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Figure 1.2: Displacement noise budget of Advanced LIGO in Handford. The measured noise is the sum of
all noises sources. [10].

1.2 Seismic motion

As it was mentioned, seismic noise is one of the major sources of noise at low frequency.

Seismic motion can be produced by ocean waves, human activities (such as people walking

near the detector or a car driving by) and many other reasons. This motion introduces vibra-

tion to the interferometer mirrors and makes it difficult to distinguish between gravitational

waves and mirror vibrations. Therefore, a very high-performance isolation system should be

implemented to isolate the interferometer mirrors from seismic motion.

There are two main types of seismic isolation system: passive isolation system and active

isolation system. Passive isolation refers to the reduction of vibration by using methods

such as mechanical springs and dampers or rubber pads. This method is very common due

to its simplicity and low cost. However, making a good passive isolation system at low-

frequency is difficult because of low-frequency resonance problems. These kind of systems

only attenuate the transmission of seismic motion above the resonant frequency of their
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configurations [12]. In active isolation, on the other hand, seismic vibration is measured

and corrected using actuators. These systems have a high performance in low frequency.

In initial LIGO, passive stacks were used for suspended mirrors [13]. Initial LIGO also

had active vibration isolation. For the Advanced LIGO, an upgrade of initial LIGO with

much more sensitive, active seismic isolation platforms are developed which provide the very

low-frequency isolation [14].

Since seismic motion affects the LIGO sensitivity at low frequency, active isolation system

could be a good choice to reduce this kind of noise.

1.3 Tilt-free seismometer

As a part of an active isolation system, inertial sensors play an important role in moni-

toring the seismic vibration and provide input for the isolation system. The sensor measures

the disturbances and sends a signal to the actuator to apply required forces and neutralize

the disturbances.

While the inertial sensors are employed to measure the translation displacement, they are

also sensitive to tilt motion due to the effect of gravity force along the sensitive axis of the

instrument. Hence, they can not recognize horizontal motion from tilt motion. This effect is

called tilt-horizontal coupling and is problematic in low frequency [15]. The tilt-horizontal

coupling exists in all horizontal inertial sensors.

1.3.1 Problem/Solution

Fig. 1.3 displays an inertial sensor, simplified as a mass-spring-damper system, subjected

to tilt motion θ0 and translation acceleration ẍ0. The initial position of the mass is denoted

by S0. The location of the mass after perturbation is called S, and δ = S0−S. The position

of the mass in the x-y coordinate could be x = S cos θ0 and y = S sin θ0. Hence, y = x tan θ0.

To compute the equation of motion of the system, Lagrangian method is used. The kinetic
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Figure 1.3: A horizontal inertial sensor subjected to translation and tilt motion.

energy for the system with mass m is:

T =
1

2
mv2 =

1

2
m(ẋ2 + ẏ2) (1.1)

where

ẏ = ẋ tan θ0 + xθ̇0(1 + tan2 θ0) (1.2)

Plugging Eq. 1.2 into Eq. 1.1 gives

T =
1

2
m[ẋ2 + ẋ2 tan2 θ0 + x2θ̇20(1 + tan2 θ0)

2 + 2xẋ tan θ0θ̇0(1 + tan2 θ0)] (1.3)

With the small angle approximation tan θ0 ≈ θ0, Eq. 1.3 can be written as

T =
1

2
m[ẋ2 + ẋ2θ20 + x2θ̇20(1 + θ20)

2 + 2xẋθ0θ̇0(1 + θ20)] (1.4)

The potential energy is:

V =
1

2
kδ2 +mgy =

1

2
kδ2 +mg(S0 − δ) sin θ0 (1.5)

where k is the stiffness of the spring. Hence, the Lagrangian would be:

L = T−V =
1

2
m[ẋ2+ ẋ2θ20 +x2θ̇20(1+θ20)

2+2xẋθ0θ̇0(1+θ20)]−
1

2
kδ2−mg(S0−δ) sin θ0 (1.6)
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Substituting Lagrangian into the Euler-Lagrangian equation d
dt
∂L
∂δ̇
− ∂L

∂δ
= Fnon−conservative

and replacing x = (S0 − δ) cos θ0 ≈ S0 − δ gives

mδ̈ + cδ̇ + kδ = mgθ0 +mẍ0 (1.7)

where c is damping coefficient. It is assumed that the second order effect is negligible. cδ̇

and mẍ are the viscous force of damper and the applied force along S, respectively. Eq. 1.7

can be rearranged by defining the natural frequency ω =
√

k
m

and damping ratio µ = c
2
√
km

.

δ̈ + 2µωδ̇ + ω2δ = ẍ0 + gθ0 (1.8)

Going from the time domain to Laplace domain (s = iω) changes Eq. 1.8 to the following:

s2δ(s) + 2µωsδ(s) + ω2δ(s) = s2x0(s) + gθ0(s) (1.9)

or

δ(s) =
s2x0(s) + gθ0(s)

s2 + 2µωs+ ω2
= H(s)[s2x0(s) + gθ0(s)] (1.10)

which

H(s) =
1

s2 + 2µωs+ ω2
(1.11)

H(s) is the frequency response function of the sensor. Dividing the signal by H(s) makes

the analysis independent from the sensor mechanical specifications. Hence, the mass motion

normalized by the sensor response is:

δ̂ =
δ(s)

s2H(s)
= x0 + θ0

g

s2
(1.12)

which includes the translational injection and the tilt injection. However, the tilt injection

has a factor of 1/s2 that shows the frequency dependence of the tilt motion (Fig. 1.4).
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Figure 1.4: Response of a horizontal inertial sensor subjected to translation (blue dashed) and tilt motion
(red). The dashed dotted curve shows the ratio of the response of the sensor to tilt over the response of the
sensor to translation motion which has 1/f2 slope. The values of the parameters are chosen arbitrary (k=10
N/m, c=2 N.S/m, m=1 kg.)

The measured motion of the sensor is dominated by tilt motion at low frequency, and by

translational motion at high frequency. This fact causes a dual sensitivity for the inertial

sensors. Since the inertial sensors are used in active isolation systems at LIGO, this would

be troublesome for the seismic isolation system at low frequency [17].

To solve this issue, researchers have examined several approaches [18]. One solution is to

suspend the inertial sensor, placing the sensor on a platform and then hang the platform

from a support. In this way, the transmitted tilt to the inertial sensor will be mechanically

filtered by suspending the sensor [20, 40]. Fig. 1.5 shows a schematic of the suspended inertial

sensor. The suspended platform can rotate around the upper rotation point with angle α

(the corresponding frequency is called pendulum frequency), and the lower suspension point

8



Figure 1.5: A schematic of an inertial sensor suspended from a support. The platform rotates around two
points. The distance between the lower suspension point and the center of mass of the system (C.o.M) is
denoted by d.

with angle θ (the corresponding frequency is called tilt frequency). d is the distance between

the center of mass of the platform and the lower rotation point.

With the small angle approximation for α, and assuming a point mass system, the pen-

dulum frequency can be estimated. The kinetic energy and the potential energy of the point

mass system are:

T =
1

2
mV 2 =

1

2
m(lα̇)2 (1.13)

V = −mgy = −mgl cosα (1.14)

where m is the mass of the platform, l is the length of the pendulum, and g is the gravitation

acceleration. The Lagrangian, hence, is

L = T − V =
1

2
mV 2 =

1

2
m(lα̇)2 +mgl cosα (1.15)

Using Euler-Lagrangian equation, the equation of motion will be

α̈ +
g

l
α = 0 (1.16)
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Therefore, the pendulum frequency can be calculated as

fpendulum ≈
1

2π

√
g

l
(1.17)

For estimating the tilt frequency, the Newton’s 2nd law for rotation (τ = Iθ̈) is applied. The

weight of the platform produces a torque with respect to the lower suspension point. Thus,

assuming a small angle θ,

Iθ̈ +mgdθ = 0

θ̈ +
mgd

I
θ = 0

(1.18)

where I is the moment of inertia of the platform, and d is the distance between center of

mass and lower suspension point of the platform. The tilt frequency can be estimated as

ftilt ≈
1

2π

√
mgd

I
(1.19)

The purpose of the above calculation is to give an idea about the design parameters of

the suspended platform. For instance, the higher the moment of inertia, the lower the tilt

frequency. Another important parameter is d value which plays an important role in the tilt

frequency.

F. Matichard et al. computed the transfer function of the suspended platform [21]. They

showed that the suspended inertial sensor has a flat response to the tilt injection (at the sup-

port) in the frequency band between tilt frequency and pendulum frequency. This response

is several order of magnitude lower than response of a ground inertial sensor subjected to

the tilt motion (Fig. 1.6).
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Figure 1.6: The response of the suspended platform to the injected translation and tilt motion. The two
expected frequencies, pendulum and tilt are shown. The flat region between these frequencies is called
translation sensitivity. This figure is based on the calculation in [21].

1.3.2 SUMCON Model

I used a Mathematica-based SUspension Model CONstructor (SUMCON) built by T.Sekiguchi

at KAGRA (Kamioka Gravitational Wave Detector) [22] to model the discussed suspended

platform. I compared the results of a SUMCON model with the approximated tilt frequency.

The result includes the natural frequencies and the transfer function of the model.

In SUMCON, the first step is constructing the rigid bodies. The mass, moment of inertia,

dimension, shape and initial positions of the bodies should be defined in SI units. The

second step would be the connections between the defined rigid bodies. There are five types

of connections: wires, vertical springs, inverted pendulum, heat links, and dampers. The

vertical and horizontal positions of the suspension points can also be determined in this

section of the code. Hence, the d value can be selected.

I have modeled a pendulum suspended with one wire and two wires (Fig. 1.7). The

hanging object is a cube with the same dimensions of the suspended platform worked with,
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Figure 1.7: The suspended cube is hanged from a support structure with one wire (left) and two wires
(right). All the chosen parameters are very similar to the built suspended platform.

and the wires have the same properties of the actual wire that we used, E = 195 Gpa and

D = 0.4 mm. The length of the wire is 14 inch (356 mm).

The SUMCON calculates the first six eigenvalues and eigenmodes of the model. The pitch

frequency and z frequency in the SUMCON refers to the tilt frequency and the pendulum

frequency in the previous model, respectively. In the previous model, the approximated

formula for the tilt frequency was: ft ∼ 1
2π

√
mgd
I

(m: mass of the rigid body, d: distance

between center of mass and center of rotation and I: rigid body’s moment of inertia).

To compare the results, the same values are used to construct the model except for d

value. Because of approximations in the previous model, the eigenvalues differ from the

SUMCON. As it is shown in Fig. 1.8, the percentage difference ( ωmodel−ωSUMCON

(ωmodel+ωSUMCON )/2
∗ 100)

between the tilt frequency of the SUMCON and the previous model decreases as the d value

increases until a certain point. This trend is seen in both cases, using one wire (blue dots)

or two wires (red triangles) for suspension. The difference is reasonable (less than 5%) for

d values in the range of 15 mm to 45 mm (for a pendulum with two wires). Therefore, the

approximations for the previous model are only valid in this range.
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Figure 1.8: Percentage difference between tilt frequency of the SUMCON model and the F. Matichard model.
The blue dots represent the one wire model, and the red triangles indicate two wires model.

Figure 1.9: The SUMCON model response to the tilt and translation input. Pitch and Z in the figure refer
to the tilt motion and translation motion respectively. Platform means the suspended platform and g means
ground. The x-axis represents the frequency domain.

13



Fig. 1.9 shows the SUMCON model responses to the tilt and translation input. The

responses are very similar to the model responses shown in Fig. 1.6. Both models have two

peaks, one for pendulum resonance and one for the tilt resonance. The response to the input

translation is unity below the pendulum frequency for both models. The response of both

models to the tilt input was the similar 1.

This study was one indication that the SUMCON is reliable in some ranges and with

some constraints. More studies should be done to testify the SUMCON, and make a proper

model of the suspended inertial sensor. The SUMCON model gives us the ability to study the

various properties of the suspended seismometer concept, e.g. the effect of the different length

of the wires. It also has some weaknesses such as the limited defined type of connections

between rigid bodies or saving plots in an inappropriate format.

1.3.3 Tilt Frequency Range

One important parameter of the suspended platform is the tilt frequency. The approxi-

mated tilt frequency is given as

ft ≈
1

2π

√
Mgd

I
(1.20)

where M is the total mass of the platform, g is the acceleration of gravity, d is the distance

between center of rotation (C.o.R) and center of mass (C.o.M), and I is the mass moment

of inertia. To study the effect of the d value on the title frequency, a vertical threaded rod

is placed under the ceiling of the suspended platform, as shown in Fig. 1.10. Then, a cubic

nut is screwed to the threaded rod. By rotating the nut, it travels up and down along the

vertical threaded rod, and changes the center of mass of the platform and consequently the

d value.

I have modeled the suspended platform in SOLIDWORKS to find the moment of inertia

1I was not able to save the data from the SUMCON to plot both graphs at the same figure (after looking
for a way to do so, it seemed that I am not the only one. The saving data problem was reported in other
studies too).
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Figure 1.10: A schematic of the suspended platform with the threaded rod for d value estimation.

of the system (I0). Adding the extra mass to the system changes the moment of inertia.

Therefore, Inew = I0+mz2 where m is the added mass, z represents the distance between the

added mass and the axis of rotation, and Inew is the new moment of inertia of the system.

The three locations of the extra mass (nut) on the threaded rod is shown in Fig. 1.10 (L2,

L3 and L4). The tilt frequency of the system is measured for each mass location. By using

Eq. 1.20, the d value is calculated. The center of mass of the system Csys can be computed

from Csys = C.o.R− d. Then the center of mass of the platform can be computed using the

following relation:

Csys =
MpCp +MmCm
Mp +Mm

(1.21)

where Csys is the center of mass of the system after adding the extra mass, Mp and Cp are

the mass and center of mass of the platform (without extra mass) respectively, and Mm and

Cm are the mass and center of mass of the extra mass. Then, the average of Cp is calculated.

Using platform center of mass, the tilt frequency can be computed for different positions of

the extra masses on the platform. Fig. 1.11 shows the tilt frequency range by changing the

location of the extra mass on the platform. The minimum tilt frequency could be ∼ 140

mHz and the maximum can be ∼ 210 mHz. Moreover, one rotation of the extra mass on the
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Figure 1.11: The area between the two black lines is the tilt frequency range for the designed suspended
platform using the vertical block as the only way to tune the tilt frequency.

threaded rod results in 1 mm displacement of the mass in vertical direction (based on the lead

of the threaded rod). Hence, the d value changes by 1 mm. Using the nonlinear relationship

of d and the tilt frequency, the variation in the tilt frequency due to the rotation (resolution)

can be computed which is ∼ 3-4.5 mHz per rotation in the mentioned tilt frequency range.

1.3.4 Current Source Circuit

In order to estimate the response of the suspended sensor to the input motion, a tilt

signal should be injected. This injection is provided using an electromagnet. A current

source is designed to supply an electric current to the electromagnet independent of the

voltage across it. Moreover, the electromagnet impedance is experimentally measured using

the current source.

The current source was already built by Veronica Leccese [23]. However, building a current

source by using a transistor does not allow the negative values of a sinusoidal voltage to be

produced. Therefore an offset is designed to avoid this issue. Moreover, the offset should not

be directly connected to the current source because it changes the behavior of the resistors
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of the current source circuit. Hence, a buffer is placed between the offset and the current

source. In this way, the same voltage enters the current source. The entire circuit is shown

in Fig. 1.12. In the following part, the current source design and characterization is briefly

explained. Then the electromagnet impedance is measured.

Figure 1.12: The entire circuit which includes an offset, a buffer and a current source, from the left to the
right. The op-amps are LT1124CN8.

1.3.4.1 Offset

The offset circuit is composed of a non-Inverting summing amplifier and resistors. It has

two input voltages: the offset voltage that comes from a DC power supply, and a sinusoidal

signal that comes from the signal analyzer (Fig. 1.13). Input signals are connected to the

Figure 1.13: Offset circuit with two inputs: Voffset and VSA
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non-inverting terminals of the operational amplifier (op-amp). Since for an ideal amplifier

current in the input is zero (IF = II), the output voltage can be written as

IF = II →
Vout1 − V−

RF

=
V− − 0

R3

→ Vout1 = V−(1 +
RF

R3

) (1.22)

Also for point a, the total current is zero (I1 + I2 = 0). Therefore

Voffset − V+
R2

+
VSA − V+

R1

= 0→ V+ = RT (
Voffset
R2

+
VSA
R1

) (1.23)

where RT = R1R2

R1+R2
. In an ideal op-amp V−=V+, hence plugging Eq. 1.22 into Eq. 1.23 gives:

Vout1 = (1 +
RF

R3

)RT (
Voffset
R2

+
VSA
R1

) (1.24)

By using the same resistors for R1 and R2 and putting RF=R3, the output voltage will be

the summation of the offset voltage and the signal analyzer voltage 2

Vout1 = Voffset + VSA (1.25)

1.3.4.2 Buffer

The direct connection of the offset and the current source gives a different input voltage

to the current source than it is expected. A buffer is utilized between two circuits (offset

and current source) to keep the input voltage of the current source unchanged. The buffer

output voltage is the same as its input voltage:

Vout2
Vout1

= 1 (1.26)

2Selection of the resistors is based on the maximum differential input current of op-amp (25mA). If
differential voltage exceeds 1.4V , the input current should be limited to 25mA. With the selected resistors,
the maximum amplitude of input voltage could be 11 V .
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Figure 1.14: The buffer circuit with a NPN BJT transistor and three resistors

As it is shown in Fig. 1.14, the buffer circuit includes three resistors and a transistor. The

barrier voltage for the internal diode of transistor is VBE. The transistor voltage can change

from VBE to Vcc. The input signal Vout1 should fall in this range to avoid clipping. One

choice could be the voltage at the base VB in midway between Vcc and VBE. The resistors

should be selected in a way to get the desired VB at the base. Therefore, by assuming a

value for one of the resistors, we can solve for the next one using VB = Vcc
R4

R4+R5
.

1.3.4.3 Current Source

The current source circuit is composed of an operational amplifier (op-amp), a transistor

and four resistors, Fig. 1.15. The input current goes into two directions IIN = I1 + I. Based

on an ideal op-amp, V+ = V− = V ′. The current for R6 can be computed as I1 = V+−Vout2
R6

.

On the other hand, the current for R7 is I1 = (−V+)/R7. Therefore the op-amp voltage is

given as

V+ =
Vout2 ×R7

R6 +R7

(1.27)

The output current has the following relation:

Iout =
V ′ − Vout2

R
→ Iout = Vout2 ×

R6

R× (R6 +R7)
(1.28)
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