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  ABSTRACT 

 
In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the 

ultrasonic threshold for cavitation–induced changes in the mammalian brain. The thresholds for 

tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The 

goal of this study was to improve the estimates for acoustic pressures and intensities present in 

vivo during those experimental exposures by estimating them using nonlinear rather than linear 

theory. In our current project, the acoustic pressure waveforms produced in the brains of 

anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer 

(focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 

MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et 

al. The focal pressure waveforms were also computed at the location of the true maximum. For 

low source pressures, the computed waveforms were the same as those determined using linear 

theory, and the focal intensities matched experimentally determined values. For higher source 

pressures, the focal pressure waveforms became increasingly distorted, with the compressional 

amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower, than the 

values calculated using linear theory. The implications of these results for clinical exposures are 

discussed. 
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INTRODUCTION 

1.1 Ultrasound 

     The American National Standards Institute defines ultrasound (US) as a mechanical 

pressure waveform that oscillates at frequencies greater than 20 kHz, i.e., frequencies higher than 

the upper perception limit of human hearing. Figure 1.1 shows the frequency spectrum of acoustic 

waves, and phenomena and applications affiliated with different regions. Specifically, the 

ultrasonic range utilized in biomedical applications is between 0.5-10 MHz.  

 

 

 

 

 

 

 

 

Figure1.1: The frequencies between 20 Hz-20,000 Hz are the normal range of human audibility. 

Sound at frequencies above the human hearing detection range is called ultrasound. Frequencies 

below 20 Hz are designated as infrasound (Courtesy of Joel Mobley). 

 

Dunn and Fry [1] explained further that the ultrasound pressure waveform is similar to 

audible sound, considering its physical properties, only that it cannot be heard by humans.  By 

1893 a whistle was made by Sir Francis Galton that could produce ultrasound waves [2]. The 
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detection of submarines by Paul Langevin in 1917 [3] was the first attempt to apply the acoustics 

of ultrasound. In 1945, the adaptation of radar techniques resulted in the construction of pulsed 

ultrasonic instruments that could operate on a higher range of frequencies. A number of techniques 

were developed in which ultrasound in the frequency range of 0.02MHz could be used in Brillouin 

scattering applications [4] which uses the scattering of the light in a biomedical medium due to the 

interaction of the light with medium inhomogeneities which can result in thermal fluctuations in 

the medium. 

The advanced possibilities of ultrasound technology in medical applications date back to 

the mid-20th century after the end of World War II [5]. Ultrasound techniques became widely used 

to visualize the internal body for diagnosis of tissue disease; ultrasound imaging became an 

important tool for treatment planning. Progress in the field of ultrasound in medicine was widely 

embraced not only as a diagnostic imaging tool but also as a therapeutic modality; it was capable 

of producing destructive and modification effects on living tissue [6],[1]. The most significant 

examples of ultrasound therapy are drug delivery and focused ultrasound surgery which have been 

demonstrated clinically in the past few years [7]. In addition, construction of piezoelectric 

materials, lens-focusing systems, as well as field quantifying systems have encouraged the 

application of high intensity ultrasound in the production of reversible and irreversible effects in a 

living medium [8]. Further, scientific developments have led to the emergence of two distinct 

modes of operation [4]. First is passive use, a mode in which the sound field does not significantly 

change the structure or the functionality of the examined system. The second method involves 

active use, an application in which reversible or irreversible alteration of the medium is the 

objective. For the active use, motivation for more research was energized by the observation that 
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ultrasound was capable of giving a deeper heating effect in biological media than the common 

superficial irradiation by infrared and other radiations [8].  

1.2 Literature review: 

Auditory response to ultrasound pressure waveforms: The hearing pathway through 

which ultrasonic pressure waveforms perceived by the ear are sensed and interpreted as sound in 

the brain was established [9]. Several studies done on this have been focused on determining 

whether the electrophysiological response of the hearing pathway to ultrasound is the same as that 

of audible acoustic stimuli. Research demonstrations in animals have shown that ultrasound 

induces auditory responses such that the ultrasonic pressure waveforms interact with the auditory 

system [10].  

Taylor and Ashleman [11] measured the electrophysiological responses in cats with 

undistorted cochleae at three successive levels of the cat’s auditory nervous system, the eighth 

cranial nerve, the medial geniculate nucleus as well as the primary auditory cortex. They showed 

that by destroying the cochlea, the auditory information cannot be registered in the hearing 

pathway. 

Chou et al [10] reported electrical responses out of single auditory neurons in cats during 

pulsed microwave irradiation fields and acoustic clicks. Guy et al [12] also did further studies to 

demonstrate that the electrophysiological responses of the auditory pathway to the brains of cats 

is similar to the responses cats give to radiofrequency pulses. 

Ultrasonic hearing was supported by a theoretical breakdown of acoustic vibrations 

induced in the heads of humans and animals [13] so that the perceived frequency of the induced 

sound is a function of head size. For example, for a man-sized head or a small animal head 
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consisting only of brain matter exposed to pulse microwave radiation, the acoustic pitch registered 

by a given animal is the same for all of its kind, regardless of the frequency of the induced 

ultrasound. 

Diagnostic Historical Background:  Medical ultrasound imaging has now been applied 

for at least six decades. The discovery of the piezoelectric effect by Pierre Curie in 1880 marked 

the beginning of the revolution of ultrasound imaging technology [14]. Many applications were 

made, e.g., applications in ships to detect depth and in metallurgy to detect fractures and other 

flaws in metals. A very important application followed the introduction of submarines during WW 

I. Prof. Langevin developed the use of sonar as a new means for detecting them and determining 

their locations by echo ranging in water [14]. 

The ability of ultrasound to have an impact on bio-media was initially observed in 1917 

[15]. During the 1920’s, Wood and Loomis demonstrated that ultrasound is capable of causing 

damage to various animal species [14]. Later Langevin demonstrated that small fish can die in a 

tank when subjected to ultrasound. The thermal impacts of ultrasound were utilized to burn tissues 

in the late 1940’s when performing surgery, and also when destroying cancerous cells [16]. The 

detrimental effects of ultrasound when focused on neural tissues were examined by Fry et al [17]. 

The examination included reversible and irreversible damage to nerves as well as nerve conduction 

abnormalities. According to Fry et al., an exposure of 43.5 seconds to an ultrasound exposure 

intensity (I) rated at 35 W/cm2 would cause a transient conduction obstruction in the ventral 

abdominal ganglion of crayfish. An ultrasound beam of the same intensity when exposed briefly 

to the neurons found in the lumbar enlargement of intact frogs would cause complete paralysis.  

These observations justified the idea that ultrasound has the capacity to produce thermal effects 



6 

 

that can hamper the conduction of nerves just as would be observed with other kinds of heating 

[18]. These observations as well as other severe bio-effects of ultrasound in animal laboratory 

specimens were officially recognized as potentially significant for diagnostic exposures in 1983 in 

the Safety Standard for Diagnostic Ultrasound Equipment [19], a joint effort by the American 

Institute of Ultrasound in Medicine (AIUM) and the National Electrical Manufacturers Association 

(NEMA). Other scholarly studies brought to the development of ultrasound equipment detailed 

information on important exposure parameters, including power, Spatial-Peak Temporal-Average 

Intensity (𝐼SPTA) and the Spatial-Peak Pulse-Average Intensity (𝐼SPPA). These averages were 

identified as being significant in determining severe bio-effects in animal experiments.  

In 1976, the Food and Drug Administration (FDA) began monitoring safety issues of 

medical devices which included regulating diagnostic ultrasound equipment. The 1976 output 

levels were considered to be safe, but these were historically based and not scientifically 

determined. Therefore, in addition to the FDA, the AIUM’s Bioeffects Committee adopted an 

ultrasound safety statement that reported no adverse patient bioeffects with diagnostic ultrasound 

exposure, or no significant biological effects on mammalian tissues exposed to intensities below 

100 mW/cm2 in the low megahertz frequency range [5], [19]. 

Therapeutic Historical Background: The early history of the investigation of ultrasound 

in medical applications for treatment was begun as early as the 1930’s [5], [16]. The application 

involved the depositing of ultrasonic energy in tissues to stimulate desired biological effects. These 

early applications included trials on various conditions that could be treated by tissue heating [20], 

[21]. Scientific studies over the following years saw improved methods for effectual therapy of 

Meniere disease (a disorder in the inner ear that leads to loss of hearing and balance) through the 
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damaging of the vestibular nerve [1]. Scientific research demonstrated that trans-cranial ultrasound 

could stimulate or restrain neural activity at low intensities during a short exposure time in the 

brain without significant neural damage [9]. For this idea, trans-cranial stimulation was used as a 

therapy when diagnosing neurological disorders, for instance, epilepsy. This was recommended 

after some laboratory findings that demonstrated ultrasound can relieve seizure activity [11].  

The application of ultrasound continued to develop under William J. Fry along with his 

brother Francis. J. Fry after World War II [5]. William had a strong passion for doing research on 

various aspects of ultrasound with particular attention to applications in biology and medicine. 

Immediately after the war, he left the Naval Research Laboratory in Washington DC where he had 

been designing piezoelectric transducers. He was seeking an opportunity to lead his research 

activities in a more dynamic atmosphere. Eventually, he obtained a position as a physicist at the 

University of Illinois working in the Bioacoustics Research Laboratory [5].  

In the 1950’s, the Fry brothers performed detailed theoretical and experimental analyses of 

the mammalian central nervous system [17] toward two related goals; first, using ultrasound 

exposure as a neuroanatomical method to better understand the close, detailed structure and 

function of biological tissue, and second to examine the influence of high intensity focused 

ultrasound (HIFU) on biological tissue and brain (brain was the priority point of interest) as a 

clinical surgical method [17],[23]. In the late 1950’s, this study was publicized successfully and 

led to treatment of a series of human patients suffering from hypokinetic disorders. Particularly 

noteworthy was Parkinson’s disease which also was treated using ultrasound directed towards 

localized tissues in the brain which behave abnormally before applying the HIFU. It was found 



8 

 

that the Parkinson tremor disappeared virtually immediately with the cessation of the sound pulse 

[5], [1]. 

Animal studies conducted at Illinois showed that HIFU can produce histological 

(structural) and functional (physical mechanisms) changes on the living tissue [1]. In other words, 

a focused beam of ultrasound can create a restricted lesion on the desired area of the nervous 

system with no damage to intervening tissue such as damage to blood vessels, etc. [17]. However, 

injuries are sometimes unavoidable and may represent a serious hazard for healthy tissue. For this 

and other reasons that showed ultrasound doesn’t present a hazard as employed for medical 

purposes, the Fry brothers indicated that applying ultrasound waves to neurosurgery may assist 

more brain surgeries and protect some of the issues during standard surgery [24]. 

As the result of animal experimentation, the Illinois researchers showed that formation of 

the lesion basically depends on the sound intensity and the duration of exposure, i.e., the minimum 

time required to produce an effect on the tissue [25], [26]. Focused ultrasound of 1, 3, and 9 MHz 

was employed with intensities ranging from 102 − 2 × 104 W/cm2, and corresponding pulse 

durations of the exposure from 2.5 − 5 × 10−4 sec [6], [26]. The sound, transmitted to the tissue 

through water acting as a propagation path, created permanent changes after a brief exposure. As 

the intensity increased, the time of irradiation required for the changes on tissue decreased. These 

changes produced an irreversible effect of ultrasound on tissue [26]. The lesions were produced 

by three different mechanisms: thermal, mechanical (focal), and cavitation. At lower intensities 

and longer durations of exposure, the lesion was produced by a thermal mechanism due to 

temperature increases. At the highest intensities and shortest durations, the lesion was produced 
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by a cavitation mechanism, while at intermediate levels, the lesion was formed by a mechanical 

(focal) mechanism which appeared at the focus of the ultrasonic waves.  

In the first of a series of animal experiments, spinal cords of frogs and rats were examined; 

subsequently various parts of the brains of monkeys and cats, such as the cortex, were exposed by 

focusing the sound beam on desired areas without damaging the adjoining tissue. The description 

of exact conditions under which physical changes could be induced was reported by Fry et al. [27], 

[28]. 

The histological study of frogs was made with three different dosages: light, medium, and 

heavy. It was reported that by careful control of the dosage of radiation, only the large cells were 

destroyed while the small neurons, glial cells, nerve fibers, and blood vessels could be left 

unaffected [17]. Experimental results under increased hydrostatic pressure indicated that cavitation 

was not an important factor in the mechanism of production of paralysis of the hind legs of the 

frogs based on a quantitative relation (linear relation) between the minimum time required for 

paralyzing the hind legs and the pressure amplitude. [28] 

The same result was also evidenced in animal experiments in which a small section of the 

adult cat brain, the limbic system, was examined in the central and lateral side of the brain [5], 

[17]. In the experiments on cats, the top of the skull bone was removed because of its high 

absorption for ultrasound. The sound entered the brain and irradiation was performed with the 

brain temperature fixed at 37oC [6]. The effect of ultrasound on nerve tissue was assessed from 

the coordination of movement, muscle control, etc.  

Histological studies on exposed cats indicated that the structural changes occurred 10 min 

after exposure [1] [6]. The nerve cell bodies were more sensitive than nerve fibers, and in addition, 
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the white matter was more affected by ultrasound than gray matter which required a higher dosage 

(about 30% more) for the same effect [29], [23].  

In all experiments, the first thought was that the changes in temperature created by high 

intensity could be considered for these effects. Therefore the increase in temperature was measured 

by embedding thermocouples into tissue in order to determine acoustic absorption coefficients and 

heat conduction processes [30]. It was found that: “the temperature changes in tissue by absorption 

of focused ultrasound (1-10MHz) was essentially independent of frequency for a single pulse 

duration of 1 to 10 sec [31], because of the frequency dependence of both the absorption coefficient 

in the tissue and the focal region geometry”. A complete discussion of the temperature factor and 

experimental protocols can be found in a paper by Fry and Herrick [32], [21]. 

Later studies and reports revealed that the temperature cannot be the only reason for these 

effects. Evidence of this was taken from the study of the time interval between two exposures from 

5 minutes up to 30 days to destroy nerves of the brain so that the temperature of the tissue returned 

to normal between exposures [24]. From the result of dosage studies on a series of animals, three 

factors appeared most important: the geometry of the focal region, the focal intensity, and the 

physical mechanisms involved in tissue [33]. This information allowed a more optimal choice of 

exposure conditions during the study and improved comprehension of the result after. For instance, 

a multiple-beam focusing transducer [4] was replaced by a single beam focusing instrument in 

order to produce localized lesions, small in all three dimensions (cross sections), so that in the 

region where the beam converges, the sound level will be high and focused enough to produce 

desired changes in the tissue. 
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    During the 50’s and 60’s, additional effects of ultrasound on biological media were 

discovered and investigated by the Fry brothers together with Floyd Dunn, who was part of the 

research team at the Bioacoustics Research Laboratory. Experimental animal studies at the Illinois 

laboratory showed that there exist reversible and irreversible effects produced in nerve tissue by 

ultrasound which are not the result of temperature change [1], [6]. From the point of view of 

functional (physical) mechanisms on the tissue, cavitation was investigated as having an important 

non-thermal role. Cavitation is considered as an interaction of small gas bodies in the biological 

medium with the propagating ultrasound wave. The incidence of cavitation varies with exposure 

conditions, nature and state of the medium, the hydrostatic and acoustic pressures, and the presence 

of gas bodies prior to the exposure [30], [32].  

Later in 1970’s, extensive studies on cavitation events in vivo were described in detail. As 

previously mentioned, the threshold regime at which ultrasound produced irreversible effects in 

the mammalian central nervous system was found to be described by the empirical relation:  

𝐼𝑡1/2 = 𝑐′ , where I was the intensity at the focus of the beam in situ in watts per square centimeter, 

𝑡 was the duration of exposure of the single pulse in seconds, and 𝑐′  was a constant. In the threshold 

region where cavitation events were expected to occur, there was no time delay for the lesion to 

occur, compared to the thermal events in which lesions appeared approximately 10 min after 

exposure. Moreover, the temperature growth as defined by absorption was almost zero for 

cavitation events. Lesions might not be found at the focus of the transducer, however, at different 

positions such as interfaces between neural tissue and fluid-filled blood vessels and ventricles. [1], 

[6]. Therefore the biological effect produced by cavitation resulted from: “the collapsing gas body 
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during transient cavitation could occur within a few hundred acoustic pressure cycles, and that 

event could produce irreversible tissue damage”.  

More recent developments in ultrasound applications: Applications of ultrasound energy 

in medicine continue to diversify. For instance, transcranial focused ultrasound is an advantageous 

non-invasive therapeutic modality used to treat a number of brain conditions. In this case, the 

ultrasonic wave is used to evoke brain actions through neuromodulation, lesioning of particular 

tissues and structures, or in blood-brain barrier opening [35].  In that last application, the modality 

can help in localized administration of medications via the opened blood-brain barrier [36]. It is 

worth noting, however, that overheating of the cranium and other tissues during clinical exposures 

is a challenge to the advancement of thermal lesioning in the brain when a high intensity focused 

ultrasound (HIFU) beam is involved. A number of applications of ultrasound in the field of 

medicine have been accepted for therapeutic purposes due to their beneficial biological effects. 

For instance, ultrasound of low power and approximately 1 MHz has been widely applied since 

the 1950’s for physical therapy of medical conditions like tendinitis and bursitis [34]. In the 1970’s, 

applications of ultrasound in therapy were established for physiotherapy and neurosurgery [34]. 

Cancer treatment also received attention for the use of ultrasound, initially for hyperthermia [37]. 

The passage of time saw accelerated development of therapeutic ultrasound, with a wide range of 

techniques currently in use. In 1980’s came the application of high-pressure-amplitude shock 

waves in resolving kidney stone problems with a mechanical approach. As a result “lithotripsy” 

became the most frequent choice of treatment, quickly replacing surgery [38]. Approved 

applications of ultrasound now include uterine fibroid ablation, removal of cataract (phaco-

emulsification), surgical tissue cutting, and born fracture healing amongst others [34]. 
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Studies have shown the possibility that undesirable bio-effects may occur during treatment, 

including burns from thermal-based treatments as well as hemorrhage that can result from 

mechanical-based treatments [35]. But in all areas of ultrasound applications and their bio-effects, 

standardization and risk management are taken into account to ensure a maximum benefit-to-risk 

ratio for the patient. Conventional therapeutic ultrasound has been shown to have benefits and 

well-defined hazards which are manageable. However, the safety information sometimes can be 

lost or manipulated depending on commercial conflict of interest. The key concern can be therefore 

to have a more centralized communication of the practical safety information through authoritative 

agencies, for instance, the American Institute of Ultrasound in Medicine. 
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1.3 Project objective and motivation 

In the early 1970’s a group of researchers at the University of Illinois studied the safety of 

ultrasound and ultrasonic threshold dosages (acoustic intensity and time duration of a single pulse) 

for the mammalian central nervous system [1], [6], [26], [31]. In this study, feline brains in vivo 

were exposed to focused ultrasound beams, and the threshold for tissue damage was evaluated for 

a variety of acoustic parameters. The values of the acoustic parameters spanned the range from 

diagnostic to therapeutic output level and frequencies. The transducer used in their study was a 

planar x-cut quartz crystal 12.7-cm in diameter faced with a Fresnel lens having a focal length of 

13-cm [39] . Based on their results, the threshold in situ intensities (I) for lesion formation in the 

brain tissue at each of several frequencies of 1.0, 3.0, 4.0, 4.5, and 9.0 MHz were found to be equal 

to a constant which was a moderate function of frequency (f) and temperature (T) divided by the 

square root of exposure duration (t),  𝐼 =
𝐶′(𝑓,𝑇)

√𝑡
  [26]. The researchers divided the lesions into 3 

categories [1], [6] (thermal, cavitation, and mechanical), and the acoustic intensities were 

quantified using linear extrapolation. During their study, more than 1100 cats were sacrificed, and 

all animals were examined functionally and histologically in the focal region of the sound beam 

and intervening tissue between the focal region and the port of entry of the sound into the brain.  

From all these data, they did not report any tissue abnormalities produced in the sound path through 

intervening tissue [1].  

Although for the purpose of our current project, we attempted to make use of these data, 

this procedure made our work difficult to support scientifically for several reasons: 

In the experiments performed, it was not obvious how to determine ultrasound pressure 

waveforms in the brain of a cat. In other words, there were no accurate measurements of the 
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acoustic pressure field due to a lack of appropriate theoretical knowledge and experimental 

techniques.  

In the experimental research, the study of cavitation in tissue was not expressly aimed and 

therefore the distribution of cavitation lesions was not exactly understood. The simple relationship 

between the intensity and time duration of exposure (𝐼√𝑡) was not, and is still not, well understood 

especially for the lesions expected to be produced by inertial cavitation at threshold exposure. 

The frequency dependence was not that expected for cavitation, and the cavitation resulting 

from theses exposures was not necessarily at the focus; often an increase in cavitation threshold 

with increasing frequency is expected from theoretical consideration of the mechanism for 

cavitation induced in liquid media [1].  

While the computed intensities for the focal region and the ultrasound exposure parameters 

were published, it was not possible to determine the acoustic pressures of acoustic fields at high 

output powers at that time. The source pressures were unknown, or at least not reported, and the 

pressure waveforms of the exposure fields were unknown. Thus, most of the experimental results 

were effectively lost to the scientific community since the acoustic fields could not be reliably 

compared to outputs from modern instruments. 

Therefore, the goal of our research was to recover the acoustic field parameters so that the 

published data will be made useful. In particular the objective of our study was numerically 

simulating the acoustic pressure waveforms that occur in the brain of anesthetized cats produced 

by a spherically focused transducer as a source, given transducer parameters from published 

papers, initial source pressure amplitude, and frequency using a Finite Difference Time Domain 

(FDTD) technique. Moreover the focal intensities that correspond to the computed focal pressures 



16 

 

were calculated in order to compare them to the numbers in the published results [26]. In an event 

of low pressure, the focal intensity was mapped on empirically determined values in which 

computed waveforms were expected to be the same as those arrived at using linear theory. In 

situations involving higher source pressures, intensities were expected to match, but the pressure 

waveforms can only be determined using nonlinear theory. Since the distortion of an acoustic wave 

increases with increasing source pressure and frequency, the pressure waveforms were expected 

to be nonlinear. The waveforms were computed using a FDTD technique for nonlinear 

propagation.  

Having the results of our present work, first, we were able to calculate the true shape of the 

curves of acoustic threshold intensity versus exposure time, as presented in previous study by Dunn 

et al [26]. Then that information was used to estimate the true shape of threshold curves for the 

acoustic pressure (positive and negative) versus exposure time to estimate the cavitation threshold. 

Second, with the information from the first part, we tried to provide a theoretical understanding 

model for all those shapes which could be reliable in general. The implications of these results 

could be used for clinical safety exposures. In addition, this will help us to look at heating, radiation 

force, and maybe some other mechanisms that might be helpful for future work.  
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CHAPTER II:  

NUMERICAL SIMULATION AND EXPERIMENTAL METHOD 
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In this chapter, the theory of sound waves and our numerical model is presented, followed 

by the description of the simulation, experimental setup, and methods. Then the calculation data 

in water is presented in chapter III along with a comparison with tissue calculations as well as the 

experimental results. This is followed by a discussion and the conclusions of the study at the end. 

2.1 Theory for propagation of sound waves  

Ultrasound waves are mechanical disturbances that move through a medium. Ultrasound 

waves have the same properties as normal sound waves. The one-dimensional wave equation for 

pressure moving in the x-direction at time t and speed c is denoted as [40]:  

                                                 
𝜕2 𝑝

𝜕2 𝑥
⁄ = 1

𝑐 ⁄ 𝜕2 𝑝
𝜕2 𝑡

⁄                              2.1) 

One of the solutions that can satisfy the one-dimensional wave equation is the sinusoidal       

function:  

                                  𝑝(𝑥, 𝑡) = sin 𝑘(𝑥 − 𝑐𝑡)                          2.2) 

When solved with respect to t and holding x fixed, we see that the pressure around a fixed location 

varies sinusoidally with a radial frequency  𝜔 = 𝑘𝑐 which gives a cyclic frequency 𝑓 with unit of 

Hz: 

                                                                𝑓 =  𝑘𝑐
2𝜋⁄                       2.3) 

Likewise, when solved with respect to x and holding t fixed, we observe that the pressure 

around a particular time varies sinusoidally with a quantity 𝑘 known as the wave number that is 

proportional to the number of oscillations per unit length. We know that the wavelength of the 

sinusoidal wave can be written as:                       

𝜆 =  2𝜋
𝑘⁄                                                        2.4) 
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By substituting and solving the equations, the important relationship between the speed of 

sound (𝑐), the frequency (𝑓) and wavelength (𝜆) can be obtained: 

𝜆 =  𝑐
𝑓⁄                                                     2.5) 

where 𝜆 is the distance from one crest to the next or one trough to the next. The high crest and low 

trough represent specific amplitude values of the wave and correspond to peak compressional and 

peak rarefactional values, respectively [41]. 

 

 

The time that it takes for one cycle to occur is called the period T, and it is related to the frequency 

by: 

𝑇 =  1
𝑓⁄                                            2.6) 
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Fig a) Amplitude vs Distance 

(Referenced to [41]) 
Figure  

Fig b) Amplitude vs Time 

(Referenced to [41]) 
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The horizontal axis, either distance or time, is an important concept in diagnostic 

ultrasound. Distance information can be converted to time values and time values converted to 

distance information to display data on a specimen’s structure. The propagation speed is an 

important factor in this conversion process. It is assumed to be constant at 1540 m
s⁄   , an accepted 

value for all soft tissue in medical applications [42]. 

As an ultrasound wave propagates through a medium, it transports energy through the 

medium. The rate of energy transport is known as “power”. Medical ultrasound is produced in 

beams that are usually focused on a small area, and the beam is described in terms of the power 

per unit area, defined as the beam’s “intensity”. 

 Energy (E) = Ability to do work in joules 

 Power (P) = Rate of change in energy in watts (joules/sec)                               

 Intensity (I) = power per unit area (A)                        

𝐼 =  𝑃 /𝐴                   2.7) 

Ultrasound wave intensity is related to the maximum pressure (𝑃𝑚) in the medium, and can be 

defined as [41]: 

                     𝐼 =  𝑃𝑚
2/ 2𝜌𝑐          2.8)    

which is only true for sinusoidal wave, where ρ is the density of the medium in kg/m3. The density 

and speed of sound values for water are given as ρ=103 kg/m3 , c= 1500 m/s, respectively [43]. 
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2.1.1 Linear propagation: 

If we assume a homogeneous and lossless medium with a negligible viscosity, the sound 

pressure p, the particulate velocity v and the density ρ can be represented as two linearized Euler 

equations and an equation of states [43] which are used to derive the wave equation. 

 The continuity equation for conservation of mass      
𝜕  𝜌

𝜕  𝑡
⁄ +  𝜌 ∇.𝑣 = 0              2.9) 

 Conservation of momentum                                            ρ  𝜕
 𝑣

𝜕  𝑡⁄ + ∇𝑝 = 0                    2.10)   

 The equation of state                                                       𝑝 = 𝑐2 𝜌                                        2.11)  

Thus, the homogeneous plane wave equation is described by: [43] 

𝛻2𝑝 − 1
𝑐2 ⁄

𝜕2 𝑝
𝜕2 𝑡

⁄ = 0                                                     2.12) 

This is the pressure wave equation moving in the x, y, and z directions at time t and speed c. This 

may be compared to equation 2.1 for the pressure wave moving only in the x-direction.  

If we consider the acoustic disturbance to be a small perturbation to an ambient state; then 𝑝 =

𝑝0 + 𝑝′ where 𝑝0 is the ambient pressure and 𝑝′ is the acoustic pressure so that  𝑝 is the total 

pressure. The same idea is applied for the density and velocity respectively, 𝜌 = 𝜌0 + 𝜌′ and  𝑣 =

𝑣0 + 𝑣′ . Since all the quantities in a homogeneous medium are independent of position, the primes 

can be ignored, therefore the wave equation can be written as equation 2.12 above. 

2.1.2 Nonlinear propagation: 

When a wave no longer satisfies the linear wave equation, it is called ‘nonlinear’. This 

condition can arise from the interaction of different frequencies, or high amplitude (or high 

intensity) sound waves or the cumulative effect of propagation over large distances. This leads to 

distortion of the waveform and growth of harmonics in the pressure wave. 
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If we take into account an inhomogeneous wave equation along with all dissipative term, 

the nonlinear wave equation would be [44]: 

[𝛻2𝑝 − 1
𝑐2 ⁄

𝜕2 𝑝
𝜕2 𝑡

⁄ ] − 1
𝜌⁄  ∇𝑝 . ∇ 𝜌 +  𝛿

𝑐4⁄  
𝜕3 

𝑝
𝜕  𝑡3 ⁄ +

𝛽
𝜌 𝑐4 ⁄

𝜕2 𝑝2 

𝜕𝑡2 ⁄ = 0           2.13)                                                                                                  

This is a second-order wave equation describing the acoustic pressure in terms of space, 

time, and the fluid's material properties. In this equation 𝑝 is the acoustic pressure, ρ and c are the 

ambient density and sound speed (dropping the primes), 𝛿 is the diffusivity of sound defined as 

how much energy spreads out and diffuses to the surroundings instead of propagate and it is 

corresponding to thermoviscous absorption, which accounts for both thermal and viscous losses, 𝛽 =

1 + 𝐵/2𝐴 is the local coefficient of nonlinearity with B/A being the nonlinear parameter of the 

medium [44]. In this equation, the first two terms (in the brackets) on the left hand side of the 

equation is the D’Alembertian, which exists in all wave equations that illustrate the propagation 

of a wave in space and time, the second term explains the ambient inhomogeneity in the medium’s 

density, the third term is the loss term due to viscosity of the medium, and the last term defines the 

nonlinearity during propagation [45]. 

2.2 Computer simulation method; FDTD 

The program used in this study to calculate the pressure and intensity fields is an example 

of a Finite Difference Time Domain (FDTD) simulation. In this case, FDTD is a numerical 

technique for predicting the steady state fields produced by the ultrasound transducer. In other 

words, it is a technique used to find approximate solutions to the associated system of differential 

equations. Since it is a time domain method, its solution can cover a wide frequency range with a 

single simulation run and treat nonlinear material properties in a natural way.  
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The FDTD method belongs in the general framework of grid space. The time-dependent 

partial differential equations are discretized to space and time partial derivatives. The x-axis vector 

components in a volume of space are solved at a given instant of time; the radial vector components 

in the same spatial volume are solved at the next instant in time; and the process of time-stepping 

is continued over and over again until the desired transient or sinusoidal steady state field behavior 

is fully achieved.  

This method has two advantages over other simulation methods: it is simple to fulfill for 

complex structures, and its memory and running time requirements are such that solutions for 

many unknown field components can be obtained within a few hours on a digital computer.  

Two numerical FDTD simulations using this particular computer program have been 

reported. Ibrahim Hallaj implemented a finite difference method to investigate the nonlinear 

acoustic in underwater and biomedical applications [44]. More recently Jinlan Huang chose the 

finite difference representation to simulate the heat equation in vascular tissue by exposed to 

focused ultrasound [46]. 

2.2.2 The theory of our numerical model (FDTD) 

A nonlinear model of acoustic wave propagation using a discretized version of the 

nonlinear wave equation was employed in our study in two parts to calculate the pressure and 

intensity fields respectively in the spatial and time domains. First, the 2D steady state pressure 

field was computed using an axially symmetric system to keep the computation time short; the 

pressure was only computed in the upper half of the volume, i.e., above the acoustic axis. 

Second, the 2D steady state intensity simulation was also applied to capture the distribution of 
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focal intensity over a desired region. The sound wave was propagated in the positive direction, 

and the space was formatted in cylindrical coordinates [47].  

The source used in the study was a spherically focused, nominally f1-transducer with a diameter 

of 12.7 cm, 13-cm focal length, and frequencies of 1, 3 and 9 MHz; the acoustic axis was defined 

as the z-axis and r was the radial position. [39] 

For our numerical model, Eq. 2.13 was expanded into two terms using Taylor expansion, and the 

wave equation was discretized and solved in the following form, [44] 

𝛻2𝑝 − 1
𝑐2 ⁄

𝜕2 𝑝
𝜕2 𝑡

⁄ − 1
𝜌⁄  ∇𝑝 . ∇ 𝜌 +  2⍺

𝑐𝜔2⁄  
𝜕3 

𝑝
𝜕  𝑡3 ⁄ +

2𝛽
𝜌 𝑐4  ⁄ [ 𝑝

𝜕2 𝑝 

𝜕𝑡2 ⁄ +

(
  𝜕  𝑝 

𝜕𝑡  ⁄ )
2

] =  0                                                    2.14) 

This differential equation can be reduced to its simplest form considering polar cylindrical 

coordinates in a homogeneous medium. Therefore Eq. 2.14 can be written in this form: [46]  

𝜕2 
𝑝

𝜕  𝑟2 ⁄ + 1
𝑟 ⁄   𝜕  𝑝 

𝜕𝑟  ⁄ +
𝜕2 

𝑝
𝜕  𝑧2 ⁄ − 1

𝑐2 ⁄
𝜕2 𝑝

𝜕2 𝑡
⁄ − 1

𝜌⁄  [
  𝜕  𝑝 

𝜕𝑟  ⁄ 𝜕  𝜌 

𝜕𝑟  ⁄ +

  𝜕  𝑝 

𝜕𝑧  ⁄   𝜕  𝜌 

𝜕𝑧  ⁄ ] + 2⍺
𝑐𝜔2⁄  

𝜕3 
𝑝

𝜕  𝑡3 ⁄ +
2𝛽

𝜌 𝑐4  ⁄ [ 𝑝
𝜕2 𝑝 

𝜕𝑡2 ⁄ + (
  𝜕  𝑝 

𝜕𝑡  ⁄ )
2

] =  0    2.15) 

⍺ is the absorption coefficient, which is related to the acoustic diffusivity 𝛿 in this form:   

⍺ = 𝛿𝜔2

2𝑐2⁄  [43] for angular frequency ω and it has the units of [Np/m].  

For a plane wave with constant angular frequency, the time average term (
  𝜕  𝑝 

𝜕𝑡  ⁄ )
2

 is equal to  

𝜔2𝑝2 or 𝜔2𝜌𝑐𝐼 where I is the intensity in the direction of propagation. Therefore, the energy 

dissipated per unit volume and time (the heat generation rate per unit volume and time) at the 

center of the focus is given by: [43] 
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𝑞 = 2𝛼𝐼 =
2𝛼

𝜔2𝜌𝑐
< (

𝜕𝑝

𝜕𝑡
)

2

>         2.16) 

Using a linear impedance relation between the sound pressure and particle velocity 𝑝 = 𝜌𝑐𝑣 

                              𝐼 =  
1

𝜌𝑐 
 〈𝑝2〉 =  

1

𝜔2𝜌𝑐 
( 

𝜕𝑝

𝜕𝑡
)

2

                        2.17) 

Since for a plane wave propagating in the z-direction 
𝑑𝐼

𝑑𝑧
= 𝑞, the axial variation of the intensity of 

sound in a plane wave using Eq.2.16 is [43]:    

                                                           𝐼(𝑧) =   𝐼0𝑒−2⍺𝑧.                             2.18) 

2.3 2D pressure filed calculation:  

The computation procedure can be summarized in three parts: 

 Generate the simulation parameters using a Matlab script 

 Generate the coordinate and indices of the transducer surface using a Matlab script  

 Simulate the steady state pressure and intensity using a Fortran script 

In order to find the solution to Eq. 2.15, a Fortran code was written by Hallaj [44] was used to 

calculate the steady-state nonlinear pressure and intensity. The description of the code and all 

scripts will be found in the Appendix. 

Solving Eq. 2.15 using the finite difference method required distributing the space and time 

domain into discrete grids. The discrete representation of the pressure field is 𝑝 = (𝑧𝑖, 𝑡𝑛) or 𝑝𝑖
𝑛 

with integers  𝑖 = [1,2, … , 𝑖𝑚𝑎𝑥 ] and 𝑛 = [1,2, … , 𝑛𝑚𝑎𝑥]. Then the grid positions are: 

                                                           𝑧𝑖 = (𝑖 − 1)𝑑𝑧                                             (2.19) 

𝑟𝑗 = (𝑗 − 1)𝑑𝑟 

𝑡𝑛 = (𝑛 − 1)𝑑𝑡 

Where dz, dr, and dt indicate the distance between grid points and the time step respectively.  
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The second order differential equations applied for Eq.2.15 can be written as: [46] 

𝜕  𝜌 

𝜕𝑟  ⁄ =  
1

2𝑑𝑟
 (𝜌𝑖,𝑗+1

𝑛 − 𝜌𝑖,𝑗−1
𝑛 ), 

𝜕  𝜌 

𝜕𝑧  ⁄ =  
1

2𝑑𝑧
 (𝜌𝑖+1,𝑗

𝑛 − 𝜌𝑖−1,𝑗
𝑛 ), 

𝜕  𝑝 

𝜕𝑟  ⁄ =  
1

2𝑑𝑟
 (𝑝𝑖,𝑗+1

𝑛 − 𝑝𝑖,𝑗−1
𝑛 ), 

𝜕  𝑝
𝜕𝑧  ⁄ =  

1

2𝑑𝑧
 (𝑝𝑖,𝑗+1

𝑛 − 𝑝𝑖,𝑗−1
𝑛 ), 

𝜕2𝑝 

𝜕𝑟2⁄ =  
1

𝑑𝑟2  (𝑝𝑖,𝑗+1
𝑛 − 2𝑝𝑖,𝑗

𝑛 + 𝑝𝑖,𝑗−1
𝑛 ), 

𝜕2𝑝 

𝜕𝑧2⁄ =  
1

𝑑𝑧2  (𝑝𝑖,𝑗+1
𝑛 − 2𝑝𝑖,𝑗

𝑛 + 𝑝𝑖,𝑗−1
𝑛 ), 

𝜕  𝑝 

𝜕𝑡  ⁄ =  
1

2𝑑𝑡
 (3𝑝𝑖,𝑗

𝑛 − 4𝑝𝑖,𝑗
𝑛−1 + 𝑝𝑖,𝑗

𝑛−2), 

𝜕2𝑝 

𝜕𝑡2⁄ =  
1

𝑑𝑡2  (𝑝𝑖,𝑗
𝑛+1 − 2𝑝𝑖,𝑗

𝑛 + 𝑝𝑖,𝑗
𝑛−1) , “centered formulation” 

𝜕2𝑝 

𝜕𝑡2⁄ =  
1

𝑑𝑡2  (2𝑝𝑖,𝑗
𝑛 − 5𝑝𝑖,𝑗

𝑛−1 + 4𝑝𝑖,𝑗
𝑛−2 − 𝑝𝑖,𝑗

𝑛−3) , “backward formulation” 

       𝜕3𝑝 

𝜕𝑡3⁄ =  
1

2𝑑𝑡3
 (6𝑝𝑖,𝑗

𝑛 − 23𝑝𝑖,𝑗
𝑛−1 + 34𝑝𝑖,𝑗

𝑛−2 − 24𝑝𝑖,𝑗
𝑛−3 + 8𝑝𝑖,𝑗

𝑛−4 −  𝑝𝑖,𝑗
𝑛−5),               (2.20) 

The boundary conditions: A boundary condition was applied at the edges of the simulation 

domain, i.e. on the outer surfaces of the mesh, to reduce reflections from the edges of the domain. 

Boundary conditions of this type are called absorbing boundary conditions (ABC) [48]. The ABC 

is useful for the first approximation and low order, using Mur’s radiation condition [48]:  
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𝜕  𝑝 

𝜕𝑥  ⁄ −  1 𝑐⁄ 𝜕  𝑝 

𝜕𝑡  ⁄ =  0                              2.21) 

where x represents the z or r axis. For this symmetric simulation, the reflected boundary condition 

was applied to compute only the upper half of the two-dimensional domain or 𝑟 = [0, 𝑟𝑚𝑎𝑥]. So 

the ABC was applied on all the edges except the symmetry axis where a symmetric boundary 

condition was used: 

                                                   
𝜕  𝑝 

𝜕𝑟  ⁄ = 0.                                               2.22) 

Determining the spatial and time steps: For accurate results from FDTD modeling, an 

adequate resolution in space and time with respect to the proper length and time scales was 

required. The resolution was determined by the separation of the grid points and the time steps. 

Therefore a spatial step size was chosen in which 10-12 points were required per wavelength and 

a time step was selected for which the Courant- Friedrich- Lewis number (CFL number) was 

0.25<CFL<0.5 [46]. The CFL number is defined as 𝐶𝐹𝐿 =  𝑐𝑑𝑡
𝑑𝑥⁄  where c is the local wave 

propagation speed, 𝑑𝑡 is the time step of the FDTD simulation, and  𝑑𝑥 is the distance separating 

adjacent grid points. In practice, most simulations are performed with CFL≈ 0.5 and 𝑑𝑥 set such 

that there are around 8 mesh points per wavelength. Therefore for a frequency of 1MHz, and speed 

of sound 1500 m s⁄  in water, setting 𝑑𝑥 = 1.5 × 10−4 and 𝑑𝑡 = 5 × 10−8 would be appropriate. 

Then if we set the time step to give us a CFL number of 0.5 in the z or r direction, we obtain [49]: 

 

𝑑𝑡 = 𝐶𝐹𝐿 ⋅
𝑑𝑧

𝑐
= 0.5 ×

1.5 × 10−4

1500
= 0.05 µs 

2.23) 

  The representation of the spatial domain and time step are shown in Figure 2.1. 
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Figure 2.1: Discretized spatial domain and time step using FDTD method 

A Fortran 90 script was used to calculate the spatial and time steps needed along with other 

parameters for the simulation. 

Figure 2.2 shows the geometry of the spatial domain for the simulation. It indicates a curve along 

the axial and radial axes. The curve illustrates the location of the source transducer face with a 

radius of 6.5-cm and a focal length of 13-cm. The source pressure values were specified along the 

curve as a function of time. The light pink region represents the location of tissue and the remaining 

portion of the domain is water. 
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Figure 2.2: The geometry of the 2-D FDTD pressure solution domain. 

As mentioned before, the system was always set up in an axially symmetric way to save 

computation time, so the radial coordinate of the transducer focus is always set to be zero. The 

spatial steps for r and x were set to be equivalent to the 2D code as will be shown in chapter III. 

To generate the coordinate and indices of the transducer surface, an input file of point sources with 

coordinates defining the shape of the transducer was given. The coordinate depends on the spatial 

grid size, so a new file named “bowlarray_Sonostat” must be created every time the grid size is 

changed using script “bowlarraysonostat”. The bowl coordinate indices and focal index are plotted 

in Figure 2.3 for a 1-MHz transducer.  
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Figure 2.3: Coordinate of transducer surface 

 

A source pressure waveform for the transducer was generated for each frequency of 

interest, using a script named “sinewave” in Matlab with the series of source pressure outputs 

named “Wtrn”. Both files “bowlarray_Sonostat.dat” and “Wtrn.trn” must be placed in the same 

folder with the pressure FDTD code as input files to the code, along with other required parameters 

that are used by the Fortran code to calculate the pressure waveforms.  

To compute the steady-state pressure field, a large solution spatial domain was needed to 

include all the variations in the wave propagation path, therefore the problem could be solved for 

a long insonation time where a steady state pressure field was reached long before the full 

insonation time expired. The pressure solution reached steady state approximately in the time it 

takes for the wave to propagate to the farthest distance from the source transducer in the solution 
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domain. In most simulations, the pressure solution reaches steady-state in 100 acoustic cycles for 

a frequency of 1MHz.  The pressure field was calculated for a given source pressure in the water-

tissue medium with specified material properties (speed of sound, attenuation coefficient, and 

density). The water and tissue properties at 1MHz are given in Table 2.1 [50]. 

Table 2.1: Water and cat brain acoustics properties at 1MHz. 

Material  Speed of sound 

(
m

s
) 

Density

    (
kg

m3
) 

 

Attenuation(
𝐍𝐩

𝐦
) Nonlinearity 

parameter 

Water 1500 1000 0.025 4.96 

Tissue  1554 1030 6.6 6.55 

 

For 3MHz, the attenuation is changed to 20 Np. m−1. Since the attenuation is dependent to the 

frequency, the attenuation coefficient at 3MHz is much larger than at 1MHz. 

2.4 2D Intensity field calculation  

The discrete form that was used to calculate the intensity from the Equations 2.16 and 2.17 

is [46]: 

                    𝐼𝑖,𝑗 =  
1

𝜌𝑐 𝜔2  (  1
2𝑑𝑡⁄ )

2

 ∑ (3𝑝𝑖,𝑗
𝑛 − 4𝑝𝑖,𝑗

𝑛−1 + 𝑝𝑖,𝑗
𝑛−2)

2𝑁
𝑛=1                                     2.24) 

where N is the number of time steps averaged. The last 10 acoustic cycles of the pressure 

simulation were taken as an appropriate base to determine the steady state intensity. For a 

frequency of 1 or 3 MHz in the intensity computation, the same spatial steps and parameters as the 

pressure simulation were used to obtain the intensity profile. 

2.5 Physical experiment 

The experiments performed as part of this study were motivated by the goal of verifying 

the numerical models we developed in section 2.2. This project made use of a 1.21 MHz transducer 
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of diameter 5-cm having an actual focal length of 5.20-cm with a Fresnel lens which can focus the 

ultrasound beam. The pressure field produced by this transducer was measured in the laboratory’s 

scan tank. Thus an important attribute of our experimental arrangement was the ability to measure 

and to control the acoustic parameters and physical properties of the medium. In addition, the 

object of the measurements with the lens was to compare them with calculations we made for 

water only (i.e., no tissue in the field) for those transducer-lens parameters. 

At this point it is important we stress that, although we liked to employ materials and 

experimental arrangements that closely simulate biological media, that is, in fact, a secondary 

consideration. Our primary goal was to validate our numerical model. Therefore, we choose 

experimental arrangements that facilitate precise measurements and unambiguous comparison 

with model predictions. This also was to make sure that the field used by Fry and Dunn (1971), 

which also employed a Fresnel lens, was not likely to have had odd hot spots off axis. The focal 

plane was examined at the focus and also a bit beyond that to determine the field and whether there 

were any hotspots. A photo of Fresnel lens used in our experiment shows in Figure 2.4. 
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Figure 2.4: A photograph of Fresnel lens used to focus the ultrasound beam 

2.5.1 Experimental setup 

The data were acquired using the system shown in the schematic diagram in Fig. 2.5 The 

transducer was mounted in the tank open to the atmosphere and filled with filtered degassed water 

and driven in pulsed mode to emit a low- intensity acoustic pulse. Normally in HIFU experiments, 

discontinuous waves are used since there is no problem with overlapping of waves. The 

hydrophone (0.2-mm Needle, Precision Acoustics Ltd, SN 869) was mounted on a motorized 

three-dimensional translation system (Centroid Motion Controller) that moved visually into the 

general vicinity of the transducer focal region. This 3-axis system was used for moving the 

calibrated hydrophone throughout the acoustic field. 

As can be seen in the schematic diagram, the signal from the function generator (Wavetek, 

Model 395) which generated the source wave, was amplified (boosted) by 10 dB gain with an ENI 

A150 RF Amplifier. The output of the amplifier was routed to both the transducer and the Agilent 
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54622A Oscilloscope in order to display the transducer signal on oscilloscope screen. The 

transducer uses the piezoelectric effect to convert the electrical signal coming from the amplifier 

to mechanical vibrations. The hydrophone is also piezoelectric and converts the pressure variations 

of the ultrasonic wave to an electrical signal. The hydrophone signal was boosted by a pre-

amplifier (Precision Acoustics LTD Hydrophone Booster Amplifier), and then fed to the input of 

the oscilloscope where is was captured, digitized, and downloaded to the computer for further 

analyses by Matlab programming. The oscilloscope was triggered by the waveform generator 

which allows the absolute propagation time to be collected. Figure 2.6 shows a photograph of the 

experimental setup. 
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Figure 2.5: Schematic diagram of the experimental setup 
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Figure 2.6: A photograph of experimental setup 

     

 

 

 

 

 

 

 

Figure 2.7: A close-up photograph of transducer, Fresnel lens, and hydrophone   
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2.5.2. Pressure field measurement  

The hydrophone and transducer are both placed in the water bath. For the experimental 

measurements, the waveform generator was set to output a single cycle of a 1.21-MHz sine wave. 

The amplified pulse excited the transducer, and the resulting pulse propagated through the water 

and was sampled by the hydrophone. By slowly scanning the hydrophone through the x, y and z- 

planes (with the z plane along the acoustic axis) which was controlled by a program running in 

Matlab on the computer and observing the change in the amplitude of the received signal on the 

oscilloscope, the hydrophone could be positioned at the focus of the transducer. When the largest 

amplitude voltage response was obtained from the hydrophone, the hydrophone was considered to 

be in the center of the focal region of the transducer.  

The smallest step size of the positioning system was 0.05 mm. A low voltage was applied 

to the transducer by using a low setting on the function generator and the hydrophone voltage 

response along with the voltage of transducer was measured. The lowest applied voltage was 100 

mV (positive amplitude). The calibration data for the hydrophone are given from 1 to 20 MHz in 

the hydrophone calibration certificate. All these data were inserted to give the calibration result at 

1.21 MHz shown below in Table 2.2.  

To determine the pressure distribution in the acoustic field generated by the 1.21 MHz 

transducer, an axial and radial scan were performed with given ranges for x, y, and z-axis as well 

as step size using Matlab script. With a lower voltage amplitude of 100 mV applied to the 

transducer, the hydrophone was located in the focal plane of the transducer perpendicular to the 

transducer axis. Then the voltage was increased up to 250 mV until a smooth waveform was 

obtained without noise. The voltage was set on 100mV, the hydrophone was moved in small steps 
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of about 0.1mm from one side of the field to the other side. At each location, the hydrophone and 

transducer voltage response were measured peak to peak. Using the calibration, the pressure field 

was calculated at each location. This procedure was repeated moving the transducer along its 

central axis through the focal region as well as some points before and after the focal zone. This 

range included both the near and far field regions, including the focal zone which lies in between. 

Images of the experimental data for all acquired plane scans were produced for each 

propagation. These experimental results will be shown in chapter III. 

Table 2.2: Calibration data interpolated from the data of hydrophone certificate 

Frequency (MHz) dB (mV/MPa)  Sensitivity (V/Pa)  

1.21 220.574 52.26×10−8 

 

2.6 Acoustics property measurements 

We needed to know the acoustical properties of the materials we were using (including 

water) to ensure that these properties remained stable during our study. 

2.6.1 Sound speed measurement  

The sound speed can be determined using a technique, where the speed is calculated by the 

ratio of a known distance and the time needed for an acoustic pulse to travel that distance. The 

time delay can be obtained directly from the digital oscilloscope using the time cursor by 

measuring the time difference between the first zero crossings of the input waveform to the 

transducer and the output waveform from the hydrophone.  

When conducting ultrasound experiments, monitoring the temperature is very important. 

Since the speed of sound changes with temperature, and because the scans used in this experiment 
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lasted several hours, any fluctuations in the temperature of the tank water could cause unwanted 

timing variations across the scan plane. The tank temperature was measured using a thermocouple 

probe (Fluke 50S K/J Thermometer) as T0=21.4𝑜 C. 

In our experiment setup, the time delay between two signals ∆t was measured as 35µs. 

However since in our case, the focal distance of the transducer covering by a Fresnel lens was 

unknown, this relative measurement required the information on the sound speed of water, which 

was obtained by measuring the temperature of the water, and using the following formula [41]: 

 𝑐(𝑇′) = 1402.7 + 488𝑇′ − 482𝑇′2+135𝑇′3 where  𝑇′ = 𝑇0

100⁄   ,           2.25) 

where T0 is in degrees Celsius. From this formula the speed of sound was calculated as: 

 𝑐(𝑇′) = 1486.38 m
s⁄  . 

To determine the actual focal length of the Fresnel lens, the values of ∆t and c were utilized 

to calculate the actual focal length of the Fresnel lens using the relationship between the speed of 

sound and distance.           

          𝑥 = 𝑐∆𝑡 => 1486.38 m
s⁄  ×  35µs = 5.20 cm                      2.26) 

2.6.2 The electrical impedance of the transducer 

The impedance of the 1.21 MHz transducer was measured directly over several days to see 

if it varied in time at an average temperature of 21.5 CO using an HP 4193A Vector Impedance 

Meter connected to the transducer. Measuring the complex impedance means to measure its 

magnitude and phase angle. Technically at the frequencies below 100MHz, the impedance 

magnitude can be determined by voltage and current measurement. First, it was observed that the 

impedance of the transducer was increasing during the observation. We found an issue in the cable, 

replaced it with a new cable and did the measurement again. This time it was found that the 
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impedance of the transducer remained constant at an average value of 27.5Ω during the 

measurement. The values of the measurement at different temperatures are shown in Table 2.3. 

Table 2.3: The impedance measurement of transducer mounted into the water 

Number of days Temperature of water  

(CO) 

Range of measured 

values (Ω) 

1 21.6 27.5Ω 

2 21.5 27.5Ω 

3 21.4 27.5Ω 

 

 

 

 

 

Figure.2.8:  The complex impedance magnitude for 1.21MHz transducer in water 
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2.7 Pressure field simulation for the transducer-lens assembly 

The acoustic pressure field inside the scan tank was determined by two methods:  

1. In situ measurement of the pressure using a calibrated hydrophone as described in section 2.5; 

2. FDTD calculation for the acoustic pressure in the water, based on the known physical properties 

of the medium and the transducer calibration in water. Therefore, the pressure field was calculated 

for the 1.21-MHz transducer-lens assembly in water using the FDTD code. The goal of the 

calculation of the pressure field for the transducer-lens in water was to compare it with the 

measurements we made for the transducer-lens set up in the scan tank.  

2.8 Intensity calculation in water and tissue 

The goal of the intensity calculations was to compare them to the published intensity 

numbers in the papers. The calculations at frequencies of 1 and 3 MHz were done in water only to 

get the intensities at the geometric focus and the actual focus. We assumed that the published 

results were measured intensities at the actual focus. The intensities were calculated using the 

linear relationship between pressure and intensity in equation  𝐼 = 𝑃2/2𝜌𝑐 . 

In addition, in order to obtain additional results for maximum pressures and make sure the 

code was running correctly, the curves of pressure vs. time were calculated for the actual focus. 

Then the intensities in water were calculated by manually integrating the time-varying pressure 

over a complete cycle. The intensities obtained as an average from the waveforms at several 

positions in order to make sure that we find the maximum in each of calculations. The equation 

used to calculate the intensities was: 

                                            𝐼 = 1/𝜌𝑐(𝑡2 − 𝑡1 ) ∫ 𝑝2𝑡2

𝑡1
𝑑𝑡                     2.27) 

When 𝑝 = 𝐴𝑠𝑖𝑛𝜔𝑡 and 𝜔 = 2𝜋/𝑇 , i.e., in the linear case, substituting into Eq. 2.27 leads to: 
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𝐼 =
𝐴2

𝑇𝜌𝑐
(

𝑇

2𝜋
) ∫ sin2 𝑥𝑑𝑥 = 𝐴2/𝜌𝑐(

1

2𝜋
)∫ [

1

2
(𝑥 − sin(2𝑥)] = 𝐴2/2𝜌𝑐              2.28) 

𝐼 = 𝐴2/ 2𝜌𝑐                                    2.29) 

In addition, in both diagnostic and therapeutic applications of medical ultrasound, it is necessary 

to know the values of acoustic field parameters in the tissue region exposed to ultrasound. These 

values were estimated using the calculations performed in water in a process called derating. To 

obtain values of in situ acoustic parameters, the intensity calculations in water was multiplied by 

an exponential term to account for losses that occur in tissue over the propagation path. This 

method was used in the paper by Dunn et al [26] such that the ultrasound intensity in tissue, I, at 

the depth d is derated as I = I0 exp (-d) with I0 equal to the wave intensity in water at the same 

location linearly scaled from low to high source pressures at each frequency  = 0.20f cm-1, the 

intensity absorption coefficient per unit path length of the tissue, f is the frequency in megahertz.  

For each value of derated intensity, the corresponding exposure time that Dunn would have 

found for the threshold at that intensity were determined using the formula in Table II of Dunn 

paper [26] which described as: 𝐼 =
𝑐′(𝑓,𝑇)

√𝑡
 where 𝑡 = (

𝑐′(𝑓,𝑇)

𝐼
)

2

. 

Then the intensity values in tissue were calculated by integrating the pressure waveforms 

of tissue from the simulation over a complete cycle using the trapezoid method in Matlab. 

These numbers were correlated to the numbers in the papers to find what exact exposure 

parameters needed to be used in the calculations to match the intensities in the papers. The results 

of the intensity calculations in tissue are shown in chapter III. 
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CHAPTER III 

RESULTS AND ANALYSIS 
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RESULTS OBTAINED FROM 2D PRESSURE AND INTENSITY SIMULATION FOR 1 

AND 3 MHZ FREQUENCIES IN WATER USING FDTD CODE 

For frequencies of 1 and 3 MHz with the same spatial domain in the pressure and intensity 

computation, the parameters shown in Table 3.1 were determined using Matlab script. These 

parameters were used in the Fortran code to simulate the 2D steady state pressure as a function of 

axial distance from the transducer. The steady state pressures along the transducer axis and the 

steady state focal intensities were obtained for a series of source pressures from 10-140 kPa in 

water for both 1 and 3 MHz frequencies respectively. The data presented in figures 3.1 and 3.2 

contain the steady state pressure amplitude and positive and negative focal pressures at both 1 and 

3 MHz frequencies in water. The steady state pressures for the complete signal can be seen in Fig. 

3.1 at source pressures ranging from 10 to 70 kPa for both 1 and 3 MHz. In order to make sure the 

pressure waveform reached the steady state, different simulation times were applied, and the 

behavior of the waves was tracked. If the waveform looked the same with different time lengths it 

has to be steady state because it is not changing; otherwise it is not steady state. In our case, we 

ran our code with different simulation times, and we reached a steady state result at each time. So 

we made sure that the waveform looks good, as can be seen in Figs. 3.1 (a) and (c) for different 

frequencies of 1 and 3 MHz. The windowed signal is shown in Figs. 3.1 (b) and (d) which indicate 

the expanded waveforms, just to better track the signal’s behavior. As can be seen from the peaks, 

the focal pressures are increased as source pressures increase. Distortion of the waves increases 

with increasing source pressures as well as increasing frequency. 
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For a frequency of 1MHz, the source pressures ranging from 10 to 140 kPa yielded higher 

peak positive focal pressures of 0.77 to 12.80 MPa and lower peak negative focal pressures of 0.76 

to 9.41 MPa when the simulated space is water as shown in Fig 3.2 (a) and (b). Similar results are 

given for 3 MHz in Figs. 3.2 (c) and (d). For example, the peak positive focal pressures increased 

from 2.23 to 56.71 MPa in the water, while the corresponding values for peak rarefactional 

pressures range from 2.11 to 24.76 MPa. From the simulation results, it can be concluded that the 

pressure amplitudes at 3MHz are higher than the pressure amplitudes at 1MHz due to the sharper 

and narrower focus at 3MHz. The positive focal pressure was almost 3 times higher for the highest 

source pressure of 140kPa in the focal region compared to 70kPa at 3MHz, and it almost doubled 

at 1MHz for those source pressures. Likewise the negative focal pressure almost doubled for the 

highest source pressure of 140kPa compared to 70kPa at both 1 and 3 MHz. 

Generally, by looking at the focal pressure waveforms for both 1 and 3 MHz, it can be seen 

that the peaks and the focal pressures are increased as source pressures increase. Distortion of the 

waves increases with increasing source pressures as well as increasing frequency, as we expected. 

When frequency grows, more harmonics and increasingly distorted waves will appear. It is also 

obvious that the actual acoustic focal length is shorter (12.3cm) than the geometric focal length 

(13 cm) because of water refraction in the FDTD solution, which is expected. 
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Table 3.1 Simulation Parameters for 2-D pressure code at 1and 3MHz frequencies in water 

Simulation Parameters Values for 1MHz Values for 3MHz 

Max distance in z-direction- 

zmaxP 

20cm (0.2 m) 20 cm (0.2 m) 

Max distance in r-direction- 

rmaxP 

10cm (0.1 m) 10 cm (0.1 m) 

Max distance in z-direction- 

zmaxT ( temperature space) 

15cm (0.15m) 15cm(0.15m) 

Max distance in r-direction- 

zmaxT( temperature space) 

10cm (0.1m) 2cm (0.02m) 

Spatial step in z direction- dzp 1.5 ×  10−4 m 5.0 ×  10−5 m 

Spatial step in r direction- drp 1.5 ×  10−4 m 5.0 ×  10−5 m 

Time step- dtp 5 × 10−8 s = 0.05µs 1.6667 × 10−8 s  

Number of acoustic cycles- 

Nptspercycle 

20 20 

Max index in z-direction- 

Imaxp 

1334 4001 

Max index in r-direction - 

Jmaxp 

668 2001 

Max index in z-direction temp- 

ImaxT 

1001 3001 
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Max index in r-direction temp- 

JmaxT 

668 401 

Distance from front face of 

transducer to front surface of 

tissue – Iskin 

68 201 

Coordinate of geometric focus 

of transducer in z-axis - Ifocusp 

868 2601 

Coordinate of geometric focus 

of transducer in r axis-Jfocusp 

(symmetry)  

1 1 

Tend to end time index 2.7 ×  10+3 s 7.99 × 10+3 s 

Max index in time- Nmaxp 3000 (each unit equivalent to 

0.05µs) 

8000 (each unit 

equivalent to 0.016 

µs) 
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Fig.3.1: Characterization of steady state pressure waveforms showing (a) pressure along axial 

distance of 1 MHz transducer (b) windowed waveforms vs. axial distance of 1 MHz 

transducer (c) pressure along axial distance of 3MHz transducer (b)  windowed waveforms 

vs. axial distance of 3 MHz transducer 
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Fig.3.2: Characterization of 1 and 3 MHz transducer in water showing (a) steady state 

compressional pressure vs. depth at 1MHz (b) steady state rarefactional peak pressure vs. 

depth at 1MHz (c) steady state compressional pressure vs. depth at 3MHz (d) steady state 

rarefactional peak pressure vs. depth at 3MHz. 
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In order to confirm that our calculation results for 3MHz are still consistent, the FDTD 

code was applied for a smaller step size ( 𝑑𝑥 = 4 × 10−5, 𝑑𝑡 = 8 × 10−9 ) in our numerical model. 

The reason for this implementation was to obtain additional higher harmonics and the resulting 

extra distortion of the waveforms beyond that which was observable from our calculation outputs 

and pressure profiles with the larger step size. 

The peak positive and negative pressures for the source pressures of 10, 40, and 70 kPa are 

shown in the water in figure 3.3. The positive peak amplitudes are 2.23, 9.81, and 19.4MPa, 

respectively, for 10, 40, and 70 kPa, while the negative peak pressures are 2.08, 7.50, and 11.81 

MPa. Both compressional and rarefactional peak amplitudes are in a good agreement with previous 

calculations we made at 3MHz frequency to verify the stability of our results. 

  

Figure 3.3: Smaller step size simulation for (a) positive amplitude and (b) negative amplitude 

at source pressures of 10, 40, and 70 kPa for 3MHz frequency in water. 
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The simulated spatial intensity profile as a function of axial and radial distance was plotted 

in Fig. 3.4. The spatial acoustic intensity in water was computed in 2D in the simulation space as 

shown in the figure. In order to save computation time in the simulation, the intensity space was 

mapped only in a subsection of the space containing the region of interest. This space is also axially 

(cylindrically) symmetric, and it only shows half of the focal zone, not the entire focal region. As 

can be seen from figures (a) and (b), the intensity was found at the real focus of the transducer, 

which has a shorter length than geometric focus due to the water refraction. Moreover, comparing 

the color distribution for the simulated intensity (dark red means high intensity and dark blue 

means low intensity) at 1 and 3 MHz, it is shown that the simulated intensity values for 3 MHz are 

much greater than 1MHz due to the sharper focus at the higher frequency. For instance, a source 

pressure of 10 kPa gives an intensity of 1194W/cm2 at 1MHz compared to 12338 W/cm2 at 3 

MHz, the latter being about 10 times higher than the intensity at 1MHz. These ranges of intensities 

were compared to the intensity numbers we obtained from the numerical simulation shown in the 

next chapter.  
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Fig.3.4: Acoustic intensity as a function of axial and radial location for FDTD solution to the 

wave equation. The peak intensity at the focus is 1194 W/cm2 for (a) 1MHz and 

12338 W/cm2 for (b) 3MHz at 70 kPa source pressure. 
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RESULTS OBTAINED FROM 2D PRESSURE SIMULATION FOR TRANSDUCER LENS 

ASSEMBLY BOTH CALCULATION AND MEASUREMENT 

As explained before, we need to verify that our sound propagation model accurately 

predicts the spatial pressure distribution generated by a planner transducer covering with a 

focusing lens. Pressure is the most conveniently measurable quantity and thus will be used for 

comparison. As described in Section 2.6, the pressure field was calculated using the Fortran code 

to compere our calculations with the measurements we made in the scan tank. This can be achieved 

in pure water with the hydrophone fixed in place. Results for the simulation parameters using the 

code are presented in Table 3.2. 

Figure 3.5 shows the pressure profile as a function of the radial and axial distance from the 

acoustic axis of x, y, and z for the 1.21 MHz transducer in water and the peak voltages (pressure) 

are 277, 279, and 275 mV, respectively.  

Figure 3.6 shows computed and measured results obtained in water at 30°C for the sound 

sources. The pressures shown at (a) and (b) are all peak positive quantities of calculation and 

measurement that have been normalized to the spatial maximum value present at the real focal 

point. The axial distance in plot (b) shows the shifted axis by some amounts in order to have the 

same range and unit as (a). The plot (c) shows the solid red and blue lines which correspond to 

calculation and measurement respectively. Except for the peripheral regions of the field, we see 

that our model is able to predict all the detailed structure, and good agreement was found in the 

focal region (real focus of 5.20 cm) and beyond and also we observed no odd hotspot in the field. 
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Table 3.2: Simulation parameters for 1.21-MHz transducer-lens assembly  

FDTD Simulation Parameters Value 

Max distance in z-direction- zmaxp 10 cm (0.1 m) 

Max distance in r-direction- rmaxp 5 cm (0.05 m) 

Spatial step in z direction- dzp 1.5 ×  10−4 m 

Spatial step in r direction- drp 1.5 ×  10−4 m 

Time step- dtp 5 × 10−8 s = 0.05µs 

Number of acoustic cycles- Nptspercycle 17 

Max index in z-direction- Imaxp 668 

Max index in r-direction - Jmaxp 334 

Max index in z-direction temp- ImaxT 401 

Max index in r-direction temp- JmaxT 201 

Distance from front face of transducer to 

tissue front surface – Iskin 

68 

Actual focal length  5.20 cm 

Geometric focal length 5.5 cm 

Coordinate of geometric focus of 

transducer - Ifocusp 

386 

Coordinate of focus of transducer-

Jfocusp (symmetry)  

1 

Tend to end time index 1.3 ×  10+3 s 

Max index in time- Nmaxp 1500 (each unit equivalent to 0.05µs) 
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Figure 3.5: Characterization of the 1.21 MHz Sonostat 

transducer showing, (a) voltage amplitude in radial 

direction x, (b) voltage amplitude in radial direction y, 

(c) voltage amplitude in axial direction z. 
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 Figure.3.6: Characterization of the 1.21-MHz transducer-lens combination showing normalized   

calculated (a) and measured (b) positive peak pressure profiles in axial direction , and (c) a 

comparison of the normalized pressure profiles verses axial distance for the transducer obtained 

from calculation (using the code) and measurement (using the scan-tank). 
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In the following section, the experimental data collected during the experiment are 

presented. Figure. 3.7 contains four images shown the focal zone scans; the top left image (a) 

marked with the acoustic axis is the experimental data from the plane scan using the hydrophone. 

The bottom left image (b) marked with the positive value indicate the scan for the distance of 1 

mm beyond the focal zone. 

Other sets of data are shown in figures (c) and (d), which are the field measurements with 

a negative distance beyond the focal zone of transducer, respectively.  

The images show millimeters on both axes, and the color adds a third dimension to the 

graph: the relative amplitude of the pressure field. The dark blue indicates lowest pressure, and the 

dark red indicates the highest pressure.  

By comparing the color distribution in the experimental data and also the pressure 

amplitude for each graph, it is noticeable that whenever the hydrophone is beyond the center of 

the scan plane, in general, the amplitude of the pressure field (and therefore the electrical signal) 

captured by the oscilloscope decreases. The size of the signal can vary greatly over the scan plane. 
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Fig.3.7: Pressure field pattern of transducer-lens, peak-to-peak voltage of: a) 275 mV at the 

focus ; b) 270.3 mV for 1mm beyond the focus;  and c) 257.8 mV for -1.2mm beyond the 

focus ; and d) 248.5 mV at -1.75 mm beyond the focus 

a c 

d b 
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RESULTS OBTAINED FROM PRESSURE AND INTENSITY CALCULATIONS FOR 1 

AND 3 MHZ IN WATER 

Tables 3.3 and 3.4 illustrate the results from the intensity calculations in water at 1 and 3 

MHz. As mentioned before, the goal of these intensity calculations was to compare them with the 

intensity numbers from the simulation to verify our numerical model and also use these values to 

determine the derated intensities in tissue, as explained in section 2.8. 

 

Table 3.3: Intensity calculations for 1MHz frequency in water 

Source 

pressure 

(kPa) 

Focal 

pressure 

(MPa) 

Calculated 

Intensity 

𝑰 =
𝒑𝟐

𝟐𝝆𝒄
 

(
𝐖

𝐜𝐦𝟐
) 

Pressure 

vs time at 

the 

position of 

the peak 

pressure 

(MPa) 

Calculated 

Intensity 

𝑰 =
𝟏

𝝆𝒄𝑻
 ∫ 𝒑𝟐𝒅𝒕 

(
𝐖

𝐜𝐦𝟐
) 

Simulated 

Intensity  

(
𝐖

𝐜𝐦𝟐
) 

10 0.77 20.15 0.77 20.16 23.5 

20 1.57 82.26 1.57 82.26 94.5 

30 2.40 189.3 2.40 189.30 213 

40 3.21 343 3.21 343.50 381 

50 4.06 550 4.06 550.00 559 

60 4.92 810 4.93 810.00 871 

70 5.82 1126 5.82 1130.00 1194 

140 12.80 5461.3 12.80 5461.30 5560 

 

𝜌 water = 1000 𝑘𝑔/𝑚3      𝑐 water = 1500 m/s  
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Table 3.4: Intensity calculations for 3MHz frequency in water 

Source 

pressure 

(kPa) 

Focal 

pressure 

(MPa) 

Calculated 

Intensity 

𝑰 =
𝒑𝟐

𝟐𝝆𝒄
 

(
𝐖

𝐜𝐦𝟐
) 

Pressure 

vs time at 

the 

position of 

the peak 

pressure 

(MPa) 

Calculated 

Intensity 

𝑰 =
𝟏

𝝆𝒄𝑻
 ∫ 𝒑𝟐𝒅𝒕 

(
𝐖

𝐜𝐦𝟐
) 

Simulated 

Intensity  

(
𝐖

𝐜𝐦𝟐
) 

10 2.23 167 2.23 167 188.61 

20 4.60 705.02 4.65 720.75 777.72 

30 7.09 1677 7.10 1684.12 1758.9 

40 9.81 3212.33 9.78 3193.33 3238.7 

50 12.67 5350.9 12.21 4969.47 4918.9 

60 15.90 8427 15.75 8400.52 8239.2 

70 19.40 12545 18.50 11433 12338 

140 56.71 107200.80 56.71 107200.80 117230 

 

𝜌 water = 1000 𝑘𝑔/𝑚3       𝑐 water = 1500 m/s  

 

Figure 3.8 shows the time-varying pressure waveforms at the location of the peak pressure 

(pressure at the focus) for series of source pressures from 10-70 kPa .The averaged peak positive 

pressure over several positions was found in the range of 0.77- 5.82 MPa at 1MHz as can be seen 

in fig (a), while the corresponding values of the averaged peak pressures at 3MHz were found in 

the range of 2.23- 18.5 MPa. These values were used to calculate the intensity numbers both at 1 

and 3 MHz in water. 
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Fig.3.8: Time-varying pressure waveforms for a series of source pressure in water for (a) 

1MHz and (b) 3MHz frequency 

 

  a 

  b 
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Figure 3.9 shows the comparison of the simulated intensities using the numerical FDTD code and 

calculated intensities from pressure waveforms integration. A good agreement between these two 

computations were found in order to verify our numerical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Comparison of simulated and calculated intensities in water vs. source pressure at (a) 

1 and (b) 3MHz 
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RESULTS OBTAINED FROM 2D PRESSURE AND INTENSITY SIMULATION FOR 1 

AND 3 MHZ FREQUENCIES IN TISSUE USING FDTD CODE 

The pressure amplitudes in tissue were calculated with the same process used to calculate 

the pressure amplitudes in water. Table 3.5 shows the simulation parameters at 1 and 3 MHz 

frequencies for tissue obtained by Matlab scripts. Figure 3.10 shows the comparison of the pressure 

amplitude in water and tissue at both 1 and 3 MHz derived at 140 kPa. The black dashed line 

indicates the tissue region with a thickness of 3 cm.  Looking through the data of figures 3.10 

indicates that nonlinear distortion of the waveform accumulated differently in tissue and in water 

due to higher attenuation and thus less wave amplitude over the propagation path in tissue. It is 

clear that the actual acoustic focal length in tissue is shorter (12.21cm) than the actual focal length 

of water (12.3cm). This is due to the fact that the degree of refraction of the beam from the 

transducer surface depends on the speed of sound in the medium. This leads to less focal pressure 

amplitudes in the case of tissue than water. Moreover, it is clearly visible that a lower pressure 

amplitude is obtained in the focal region in tissue than in water due to the higher attenuation 

coefficient of tissue, which leads to more attenuated pressure amplitude and eventually less wave 

amplitude over the propagation path in tissue. The same behavior can be found at 3MHz with even 

more attenuated pressure amplitude in tissue. This is due to the fact that attenuation depends on 

frequency linearly; by increasing the frequency, attenuation will also increase, which leads to more 

attenuated pressure amplitude. Since by increasing the frequency, harmonics will grow, so the 

attenuation of the nonlinear distorted waves in tissue is also higher than predicted by the given 

equation in Dunn’s paper [26]. This is because of the generation of higher harmonics that are 

absorbed more than fundamental frequency. 
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The positive and negative peak pressures for 1 and 3 MHz frequencies are shown 

respectively in Figure 3.11. Figure (a) shows the higher compressional pressures as 0.67, 2.76, 

4.97, and 10.74 MPa corresponding to the source pressures of 10, 40, 70, and 140 kPa, respectively, 

at a distance of 10cm from the source, i.e., where the beam enters the tissue, to the nominal focus 

at 13cm (Tissue thickness 3cm), while figure (b) shows the corresponding lower rarefactional 

pressure at the peak values of 0.66, 2.58, 4.42, and 8.35 MPa with the same range of source 

pressures and the same distances at 1MHz. Similar results are given for 3 MHz in figures (c) and 

(d). Figure (c) shows the positive peak pressures as 1.40, 5.90, 11.00, and 27.5 MPa corresponding 

to the source pressures of 10. 40, 70 and 140 kPa, respectively, while figure (d) illustrates the 

negative peak pressures at 1.35, 5.11, 8.51, and 14.90 MPa. Herein for 1 and 3 MHz, like the water 

media, the pressure amplitude in the main focal lobe is significantly higher than in the pre-focal 

region, and the length of the focal region is much shorter than the geometric focal length. Under 

these conditions, it is hypothesized that the distortion of the waves increased mainly with 

increasing driving level and frequency, and the peak pressures also became larger with increases 

in source pressures. In addition, the 3MHz frequency shows higher pressure amplitudes than 

1MHz. 

The focal peak pressures and intensities were calculated in the tissue of various thicknesses 

of 3, 2, and 1 cm, when the distal surface of the tissue is at 13 cm, which is the geometric focus. 

The results of compressional and rarefactional peak pressures, calculated intensities using 

simulations, and derated intensities are indicated for both 1 and 3 MHz frequencies are shown in 

Tables 3.6 (a) and (b) respectively. From the results as shown in figures 3.12 and 3.13, it can be 
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concluded that that as source pressure increases, the calculated intensities are increased and derated  

intensities using the formula I = I0 exp (-d)] agreed well with numerical simulation in tissue and 

derated (reduced) more compare to intensity numbers in water, as we expected. Moreover as tissue 

thickness increases from 1 to 3 cm, the intensities attenuate more as expected from the exponential 

relation between intensity and thickness of tissue. The same behavior can be found for both 

positive and negative peak pressure amplitudes at1 and 3 MHz. 

For each value of derated intensity, the exposure time was computed using equation 𝑡 =

(
𝑐′(𝑓,𝑇)

𝐼
)

2

as shown in the last column of Table 3.6 (a) and (b). These numbers can be correlated 

with given exposure times in a log-log plot in the Dunn paper [26] which will discussed in next 

chapter. 

 

Table 3.5 Simulation Parameters for 2-D pressure code at 1and 3 MHz frequencies in tissue 

Simulation Parameters Values for 1MHz Values for 3MHz 

Max distance in z-direction- zmaxP 15cm (0.15m) 15cm (0.15m) 

Max distance in r-direction- rmaxP 6.5 cm (0.65m) 6.5 cm (0.65m) 

Max distance in z-direction- zmaxT ( 

temperature space) 

14cm (0.14m) 14cm (0.14m) 

Max distance in r-direction- zmaxT( 

temperature space) 

6.35cm (0.635m) 6.35cm (0.635m) 

Distance from front face of transducer to 

front surface of tissue – Iskin 

10 cm (0.10m) 10 cm (0.10m) 
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Spatial step in z direction- dzp 1.5 ×  10−4 m 5.0 ×  10−5 m 

Spatial step in r direction- drp 1.5 ×  10−4 m 5.0 ×  10−5 m 

Time step- dtp 5 × 10−8 s = 0.05µs 1.6667 × 10−9 s = 

0.0016µs 

Number of acoustic cycles- Nptspercycle 20 20 

Max index in z-direction- Imaxp 1001 3001 

Max index in r-direction - Jmaxp 434 1301 

Max index in z-direction temp- ImaxT 934 2801 

Max index in r-direction temp- JmaxT 424 1271 

Distance from front face of transducer to front 

surface of tissue – Iskin 

668 2001 

Coordinate of geometric focus of transducer 

in z-axis - Ifocusp 

868 2601 

Coordinate of geometric focus of transducer 

in r axis-Jfocusp (symmetry)  

1 1 

Tend to end time index        2.0 × 10+3 s        5.9 × 10+3 s 

Max index in time- Nmaxp 2500 (each unit 

equivalent to 0.05µs) 

6000 (each unit 

equivalent to 

0.0016µs) 
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Figure3.10: Comparison of tissue and water pressure amplitudes at the focus at (a) 1 and (b) 3 

MHz 

a 

b 
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Table 3.6 (a): Peak focal pressures and intensities in tissues of various thicknesses at 1 MHz 

Tissue thickness 1cm (12-13 cm) 

Source 

Pressure 

(kPa) 

Positive 

Pressure 

(MPa) 

Negative 

Pressure 

(MPa) 

Intensity in tissue Time (sec) 

Calculated 

(W/cm2) 

by derating 

(W/cm2) 

Exposure 

Time (sec) 

10 0.77 0.75 17.93 16.50 376.12 

40 3.20 2.95 286.84 281.23 1.29 

70 5.80 5.04 965.25 925.16 0.11 

140 12.72 9.53 3992.40 4471.33 0.005 

 

Tissue thickness 2 cm (11-13 cm) 

Source 

Pressure 

(kPa) 

Positive 

Pressure 

(MPa) 

Negative 

Pressure 

(MPa) 

Intensity in tissue Time (sec) 

Calculated 

(W/cm2) 

by derating 

(W/cm2) 

Exposure 

Time (sec) 

10 0.72 0.70 15.80 13.51 561.03 

40 2.98 2.76 237.11 230.25 1.93 

70 5.40 4.70 778.50 757.46 0.17 

140 11.81 8.80 3296.00 3660.87 0.007 

 

Tissue thickness 3 cm (10-13 cm) 

Source 

Pressure 

(kPa) 

Positive 

Pressure 

(MPa) 

Negative 

Pressure 

(MPa) 

Intensity in tissue Time (sec) 

Calculated 

(W/cm2) 

by derating 

(W/cm2) 

Exposure 

Time (sec) 

10 0.67 0.66 13.42 11.06 837.12 

40 2.76 2.58 223.61 188.51 2.88 

70 4.97 4.42 686.87 620.15 0.26 

140 10.74 8.35 2818.10 2997.22 0.011 

 

“By derating” means use equation 2 from Dunn et al [24] [I = I0 exp (-d)] with I0 equal to the 

computed values for water,  = 0.20f cm-1, and d = 1, 2, 3 cm, (Distance from where the beam 

enters the tissue to the focus). 
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Table 3.6 (b): Peak focal pressures and intensities in tissue of various thicknesses at 3 MHz 

Tissue thickness 1 cm (12-13 cm) 

Source 

Pressure 

(kPa) 

Positive 

Pressure 

(MPa) 

Negative 

Pressure 

(MPa) 

Intensity in tissue Time (sec) 

Calculated 

(W/cm2) 

by derating 

(W/cm2) 

Exposure Time 

(sec) 

10 2.14 2.02 143.73 91.65 10.71 

40 9.50 7.37 2272.10 1752.53 0.02 

70 19.07 11.81 6505.80 6274.56 0.002 

 

Tissue thickness 2 cm (11-13 cm) 

Source 

Pressure 

(kPa) 

Positive 

Pressure 

(MPa) 

Negative 

Pressure 

(MPa) 

Intensity in tissue Time (sec) 

Calculated 

(W/cm2) 

by derating 

(W/cm2) 

Exposure Time 

(sec) 

10 1.72 1.65 83.94 50.30 35.57 

40 7.41 6.18 1391.9 961.81 0.09 

70 14.21 10.14 4640.30 3443.60 0.007 

140 43.74 18.40 21406.00 32288.26 8.63 × 10−5 

 

Tissue thickness 3 cm (10-13 cm) 

Source 

Pressure 

(kPa) 

Positive 

Pressure 

(MPa) 

Negative 

Pressure 

(MPa) 

Intensity in tissue Time (sec) 

Calculated 

(W/cm2) 

by derating 

(W/cm2) 

Exposure Time 

(sec) 

10 1.40 1.35 54.68 27.60 118.14 

40 5.90 5.11 886.32 527.85 0.32 

70 11.00 8.51   2768.00 1889.90 0.02 

140 27.5 14.90 12423.00 17720.17 2.86 × 10−4 
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Fig 3.11: Characterization of 1 and 3 MHz transducer in tissue (depth 10-13cm) showing (a) 

steady-state compressional pressure vs. depth at 1MHz  (b)  steady state rarefactional peak 

pressure vs. depth  at 1MHz   (c) steady state compressional pressure vs. depth at 3MHz (d) 

steady state rarefactional peak pressure vs. depth at 3MHz. 

c

  
a 

d 

a b 
POSITIVE PRESSURE NEGATIVE PRESSURE 
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Figure 3.12: Results of peak focal intensities in tissue at 1MHz for various tissue thicknesses 
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Figure 3.13: Results of peak focal pressures in tissue at 1MHz for various tissue thicknesses 
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Shown in figure 3.14 are the calculated intensities (y-axis) versus derated intensities for 

each tissue depth; the black dashed line is what the curve would look like if the two intensities 

were equal. The reason for making this plot was to find the proper exposure time for each 

depth.  Then we made three graphs separately for 1 and 3 MHz as can be seen in figures 3.15 and 

3.16, for the calculated values of intensity (a) along with its log-log plot (b), positive pressures (c) 

along with its log-log plot (d), and negative pressures (e) along with its log-log plot (f), all versus 

the exposure times (x-axis) that we just calculated for each tissue depth. The results of these figures 

could be correlated with the intensity numbers published in the previous paper at given exposure 

times [26] in which it has been suggested empirically that on a log-log plot in Figure 3.17 , intensity 

as a function of exposure time can produce lesions at three different regions, as discussed in section 

2.5.  

By looking into the data of the table 3.6 (a) and (b) and figures 3.15 and 3.16, the true shape 

of intensity curve vs exposure time can be estimated accordingly. We observed that, as an example, 

for tissue thickness of 3 cm at 1 MHz, intensity increases from 13.42 to 2818.10 W/cm2 while the 

corresponding duration of exposure is decreased from 837.12- 0.011 sec. The same behavior can 

be observed for other tissue thicknesses at both 1 and 3 MHz.  

We also observed that the positive and negative peak pressures are increased while the 

exposure time is decreased. An actual shape of the pressure curve vs the exposure time could also 

be estimated, as it is shown in figs 3.15 and 3.16. As can be seen in figures 3.15 and 3.16 (f), the 

threshold positive and negative pressures for various tissue thicknesses versus exposure time 

conditions are similar in the log-log plot and appear to increase with decreasing the pulse length 

as shown in figs 3.15 and 3.16 (e) , for both 1 and 3MHz. Moreover it can be seen from figures 
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3.15 and 3.16 (e) that the threshold peak pressures increase with increasing ultrasound frequency 

from 1 to 3MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: The calculated intensities using the simulation vs derated intensities using formula 

in the paper at 1 and 3 MHz frequencies for various tissue thicknesses 
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Figure 3.15: Calculated intensity (a), Positive pressure (c), and Negative pressure (e) vs exposure 

times at different tissue thicknesses at 1MHz along with their log-log plots (b), (d), and (f). 
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Figure 3.16: Calculated intensity (a), Positive pressure (c), and Negative pressure (e) vs exposure 

times at different tissue thicknesses at 3 MHz along with their log-log plots (b), (d), and (f). 
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Figure 3.17: Threshold acoustic intensity at the irradiation site versus duration required for a 

single pulse to produce a lesion in the mammalian brain, with relevant data of figure. [26] 
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CONCLUSION AND DISSCUSION 
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4.1 Remarks, Conclusions, and Dissuasions 

 
In this work, we were able to compare the acoustic field measurements from a previous 

study to equivalent measurements made using modern techniques. Although it was difficult, we 

attempted to make use of the data from the previous study for the purpose of our research to make 

it convenient to support scientifically. In order to support the solutions for the problems we 

addressed in the motivation section, the study followed a 3-step process: 

1. The acoustic pressure and intensity waveforms were calculated numerically using FDTD 

solutions to correlate with published experimental data of previous investigations. 

2. The model was verified through comparison with experiments run in a water bath 

instrumented for in situ pressure measurement. Relevant physical properties were independently 

determined. The measurement and computations agreed very well to support the model of field 

experiment done by Dunn et al [26]. 

3. This verified numerical model was used to investigate the true shape of the curves for 

threshold pressure and intensity versus exposure time to estimate the true cavitation threshold and 

possibly other mechanisms. 

As indicated above, in order to better understand the simulation process in water-tissue 

media, we used a model that coupled ultrasound propagation based on an inhomogeneous wave 

equation derived from the basic equations of fluid mechanics and thermodynamics for a 

thermoviscous fluid, keeping terms up to second order; it is thus appropriate for simulating the 

propagation of finite amplitude sound in biological media. The equation accounts for the combined 

effects of diffraction, inhomogeneity, absorption, and nonlinearity. The model also captured 

nonlinearity which has been found to play an essential role on the generation of harmonics in an 
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ultrasonic beam, in particular, from a strongly focusing source. The model equations were 

numerically solved via a finite difference method imposing appropriate initial and boundary 

conditions given all acoustical and physical properties for water and tissue with three different 

tissue thicknesses. 

The result was a 2-D numerical simulation of the pressure and intensity in both water and 

tissue coupled to a 2-D nonlinear acoustic propagation model. For the purpose of our numerical 

model, we assumed all tissue inhomogeneity was weak, (to avoid any significant impedance 

mismatches) and the only parameters used in our model were density, speed of sound, nonlinearity 

parameter, and attenuation coefficient, and that the pressure and intensity calculations could be 

run in 2-D.  

In order to verify the model, we undertook a series of in vitro experiments in a water scan 

tank. This experiment was designed only to provide a verification of the mathematical model’s 

predictions as well as the model of field experiment done by Dunn et al. Good agreement between 

experimental data and numerical model predictions was found over a range of values for acoustic 

source pressure and insonation time.  

We then conducted a series of simulations that address two types of wave propagation of 

interest: the linear and nonlinear wave propagation using lower and higher driving level. We 

employed water-tissue (cat brain) properties while neglecting the blood vessels and ventricles. We 

considered a 2-D geometry for our simulation. The results showed that the pressure and intensity 

waveforms at water and tissue behaved almost the same, except for a slight difference at pressure 

and intensity amplitude in tissue due to the higher attenuation coefficient and more distorted waves 

because of harmonic generation, as explained in detail above.  
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The results may be summarized in the following conclusions: both linear and non-linear 

wave propagation successfully explained the behavior of the computed pressure waveforms at low 

and higher source pressures and the focal intensities were matched with experimentally determined 

values from previous study reported in the range of  102 − 2 × 104 W/cm2 ,as described in 

literature review. For higher source pressures typically used in therapeutic medical applications, 

the focal field parameters (peak pressures and intensities) derated more compare to water, as we 

expected, and agreed well with numerical simulation in tissue. Results of derated intensities helped 

us to compute the pulse lengths, time duration of exposures which have a significant impact on 

cavitation threshold using published relation (𝐼 =
𝑐(𝑓,𝑇)

√𝑡
) to estimate the true shape of the curve for 

cavitation threshold.  

In order to solve the difficulties of previous study scientifically, we placed this work in the 

context of the modern scheme. As described in the objective and motivation section, the previous 

study was not focused primarily on studying cavitation in tissue, at least not the type of cavitation 

the Mechanical Index was designed to predict. That is there were no measurements of acoustics 

emissions specific to inertial cavitation; there were no search for the lesions expected to be 

produced by inertial cavitation at threshold exposures.  

The mechanical index (MI) is the magnitude of the negative acoustic pressure divided by 

the square root of the frequency of an ultrasonic field, 𝑀𝐼 = 𝑃r/√𝑓 [51].  The MI provides an 

estimate of the likelihood of mechanical damage in tissue.  

As described in the literature review, the data from the previous study suggest that the 

duration of excitation has a significant impact on the cavitation threshold. From a mechanistic 

point of view and from the University of Illinois suggest that the probability that exposure to 
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diagnostic ultrasound will induce cavitation in tissue (not containing pre-existing cavitation nuclei) 

is essentially zero [1], [25], [26], [51]. Based on their results, the pulse durations were found to be 

only in the range of  2.5 − 5 × 10−4 𝑠𝑒𝑐 , while in our calculations, particularly, for 10 kPa, the 

values of exposure times are longer than those results from Dunn measurements and even longer 

than any other cases for 40, 70, and 140 kPa we made in our calculations. Therefore, only shortest 

duration of exposures were considered in our calculations. The same behavior can be seen for 

intensity numbers. 

In order to estimate the true shape of the cavitation threshold in our current study, the 

rarefactional peak pressures (negative peak pressures) as a function of exposure times was 

considered since the negative pressures are the natural places that we can talk about cavitation. 

The data in Table 3.6 (a) and (b) and the plot of the negative pressure picks as a function of 

exposure time is given in figures 3.15 and 3.16 (e) and (f). The values for all tissue thicknesses of 

1, 2, and 3 cm are shown in blue, red, and green curves, respectively, for the cat brain. As can be 

seen in figures 3.15 and 3.16 (f), the threshold negative pressures for various tissue thicknesses 

versus exposure time conditions are similar in the log-log plot and appear to increase with 

decreasing the pulse length as shown in figs 3.15 and 3.16 (e), for both 1 and 3MHz. Moreover it 

can be seen from figures 3.15 and 3.16 (e) that the threshold peak pressures increase with 

increasing ultrasound frequency from 1 to 3MHz. 

By looking through the values of MI at 1 MHz, ranging from 0.66 to 9.53 compared to 3 

MHz, ranging from 0.79 to 11.82, in can be concluded that the range of MI at 3 MHz are much 

more higher than 1MHz, thus the threshold for inertial cavitation is predicted to increase with 

frequency as mentioned and expected by previous study. 
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Negative pressure data of table 3.6 (a) shows the threshold of the negative pressure for 3 

cm thickness is about 4.42 MPa (source pressure 70kPa) occurs at frequency of 1MHz, which 

corresponds to MI of about 4.42; this is above the usual diagnostic frequency range. The lowest 

value in the diagnostic range, 5MPa, is found at 1 MHz, or MI= 5.0, or more than 2 ½ times the 

current maximum MI in the guidance on substantial equivalent from the US FDA. (Based on FDA, 

MI maximum was found to be 1.9) [51]. Thus it be can concluded that the values of MI from the 

pressure threshold and from the diagnostic range, are both higher than the equivalent theoretical 

values for the cavitation threshold values suggest that this tissue may not contain pre-existing gas 

bubbles. Therefore, there should exist a limitation for acoustic pressure threshold in the medium 

to provide a safety margin. Likewise at 3 MHz, the MI corresponds to about 4.91, which shows 

the same fact as 1MHz. The summary of these data given in Table 4.1 reveals a wide range of 

pressure threshold values which could be attributed to cavitation detection method. 

Table 4.1 (a): Summary of the calculations determined cavitation threshold in tissue at 1MHz 

Tissue thickness 1cm (12-13 cm) 

Source 

Pressure 

(kPa) 

Negative 

Pressure 

(MPa) 

Exposure 

Time (sec) 

MI 

(
𝒑

√𝒇
) 

10 0.75 376.12 0.75 

40 2.95 1.29 2.95 

70 5.04 0.11 5.04 

140 9.53 0.005 9.53 

 

Tissue thickness 2 cm (11-13 cm) 

Source 

Pressure 

(kPa) 

Negative 

Pressure 

(MPa) 

Exposure 

Time (sec) 

MI 

(
𝒑

√𝒇
) 

10 0.70 561.03 0.70 

40 2.76 1.93 2.76 

70 4.70 0.17 4.70 

140 8.80 0.007 8.80 
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Tissue thickness 3 cm (10-13 cm) 

Source 

Pressure 

(kPa) 

Negative 

Pressure 

(MPa) 

Exposure 

Time (sec) 

MI 

(
𝒑

√𝒇
) 

10 0.66 837.12 0.66 

40 2.58 2.88 2.58 

70 4.42 0.26 4.42 

140 8.35 0.011 8.35 

 

Table 4.1 (b): Summary of the calculations determined cavitation threshold in tissue at 3 MHz  

   Tissue thickness 1 cm (12-13 cm) 

Source 

Pressure 

(kPa) 

Negative 

Pressure 

(MPa) 

Exposure 

Time (sec) 

MI 

(
𝒑

√𝒇
) 

10 2.02 10.71 1.17 

40 7.37 0.02 4.25 

70 11.81 0.002 6.81 

 

       Tissue thickness 2 cm (11-13 cm) 

Source 

Pressure 

(kPa) 

Negative 

Pressure 

(MPa) 

Exposure 

Time (sec) 

MI 

(
𝒑

√𝒇
) 

10 1.65 35.57 0.95 

40 6.18 0.09 3.57 

70 10.14 0.007 5.85 

140 18.40 8.63 × 10−5 10.62 

 

       Tissue thickness 3 cm (10-13 cm) 

Source 

Pressure 

(kPa) 

Negative 

Pressure 

(MPa) 

Exposure 

Time (sec) 

MI 

(
𝒑

√𝒇
) 

10 1.35 118.14 0.77 

40 5.11 0.32 2.95 

70 8.51 0.02 4.91 

140 14.90 2.86 × 10−4 8.60 
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4.2 Suggestion for future study  

Many more simulations could be performed based on the current numerical model. The 

current version of the finite difference software had a lot of problems with computations. Some of 

these were because we had to go to a very small spatial step size and we also needed a large spatial 

domain since we had a long focal length transducer. This caused many failures. There were also 

large spaces that do not really need small step sizes.  

There are several components to the model, each of which may be individually improved. 

One solution to these problems would be to dynamically assign some of the integration parameters 

or to divide the space into different regions where different step sizes can be used. This would be 

really time-saving. In that case, we would not need to go through all of the current steps such as 

input files into Matlab, compute the indices, go to the code, enter the parameters, make sure these 

build properly, and check to see that it all works. Although such a code may not be totally user-

friendly, it will reduce runtime errors, and therefore the software would be a more flexible FDTD 

code that we could use for more general purposes. Such studies remain for the next student to 

perform. 
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Error Analysis  

For the purpose of this thesis, we take the term “error” to refer any form of uncertainty, 

be it systematic or statistic. First we can say error exists in the simulation due to simplifying 

model assumptions which affects the accuracy and also uncertainty in the input parameters 

which affects both accuracy and precision.  Because in the FDTD simulation technique, we used 

discrete time and space that can be one of the limitation for our calculations.  

In addition, in practical point, our ability to calculate the intensity and the exposure time 

values in tissue as shown in Table 3.6 (a) and (b) in Chapter III, is going to be about the 

precision amounts as shown in Table A1 below. In our calculations, two decimal digits and three 

significant figures were kept, also in the Mechanical Index calculations, as shown in Table 4.1 

(a) and (b), three significant figures were considered, however the relevant values with our 

model can be reported by maybe the next decimal place or another order of magnitude beyond 

that to be really meaningful for using this to match to the real data.  
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Finite-Difference Time- Domain Code: Pressure Solution 

The following code was used to calculate the pressure and intensity field in the water-tissue 

domain. 

  program pressure_nonlinear 

c ********************************************************************* 

c x is transducer axial direction, r is radial 

c Imaxp,Jmaxp: specifies the x,r limits of the total simulation space. 

c Narray: no. of coords in bowlarray file with coords of transducer surf 

c Ntrain: no. of discrete points in source waveform file wtrn10001.trn 

c Nmaxp: time index specifying total HIFU on time. Time=Nmaxp*dtp 

c ifocusp,jfocusp: Coords. of real focus of transducer. j=1 cyl. symmetry 

c ImaxT,JmaxT: specifies the x,r limits for temp space; defined by phantom 

size 

c Iskin: Distance from front face of transducer to phantom front surface 

        implicit none 

        integer Imaxp,Jmaxp,Narray,Ntrain,Nmaxp,ifocusp,jfocusp 

     & ,ImaxT,JmaxT,Iskin 

c ********************************************************************* 

        parameter(Imaxp=3001,Jmaxp=1301,Narray=1271,Ntrain=18000 

     & ,Nmaxp=6000,ifocusp=2601,jfocusp=1,ImaxT=2801 

     & ,JmaxT=1271,Iskin=2001) 

c ********************************************************************* 

c drp,dxp,dtp: Discrete spatial and time steps; set in input file 

bowl_press.in 

c t,timep: t is simulation time, timep is time for pressure calculations; 

same value 

c cp,rhop,alphap,Betap: speed of sound, density, atten coeff, nonlin. 

parameter dummy variable 

c xshock,xtarget,xmaxp: axial dist where shock occurs, axial pos of geometric 

focus,max x distance in simulation space 

c rtarget,rmaxp: radial position of geometric focus, max radial distance in 

simulation space 

c tmaxp: total simulation time 

c pi,period,freq,omega,kwave,lambda: pi,inout wave period,input freq,input 

angular freq,wave number,wavelength 

c tendtoend,Umax,Mach,train,trainmult: travel time across sim space,max 

particle velocity,Mach no,normalized source pressure,pressure amplitude 

c Umax,Mach,train,trainmult: max particle velocity, Mach no,input source 

wave,pressure amplitude 

c pn,pnplus1 etc: pressure and pressure time derivatives as specified in 

discretization of equations for FDTD (see Jinlan these pg 40) 

c cH2Op,rhoH2Op,alphaH2Op,BetaH2Op: sound speed, density, attenuation 

coeff,nonlinearity parameter for water 

c ctissuep,rhotissue,aplhaptissue,Betatissue: same parameters as above for 

phantom or tissue 

c cbloodp,rhoblood,alphablood,Betablood: same parameters as above for blood 

or blood mimic 

c cvesselp,rhovessel,alphavessel,Betavessel: same parameter as above for 

vessel wall 
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c Qn,Q,Qmax,pfocusmax,pfocusmin: time indexed intensity, max intensity,max 

positive pressure at focus,max negative pressure at focus 

c power: acoustic power from source 

c H,SA: height of spherical cap formed by transducer bowl,surface area of 

transducer 

c iradius,oradius,RoC: inner radius of transducer,outer radius of 

transducer,radius of curvature of transducer(geometric focus)  

        doubleprecision drp,dxp,dtp,t,timep(Nmaxp),cp(Imaxp,Jmaxp) 

     & ,rhop(Imaxp,Jmaxp),alphap(Imaxp,Jmaxp),Betap(Imaxp,Jmaxp) 

     & ,xshock,xtarget,xmaxp,rtarget,rmaxp,tmaxp,pi,period,freq,omega 

     & ,kwave,lambda,tendtoend,Umax,Mach,train(Ntrain),trainmult 

     & ,pnplus1(Imaxp,Jmaxp),pn(Imaxp,Jmaxp),pnminus1(Imaxp,Jmaxp) 

     & ,pnminus2(Imaxp,Jmaxp),pnminus3(Imaxp,Jmaxp),q1,q2,q3,q4 

     & ,cH2Op,rhoH2O,alphaH2O,BetaH2O,ctissuep,rhotissue,alphatissue 

     & ,Betatissue,cbloodp,rhoblood,alphablood,Betablood,cvesselp 

     & ,rhovessel,alphavessel,Betavessel 

     & ,Qn,Q(ImaxT,JmaxT),Qmax,pfocusmax,pfocusmin 

     & ,pxmax(Imaxp),pxmin(Imaxp),prmax(Jmaxp),prmin(Jmaxp),power 

     & ,H,SA,iradius,oradius,RoC 

c ********************************************************************* 

c i,j: index used for x direction, index used for r direction 

c itargetp,jtargetp: 

c Nptspercycle: number of points per acoustic cycle in source waveform 

c nendtoend,ielement,jelement: travel time index from end to end of sim 

space,x-coordinate of transducer surface, r-coordinate of transducer surface 

c xorder,Naverage: 

c maxvalip,maxvaljp,minvalip,minvaljp 

c i0,j0: origin of intensity simulation space (phantom region) 

c maxvaliQ,maxvaljQ    

        integer i,j,n,m,itargetp,jtargetp,Nptspercycle,decimspace 

     & ,decimtime,nendtoend,ielement(Narray),jelement(Narray) 

     & ,xorder,Naverage,maxvalip,maxvaljp,minvalip,minvaljp 

     & ,i0,j0,maxvaliQ,maxvaljQ 

c ********************************************************************* 

c infile,trainfile,ptracefile,arrayfile: input parameters file,source wave 

file,output pressure field file,file with coordinates of transducer surface 

c icflag: flag F indicates only water present T indicates phantom present 

c Qfile,Qcoordsfile: output intensity field no coordinates file,output 

intensity field with coordinates file 

c xamplitude,ramplitude: output steady state pressure along x-axis 

file,output pressure along radial axis file 

c parameters: output file to which some simulation parameters are written 

        character*50 infile,trainfile,ptracefile,arrayfile,icflag,Qfile 

     & ,Qcoordsfile 

     & ,xamplitude,ramplitude,parameters 

c ********************************************************************* 

c infile: input file specifying simulation parameters 

        data infile/'bowl_press.in.Sonostat'/ 

c ********************************************************************* 

c subroutine: reads in input parameters from infile 

        call readparams(drp,dxp,dtp,Nptspercycle,Naverage,xorder 

     & ,RoC,oradius,iradius 

     & ,trainmult,cH2Op,rhoH2O,alphaH2O,BetaH2O,ctissuep,rhotissue 

     & ,alphatissue,Betatissue,cbloodp,rhoblood,alphablood,Betablood 
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     & ,cvesselp,rhovessel,alphavessel,Betavessel 

     & ,decimspace,decimtime,icflag,infile,trainfile,ptracefile 

     & ,arrayfile,Qfile,Qcoordsfile,xamplitude,ramplitude,parameters) 

c ********************************************************************* 

c subroutine: specifies bounding coordinates of simulation space regions; 

water, phantom, vessel 

        call icfiles(cp,rhop,alphap,Betap,cH2Op,rhoH2O,alphaH2O 

     & ,BetaH2O,ctissuep,rhotissue,alphatissue,Betatissue 

     & ,cbloodp,rhoblood,alphablood,Betablood,cvesselp,rhovessel 

     & ,alphavessel,Betavessel,Imaxp,Jmaxp,Iskin,icflag 

     & ,ImaxT,JmaxT) 

c ********************************************************************* 

c subroutine: initializes all parameters to be computed in the program to 

zero 

        call initialize(dtp,timep,Nmaxp,Imaxp,Jmaxp,pn,pnplus1 

     & ,pnminus1,pnminus2,pnminus3,Q,ImaxT,JmaxT,pxmax,pxmin 

     & ,prmax,prmin) 

c ********************************************************************* 

c subroutine: reads in input source waveform 

        call readtrain(train,n,Ntrain,trainfile) 

c ********************************************************************* 

c subroutine: reads in coordinates of points on transducer surface 

        call cylarray(Narray,arrayfile,ielement,jelement 

     & ,itargetp,jtargetp) 

c ********************************************************************* 

c subroutine: calculates a set of basic parameters 

        call calcparams(rmaxp,drp,Imaxp,Jmaxp,xmaxp,dxp,tmaxp,dtp 

     & ,Nmaxp,pi,period,Nptspercycle,freq,omega,lambda,kwave 

     & ,tendtoend,nendtoend,trainmult,cH2Op,rhoH2O,BetaH2O 

     & ,itargetp,jtargetp,rtarget,xtarget,q1,q2,q3,q4 

     & ,xorder,xshock,Umax,Mach,power,SA,H,oradius,RoC) 

c ********************************************************************* 

c writes parameters from calcparams to output file parameters 

        print*,'opening output parameters file' 

        open(unit=9,file=parameters,form='formatted',status='unknown') 

        call displayparams(drp,dxp,dtp,freq,lambda,kwave 

     & ,cH2Op,rhoH2O,BetaH2O,Umax,Mach,tmaxp,tendtoend 

     & ,xshock,xorder,Nptspercycle,Nmaxp,nendtoend,Imaxp,Jmaxp 

     & ,decimtime,rmaxp,xmaxp,itargetp,jtargetp,rtarget,xtarget 

     & ,parameters,power,SA,H,RoC,oradius,iradius,trainmult) 

        close(9) 

c ********************************************************************* 

c initializes pfocusmax and pfocusmin to zero 

        pfocusmax=0.d0 

        pfocusmin=0.d0 

c ********************************************************************* 

c opens the ptracefile file: 

        print*,'opening ',ptracefile 

        open(1,file=ptracefile,form='formatted',status='unknown') 

c ********************************************************************* 

        print*,' ------ start time-stepping ------ ' 

c time stepping starts here 

        t=0.d0 

c ********************************************************************* 
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c loops through time using time index n 

        do 11 n=1,Nmaxp 

c ********************************************************************* 

c multiplies input wave train by pressure amplitude; sets source pressures at 

points specified by array coordinates 

        if (n.le.Ntrain) then 

        do 15 m=1,Narray 

        pn(ielement(m),jelement(m))=trainmult*train(n) 

15      continue 

        end if 

c ********************************************************************* 

c subroutine: calculates pressure field using fdtd equations 

c        print*, 'Calling fdtd2s2t' 

        call fdtd2s2t(pn,pnplus1,pnminus1,pnminus2,pnminus3 

     & ,q1,q2,q3,q4,drp,dxp,dtp,Imaxp,Jmaxp 

     & ,cp,rhop,alphap,Betap,omega,Narray,ielement,jelement) 

c ********************************************************************* 

c finds pressure amplitude at the real focus at the last cycle 

        if (Nmaxp-n.le.Nptspercycle)then 

         if (pn(ifocusp,jfocusp).gt.pfocusmax)then  

         pfocusmax=pn(ifocusp,jfocusp) 

         end if 

         if (pn(ifocusp,jfocusp).lt.pfocusmin)then 

         pfocusmin=pn(ifocusp,jfocusp) 

         end if 

        end if 

c ********************************************************************* 

c finds pressure amplitude on axis at the last cycle 

        if (Nmaxp-n.le.Nptspercycle)then 

        do 13 i=1,Imaxp 

         if (pn(i,1).gt.pxmax(i))then 

         pxmax(i)=pn(i,1) 

         end if 

         if (pn(i,1).lt.pxmin(i))then 

         pxmin(i)=pn(i,1) 

         end if 

13      continue 

        do 14 j=1,Jmaxp 

         if (pn(ifocusp,j).gt.prmax(j))then 

         prmax(j)=pn(ifocusp,j) 

         end if 

         if (pn(ifocusp,j).lt.prmin(j))then 

         prmin(j)=pn(ifocusp,j) 

         end if 

14      continue 

        end if 

c ********************************************************************* 

c output pressure snapshot at tendtoend 

       if (n.eq.Nmaxp-1) then 

         do 1000 i=1,Imaxp  

           write(1,110)i,(i-1)*dxp,pn(i,1) 

1000  continue 

       end if 

c outputs pressure at real and geometric focus 
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c       if (MOD(n,2).eq.0)then 

c        write(1,110)t,pn(ifocusp,jfocusp),pn(itargetp,jtargetp) 

c        end if 

c ********************************************************************* 

110  format(3(G12.4, 1x)) 

c ********************************************************************* 

c calculates steady-state power in last ten cycles 

c z=0 for intensity field output set at phantom edge on z-axis. origin 

shifted to i0=i+Iskin where Iskin is the z-coordinate of the phantom edge  

        if (n.ge.(Nmaxp-Naverage).and.n.lt.Nmaxp)then 

       do 20 j=1,JmaxT 

         do 30 i=1,ImaxT-Iskin+1 

         i0=i+Iskin-1 

         Qn=((3.d0*pn(i0,j)-4.d0*pnminus1(i0,j)+pnminus2(i0,j)) 

     &   /(2.d0*dtp))**2/(omega*omega*rhop(i0,j)*cp(i0,j)) 

         Q(i,j)=Q(i,j)+Qn 

30       continue 

20      continue 

        end if 

c ********************************************************************* 

c updates pressure time arrays in time 

        call updatep(Imaxp,Jmaxp,pn,pnplus1,pnminus1 

     & ,pnminus2,pnminus3) 

c ********************************************************************* 

c prints time index to screen and steps through time by time step unit dtp 

c        print*,'n=',n 

        if (mod(n,100).eq.0) then 

        print*,'timestep=',n 

        end if 

        t=t+dtp 

11     continue 

c ********************************************************************* 

        close(1) 

        print*,'finish pressure calculation' 

c ********************************************************************* 

c calculates steady-state intensity field from power 

        do 40 j=1,JmaxT 

         do 45 i=1,ImaxT 

         Q(i,j)=Q(i,j)/DBLE(Naverage) 

45       continue 

40      continue 

c ********************************************************************* 

c writes steady-state pressure amplitude along x and r to files 

xamplitude,ramplitude 

        open(3,file=xamplitude,form='formatted',status='unknown') 

        do 48 i=1,Imaxp 

        write(3,110) (i-1)*dxp,pxmax(i),pxmin(i) 

48      continue 

        close(3) 

        open(4,file=ramplitude,form='formatted',status='unknown') 

        do 49 j=1,Jmaxp 

        write(4,110) (j-1)*drp,prmax(j),prmin(j) 

49      continue 

        close(4) 
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c ********************************************************************* 

c writes steady-state intensity field to files Qfile and Qcoordsfile 

        open(5,file=Qfile,form='formatted',status='unknown') 

        open(15,file=Qcoordsfile,form='formatted',status='unknown') 

        do 50 j=1,JmaxT 

         do 55 i=1,ImaxT 

         write(5,*) Q(i,j) 

         write(15,110) (i-1)*dxp,(j-1)*drp,Q(i,j) 

55       continue 

50      continue 

        close(5) 

        close(15) 

c ********************************************************************* 

c finds location of maximum intensity 

  call maxQ(Q,ImaxT,JmaxT,Qmax,maxvaliQ,maxvaljQ) 

c ********************************************************************* 

c displays the pressure at focus 

        print 111,trainmult,pfocusmax,pfocusmin 

111  format ('P0=',e14.7,' pfocusmax=',e14.7,' pfocusmin=',e14.7) 

c ********************************************************************* 

c displays where the maximum intensity is: 

        print 112,trainmult,Qmax,maxvaliQ,maxvaljQ 

112  format ('P0=',e14.7,' Qmax=',e14.7,' @ (',I4,' ',I4,')') 

c ********************************************************************* 

        print*,'......closed acoustic tracefile',ptracefile 

        print*,'time now= ',t*1.d6,' microseconds' 

c ********************************************************************* 

        print*,'%%%%%%%%%%%%%%%%%%%%%% DONE 

     &%%%%%%%%%%%%%%%%%%%%%%%%' 

     end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

        subroutine readparams(drp,dxp,dtp,Nptspercycle,Naverage,xorder 

     & ,RoC,oradius,iradius 

     & ,trainmult,cH2Op,rhoH2O,alphaH2O,BetaH2O,ctissuep,rhotissue 

     & ,alphatissue,Betatissue,cbloodp,rhoblood,alphablood,Betablood 

     & ,cvesselp,rhovessel,alphavessel,Betavessel 

     & ,decimspace,decimtime,icflag,infile,trainfile,ptracefile 

     & ,arrayfile,Qfile,Qcoordsfile,xamplitude,ramplitude,parameters) 

c ********************************************************************* 

        implicit none 

c ********************************************************************* 

        doubleprecision drp,dxp,dtp,trainmult,RoC,oradius,iradius 

     & ,cH2Op,rhoH2O,alphaH2O 

     & ,BetaH2O,ctissuep,rhotissue,alphatissue,Betatissue 

     & ,cbloodp,rhoblood,alphablood,Betablood,cvesselp,rhovessel 

     & ,alphavessel,Betavessel 

c ********************************************************************* 

        integer Nptspercycle,xorder,decimspace,decimtime,Naverage 

c ********************************************************************* 

        character*50 infile,trainfile,ptracefile,arrayfile,icflag,Qfile 

     & ,Qcoordsfile 

     & ,xamplitude,ramplitude,parameters 

c ********************************************************************* 
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        print*,'===called SUBROUTINE READPARAMS' 

c read the pressure's input parameters from input file 

        open(unit=1,file=infile,status='unknown') 

        print*,'opened input file ',infile 

        read(1,*)drp,dxp,dtp,Nptspercycle,xorder 

        read(1,*)RoC,oradius,iradius 

        read(1,*)trainfile 

        read(1,*)ptracefile 

        read(1,*)trainmult 

        read(1,*)icflag,arrayfile 

        read(1,*)cH2Op,rhoH2O,alphaH2O,BetaH2O 

        read(1,*)ctissuep,rhotissue,alphatissue,Betatissue 

        read(1,*)cbloodp,rhoblood,alphablood,Betablood 

        read(1,*)cvesselp,rhovessel,alphavessel,Betavessel 

        read(1,*)decimspace,decimtime,Naverage 

        read(1,*)Qfile 

        read(1,*)Qcoordsfile 

        read(1,*)xamplitude 

        read(1,*)ramplitude 

        read(1,*)parameters 

        close(1) 

        print*,'closed input file ',infile 

        print*,'Ending subroutine readparams' 

c ********************************************************************* 

        return 

        end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c SUBROUTINE ICFILES 

c ********************************************************************* 

        subroutine icfiles(cp,rhop,alphap,Betap,cH2Op,rhoH2O,alphaH2O 

     & ,BetaH2O,ctissuep,rhotissue,alphatissue,Betatissue 

     & ,cbloodp,rhoblood,alphablood,Betablood,cvesselp,rhovessel 

     & ,alphavessel,Betavessel,Imaxp,Jmaxp,Iskin,icflag 

     & ,ImaxT,JmaxT) 

c ********************************************************************* 

        implicit none 

c ********************************************************************* 

        doubleprecision cp(Imaxp,Jmaxp),rhop(Imaxp,Jmaxp) 

     & ,alphap(Imaxp,Jmaxp),Betap(Imaxp,Jmaxp),cH2Op,rhoH2O 

     & ,ctissuep,rhotissue,alphatissue,Betatissue 

     & ,BetaH2O,alphaH2O,cbloodp,rhoblood,alphablood,Betablood 

     & ,cvesselp,rhovessel,alphavessel,Betavessel 

c ********************************************************************* 

        integer i,j,Imaxp,Jmaxp,Iskin,ImaxT,JmaxT 

c ********************************************************************* 

        character*50 icflag 

c ********************************************************************* 

        print*,'>>>>>>>>> beginning subroutine icfiles' 

        do 10 j=1,Jmaxp 

         do 20 i=1,Imaxp 

         cp(i,j)=cH2Op 

         rhop(i,j)=rhoH2O 

         alphap(i,j)=alphaH2O 
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         Betap(i,j)=BetaH2O 

20       continue 

10      continue 

c ********************************************************************* 

c icflag value specifies if the simulation domain contains water only or if 

it contains a tissue/phantom region 

        if (icflag.eq.'F')then 

        print*,'using homogen. H2O Ics' 

        print*,'Properties of fluid (water):' 

        print*,' cH2O= ',cH2Op 

        print*,' rhoH2O= ',rhoH2O 

        print*,' alphaH2O= ',alphaH2O 

        print*,' BetaH2O= ',BetaH2O 

        print*,'Ending subroutine icfiles'   

        else 

        print*,'using inhomogen. H2O,PPO,phantom,blood Ics' 

c ********************************************************************* 

c specifices coordinates of tissue/phantom regions and tissue/phantom 

properties in this region 

        do 30 i=Iskin,2601 

         do 60 j=1,JmaxT 

         cp(i,j)=ctissuep 

         rhop(i,j)=rhotissue 

         alphap(i,j)=alphatissue 

         Betap(i,j)=Betatissue 

60       continue 

30      continue 

        print*,'Properties of fluid (tissue):' 

        print*,' ctissuep= ',ctissuep 

        print*,' rhotissue= ',rhotissue 

        print*,' alphatissue= ',alphatissue 

        print*,' Betatissue= ',Betatissue 

        print*,'Ending subroutine icfiles' 

c ********************************************************************* 

        end if 

        return 

        end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

        subroutine initialize(dtp,timep,Nmaxp,Imaxp,Jmaxp,pn,pnplus1 

     & ,pnminus1,pnminus2,pnminus3,Q,ImaxT,JmaxT,pxmax,pxmin 

     & ,prmax,prmin) 

c ********************************************************************* 

        implicit none 

c ********************************************************************* 

        integer n,Nmaxp,i,j,Imaxp,Jmaxp,ImaxT,JmaxT 

c ********************************************************************* 

        doubleprecision dtp,timep(Nmaxp),pn(Imaxp,Jmaxp) 

     & ,pnplus1(Imaxp,Jmaxp),pnminus1(Imaxp,Jmaxp) 

     & ,pnminus2(Imaxp,Jmaxp),pnminus3(Imaxp,Jmaxp),Q(ImaxT,JmaxT) 

     & ,pxmax(Imaxp),pxmin(Imaxp),prmax(Jmaxp),prmin(Jmaxp) 

c ********************************************************************* 

        print*,'===called SUBROUTINE INITIALIZE' 

c ********************************************************************* 
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        print*,'...initializing pressure timewise arrays' 

        do 10 n=1,Nmaxp 

        timep(n)=dtp*(n-1) 

10      continue 

c initialize pressure field to zero everywhere: 

        print*,'...initializing press. fields' 

        do 20 i=1,Imaxp 

        pxmax(i)=0.d0 

        pxmin(i)=0.d0 

         do 30 j=1,Jmaxp 

         pn(i,j)=0.d0 

         pnplus1(i,j)=0.d0 

         pnminus1(i,j)=0.d0 

         pnminus2(i,j)=0.d0 

         pnminus3(i,j)=0.d0 

30       continue 

20      continue 

       do 40 j=1,Jmaxp 

       prmax(j)=0.d0 

       prmin(j)=0.d0 

40     continue 

c ********************************************************************* 

       do 25 j=1,JmaxT 

        do 35 i=1,ImaxT 

        Q(i,j)=0.d0 

35      continue 

25     continue 

c ********************************************************************* 

       print*,'Ending subroutine initialize' 

       return 

       end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

       subroutine readtrain(train,n,Ntrain,trainfile) 

       implicit none 

       doubleprecision train(Ntrain) 

       integer n,Ntrain 

       character*50 trainfile 

       print*,'===called SUBROUTINE READTRAIN' 

c read in wave train data file: 

       print*,'...reading source condition ',trainfile 

       open(unit=1,file=trainfile,status='unknown') 

       do 10 n=1,Ntrain 

       read(1,*) train(n) 

10     continue 

       close(1) 

       print*,'......closed ',trainfile 

       print*,'Ending subroutine readtrain' 

       return 

       end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c SUBROUTINE cylarray 

c ********************************************************************* 



109 

 

       subroutine cylarray(Narray,arrayfile,ielement,jelement 

     & ,itargetp,jtargetp) 

c ********************************************************************* 

       implicit none 

c ********************************************************************* 

       integer n,Narray,ielement(Narray),jelement(Narray) 

     & ,itargetp,jtargetp 

c ********************************************************************* 

       doubleprecision itargetp0,jtargetp0,ielement0,jelement0 

c ********************************************************************* 

       character*50 arrayfile 

c ********************************************************************* 

       print*,'>>>>>>>>>> CALLED SUBROUTINE cylarray' 

c ********************************************************************* 

c line 1 of point source coordinates lists coordinates of geometric focus 

c subsequent lines indicate coordinates of point sources on transducer 

surface 

       open(1,file=arrayfile,form='formatted',status='unknown') 

       read(1,*) itargetp0,jtargetp0 

       itargetp = INT(itargetp0) 

       jtargetp=INT(jtargetp0) 

       do 20 n=1,Narray 

       read(1,*) ielement0, jelement0 

       ielement(n)=INT(ielement0) 

       jelement(n)=INT(jelement0) 

20     continue 

       close(1) 

c ********************************************************************* 

       return 

       end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

       subroutine calcparams(rmaxp,drp,Imaxp,Jmaxp,xmaxp,dxp,tmaxp,dtp 

     & ,Nmaxp,pi,period,Nptspercycle,freq,omega,lambda,kwave 

     & ,tendtoend,nendtoend,trainmult,cH2Op,rhoH2O,BetaH2O 

     & ,itargetp,jtargetp,rtarget,xtarget,q1,q2,q3,q4 

     & ,xorder,xshock,Umax,Mach,power,SA,H,oradius,RoC) 

c ********************************************************************* 

        implicit none 

c ********************************************************************* 

        doubleprecision rmaxp,drp,xmaxp,dxp,tmaxp,dtp,pi,period,freq 

     & ,omega,lambda,kwave,tendtoend,Umax,trainmult,Mach 

     & ,xshock,rtarget,xtarget,cH2Op,rhoH2O,BetaH2O 

     & ,q1,q2,q3,q4,power,SA,H,oradius,RoC 

c ********************************************************************* 

        integer Imaxp,Jmaxp,Nmaxp,Nptspercycle,nendtoend 

     & ,itargetp,jtargetp,xorder,i,j 

c ********************************************************************* 

        print*,'===called SUBROUTINE CALCPARAMS' 

c ********************************************************************* 

c calculate some basic run parameters: 

        rmaxp=drp*DBLE(Jmaxp-1) 

        xmaxp=dxp*DBLE(Imaxp-1) 

        tmaxp=dtp*DBLE(Nmaxp-1) 
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        pi=ACOS(-1.d0) 

        period=dtp*DBLE(Nptspercycle) 

        freq=1.d0/period 

        omega=2.d0*pi*freq 

        lambda=cH2Op*period 

        kwave=omega/cH2Op 

        tendtoend=xmaxp/cH2Op 

        nendtoend=INT(tendtoend/dtp) 

        Umax = trainmult/(rhoH2O*cH2Op) 

        Mach = Umax/cH2Op 

        xshock = 1.d0/(BetaH2O*Mach*kwave) 

        H=RoC*(1-COS(ASIN(oradius/RoC))) 

        SA=2*pi*RoC*H 

        power=trainmult*trainmult*SA/(2*rhoH2O*cH2Op) 

c ********************************************************************* 

c calculate where all the x's are at: 

        xtarget=dxp*DBLE(itargetp-1) 

        rtarget=drp*DBLE(jtargetp-1) 

c ********************************************************************* 

c these q values are used in the fdtd equations (see Jinlan thesis)  

        q1=dtp*dtp/(drp*drp) 

        q2=dtp*dtp/(2.d0*drp) 

        q3=dtp*dtp/(dxp*dxp) 

        q4=2.d0/(omega*omega*dtp) 

c ********************************************************************* 

        print*,'Ending subroutine calcparams' 

        return 

        end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

        subroutine displayparams(drp,dxp,dtp,freq,lambda,kwave 

     & ,cH2Op,rhoH2O,BetaH2O,Umax,Mach,tmaxp,tendtoend 

     & ,xshock,xorder,Nptspercycle,Nmaxp,nendtoend,Imaxp,Jmaxp 

     & ,decimtime,rmaxp,xmaxp,itargetp,jtargetp,rtarget,xtarget 

     & ,parameters,power,SA,H,RoC,oradius,iradius,trainmult) 

c ********************************************************************* 

        implicit none 

c *********************************************************************  

        doubleprecision drp,dxp,dtp,freq,lambda,kwave 

     & ,cH2Op,rhoH2O,BetaH2O,Umax,Mach 

     & ,tmaxp,tendtoend,xshock,rmaxp,xmaxp,rtarget,xtarget,power,SA,H 

     & ,RoC,oradius,iradius,trainmult 

c ********************************************************************* 

        integer xorder,Nptspercycle,decimtime 

     & ,Nmaxp,nendtoend,Imaxp,Jmaxp,itargetp,jtargetp 

      

        character*50 parameters 

c ********************************************************************* 

        print*,'===called SUBROUTINE DISPLAYPARAMS' 

c ********************************************************************* 

        print*,'opened output parameters file' 

        write(9,102) trainmult 

102     format('Pressure amplitude=',ES11.4,' Pa') 

        write(9,99) power 
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99      format('power',G12.4,'W') 

        write(9,100) H 

100     format('H',G12.4,'m') 

        write(9,101) SA 

101     format('Surface area',G12.4,'m') 

        if (xorder.eq.4) then 

        write(9,103) xorder 

103     format('calculation is order',I8) 

        else 

        write(9,104) xorder 

104     format('calculation is order',I8) 

        end if 

        write(9,10) dxp*1.d3 

10      format(' ','dx =',G12.4,' mm') 

        write(9,15) drp*1.d3 

15      format(' ','dr =',G12.4,' mm') 

        write(9,20) dtp*1.d6 

20      format(' ','dt =',G12.4,' microsec') 

        write(9,40) freq/1.d6 

40      format(' ','frequency =',G12.4,' MHz') 

        write(9,50) Nptspercycle 

50      format(' ','no. of samples/period in time =',I8) 

        write(9,60) INT(lambda/dxp) 

60      format(' ','no. of samples/period in space =',I8) 

        write(9,70) lambda*1.d3 

70      format(' ','wavelength in 1500 water=',G10.4,' mm') 

        write(9,80) kwave 

80      format(' ','wave number k =',G10.4) 

        write(9,84) cH2Op 

84      format(' ','cH2O =',G12.4,' m/sec') 

        write(9,86) rhoH2O 

86      format(' ','rhoH2O =',G12.4,' kg/m^3') 

        write(9,90) BetaH2O 

90      format(' ','BetaH2O =',G12.4) 

        write(9,200) Umax 

200  format('max. particle velocity =',G12.4,' m/sec') 

        write(9,210) Mach 

210  format('source acoustic Mach no. is about ',G12.4) 

        write(9,230) tendtoend*1.d6,nendtoend 

230  format('signal can go from end to end in ',F8.4,' microsec' 

     & ,' taking',I12,' steps') 

        write(9,235) tmaxp*1.d6,Nmaxp 

235  format('calculation tmax is at t =',G12.4,'microsec' 

     & ,' and Nmax=',I8) 

        write(9,240) xtarget*100.d0, itargetp 

240  format('focus is at x =',G12.4,'cm and i=',I8) 

        write(9,245) rtarget*100.d0, jtargetp 

245  format('focus is at r =',G12.4,'cm and j=',I8) 

        write(9,250) xmaxp*100.d0,Imaxp 

250  format('calculation xmax is at x =',G12.4,'cm and i=',I8) 

        write(9,260) rmaxp*100.d0,Jmaxp 

260  format('calculation rmax is at r =',G12.4,'cm and j=',I8) 

        write(9,270) xshock*100.d0,INT(xshock/dxp) 

270  format('shock forms at x= ',G12.4,'cm at i=',I12) 
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        write(9,275) xshock*1.d6/cH2Op,INT((xshock/cH2Op)/dtp) 

275  format('shock forms at tshock = ',G12.4,'microsec' 

     & ,' at Nshock=',I12) 

c ********************************************************************* 

        print*,'Ending subroutine displayparams' 

        return 

        end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

        subroutine fdtd2s2t(pn,pnplus1,pnminus1,pnminus2,pnminus3 

     & ,q1,q2,q3,q4,drp,dxp,dtp,Imaxp,Jmaxp 

     & ,cp,rhop,alphap,Betap,omega,Narray,ielement,jelement) 

c ********************************************************************* 

        implicit none 

c ********************************************************************* 

        doubleprecision pn(Imaxp,Jmaxp),pnplus1(Imaxp,Jmaxp) 

     & ,pnminus1(Imaxp,Jmaxp),pnminus2(Imaxp,Jmaxp) 

     & ,pnminus3(Imaxp,Jmaxp),z1,z2,z3,z4,z5,z6,z7,drp,dxp,dtp 

     & ,q1,q2,q3,q4,cp(Imaxp,Jmaxp),rhop(Imaxp,Jmaxp) 

     & ,alphap(Imaxp,Jmaxp),Betap(Imaxp,Jmaxp),omega,r 

c ********************************************************************* 

        integer i,j,Imaxp,Jmaxp,Narray,ielement(Narray) 

     & ,jelement(Narray),I0 

c ********************************************************************* 

c Puts in first order Mur BC's at r=rmax, ie, j=Jmax (see Jinlan these pg 43) 

        do 310 i=1,Imaxp 

        pn(i,Jmaxp)=pnminus1(i,Jmaxp-1)+((cp(i,Jmaxp)*dtp-drp)/ 

     &  (cp(i,Jmaxp)*dtp+drp))*(pn(i,Jmaxp-1)-pnminus1(i,Jmaxp)) 

310  continue 

c ********************************************************************* 

c Puts in first order Mur BC's at x=xmax, ie, i=Imax (see Jinlan these pg 43) 

        do 300 j=1,Jmaxp 

        pn(Imaxp,j)=pnminus1(Imaxp-1,j)+((cp(Imaxp,j)*dtp-dxp)/ 

     &  (cp(Imaxp,j)*dtp+dxp))*(pn(Imaxp-1,j)-pnminus1(Imaxp,j)) 

300  continue 

c ********************************************************************* 

c Puts in symmetric BC's at j=1, r=0, makes z2=0 and the 1/r problem vanishes 

(see Jinlan these pg 43) 

        do 25 i=2,Imaxp-1 

        z1=2.d0*(pn(i,2)-pn(i,1)) 

        z3=pn(i+1,1)-2.d0*pn(i,1)+pn(i-1,1) 

        z4=pn(i,1)-3.d0*pnminus1(i,1)+3.d0*pnminus2(i,1)-pnminus3(i,1) 

        z5=pn(i,1)*(2.d0*pn(i,1)-5.d0*pnminus1(i,1) 

     & +4.d0*pnminus2(i,1)-pnminus3(i,1)) 

        z6=(3.d0*pn(i,1)-4.d0*pnminus1(i,1)+pnminus2(i,1))**2 

        z7=-2.d0*pn(i,1)+pnminus1(i,1) 

        pnplus1(i,1)= (cp(i,1)*cp(i,1))*(q1*z1+q3*z3) 

     & +cp(i,1)*alphap(i,1)*q4*z4+(2.d0*Betap(i,1) 

     & /(rhop(i,1)*cp(i,1)*cp(i,1)))*(z5+z6/4.d0)-z7 

25      continue 

c ********************************************************************* 

c Puts in first order Mur BC's at i=ielement(Narray) & i=ielement(1) 

        i=ielement(Narray) 

        do 30 j=jelement(Narray)+1,Jmaxp-1 
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        pn(i,j)=pnminus1(i+1,j)+((cp(i,j)*dtp-dxp)/ 

     &  (cp(i,j)*dtp+dxp))*(pn(i+1,j)-pnminus1(i,j)) 

30      continue 

c ********************************************************************* 

c fdtd equations inside cells (see JInlan thesis pg 40) 

        do 10 j=2,Jmaxp-1 

        r=(j-1)*drp 

         if (j.lt.jelement(Narray)) then 

         I0=ielement(j)+1 

         else 

         I0=ielement(Narray)+1 

         end if 

         do 20 i=I0,Imaxp-1 

         z1=pn(i,j+1)-2.d0*pn(i,j)+pn(i,j-1) 

         z2=pn(i,j+1)-pn(i,j-1) 

         z3=pn(i+1,j)-2.d0*pn(i,j)+pn(i-1,j) 

         z4=pn(i,j)-3.d0*pnminus1(i,j)+3.d0*pnminus2(i,j)-pnminus3(i,j) 

         z5=pn(i,j)*(2.d0*pn(i,j)-5.d0*pnminus1(i,j) 

     &  +4.d0*pnminus2(i,j)-pnminus3(i,j)) 

       z6=(3.d0*pn(i,j)-4.d0*pnminus1(i,j)+pnminus2(i,j))**2 

         z7=-2.d0*pn(i,j)+pnminus1(i,j) 

         pnplus1(i,j)=(cp(i,j)*cp(i,j))*(q1*z1+q2*z2/r+q3*z3) 

     &  +cp(i,j)*alphap(i,j)*q4*z4+(2.d0*Betap(i,j) 

     &  /(rhop(i,j)*cp(i,j)*cp(i,j)))*(z5+z6/4.d0)-z7 

20       continue 

10      continue 

c       print*,'Ending subroutine fdtd2s2t' 

        return 

        end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

        subroutine updatep(Imax,Jmax,pn,pnplus1,pnminus1 

     & ,pnminus2,pnminus3) 

c ********************************************************************* 

        implicit none 

c ********************************************************************* 

        doubleprecision pn(Imax,Jmax),pnplus1(Imax,Jmax) 

     & ,pnminus1(Imax,Jmax),pnminus2(Imax,Jmax),pnminus3(Imax,Jmax) 

c ********************************************************************* 

        integer i,j,Imax,Jmax 

c ********************************************************************* 

c UPDATES ARRAYS IN TIME AND WRITE PRESSURE TO OUTPUT DATA FILE: 

        do 10 j=1,Jmax 

         do 20 i=1,Imax 

         pnminus3(i,j)=pnminus2(i,j) 

         pnminus2(i,j)=pnminus1(i,j) 

         pnminus1(i,j)=pn(i,j) 

         pn(i,j)=pnplus1(i,j) 

20       continue 

10      continue 

c ********************************************************************* 

        return 

        end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

        subroutine maxQ(Q,Imax,Jmax,Qmax,maxvali,maxvalj) 

        doubleprecision Q(Imax,Jmax),Qmax 

        integer i,j,Imax,Jmax,maxvali,maxvalj 

        Qmax=Q(1,1) 

        maxvalj=1 

c finds maximum intensity along acoustic axis 

        do 10 i=1,Imax 

         if(Q(i,1).gt.Qmax)then 

         Qmax=Q(i,1) 

         maxvali=i 

         end if 

10      continue 

        return 

        end 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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Matlab code for generating the simulation indices parameters 

 

%Calculates indices corresponding to spatial coordinates for FDTD 
%pressure simulation domain based on size of spatial steps and size of 

domain. 

  
clear all; 

  
%Frequency 
frequency=input('Frequency (MHz): ');                                        
frequency=frequency*1e6; 
%Speed of sound in water 
c=1500;                 
%Wavelength of source signal (m) 
wavelength=c/(frequency);                                                    

  
%Number of spatial grid points per wavelength (10<N<12) 
N=10;            
%Calculated size of axial grid spacing 
dxp=wavelength/N 
%Size of axial grid spacing (1 sig fig, floored) 
dxp=input('Based on the calculation, user selected (floored) dxp=? :'); 
%Calculated size of radial grid spacing 
drp=wavelength/N 
%Size of radial grid spacing (1 sig fig, floored) 
drp=input('Based on the calculation, user selected (floored) drp=? :'); 

  
%CFL number, determines time step for simulation stability, 0.25>CFL<0.5 
CFL=0.5;                                                                    
%Calculated size of time step 
dtp=CFL*dxp/c                                                               
%Size of time step (1 sig fig, floored) 
dtp=input('Based on the calculation, user selected (floored) dtp=? :') 
%Numberof points per cycle in source signal waveform 
Nptspercycle=round(1/(dtp*frequency)); 

  
xmaxp=input('Max x coordinate of total simulation space (cm): ');  
xmaxp=xmaxp*1e-2; 
%Maximum i index (axial) of total simulation space 
Imaxp=round(xmaxp/dxp)+1; 
xmaxT=input('Max x coordinate of temperature space (cm): ');  
xmaxT=xmaxT*1e-2; 
%Maximum i index of temperature space 
ImaxT=round(xmaxT/dxp)+1;                                                  
rmaxp=input('Max r coordinate of total simulation space (cm): ');  
rmaxp=rmaxp*1e-2; 
%Maximum j index (radial) of total simulation space 
Jmaxp=round(rmaxp/drp)+1;                                                  
rmaxT=input('Max r coodinate of temperature space (cm): '); 
rmaxT=rmaxT*1e-2;    
%Maximum j index of temperature space 
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JmaxT=round(rmaxT/drp)+1;                                                   

  
xfocus=input('x coordinate of geometric focus (cm): ');                           
xfocus=xfocus*1e-2; 
%i index of geometric focus 
ifocusp=round(xfocus/dxp)+1;                                                
rfocus=input('r coordinate of geometric focus (cm): ');                           
rfocus=rfocus*1e-2; 
%j index of geometric focus 
jfocusp=round(rfocus/drp)+1;                                               

  
xskin=input('Distance from transducer to phantom surface (cm): '); 
xskin=xskin*1e-2; 
%i index of distance to phantom surface (axial) 
Iskin=round(xskin/dxp)+1;                                                    

  
%Time for acoustic signal to travel through total simulation space 
tendtoend=xmaxp/c;                                                        
%Index for tendendtoend 
tendtoendindex=tendtoend/dtp;                                               

  
%Frequency dependent attenuation (Np/m/MHz) 
alphaw=14e-15*frequency^2; 
if frequency==1.0e6 
    alphap=0.025; 
elseif frequency==3.0e6 
    alphap=6.6; 
elseif frequency==9.0e6 
    alphap=59.4; 
end 

             

  
m=1:8; 
n=1:4; 

  
S=struct('dxp',dxp,'drp',drp,'dtp',dtp,'Nptspercycle',Nptspercycle,'Imaxp',Im

axp,'Jmaxp',Jmaxp,'ImaxT',ImaxT,'JmaxT',JmaxT,'Iskin',Iskin,'ifocusp',ifocusp

,'jfocusp',jfocusp,'tendtoendindex',tendtoendindex,'alphap',alphap,'alphaw',a

lphaw) 
save simindicespressure.mat 
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Matlab code for generating the transducer coordinate indices  

 

% the length unit here is mm 
% r --- j; z --- i; array indexes (i, j) begin from 1 

  
clear all; 

  
%R - radius of curvature; a - transducer radius 
R=130.0e-3; a=63.5e-3; 
%dr - radial grid spacing; dz - axial grid spacing  
dr=1.5e-4; dz=1.5e-4; 
%N - number of coordinates on bowl surface cross section 
N=round(a/dr)+1; 
%transducer radius calculated from discretized variables 
rtot=(N-1)*dr; 

  
%Creates radial and axial coordinates of points of transducer surface 
r=0:dr:rtot; 
for n=1:N 
    bowlarrayr(n)=r(n); 
    theta(n)=asin(r(n)/R); 
    bowlarrayz(n)=R-R*cos(theta(n)); 
end 

  
bowlarrayj=(round(bowlarrayr/dr))'+1; 
bowlarrayi=(round(bowlarrayz/dz))'+1; 
focusr=0; focusz=R; 
focusj=round(focusr/dr)+1; focusi=round(focusz/dz)+1; 
arrayn=(1:N)'; 
%Creates variable with axial, radial indices of transducer surface coords 
bowlarray=[focusi focusj 
           bowlarrayi bowlarrayj]; 
plot(bowlarray(:,1),bowlarray(:,2),'bs','linewidth',1), axis equal, grid 
hold on, plot(focusi, focusj,'r*'), hold off 
text(focusi+30, focusj-30, 'FOCUS') 
title('Cylindrical bowl configuration') 
xlabel('z grid'), ylabel('r grid') 
%Creates dat file with indices of focus in first line and indices of 
%transducer surface coordinates following 
save bowlarray_Sonostat.dat bowlarray -asc 
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Matlab code for generating the source waveforms  

 

%Generates a set of discrete points producing sinusoidal wave 

 
%Speed of sound in water (m/s) 
c=1500; 
%Maximum axial dimension of simulation space 
%xmaxp=6e-2; 
xmaxp=input('Maximum x dimension (axial) of total simulation space (cm)= '); 
xmaxp=xmaxp*1e-2; 
%Source signal frequency (Hz) 
frequency=input('Frequency of source (MHz)= ');                                                                    
frequency=frequency*1e6; 
dtp=input('Time step= '); 
%Source signal wavelength (m) 
wavelength=c/frequency; 
%Number of points per cycle in source signal waveform 
Nptspercycle=round(1/(dtp*frequency));                                                                        
%Total number of cycles (number of cycles filling space for CW signal) 
T=xmaxp/wavelength; 
%Total cycles 
T=3*T 
%Total number of discretized points for sinusoidal signal 
M=Nptspercycle*T; 
%Size of discretization 
D=2*pi/(Nptspercycle-1);        

  
%Angle in radians 
theta(1)=0; 
%Sine of angle in radians 
train(1)=sin(theta(1)); 

  
%Generates discretized sinusoidal wave 
for i=2:M 
    theta(i)=theta(i-1)+D; 
    train(i)=sin(theta(i)); 
end 

  
Sineplot=figure; 
plot(train); 
title('Sinusoidal wave') 
xlabel('Number of discrete points'), ylabel('Amplitude') 
train=train'; 

  
i=1:M; 
time=i*dtp; 
spaceplot=figure 
plot(time,train); 

  
%Saves discretized waveform to file 
save wtrn.trn train -ascii;
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