
2 + 1

≈ µ1 

 Therefore, the updated mean would be close to the month return of the collected 

data set in 2013. This is due to the fact that the collected data set contains 12 elements, 

which is reasonably significant information to form the posterior distribution. The more 

data is collected, i.e. the higher n is, the closer updated mean to the collected data set’s 

monthly return and the lower posterior variance is. 

 The risk-free rate used in this period is the 10-year Treasury rate in 2013 divided 

by 12 since we are forming an updated portfolio within this year. Using Solver with the 

same constraints as shown in chapter 5, we obtain two updated Sharpe optimal portfolios 

under short-sales allowed circumstance and no short-sales circumstance. The Sharpe 

optimal portfolio with short-sales in 2013 is: 

AAPL AXP BA CAT CSCO CVX DIS HD IBM 

-0.033 -0.096 0.118 -0.479 -0.198 -0.143 -0.075 0.100 -0.083 

INTC JNJ JPM KO MCD MMM MRK MSFT NKE 

0.002 -0.360 0.059 0.070 0.070 1.045 -0.086 0.191 0.309 

PFE PG TRV UNH UTX VZ WBA WMT XOM 

-0.362 0.331 0.174 0.182 -0.070 0.020 -0.018 0.184 0.146 

Table 4. 2013 updated Sharpe optimal portfolio with short-sales allowed using method 1 

By investing in this portfolio, we obtained a Sharpe ratio of 1.266 with a monthly 

return of 0.054 and portfolio’s total volatility of 0.041. Notice that if we keep the mean-
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variance Sharpe optimal portfolio obtained in the period of 2008-2012, we will have a 

Sharpe ratio of -0.147, a monthly return of -0.009 and total volatility of 0.069, which is 

an extremely bad performance. This could be explained by the approach used in method 

1, which eliminates the information of 2008 returns during the financial crisis in the 

covariance matrix. Hence, there is big difference between the covariance matrix used in 

the previous optimal portfolio and the updated portfolio, which causes the old portfolio to 

have an extremely low Sharpe ratio. Additionally, we also observe the benefit of updating 

the portfolio, instead of maintaining the same portfolio for a long-term period and 

achieve a negative Sharpe ratio.  

On the other hand, the Sharpe optimal portfolio with no short-sales is: 

AAPL AXP BA CAT CSCO CVX DIS HD IBM 

0.000 0.000 0.399 0.000 0.000 0.000 0.000 0.030 0.000 

INTC JNJ JPM KO MCD MMM MRK MSFT NKE 

0.000 0.006 0.000 0.000 0.000 0.250 0.000 0.001 0.012 

PFE PG TRV UNH UTX VZ WBA WMT XOM 

0.000 0.045 0.000 0.035 0.000 0.012 0.065 0.145 0.000 

Table 5. 2013 updated Sharpe optimal portfolio with no short-sales using method 1 

This portfolio achieves a Sharpe ratio of 0.714 with a monthly return of 0.038 and 

portfolio’s total volatility of 0.051. Here, we have the same observation in chapter 5 that 

the Sharpe ratio of the portfolio without short-sales is much lower than the portfolio with 

short-sales allowed due to the further constraint that all the weights must be non-negative. 
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Under the no short-sales constraint, the 2008-2012 portfolio would have a Sharpe ratio of 

0.391 with a monthly return of 0.014 and total volatility of 0.032. 

6.2.2 Method 2: 

As explained in section 6.1, for method 2, we will derive the correlation matrix from the 

covariance matrix of the period 2008-2012. This approach’s purpose is to make use of the 

posterior variance obtained by the Bayesian method, which is significantly lower than the 

prior variance of the stocks. The calculations of the posterior mean are the same as 

method 1. By using Solver, the Sharpe optimal portfolio with short-sales in 2013 is: 

AAPL AXP BA CAT CSCO CVX DIS HD IBM 

-0.217 0.219 0.187 -0.546 -0.169 0.218 0.042 0.227 -0.019 

INTC JNJ JPM KO MCD MMM MRK MSFT NKE 

0.264 -0.196 -0.008 0.054 0.080 0.520 0.145 0.023 0.238 

PFE PG TRV UNH UTX VZ WBA WMT XOM 

-0.305 0.056 -0.100 0.182 -0.114 -0.053 -0.016 0.216 0.071 

Table 6. 2013 updated Sharpe optimal portfolio with short-sales allowed using method 2 

 This portfolio obtains a Sharpe ratio of 7.806 with a monthly return of 0.055 and 

portfolio’s total volatility of 0.007. Notice that compared to method 1, this method’s 

portfolio has a much higher Sharpe ratio. This could be explained that we used the 

correlations of the stocks in the year of 2008-2012, which potentially omits important 

information in the year of 2013. It may make some stocks overvalued or undervalued in 

estimation and result in the Sharpe ratio being overly optimistic. The 2008-2012 portfolio 

with short-sales allowed would have a Sharpe ratio of -0.793 with a monthly return of -
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0.009 and total volatility of 0.013. On the other hand, the Sharpe optimal portfolio with 

no short-sales using method 2 is: 

 

AAPL AXP BA CAT CSCO CVX DIS HD IBM 

0.000 0.156 0.389 0.000 0.000 0.000 0.000 0.049 0.000 

INTC JNJ JPM KO MCD MMM MRK MSFT NKE 

0.000 0.000 0.000 0.000 0.000 0.319 0.000 0.000 0.014 

PFE PG TRV UNH UTX VZ WBA WMT XOM 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.073 0.000 

Table 7. 2013 updated Sharpe optimal portfolio with no short-sales using method 2 

This portfolio has a Sharpe ratio of 4.043 with a monthly return of 0.041 and 

portfolio’s total volatility of 0.010. Again, compared to method 1, the Sharpe ratio 

obtained by this method is much higher. The 2008-2012 portfolio would achieve a Sharpe 

ratio of 1.665 with a monthly return of 0.014 and portfolio’s total volatility of 0.008. 

6.2.3 Comparisons between the portfolios: 

To make a better comparison, the following graph shows the Sharpe optimal portfolios of 

27 assets using method 1, method 2 and the 2008-2012 mean-variance Sharpe optimal 

portfolio under short-sales allowed circumstance: 
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Figure 6. 2008-2012 and 2013 optimal portfolios with short-sales 

 Here, the estimated optimal portfolio is the mean-variance optimal portfolio in the 

period of 2008-2012, and the realized optimal portfolios are the Sharpe optimal portfolios 

obtained using the Bayesian approach. As we observe in the graph, the realized optimal 

portfolios of method 1 and 2 are reasonably close to each other. Under no short-sales 

constraint, we obtain the following graph: 
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Figure 7. 2008-2012 and 2013 optimal portfolios without short-sales 

 Similar to the portfolios under short-sales allowed circumstance, without short-

sales, the two methods of the Bayesian approach give reasonably close portfolios. 
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6.3 Updated optimal portfolio of 2009-2013 period given 2014 data set: 

 

Figure 8. 2009-2013 and 2014 optimal portfolios with short-sales 

The risk-free rate used in this period is the 10-year Treasury Rates in 2014 divided by 12. 

The optimal portfolio of method 1 realizes a Sharpe ratio of 1.466 with a monthly return 

of 0.200 and portfolio’s total volatility of 0.135. On the other hand, the optimal portfolio 

of method 2 acquires a Sharpe ratio of 9.278 with a monthly return of 1.110 and 

portfolio’s total volatility of 0.119. In this period, the Sharpe optimal portfolio of method 

2 also has a much higher Sharpe ratio compared to method 1 and extremely volatile stock 

weights. This indicates a potential error in holding the correlation matrix constant by 

using Bayesian method 2. 
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Figure 9. 2009-2013 and 2014 optimal portfolios without short-sales 

In this circumstance, the optimal portfolio of method 1 obtains a Sharpe ratio of 

0.687 with a monthly return of 0.025 and portfolio’s total volatility of 0.032. On the other 

hand, the optimal portfolio of method 2 achieves a Sharpe ratio of 2.748 with a monthly 

return of 0.024 and portfolio’s total volatility of 0.008. One more time, as we see in the 

figure, the two Bayesian portfolios differ significant from each other, which most likely 

results from the difference in the covariance matrices. 
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6.4 Updated optimal portfolio of 2010-2014 period given 2015 data set: 

 

Figure 10. 2010-2014 and 2015 optimal portfolios with short-sales 

The risk-free rate used in this period is the 10-year Treasury Rates in 2015 divided by 12. 

The optimal portfolio of method 1 realizes a Sharpe ratio of 1.491 with a monthly return 

of 0.827 and portfolio’s total volatility of 0.553. On the other hand, the optimal portfolio 

of method 2 acquires a Sharpe ratio of 6.640 with a monthly return of 0.752 and 

portfolio’s total volatility of 0.113. Unlike the previous period, in this period, the two 

Bayesian portfolios are significantly close to each other. This could be explained by a 

stable economy, which makes the assumption that the correlation matrix does not change 

less significant. However, the estimated optimal portfolio obtained from the mean-

variance approach diverges greatly from the two Bayesian portfolios. In fact, the mean-
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variance portfolio would achieve a Sharpe ratio of 0.612 if we apply the covariance 

matrix of method 1 and a Sharpe ratio of 2.366 if we apply the covariance matrix of 

method 2.28 

 

Figure 11. 2010-2014 and 2015 optimal portfolios without short-sales 

In this circumstance, the optimal portfolio of method 1 obtains a Sharpe ratio of 

0.659 with a monthly return of 0.021 and portfolio’s total volatility of 0.030. On the other 

hand, the optimal portfolio of method 2 achieves a Sharpe ratio of 2.284 with a monthly 

return of 0.021 and portfolio’s total volatility of 0.009. This is a reasonable result since 

                                                           
28 Notice that the two Bayesian methods only differ in the covariance matrix. They obtain the same 
monthly stock returns for a given period. We consider two Bayesian methods in order to evaluate the 
better use of covariance matrix for 27 stocks. 
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the Sharpe ratios obtained without short-sales are much lower than the Sharpe ratios 

achieved by the portfolios with short-sales allowed. 

6.5 Updated optimal portfolio of 2011-2015 period given 2016 data set: 

 

Figure 12. 2011-2015 and 2016 optimal portfolios with short-sales 

The risk-free rate used in this period is the 10-year Treasury Rates in 2016 divided by 12. 

The optimal portfolio of method 1 realizes a Sharpe ratio of 1.054 with a monthly return 

of 0.070 and portfolio’s total volatility of 0.064. On the other hand, the optimal portfolio 

of method 2 acquires a Sharpe ratio of 4.968 with a monthly return of 0.061 and 

portfolio’s total volatility of 0.012. This is another period that the Bayesian portfolios 

move closely to each other. 
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Figure 13. 2011-2015 and 2016 optimal portfolios without short-sales 

In this circumstance, the optimal portfolio of method 1 obtains a Sharpe ratio of 

0.729 with a monthly return of 0.023 and portfolio’s total volatility of 0.029. On the other 

hand, the optimal portfolio of method 2 achieves a Sharpe ratio of 2.667 with a monthly 

return of 0.023 and portfolio’s total volatility of 0.008. 
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6.6 Updated optimal portfolio of 2012-2016 period given 2017 data set: 

 

Figure 14. 2012-2016 and 2017 optimal portfolios with short-sales 

The risk-free rate used in this period is the 10-year Treasury Rates in 2017 divided by 12. 

The optimal portfolio of method 1 realizes a Sharpe ratio of 1.772 with a monthly return 

of 0.147 and portfolio’s total volatility of 0.082. On the other hand, the optimal portfolio 

of method 2 acquires a Sharpe ratio of 8.943 with a monthly return of 0.087 and 

portfolio’s total volatility of 0.010. 
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Figure 15. 2012-2016 and 2017 optimal portfolios without short-sales 

In this circumstance, the optimal portfolio of method 1 obtains a Sharpe ratio of 

1.175 with a monthly return of 0.038 and portfolio’s total volatility of 0.031. On the other 

hand, the optimal portfolio of method 2 achieves a Sharpe ratio of 5.506 with a monthly 

return of 0.037 and portfolio’s total volatility of 0.006. 

 

 

 

 

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

2012-2016 and 2017 portfolios comparison without short-sales

Estimated optimal portfolio: Realized optimal portfolio (method 1):

Realized optimal portfolio (method 2):



44 
 

Chapter 7: Optimal Portfolios Comparisons by Real Value 

Investment 

7.1 Technique explanation and constraints: 

For a better comparison among the optimal portfolios obtained by different approaches, 

let us assume an investment of $1000 at the beginning of 2013 and calculate the return of 

approach using real returns collected in the period of 2013-2017. Under two 

circumstances: short-sales allowed and no short-sales, we divide each circumstance into 

four different scenarios using different approaches as explained in the previous chapters: 

7.1.1 Passive mean-variance portfolio: 

For this approach, the Sharpe optimal portfolio using the mean-variance approach with 

2008-2012 data is maintained for the entire period of 2013-2017.  

7.1.2 Update the optimal portfolio annually by the mean-variance approach: 

For this approach, we will begin with the Sharpe optimal portfolio using the mean-

variance approach with 2008-2012 data for the year of 2013. After that, for every year, 

the optimal portfolio is updated using the most recent five-year period data by the mean-

variance approach. For example, at the beginning of 2014, the portfolio is updated given 

the data in the five-year period of 2009-2013. 

7.1.3 Update the optimal portfolio annually by the Bayesian approach method 1: 

We will still begin with the Sharpe optimal portfolio using the mean-variance approach 

with 2008-2012 data, since this period is the first five-year period considered for this 
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research, and it is only sufficient to form the prior distribution of the portfolio.29 After 

that, for every year, we update the optimal portfolio using the Bayesian approach with 

method 1 as explained in chapter 6. For example, at the beginning of 2014, the portfolio 

is updated with the prior distribution is formed using the 2008-2012 data and the 

likelihood function formed by the returns collected in the year of 2013. 

7.1.4 Update the optimal portfolio annually by the Bayesian approach method 2: 

For this approach, the technique is similar to updating the portfolio by the Bayesian 

approach method 1. However, we replace method 1 by method 2.30 

                                                           
29 Recall that we need both the prior distribution of the stock returns and the likelihood function for the 
unknown parameters in order to form a posterior distribution using the Bayesian approach. The likelihood 
function is formed using the nearest year returns, which we do not have for the first five-year period of 
2008-2012. 
30 Recall from chapter 6 that in method 1, we form a new covariance matrix annually using the most 
recent five-year period. In method 2, we form a new covariance matrix by using the posterior variances 
and holding the correlation matrix constant. 
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7.2 Real value investments under short-sales allowed circumstance: 

 

Figure 16. Real investment comparison under short-sales allowed circumstance 

As explained in the above section, scenario 1 corresponds to the passive mean-variance 

portfolio, scenario 2 corresponds to updating the portfolio annually by the mean-variance 

approach, scenario 3 corresponds to updating the portfolio annually by the Bayesian 

approach method 1 and scenario 4 corresponds to the Bayesian approach method 2. As 

we observe in the figure, both the investments using the Bayesian approach method 1 and 

2 did relatively better than the mean-variance approach, especially method 2. By 

investing $1000 at the beginning of 2013, we will obtain $1087 in scenario 1, $2166 in 

scenario 2, $2206 in scenario 3 and $6376 in scenario 4. As we see in the figure, most of 

the methods perform poorly in the year of 2016. This could be explained by multiple 

unpredictable events during this year, such as Brexit, or the election of president Donald 
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Trump.31 Such events could change the covariance matrix of the 27 stocks significantly 

during the year, which could lead to poor performances by the portfolios. Nevertheless, 

the Bayesian approach performed better than the mean-variance approach since it 

captures and put more weight into the most recent information of the portfolio. 

7.3 Real value investments under no short-sales circumstance: 

 

Figure 17. Real investment comparison under no short-sales circumstance 

Under the constraint of no short-sales, however, both the Bayesian methods performed 

worse than the mean-variance approach. By investing $1000 at the beginning of 2013, we 

will obtain $2344 in scenario 1, $2409 in scenario 2, $1994 in scenario 3 and $2161 in 

scenario 4. The constraint of no short-sales could limit the potential error of the mean-

                                                           
31 Egan (2016) 
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variance approach to have short positions in variable stocks. Notice that the Dow Jones 

Index increases for most of the year 2013-2017, specifically, the Dow Jones Index annual 

changes for this period are:32 

 

Figure 18. Dow Jones Industrial Average annual changes in the period of 2013-2017 

 Hence, the condition of no short-sales eliminates the probability that the mean-

variance approach loses by short-selling assets. Also, we notice that 2015 is the only year 

that the Dow Jones Index decreases. This could explain for the performances of the 

portfolios in the previous circumstance, where the Bayesian portfolios performed 

significantly better in 2015. The Bayesian portfolios may have captured more important 

                                                           
32 MacroTrends (2019) 
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information for the 2015 portfolio and hence performed better than the mean-variance 

approach. 
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Chapter 8: Limitations and Assumptions Using the Bayesian 

Approach 

An important assumption of the Bayesian approach application in this paper is the 

normalization of stock returns. In fact, the monthly stock returns distribution of 27 

considered Dow Jones companies is shown in the figure below: 

 

Figure 19. Dow Jones companies monthly stock returns distribution in the period of 

2008-2018 

 Based on this figure, we can observe that the stock return distribution is relatively 

close to the normal distribution. There are variable statistics and normality tests for this 

comparison. However, this topic is not within the scope of this paper, so we will base on 

the visuality method for the normality of a distribution. Based on the normality 
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assumption, we find an alternative for the data of stock returns used in this research, 

which is the logarithm of the same returns data. The following figure show the 

distribution of the log returns of 27 Dow Jones companies in the period of 2008-2018, 

which is also close to normal distribution by visuality: 

 

Figure 20. Dow Jones companies log monthly stock returns distribution in the period of 

2008-2018 

By updating the portfolio annually, we assume that the mean, variance, and the 

co-variance matrix of the stocks forming the portfolio do not change significantly during 

the year. This has been shown to be a limitation in the years when there are unpredictable 

major events occurring. 
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Additionally, we assume that there is no trading cost, or friction while trading and 

updating the portfolios. This assumption could lead to the annually updating portfolio 

methods being overestimated. However, notice that the Dow Jones companies are large, 

publicly owned companies in the U.S. Hence, the stocks of these companies are relatively 

liquid, which makes the trading cost less significant. 

Furthermore, we assume that the mean and variance of a certain stock captures all 

the information of the stock returns’ distribution, which is not the case. As explained in 

chapter 1, there are many measures of risk. The mean and variance are only the first and 

second central moments of a random variable and are not sufficient to evaluate the entire 

distribution of the variable. However, the mean and variance do capture the most 

important information. Therefore, in order to avoid complexity in calculating higher 

moments of the variable’s distribution, the mean and variance are the only parameters 

considered in forming the portfolios. 

In method 2 of the Bayesian approach, we assume that the correlation matrix of 

27 Dow Jones stocks does not change for the entire period of 2013-2017, which may not 

be the case. However, correlation between two certain stocks usually depend on the 

industry, product characteristics, the economic policies, etc., which do not often change 

significantly in a five-year period. Indeed, in the previous chapter, the Bayesian approach 

method 2 portfolio was shown to perform much better than the other approaches under 

short-sales allowed circumstance. Hence, another clear assumption from the data 

evaluation is that under the first circumstance, all the stocks of the 27 Dow Jones 

companies can be shorted, which is not always the case, especially for the hedge funds 

with strict regulations. 
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 A technical limitation of this research is the use of Solver tool in Excel. As 

mentioned in the previous chapters, the Solver tool only gives the result for the local 

maxima or minima of the function considered in the problem. Therefore, in each time we 

look for an optimal portfolio in a given problem, we need to run the Solver multiple times 

in order to verify the outcome. Additionally, since Solver looks for local maxima and 

minima, the results are at times unreasonable. Hence, the constraint that the weight of 

each stock must be in the interval [-10, 10] was added to the optimization problems. 
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Chapter 9: Comparison Between the Mean-Variance Approach and 

the Bayesian Approach 

As we have known, investors seek lower risk and higher return. Here we assume that all 

investors are rational and risk averse. Also, for the mean-variance approach, we assume 

that the expected returns, variances and covariances of all assets are known by all 

investors. In fact, when solving the mean-variance problem for N candidate stocks, a total 

of 2N + 
N(N−1)

2
 values are required as inputs:33 

(N mean values) + (N variances) + (
N2 − N

2
 covariances) 

On the other hand, for the Bayesian approach, we need the prior distribution of 

the stock returns and an updated data set. In this paper they are also derived from the 

returns of all assets, which are known by all investors. Nevertheless, in practice, the prior 

distribution could be estimated to apply the Bayesian approach. According to Rachev, 

Hsu, Bagasheva and Fabozzi, the priors could be categorized into two cases: informative 

and uninformative. Recall that the formula for the posterior variance when applying the 

Bayesian approach to normal distribution is: 

σ0
2σ1

2

σ1
2 + nσ0

2 =
1

n
σ1

2 +
1
σ0

2

 

 The quantities 
1

σ1
2 and 

1

σ0
2 have they own self-explanatory names: data precision and 

prior precision. As we notice, in the uninformative case, i.e. not a lot of information is 

                                                           
33 Kim et al. (2016), p. 17 
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known about the prior distribution, σ0 will be very high because of the uncertainty. Hence 

the prior precision 
1

σ0
2 is negligibly small and the posterior distribution parameters will be 

more concentrated on the updated data. Hence, by using the Bayesian approach, we need 

significantly less information than the mean-variance approach. 

 Another limitation of the mean-variance approach is that the Sharpe optimal 

portfolios change significantly each year. In other words, each time we update the 

portfolio after one year of data, the true efficient frontier differs greatly from the 

estimated efficient frontier.34 Recall that the mean-variance optimal portfolio is obtained 

by solving the following optimization problem: 

𝑃 = argmin
{𝑤: ∑ 𝑤𝑖 = 1 & µp=µ}n

1

W ∑ WT 

 By solving this problem with multiple target expected returns µ, we produce a 

curve with the minimum variances at each level of µ. However, because at each level of 

risk, or variance, we prefer the higher expected return. Therefore only the upper half of 

the curve is efficient, which is known as the efficient frontier, as demonstrated in an 

example below:35 

                                                           
34 Haugh (2016) 
35 Chonghui (2012) 
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Figure 21. An example of the efficient frontier 

 In fact, in this paper, we solve the optimization problem on the Sharpe ratio of the 

portfolio, so we do not consider the efficient frontier of the mean-variance approach. 

Moreover, we still apply the mean-variance optimization after getting the posterior 

distribution using the Bayesian method. Hence, this limitation also applies to the 

Bayesian approach. Indeed, the purpose of the Bayesian approach is to obtain a more 

accurate estimation of the means and variances of the considered stocks. Afterwards, we 

still lack an approach to form an optimal portfolio with these estimated parameters. By 

using the mean-variance approach for the posterior means and variances, the portfolios 

are still volatile to the mean-variance limitations, such as the sensitivity of the efficient 

frontiers. 

 Another limitation applies to the mean-variance approach is the sensitivity of the 

portfolio weights subject to small changes in expected returns and covariance matrices.36 

                                                           
36 Haugh (2016) 
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This limitation could also apply to the Bayesian methods we used in this paper. However, 

by updating the parameters of the stocks by putting more weight to the most recent data 

set, the Sharpe optimal portfolios achieved by the Bayesian methods were shown to 

perform relatively better than the mean-variance portfolios because of more accurate 

estimation of the means and variances. 

 In conclusion, the Bayesian approach did not only help us achieve more accurate 

estimation for the parameters of the stocks but also lessened the amount of information 

we need to form the optimal portfolio. However, by applying the mean-variance approach 

to the posterior distribution, we are still subject to the limitations of the classical mean-

variance analysis. Given the assumptions that we discussed in the previous chapter, we 

cannot reach the conclusion that the Bayesian portfolios will perform better than the 

optimal portfolios obtained by the mean-variance approach. Nevertheless, the benefit of 

achieving a better information regarding the stocks parameters is undebatable. 
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