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ABSTRACT 

The acousto-electric impedance  fZ  of a ferroelectric phononic superlattice (FPS) is 

investigated. The analytical derivation of  fZ  and its phase )( f  reveal that both are 

functions of physical parameters such as the electromechanical coupling coefficient, the 

mechanical quality factor, the domain length and the phase velocity of the plate acoustic waves 

(PAW). Mathematica code is produced that allows for modeling  fZ  and )( f  in a two 

dimensional FPS. It is observed that  fZ  depends on the number of domains in the FPS 

structure. Fewer domains in the structure might minimize  fZ  or make it approach zero at 

certain conditions. 

A series of experiments is performed to investigate the impedance and its phase shift for 

a ZX-cut periodically poled lithium niobate in the frequency range 3-4 MHz. The experimental 

results of studying  fZ  and ( ) are in a good agreement with the developed theory. 

Experiments reveal the stopband, when an acoustic wavelength is close to a double-length of 

ferroelectric domain within the inversely poled structure, in which  fZ  has minima close to it. 

Furthermore, these experiments show that the displacement components of the acoustic mode are 

decoupled in the transition zone, a small frequency range that extends a few kilohertz from the 

boundary of the stopband, and the amplitude of those decoupled components goes to zero in that 

zone. The equations obtained, the computation codes developed, and the experimental 

investigations can be applied to the ultrasonic transducers and the field of energy harvesting
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CHAPTER I   INTRODUCTION 

 

 

Historically, the motivation for research into acousto-electric phenomena was radar 

applications for military purposes. At that time, the most important requirement on the design of 

acoustic delay line devices was the highest performance with less focus on price and mass 

manufacturability. With the transition from military applications to the commercial and customer 

sector, the requirements imposed on the design of acousto-electric solid state devices shifted 

towards mass production at low cost while keeping an acceptable performance. Today’s 

commercially available acousto-electric devices, such as transducers and oscillators, are based on 

two challenging technologies, namely The Surface and Bulk Acoustic Wave resonators, SAW 

and BAW, respectively. Both use piezoelectric materials and metal electrodes as transducers to 

convert electrical energy into mechanical and vice versa, while employing different types of 

acoustic waves in solids. The SAW resonators take advantage of surface acoustic waves 

propagating on the surface of the material while BAW resonators employ bulk acoustic waves 

propagating in the bulk of a crystal. The research in the field of acousto-electric phenomena is in 

continuous progress. New applications challenged new requirements on device performance 

leading to new solutions. Moreover, new devices can introduce higher versatility and lead to 

novel applications. As a result of recent research, a new type of acoustic resonator has emerged: 

the thin film plate acoustic resonator, employing another type of acoustic waves, Lamb waves, 

which are known as a class of guided waves in plates with free boundaries.       
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Lamb waves, sometimes called plate acoustic waves (PAW), are elastic waves that 

propagate in plates of finite thickness. A given plate can support a number of these waves 

depending on the value of the ratio h , where h  is the plate thickness and   is the acoustic 

wavelength [1]. In recent years there has been a growing interest in using PAW for a variety of 

physical, chemical, and biological sensors [2, 3]. The operating principle of lamb wave sensors is 

similar to the more extensively studied surface acoustic wave (SAW) sensors [4]. However, 

important advantages of PAW over SAW sensors are obtained by utilizing the lowest-order 

antisymmetric Lamb wave mode, the A0  mode, propagating in thin plates with thickness less 

than one-millimeter. These advantages include higher sensitivity, possible lower operating 

frequency, faster response, and ability to operate in liquid media. 

Multidomain ferroelectrics have been the subject of fundamental physical investigations 

and possible applications since the early publications on fabrication of the periodic inversely 

poled structures over the past three decades [5-8]. The acoustic superlattice is proposed as a 

ferroelectric single crystal with 180o domains arranged periodically with a periodicity in the 

range of ultrasonic waves [9-11]. Lithium niobate is a well-known ferroelectric crystal that 

possesses superior piezoelectric properties such as: a high electromechanical coupling 

coefficient, a low transmission loss, and a high chemical stability, suitable for microwave 

acoustic applications. The domain walls in Periodically Poled Lithium Niobate (PPLN) have 

been reported to be responsible for nonlinear ultrasonic attenuation [12]. Acoustic waves in thin 

piezoelectric plates have been attracting much attention recently [2, 13-25]. The existence of an 

acoustic stop band in superlattices has been shown for different composite structures [26, 27] and in 

LiNbO3 crystals [28]. A specific acoustic plate mode could not propagate within the frequencies 

of the acoustic stopband, due to the total destructive interference by the interdomain walls [29]. 
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When the acoustic wave length is close to the length of two inversely poled domains (2d), so-

called “domain resonance” may take place, and consequently the highest vibration amplitude is 

observed in a specific frequency range. It is demonstrated that at least two resonances in acousto-

electric transduction instead of one do exist in the optimal frequency range [30]. No information 

about the boundary regions of the stopband seems to have been reported in literature.    

The field of acoustic metamaterials, in which materials are artificially engineered exhibits 

unusual and useful acoustic material properties. Most current designs of acoustic metamaterials 

are based on the stopband effect [31].  

The investigation of the acousto-electric impedance  fZ  of a ferroelectric phononic 

superlattice is a direction of research in the fields of solids and physical acoustics. The acousto-

electric transducers are intended for transformation of electrical energy into acoustic signal and 

back. The impedance of a single crystal of lithium niobate (LN) and quartz is investigated. Up to 

our knowledge, the acousto-electric impedance, which is a fundamental physical property of FPS 

under consideration, has not been considered yet in literature. The frequency characteristics of 

 fZ  and its phase shift are essential for developing new applications, for instance, new 

ultrasonic transducers and sensors. The impedance is also an important step in understanding the 

physics of FPS, including practical usage in the applications. Therefore, the main objectives are 

as follows. 

1) Developing problem formulation to find the impedance of FPS by analytical solution of 

the corresponding equations. 

2) Deriving analytical relations describing the impedance as a function of physical 

parameters of FPS. 
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3) Computer modeling the impedance depending on the physical parameters of FPS based 

on LiNbO3. 

4) Verifying experimentally the analytical equations and the computer modeling, describing 

the impedance of FPS, by using PPLN, which is a typical FPS. 

5) Analytical derivations to obtain the equations for the phase shift of the impedance. 

6) Developing computational model to consider the impedance phase shift as a function of 

FPS parameters. 

7)  Performing experiments for estimating the impedance phase shift of FPS in LiNbO3. 

Physical acoustics considers wave propagation in a media. And its propagation is a 

phenomenon involving stress and strain. Two different modes of elastic waves, including 

longitudinal and shear in an isotropic medium, will be considered in this chapter. Isotropic 

material is considered so that its properties are independent of the material orientation. The 

simplest form of acoustic waves is the plane wave, in which all wave characteristics are 

constants over a plane called wave front. In the longitudinal wave, the displacement is parallel to 

a propagation direction. In the transverse wave, displacement is in any direction parallel to the 

wave front, and normal to the propagation direction.  

This chapter also presents the basic properties of ferroelectrics with a special emphasis on 

lithium niobate (LN), which is the main material for research discussed later in this dissertation. 

This is followed by an introduction of ferroelectric domains. Acoustic superlattice and the 

acoustics stopband, in phononic crystal, will be introduced and explained.  Plate acoustic waves 

propagating in lithium niobate wafer will be described. This chapter builds a solid basic 

knowledge needed in this research. 
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1.1 Strain 

Force applied to a solid body will deform it. This deformation can be represented by the 

displacement vector A


 and the strain S  defined with respect to a reference point. In general, the 

displacement vector has components that vary continuously from one point to another in the 

solid. A plane wave generates displacements that vary harmonically in the direction of the wave 

propagation. If that is in the X-direction, the wave amplitude A  may be represented by

 ezAyAxAzyxA kxti )(
321 ˆˆˆ),,(  


 , 

 in which AAA 321 ,, represent particle displacements along the X, Y and Z directions, 

respectively;   is the angular frequency, and k is the wave number. Because simple translation 

of the entire solid is not of our interest, this class of motion is eliminated to give a parameter 

related only to local deformations of the solid. The gradient of the displacement vector A


 

represents the changes in a particular distance as well as local rotations. Once the effect of 

simple translation is eliminated, by taking the gradient of the displacement vector, the 

contribution due to rotations can be eliminated as well, resulting in a parameter that describes 

only the local stretching of the solid[32, 33]. This is accomplished by adding the displacement 

gradient to its transpose. The resulting strain matrix S  describes this deformation with respect to 

a reference point. Tensor notations will be used here to report the elastic parameters in acoustics. 

The strain tensor is given by 




















x

A

x

A
S

i

k

k

i
ik

2

1
  .                                                                                                           (1.1) 
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The diagonal strain terms S ii represent the axial strain components, while the off-

diagonal terms  S ik , where ji  are the shear strains. 

1.2 Stress 

In this work, a static equilibrium condition is assumed in a body under external forces, so 

there is no net translation or rotation. Two types of forces might act on an object, which are the 

body forces, such as gravity, that acts throughout the body and the surface forces that are 

proportional to the area of the surface. The force F  acting in the X-direction on a body of 

volume V  is given by  dVF x , where F x is a scalar quantity that can be written in terms of the 

divergence of a vector TF x  , where T  is the stress vector of three components. Using 

Gauss’s theorem, one can write  

   
V V s

x dsTTdVdVF  ,                                                                                               (1.2) 

where the surface integral is taken over the enclosed volume, so the average force on an element 

dV  is  

  



 SdT

dV
dV

x

T

dV
TdV

dV
jij

j

ij 111
.                                                                       (1.3) 

Consider a cube of length b  as shown in Figure 1-1-(a). Being interested in surface 

forces acting on it, leads to a deformation reported by a strain tensor. If a force acts on XY-plane, 

then two vectors are involved. These vectors are normal and tangential to the surface. Total 

stress will be broken into two types of stresses: a normal component of the applied force would 
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give rise to a tensile stress, and the tangential component would give rise to shear stresses, as 

appears in Figure 1-1-(b). 

 

Figure 1-1-(a). Force F acting on the XY-plane of a cube. 

 

Figure 1-1-(b). Tensile and Shear stain. 
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A static equilibrium must be taken into consideration to give the symmetry to the stress 

tensor. In the case of tensile stress, the tensor is diagonal with three independent components. 

However, the shear stress would have three off-diagonal components to avoid rotation.  

 

1.3 Hooke’s law 

Under Hooke’s law, a stress is proportional to strain for a small elongation of an elastic 

system. Waves are distinguished by different types of deformation. A shear wave is consistent 

with a change of the cube shape at constant volume, so 0S ii . Pure hydrostatic compression 

produces a change of volume at constant shape. Tensor notations are introduced to explain the 

elastic parameters in physical acoustics. Tensors are a generalization of vectors. They represent 

real physical quantities, and their importance comes from relating two vectors. In linear elasticity 

ScT klijklij    ,                                                                                                                          (1.4) 

 where cijkl  is a symmetric 4th rank elastic constant tensor connecting two second-rank tensors. 

The symmetry of the elastic constant, considering the lack of rotation given by 

cccc jilkijlkjiklijkl  and the reciprocity cc klijijkl , would reduce the number of the 

independent elastic components from 81 to 36, represented by a 6×6 matrix. Additional 

simplification of the stress-strain relationship can be realized through simplifying the matrix 

notation for stresses and strains. The indices can be replaced as follow; cc mnijkl , where 

3,2,1ijkl   and 6....,2,1mn , which is explained in the following table [43].  
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Tensor notations Matrix notations Corresponding strain 

11 1 Longitudinal in X-direction 

22 2 Longitudinal in Y-axis 

33 3 Longitudinal in Z-direction 

12=21 4 Shear Y-Z 

13=31 5 Shear Z-X 

23=32 6 Shear X-Y 

Table 1. Conversion table from regular indices to reduced indices. 

Of the 36 constants, there are six constants where nm , and 30 constants where nm . 

Only one half of these constants are independent since cc nmmn . Therefore, for the general 

anisotropic linear elastic solid, there are 216
2

30
   independent elastic constants. The 21 

independent elastic constants can be reduced still further by considering the symmetry conditions 

found in different crystal structures.   

Lame` constants: The number of independent elastic constants in an isotropic medium will be 

reduced to two because of symmetry. These two constants are called Lame constants (   and ). 

These parameters can be used to determine the total stored energy in a system. In an isotropic 

medium, the three coordinate axes and the three coordinate planes are equivalent. Let us consider 

a cubic crystal in which the elastic constants are as follow  

 2332211  ccc ,                                                                                                        (1.5) 

2
1211

665544
cc

ccc


      ,                                                                                           (1.6) 

 cccccc 323121231312 ,                                                                                      (1.7) 
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where   and   are Lame constants. For example, c12  corresponds to the ratio of the 

longitudinal stress in the X-direction to the longitudinal strain in the Y-direction. This term 

occurs when a material is compressed in one direction, so it will expand in the perpendicular 

direction. When dealing with isotropic materials, additional conditions are applied. If shear wave 

propagates along Z-axis, with motion in the X-axis, then the strain is
z

A
S

x




5 . From Equation 

(1.8), the stress can be written in this form ST 55  . Therefore, the cubic crystal stress can be 

expressed as ScT 5445  , where the parameter   is known as shear modulus.  All other terms 

are zero because of mirror symmetry. The elasticity matrix of an isotropic material is given by 

Equation (1.8)   
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     .                                                    (1.8) 

The longitudinal stress   SSSSST 113211 22    can be written in a 

general form 

ST II  2 ,    3,2,1I ,                                                                                             (1.9) 

  ASSSSii  321     ,                                                                                       (1.10) 

where   is the dilation. Similarly, shear stress can be expressed as: 

ST 44  ,                                                                                                                               (1.11) 
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ST 55  ,                                                                                                                               (1.12) 

And ST 66  .                                                                                                                       (1.13) 

It follows that in the isotropic cube, there are only two independent elastic constants: c12

and c44. 

 

1.4 Equation of motion for solids  

Consider an element of length l  that is affected by an external force F  acting in the 

positive X-axis. This results in elongation A . Then the total stress on the element is 













x

T
lT , 

which gives a total force per unit volume of 












x

T
. Combining Hooke’s law with Newton’s law 

will lead us to the wave equation 

T
t

A 





2

2

 .                                                                                                                        (1.14) 

The propagation of a wave in the X-direction with velocity v  and a displacement vector 

A is given by  

   
eBeAA

kxtikxti   



.                                                                                              (1.15) 

The first term shows the propagation in the forward direction and the second term shows 

the propagation in the backward direction with wave number 
v

k


 . These results can be 
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generalized to three dimensions, so three acoustic polarizations do exist: a longitudinal wave and 

two transverse waves with orthogonal polarization [34, 35]. Hooke’s law and Newton’s law will be 

used to get the wave equation in three dimensions. Tensor notations will be used, and the 

displacement vector can be written using the gradient of a scalar    and the curl of a vector 

 


 potential. Thus, 




A   .                                                                                                                   (1.16) 

Using these identities from vector analysis 
 

  











0

0




will allow us to separate the 

equations of propagation into longitudinal and transverse waves AAA Sl


 , such that the 

scalar term Al


 associated with the longitudinal wave is  

  02 2
2

2




 





t
.                                                                                                   (1.17) 

The curl of  Al


equals zero, so there is no rotation or change of angle associated with it. 

 AL


 is a characteristic of the longitudinal wave. For a wave propagating as in Equation (1.15), 

the longitudinal wave number and its velocity will be given by Equations (1.18) and (1.19), 

respectively. 

v
k

l
l




 22
2

2



                                                                                                                  (1.18) 



 2
vl  ,                                                                                                                       (1.19) 
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The vector term associated with the transverse wave is 

02
2

2




 







t
 .                                                                                                            (1.20) 

One property of the displacement  AS


 is that its divergence equals zero, so there is no 

change in the volume associated with it. On the other hand, there must be a change in volume 

associated with the transverse wave. Hence, for a wave propagating as in Equation (1.15), the 

shear wave number and its velocity will be given by Equations (1.21) and (1.22), respectively.  

v
k

s
s




 22
2  ,                                                                                                                    (1.21) 




vs   .                                                                                                                              (1.22) 

The deformations of these two waves are shown in Figure 1-2 below. 
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Figure 1-2. Deformation by bulk plane waves propagating along x-axis. (a) Longitudinal 

waves. (b) Transverse waves polarized in the z-axis [35]. 

 

1.5 Lamb waves  

Depending on the direction of particle displacement, there are two different types of 

guided waves possible in plates, namely shear horizontal acoustic plate modes and Lamb waves, 

or plate acoustic waves (PAW). The former corresponds to the horizontal polarization in the 

plane of the plate (shear or quasi-shear) while the latter has elliptical polarization in the sagittal 

plane. Generally, depending on the thickness-to-wavelength ratio, the plate can support a number 

of these waves. Further, each type of plate mode can be classified as symmetric or 

antisymmetric, indicating the symmetry of particle displacement relative to the median plane of 

the plate. 
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1.6 Ferroelectric and crystallographic classes 

A ferroelectric material is both pyroelectric and piezoelectric. It is characterized by a 

spontaneous, reversible polarization in the absence of an electric field [36]. When mechanical 

stress is applied in the direction of the spontaneous polarization, an induced polarization and a 

surface charge is produced through the direct piezoelectric effect [36]. Below the critical 

temperature, the Curie temperature (Tc), ferroelectric materials possess ferroelectric behavior. 

While above the Curie temperature, ferroelectric materials get into the paraelectric phase in 

which they no longer exhibit a spontaneous polarization.  

Crystal classes: There are 32 crystal classes, and 21 of them lack a center of symmetry. A crystal 

which shows a centrosymmetric structure does not possess polar properties, and thus cannot be 

piezoelectric. Of the 21 noncentrosymmetric classes, 20 are piezoelectric. Ten of the 

piezoelectric classes are also pyroelectric, which means that they have a spontaneous 

polarization that does exist in the absence of an applied electric field or stress. This polarization 

is an outcome of a displacement between the centers of positive and negative charge in the 

crystal unit cell, and their values change with temperature. Ferroelectric materials are a subgroup 

of pyroelectric materials with an exchangeable spontaneous polarization. The pyroelectric 

materials that are not ferroelectrics occur because their spontaneous polarizations are not 

exchangeable by an applied electric field [37]. 
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1.7 Ferroelectric domains and surfaces 

Regions in ferroelectric materials that consist of a large number of dipoles aligned in the 

same direction with the same amplitude are called domains. Partitions between domains with 

different dipole polarization direction are called domain walls (or boundaries) [36]. Domain walls 

are usually divided into two classifications: 180° and non-180° walls. Materials such as lithium 

niobate supports only two possible polarization orientations along their c-axis. The polarization 

orientations in the neighboring domains are antiparallel to each other. Thus the domain walls are 

180°-domain walls. Materials having tetragonal structures, such as PZT and BaTiO3, can have 

both 90° domains and 180° domains. Materials having rhombohedral structures, such as BiFeO3, 

can have 71° and 109° domains. The normal component is approximately continuous across the 

wall. Technology has developed a characterization of ferroelectric domains, including 

polarization microscopy[38]; second harmonic generation microscopy [39], and scanning electron 

microscopy[40]. 

Ferroelectric surfaces: Different orientations of polarization induce positive or negative charges 

at the ferroelectric material surface. The value of surface charge is given by the normal 

component of polarization:  

nP ˆ


                                                                                                                                  (1.23) 

where P


 is the polarization vector and n̂  is the unit vector normal to the surface. The surface 

with unscreened bound charges is energetically unfavorable and thus has to be screened [41] to 

minimize surface potential. To achieve this, the surface charges undergo external and/or internal 

screening. External screening is described by the absorption of charged molecules, or surface 

states due to the surface layer, while internal screening is from free carriers and defects in the 
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bulk and is distinguished by the formation of a space-charge layer near the surface. Ferroelectric 

materials such as PZT and BaTiO3 have larger defect density compared to materials such as 

LiNbO3 and LiTaO3. Hence, for PZT and BaTiO3, the dominant screening is internal screening, 

while for LiNbO3 and LiTaO3, the dominant screening is external screening. For thin 

ferroelectric films, the external screening molecules and ionic charges could even control the 

polarization orientations in the film. In an applied electric field, polarization switching is 

considered to occur through the nucleation and growth of new domains. In the chemical 

switching process, the nucleation is suppressed, and switching occurs by uniform decrease and 

incursion of the polarization without domain creation. 

 

1.8 Ferroelectric superlattice   

Novel material systems can be engineered by alternating thin layers of two or more 

materials in one stacked system. To prepare multilayer samples consisting of alternating layers of 

thickness d1  of constituent 1 and thickness d 2  of constituent 2, samples can be prepared so that 

d1  and d 2  have any values from two or three atomic spacing up to the order of 100nm or more. 

We introduce them as periodically layered structures or superlattices. Many of the physical 

properties are greatly adjusted by the existence of the long (compared with the lattice parameter) 

spatial period ddL 21 . The most important general consequence is that as a result of 

Bloch’s theorem, a new Brillouin Zone edge appears at wave vector component L  

perpendicular to the interfaces. This can be much smaller than the Zone-edge wave vector a  

related to the lattice constant a . Dispersion curves, such as those for acoustic phonons for 

example, develop band gaps at these new zone edges. Interesting advantages arise in a 
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superlattice system for many reasons, including size and strain effects in the individual layers, 

competition between the properties of the constituent materials, and interactions at the interfaces. 

Superlattice properties are usually discussed as being dependent on the volume fraction of one of 

the constituent materials [42]. The sample under consideration in this dissertation is a periodically 

poled LN. The sample was fabricated in the laboratory [30]. Figure 1.3 shows the inverse domains 

of PPLN sample [43]. The darker strips are domains with inverted polarization, and the light gray 

strips are domains with original polarization. 

 

 

 

Figure 1-3.  Micropicture of PPLN sample LN-MD-1 taken through a polarizing microscope. 

The width of two adjacent domains is 0.6mm along the crystallographic x-axis. 
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1.9 Bandgap in phononic crystals 

 The first phononic band gap was determined by Sigalas and Economou (1993) [44], 

followed by Kushwaha in 1995 [45]. The existence of full band gaps has led to a range of 

applications such as filters [46], acoustic waveguides [47, 48], and strong resonators [49]. The concept 

of band gaps can be explained by considering the interference of multiple waves scattered within 

a phononic crystal. When a set of scattering elements is positioned periodically, waves are 

dispersed from one element to the other and end up filling all available space and propagating in 

every direction. The waves interfere constructively or destructively depending upon the 

frequency and on the phononic crystal geometry. A band gap appears when the scattered waves 

interfere destructively in a given direction. For surface acoustic waves, a complete band gap is 

found experimentally in a two dimensional square-lattice piezoelectric phononic crystal etched in 

lithium niobate [29]. Similar experiments have been carried out in a silicon plate and showed the 

complete bandgap for Lamb waves [50]. Different lattices have been investigated. The most 

common is the square-lattice, although a full bandgap is difficult to achieve, especially in solid 

material. The triangular and hexagonal lattices allow the creation of larger bandgaps [51, 52]. 

However, in order to induce a wide frequency band gap, the hexagonal lattice requires the film 

thickness to be approximately the same of the lattice constant. By using two solid materials with 

strong contrast in the elastic modulus, it is possible to obtain larger bandgaps [53]. The ability to 

create band gaps also creates the possibility to confine the energy and create waveguides. 

Waveguides are important in the communication field to avoid the loss of energy due to the 

diffraction of the waves.  

The stopband properties are made known from the dispersion of phase and group 

velocities of PAW modes propagating in a two-dimensional periodically poled ferroelectric 
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wave-guide. Figure 1-4 shows the dispersion of phase velocities for the six lowest PAW modes 

in a LN wafer near the boundary of the first Brillouin zone in PPLN [43]. From the dispersion 

curves shown in Figure 1-4, it is seen that Lamb waves are quite dispersive, but for a certain 

thickness-to-wavelength ratio the lowest symmetrical mode S0 is low dispersive. Furthermore, 

the A0 mode seems to be suitable for low frequency applications. For semi-infinite plates, the 

lowest A0 and S0 Lamb modes converge to a Rayleigh wave propagating along the free surface. 

A frequency range of 3-4 MHz is considered in this dissertation, in which the A0 mode 

does exists within the wave number range corresponding to a plate thickness of 0.5mm.The A0 

mode is indicated by number one in Figure 1-4, in which the existence of the stopband is clear 

and is indicated by SB1. The physical origin of stopbands is a Bragg-type reflection of acoustic 

modes from the multidomain superlattice at the boundary of acoustic first Brillouin zone. 

Stopbands occur when a particular PAW mode has a wave vector dk  , where d  is the 

domain length. In other words, the stopband takes place because a PAW mode is “trapped” 

within the multidomain phononic superlattice. Those waves are then reflected by this superlattice 

when an acoustic wavelength is approximately equal to doubled superlattice period d2 . 
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Figure 1-4.  Dispersion of phase velocity for six lowest PAW modes in LiNbO3 wafer near 

boundary of the first acoustic Brillouin zone (ABZ) in PPLN. The inclined dashed 

line corresponds to dk  . The solid and dotted lines are FEM computations for 

PPLN and single crystal LN 0.5-mm-thick wafer, respectively. The points are 

experimental data taken from the multidomain sample LN-MD-1 with domain 

period d=0.3mm. Different colors indicate different PAW modes. The modes are: 1-

A0, 2-SS0, 3-S0, 4-SA1, 5-A1, and 6-S1
 [43]. 
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The plate acoustic wave can propagate at frequencies below FL (lower frequency) and at 

frequencies above FU (upper frequency); between FL and FU there is no transmission of acoustic 

displacements through the FPS. The destructive interference is due to diffraction by the inter-

domain walls, which causes a single acoustic wave to split into two modes; 1m  and 2m at

dkk D  , is shown in Figure 1-5 taken from reference [54] under others permission [54]. 

Finite element modeling (FEM) is represented in Figure 1-6 for the ZX-cut PPLN sample of 

thickness 0.5mm and domain length of 0.45mm [54]. The acoustic wave cannot propagate within 

the stopband between 3.27 and 3.67MHz, where the dispersion curve is interrupted. The output 

of the dispersion curve cannot be obtained, because of the destructive diffraction from the 

domain walls. The stopband range corresponds exactly to an acoustic wavelength of  

mmd 9.02   or   mm
111.11  . The horizontal line   mm

111.11   is the boundary 

between the first and second acoustic Brillouin zone (ABZ). 
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Figure 1-5. Dispersion curve using finite element modeling of the zero antisymmetric mode in 

ferroelectric phononic superlattice.  FPS is fabricated in ZX-cut 0.5-mm-thick LN 

with domain length d=0.45mm and 44 domain pairs [54].  The initial single mode mi 

shown by a dashed line split into two modes, m1 and m2, as shown by the solid 

lines, in the first and second ABZ, respectively. The first ABZ is at F < FL, and the 

second ABZ is at F > FU; within the stopband, FL < F < FU, acoustic modes cannot 

propagate. 
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Finite element calculations presented in Figures 1-6(a) and 1-6(b) show the dispersion 

curves for longitudinal and transversal acoustic displacements, AX and AZ, respectively.  The 

longitudinal displacement branch has a limiting frequencies F1X =3.28+0.01MHz and F2X= 

3.67+0.01MHz. The transverse displacement branch has a limiting frequencies F1Z 

=3.26+0.01MHz and F2Z= 3.66+0.01MHz.  

    

                       Figure 1-6 (a)                                                         Figure 1-6 (b)   

Figure 1-6. FEM-computations of the dispersion curve for (a) the longitudinal displacement AX, 

and for (b) the transverse displacement AZ, in MD3B-NC superlattice [54] . 
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CHAPTER II   MATERIALS, SAMPLES AND EXPERIMENTAL METHODS. 

 

This chapter is dedicated to the experimental techniques along with the samples provided 

by the laboratory to investigate the measurements of the acousto-electric impedance later in this 

dissertation. Main samples materials, quartz and lithium niobate, are explained in details. Two 

experimental methods are discussed to perform these investigations.   

 

2.1 Materials  

This section introduces the materials used for this research. Mainly a single quartz crystal 

and lithium niobate are included. General properties of the materials such as the crystallographic 

structure and electrical properties are presented in details to provide the reader with basic 

information needed later in this dissertation.



26 
 

2.1.1 Single crystal Quartz 

A piece of a crystal, like every other elastic body, has a series of resonant vibrational 

frequencies. The vibrating crystals are widely used in electronic devices as a frequency provider 

due to their unique properties. The most common example is the quartz crystal watches or clocks 

for time keeping, in which the flow of time is measured by counting crystal vibration cycles. 

Vibrating crystals also provide frequency basics for telecommunication devices in which 

frequency selections and operations are needed. Most of the commercial crystal resonators are 

made of quartz. Quartz is a crystal of silicon dioxide. 

In crystallography, quartz belongs to class 32 of trigonal crystal structure [55]. There is a large 

amount of natural quartz, but it also can be artificially synthesized to very high quality. In 

addition to piezoelectricity, quartz has a very low damping factor. It has low solubility and is 

comparably hard but not brittle. It also can be cut into different shapes [56]. All of the above make 

quartz crystal one of the best materials for resonators. 

Indeed, resonant frequencies and wave velocities are essential properties of an elastic 

body. Most crystals are highly anisotropic, and as a consequence, they often exhibit a 

piezoelectric effect. For a piezoelectric resonator, the operating mode or wave can be directly 

excited electrically, such that the resonator can be integrated into a circuit. A specific cut of a 

crystal plate refers to the crystallographic orientation of the plate when it is fabricated out of a 

bulk crystal. Quartz plates of different cuts have different mechanical properties along the 

coordinates normal and parallel to the plate surfaces. Examples of rotated Y-cuts include BT-cut 

(θ=-45˚), Y-cut (θ=0˚), and AT-cut [57, 58]. Crystal resonators are common acoustic wave devices. 

In fact, vibration modes or waves in a crystal can be divided into two types. The first type is bulk 

acoustic waves (BAW), which can propagate all over the crystal. The second type is surface 
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acoustic waves (SAW), which can only propagate along the crystal boundary. The particle 

displacements vanish quickly inside the crystal. Both bulk and surface waves are widely used in 

acousto-electric solid-state devices. For example, quartz is the most typical material for BAW 

devices.  

A driving voltage is applied to the crystal for exciting the vibration in piezoelectric 

plates. As with all solid structures, a quartz crystal resonator can show different kinds of bulk 

acoustic wave modes at the resonance frequencies. Note that the crystal can also vibrate at 

overtones of every fundamental mode and that the existing modes can sum up to create 

complicated resonances modes. Hence, it is preferable to have the possibility to select only one 

specific mode and suppress the unneeded ones so that the resonator is oscillating at only one 

fundamental mode. This selection demands the crystal slab to have proper shape and be cut-out 

at a particular crystallographic orientation. The Y-cut quartz crystal, which is used in this 

dissertation, has a fundamental frequency at 10 MHz. Such a quartz plate oscillates under the 

thickness shear modes. Figure 2-1 shows the fundamental thickness shear mode of a plate. The 

arrows show the direction of particle displacement. The fundamental mode has only one node 

along the thickness and is antisymmetric with respect to x2=0.  The second thickness shear mode 

has two nodes and is symmetric with respect to x2=0 plane, and so on. 
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Figure 2-1 Fundamental thickness shear mode of a vibrating plate. 

 

 

When a pure thickness-shear vibration is excited in a crystal plate, displacements of 

particles are parallel to the surfaces of the plate. Particle velocities only change along the plate 

thickness and do not have in-plane variations. A common quartz plate for resonator applications 

has a thickness of a few tenths of a millimeter, a diameter of a few millimeters, and a 

fundamental thickness shear frequency of the order of a few to tens of MHz. The thickness shear 

modes of a quartz plate are usually employed for the high frequency resonators. When a voltage 

is applied, the corresponding electrical field is parallel to the resonator plate thickness. Hence, 

the thickness shear mode, which appears due to piezoelectric properties and the crystalline 

orientation, consists of shear deformation of the crystal in the X-direction. The resulting 

vibration has a wave vector perpendicular to the surfaces [59, 60], as shown in Figure 2-3 in section 

2.2.1.  
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2.1.2 Lithium niobate and periodically poled lithium niobate. 

Lithium niobate (LN) has been intensively studied and applied in technology [61-63] since 

it was synthesized in 1965 by Fedulov in the USSR and by Ballman in the USA. On the other 

hand, despite that extensive research, new properties have been revealed year by year. At room 

temperature, LN has relatively large magnitude of remnant polarizations: 78±3 μC/cm2 [64, 65]. 

Large magnitude of polarization generates large surface polarization charge.  

LN Crystal Structure: All the unit cell parameters were established in 1966 by Abrahams 

et al.. The parameters of LN unit cells in a hexagonal basis are as follows: 

0004.08631.13 cH Å and 00002.014829.5 aH Å. In a rhombohedral basis, the 

parameters are: 4944.5aR Å, and 5255
`o . Figure 2-2 shows the crystallographic 

structure of LN. Ideally, the stacking sequences along the c-axis are three types of octahedral, 

which are LiO6, NbO6 (TaO6) and □O6, where the □ represents a vacancy. The Li
 and Nb

  

ions are located along the polar c-axis and sit between the oxygen layer planes. Li
  and Nb

  

ions can only be  disturbed from the centrosymmetric position along the c-axis. Therefore, the 

resulting spontaneous polarization directed along the c-axis, and only antiparallel (180°) domains 

can be created in LN crystals.  

The ferroelectric phase transition in LN crystal is connected with the displacement of the 

lithium and niobium ions. In the ferroelectric phase, the cations are shifted from the centers of 

the octahedral. The layered oxygen planes are at a distance of 2.310Å form each other. The 

niobium ion is 0.897Å from the nearest oxygen plane while the lithium ion is 0.714 Å. The 

oxygen octahedra are deformed, and the cations are not located at the centered of oxygen 
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octahedra. The Li
  ion is further from the center than the Nb

  ion because of the difference in 

bond strengths, i.e. the Li-O bond is weaker than the Nb-O bond [66, 67]. When the crystal is 

heated above Curie temperature Tc, the Li
  ions are supposed to move towards the nearest 

oxygen plane, and Nb
  ions move toward the center of the oxygen octahedral. The movement 

of cations reduces the net polarization, and the LN crystal transitions from the ferroelectric phase 

to the paraelectric phase.  

 

 

 

Figure 2-2. Crystallographic structure and relative positions of ions in lithium niobate. The stacking 

sequence of the unit cell is LiO6 and NbO6 (TaO6). The Li
  and Nb


 ions are located 

along the polar c-axis and sit between the oxygen layer planes.  
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LN electrical Permittivity : The connection between the electric flux density and electric 

field is represented by ED  , where   is a second-rank permittivity tensor. In the  tensor of 

LN, the crystal has the only non-zero diagonal elements. In the places perpendicular to the c-

axis, the permittivity components have the same magnitude due to the symmetry about the c-

axis. Therefore, the permittivity tensor can be characterized by a 3×3 matrix: 



























33

11

11

00

00

00

ij  

Measured values of 1.28011   and 1.84033   [68] are used in our later research 

work of acousto-electric impedance calculations of the PPLN thin plate. 

LN piezoelectric effect :The LN crystal is also a piezoelectric solid. The induced 

polarization and surface charge occur under applied mechanical stress. The connection between 

induced polarization and applied stress is denoted by dTP  , such that P  is the induced 

polarization, d  is a third-rank piezoelectric tensor, and T  is the applied stress. The tensor d ijk  

contains only 18 independent components and can be written as a 3×6 matrix. The jk  subscripts 

reduce to a single subscript, as explained in Table 1, for simplifying the tensor representation. 

Thus the piezoelectric tensor can be written as [68]: 
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Periodically poled lithium niobate (PPLN): Periodically poled lithium niobate is an 

artificially engineered material in which domain inversion is usually attained through electrical 

poling techniques [67]. PPLN is widely used in the field of nonlinear optics, which includes 

quasiphase-matched second harmonic generation [67] and optical parametric oscillation [68]. 

Domain inversion merged with low loss optical waveguides has been exploited in integrated 

devices. In acoustics, PPLN enables the possibility of induced electromechanical coupling in 

new configurations [69], such as acoustic superlattices. It is significantly different from more 

common integrated transducers [70] or bulk wave resonators [71] in a uniform piezoelectric 

medium. 

In an acoustic superlattice structure, acoustic waves can be excited using uniform 

electrodes, instead of periodic electrodes, similar to the one used in the integrated transducers. 

Domain inversion certainly allows switching the sign, from positive to negative, of all odd rank 

tensors, specifically of the piezoelectric tensor ( emij), from one domain to the following, while 

keeping all even rank tensors, such as permittivity   im  or elastic constant ( cijkl), remain 

unchanged. Consequently, the application of a uniform external electric field to the periodic 

structure will put the domain walls into a periodic strain, which will effectively result in elastic 

wave generation [69].  
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2.2 Samples under testing. 

This section presents the samples under testing in this research. A total of four resistors, 

capacitors, and inductors are provided as calibration samples for the impedance and phase 

measurements that take place later in this dissertation. Two main samples are used and presented 

in separate subsections. Firstly, a single quartz sample with laboratory name (4YQ-9M7). 

Secondly, a periodically poled lithium Niobate wafer that has been fabricated in the laboratory 

[30]. Two samples with the following laboratory names (MD3B) and (MD3B-NC) are presented 

in details. 

2.2.1 Y-cut quartz 

Y-cut quartz crystal resonators are engaged in this dissertation. A pair of circular 

electrodes is placed on the main surfaces of the disk so that the resulting electrical field is 

parallel to the resonator plate thickness. The sample (4YQ-9M7) is shown in Figure 2-3. It 

consists of a circular quartz plate and two metallic electrodes made of gold [56]. 
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Figure 2-3. shows the structure of a quartz crystal resonator. 

 

 

 

2.2.2 Periodically poled lithium niobate (PPLN) 

The geometric model of the ferroelectric phononic superlattice is shown in figure 2-4. 

The Z-cut crystalline plate of 3m-symmetry consists of piezoelectric domains with opposite 

polarization along the X-axis. The PPLN sample consists of 44 domain pairs. Domains of A 

type, denoted as A in Figure 2-4, are polarized upward and have a positive piezoelectric constant. 

The domains of B type, denoted as B in figure 2-4, are inversely polarized and have a negative 

piezoelectric constant. The length of all domains is 0.45mm. Therefore, the periodicity L of the 

structure is A+B, and it is of 0.9mm length. This alternating-sign piezoelectric constant  xe
  
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reflects the fact that the same mechanical strain generates opposite electric fields in the A and B 

domains. The total length of the PPLN sample is the periodicity multiplied by the number of 

domains, which gives 39.5mm along the X-axis. In our case the PPLN width is 29.5 mm along 

the Y-axis. The thickness of the PPLN is 0.5mm along the Z-axis. The single crystal wafer is 

produced by MTI Corporation (Richmond, CA). The PPLN sample was fabricated in our 

laboratory.  

 

 

 

Figure 2-4. PPLN structure consisting of opposite polarized domains A and B. Sample length is 

2Nd, width is w and thickness is 2h. 
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Buffer zones shown in Figures 2-5 and 2-6 are next to the PPLN structure. The purpose 

of these zones is to protect the PPLN structure from damage or crystal breaking. The buffer 

zones are unpoled Z-cut LiNbO3 crystal. This brings the final dimensions of the sample to the 

following: total length is 50mm, total width is 40mm, and the plate thickness is 0.5mm.  

In the next step, the metal electrodes are deposited into the sample MD3B, normal to the 

X-axis as shown in Figure2-5. The second sample, MD3B-44, was also fabricated in the 

laboratory. Crystal structure of ZX-cut PPLN plate and buffer zone was used. The electrodes in 

this sample were placed on the top of the crystal plate, covering a small surface area of the buffer 

zone. The sample MD3-44-NC is shown in Figure 2-6. In this sample, the electrodes are 

covering more surface area of the crystal in comparison with MD3B-44, and they are closer to 

the PPLN zone. The experimental measurements are taken from the samples installed in a metal-

grounded housing for minimizing possible influence of the air field on the experimental data. In 

addition to that shield, a conductor at ground potential, is surrounding the sample to reduce the 

electrostatic interference. Table 2 provides the reader with a detailed summary of the samples 

used in this research. 

Sample 

number 

Laboratory name Material Sample characteristics 

1 4QY-9M7 Y-cut Quartz single 

crystal 

Fundamental resonance at 

9.77MHz 

2 MD3B PPLN Figure 2-7 (Edge contacts) 

3 MD3B-NC PPLN Figure 2-8 (Surface contacts) 

4 R1, R2, R3, R4 Resistors 100-250 KOhms 

Table 2. Samples under investigations throughout the research. 
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Figure 2-5. The MD3B sample structure, which consists of PPLN zone and buffering zone. 

N=44 domain pairs, the sample total length is 50mm, the total width is 40mm and 

the thickness is 0.5mm. Electrodes are connected to the sample at the edges of the 

plate. 
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Figure 2-6. The MD3B-NC sample structure, which consists of a PPLN zone anda  buffering 

zone. N=44 domain pairs, the sample total length along the X-axis is 50mm, the 

total width along the Y-axis is 40mm and the thickness is 0.5mm. Electrodes of 

length 5mm were connected to the sample at the surface. 
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2.3 Experimental methods for impedance and its phase measurements of FPS  

2.3.1 Vector voltmeter with Function Generator (VVM & FG) 

The measurements aparatus is presented in Figure 2-7. Alternating voltages (and 

currents) are often characterized as complex numbers consisting of a magnitude and a phase, 

with the phase being measured relative to some desired reference. Many instruments exist that 

can display the voltage amplitude and phase of a signal across a wide range of frequencies. One 

of those instruments is known as a Vector Voltmeter (VVM). The phase and amplitude as a 

function of frequency can be obtained in principle by taking the Fourier transformation of the 

signal and reading the amplitude and phase across the continuum of frequencies. The VVM is 

able to measure the real and imaginary parts of the voltage signal. To determine the real part of 

the voltage vector at a given frequency f, the signal is first down-converted by mixing with a 

local oscillator signal  ft2Cos  . This mixing of the signal recenters the frequency component of 

interest at 0 Hz. The resultant signal is low-pass filtered, digitally sampled, and averaged. The 

digital sampling and averaging allows the amplitude of the newly created 0-Hz component to be 

evaluated. The imaginary part is obtained in a similar way by mixing the signal with  ft2Sin  , 

low-pass filtering, digitally sampling, and again averaging the samples.  

The Vector voltmeter  for example, can measure complex or vector parameters such as 

impedance or admittance, amplifier gain and phase shift, complex insertion loss or gain, complex 

reflection coefficient, two-port network parameters, and filter transfer functions. Consequently, 

simultaneous measurements of voltage and phase have not always been easy to make. Most 
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systems which are able to measure phase angles require several control adjustments for each 

measurement, and many of them are limited in frequency range, sensitivity, and dynamic range.  

The VVM, on the other hand, operates over the frequency range of 1MHz to 1GHz. It has 

high sensitivity and wide dynamic range. The phase resolution is 0.10 at any phase angle and all 

frequencies. The VVM operates with the simplicity of a voltmeter. The operator merely selects 

appropriate meter ranges, installs two probes to the points of interest and reads voltage and phase 

on two meter windows. 

The VVM has nine voltage ranges with sensitivities of 100 microV to 1V rms. Its 

dynamic range is 95 dB, which means that it can measure gains or losses of up to 95 dB. As a 

phase meter, the VVM will measure phase angles between +1800 and -1800. The phase resolution 

is 0.10. Phase readings are independent of the voltage levels in the two channels. The reference 

signal for the phase measurement is channel A. The Vector voltmeter provides the ratio of the 

channel-A voltage to that of channel-B. In this case, we have the ratio (VA/VB).  In the 

impedance measurements, the amplitude (VA/VB) ratio is used. A VVM typically provides a 

direct measure of the phase angle. 
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Figure 2-7. The experimental setup for measuring acousto-electric impedance by vector 

voltmeter and a function generator (FG) with an applied voltage of 1.0 Volts. 

 

 

2.3.2 Digital Oscilloscope with Function Generator (OSC. & FG) 

The method is depicted in Figure 2-8. The Digital oscilloscope (TDS2014B) provides a 

simple means for measuring the phase difference between two sinusoidal signals. The input 

signal is applied to Channel one of the TDS and the output to Channel two. The phase difference 

is the time delay between the two waveforms measured as a fraction of the period. The result is 



42 
 

expressed as a fraction of 360o or of 2  radians. That is, if the time delay is 1/4 of the period, 

then the phase difference is 1/4 of 360o= 90o. If the waveforms are not sinusoidal but are 

periodic, the same procedure can still be applied. The phase difference is just expressed as a 

fraction of the period or as a fractional part of 360o. Care must be taken with direct oscilloscope 

methods if noise is present. In particular, the noise can cause triggering difficulties that would 

make it difficult to accurately determine the period and/or the time delay between two different 

waveforms.  

The setup in Figure 2-8 is used to measure V1, V2, and the angle, Φ, between them – the 

phase of V2 relative to V1. Using an oscilloscope the peak-peak amplitude of V1 and V2 can be 

measured. The ratio of V1 to V2 is used in the impedance measurements.  The phase angle, Φ, 

(between the voltages, not the angle of the impedance) can be determined by triggering the scope 

on V1 and measuring the time difference between the zero crossings. The time difference can be 

related to the phase angle shift using the following equality (2.1): 

Φ = (time difference in seconds)   360   (frequency in Hz.)                                                   (2.1) 

In order to measure an impedance Z, one should know the complex amplitude V of the 

voltage across the impedance for a given complex amplitude of the current I through the 

impedance. However one is only able to measure voltages by the oscilloscope. This problem can 

be avoided since it is possible to measure two voltages concurrently relative to a common zero 

(ground). The unknown impedance (crystal) is placed in series with a known auxiliary resistor R 

(50-Ohms), as shown in Figure 2-8. 
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Figure 2.8. The experimental setup of measuring acousto-electric Impedance by using a Digital 

Oscilloscope (TDS2014B) and a function generator (GFG3015) with applied 

voltage of 9.0 Volts. 

 

 

2.4 Impedance and Phase measurements of Quartz crystal 

The impedance of quartz crystal (4QY-9M7) is measured in frequency range (9.76-

9.79MHz). According to the plate thickness provided by the manufactural company, the 

fundamental resonance is expected to be close to 9.7MHz. The experiment was done in the lab at 

room temperature.  The disadvantage of the Y-cut is its temperature sensitivity of 

C100Hz/MHz 0 five times the temperature sensitivity of the X-cut.  
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The methodology explained in the previous section is applied to the quartz plate. The 

applied voltage in the first method, when the Vector voltmeter and a FG are used, is about 1V. 

The applied voltage in the second method, when the Digital oscilloscope and a FG are used, is 

about 9V. We are interested in the frequency range 9.769.79MHz, in which 28 experimental 

points are measured. The resonance frequency does exist in this frequency range. The 

measurements taken from quartz were initial measurements in this dissertation. The acoustic 

impedance and the impedance phase are measured. The theoretical curve calculated for the 

Quartz resonator is included in this chapter for comparison. 

 

 

 

 

Figure 2-9. General theoretical calculations of the impedance and its phase for quartz 

plate. 
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Figure 2-10. Impedance (Z) and phase angle ( ) vs. frequency of the quartz sample (4QY-

9M7). Triangles represent Z measurements and squares represent phase 

measurements. The VVM & FG are used in this experiment. The resonance 

frequency is about 9.767MHz and the anti-resonance is about 9.776MHz. 
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Figure 2-11. Impedance (Z) and phase angle ( ) vs. frequency of the quartz sample (4QY-

9M7). Triangles represent Z measurements and squares represent phase 

measurements. The OSC. & FG method is used in this experiment. The resonance 

frequency is about 9.768MHz and the anti-resonance is about 9.777MHz. 
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The results for Z(f) and Theta are shown in one Figure. The impedance and phase 

experimental results are shown in Figure 2-10 using the VVM & FG method. Also Figure 2-11 

shows the impedance and phase experimental results using OSC. & FG. The impedance has the 

resonance frequency at f=9.767MHz, and the antiresonance frequency around f=9.776MHz. At 

those two frequencies, the phase crosses the zero scale with negative and positive slopes, 

respectively. The measurements from quartz sample show that our experimental methods and 

setups work correctly. 
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CHAPTER III   THEORY OF ACOUSTO-ELECTRIC IMPEDANCE IN FPS 

 

Determining the acousto-electric impedance is an important step in understanding the 

physics of FPS, including practical usage in applications. Therefore this chapter is dedicated to 

the theoretical calculation of the acoustic vibrations in multidomain ferroelectric structures. 

These structures are fabricated in thin plates and resonators made of 3m-symmetry materials 

such as lithium niobate. The numerical evaluation of the acousto-electric impedance of FPS 

based on LiNbO3 sample is provided. 

 

3.1 Theoretical calculations of acousto-electric impedance of FPS 

Piezoelectric media are anisotropic. For any direction of propagation there are three 

possible acoustic waves with mutually perpendicular vibrations but with different velocities. The 

periodically poled ferroelectric wafer is a two-dimensional phononic superlattice. The 

transformations between the electrical and mechanical energies are required in the applications. 

The ferroelectric phononic superlattice has a number of important solid-state applications. 

However, the acousto-electric impedance, which is a fundamental physics property of FPS under 

considerations, has not yet been considered in the literature for two-dimensional ferroelectric 

structures.  
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Figure 3-1.  Ferroelectric Phononic superlattice consisting of inversely poled domains in the 

ZX-cut LiNbO3 plate. The periodically poled domains are designated as (A) and 

(B). Input voltage is applied by a Function Generator (FG) at Ndx  , and the 

output current is detected at Ndx   of the sample. Sample thickness is h , domain 

length is d , and the total length of the sample is Nd2 . 
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The geometry of ferroelectric phononic superlattice (FPS) is shown in Figure 3-1. The 

FPS consists of a collection of inversely poled domains. This collection consists of N A-type 

domains and N B-type domains. The total number of inversely poled domains, each of length d, 

is 2Nd along X-axis. The inverse polarization is shown by the oppositely oriented arrows ( and

 ). Mathematically, this configuration is represented by opposite signs of piezoelectric 

coefficients in the adjacent domains, for A-type domains and  for B-type domains. This 

reflects the fact that the same type of mechanical strain generates opposite piezoelectric fields in 

A and B domains. In this crystalline wave guide, Lamb waves can be excited with longitudinal 

acoustic displacement , transverse acoustic displacement  , and shear waves with acoustic 

displacement . For purely longitudinal ultrasonic waves, the direction of propagation is along 

the x-axis with displacement . Therefore Newton’s equation can be written in this form  

x

T

t

A

j

iji









2

2

 .                                                                                                                        (3.1) 

In a piezoelectric medium the stress is a function of geometric strain and of the electric 

field. In the configuration of Figure 3-1, the applied voltage produces an electric field, as well as 

a mechanical deformation, because of the piezoelectric effect. If the applied voltage signal is 

small enough, the piezoelectric effect is almost linear. Using this consideration, the basic 

piezoelectric equations can be established from Gibbs free energy.  By neglecting the effect of 

the temperature and the magnetic field, we can write the equations that describe the piezoelectric 

effect. Applying an electric field to the plate causes a mechanical stress in the material as 

described by Equation (3.2). In the reverse piezoelectric effect described by Equation (3.3), the 

mechanical strain in the material causes an electric displacement. The voltage )(V  is applied 

e e

Ax Az

Ay

Ax
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along the X-axis. This produces an electric field inside the FPS, which in turn generates 

PAW with acoustic displacement and mechanical strain . Therefore, the 

electric field Em  and the elastic strain S kl  are independent variables. Let D be the amplitude of 

the electric field induction produced in the piezoelectric plate by a harmonic electric voltage with 

circular frequency f  2 . There are four known pairs of equations embedding elastic and 

piezoelectric tensors [32]. The correct choice of the equations for the case under consideration 

would be  

 ExeScT mmijkl
E
ijklij

  ,                                                                                                     (3.2) 

ESxeD m
S
imklikli   )(                 3,2,1,,,, mlkji     ,                                                      

(3.3) 

such thatT ij  is the mechanical stress tensor, Di  is the electric displacement, cijkl  are the elastic 

modules tensor components at a constant electric field,  0S
im  is the dielectric constant at 

constant elastic strain, and )(xekli


is the piezoelectric coefficients tensor. For an isotropic 

piezoelectric material of class 3m-symmetry polarized in z-direction, the material tensors are 

known from the literature [22]. This piezoelectric vibrator is very thin, with a thickness of a 

fraction of a millimeter. Therefore the deformation of a piezoelectric material in the direction of 

the thickness (Z-axis) is very small compared to the other directions and can be neglected. 

Moreover, for a one dimensional problem only the deformation of the plate along the 

length is considered, so spatial derivatives in the Y and Z-directions vanish..Substituting 

Equation (3.1) into Newton’s equation of motion yields the general wave Equation below 

 Em

 Ak  xAS lkkl 
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where   is the crystal density and Ai  is the acoustic displacement component. The 

crystallographic configuration shows more simplifications that can be considered here. For 

example, the applied electric field along X-axis and the polarized piezoelectric crystal along the 

same axis would give one term out of the total sum    
mij mmij Exe . The FPS thickness is 

smaller than its width and length. In addition, the acoustic wavelength is longer than the plate 

thickness. Thus in further calculations, the superscripts will be omitted in all tensor components 

and acousto-electric fields components. Hence, for any acoustic plate mode, one can introduce 

the effective elastic constant c, effective piezoelectric constant e, and corresponding 

electromechanical coupling coefficient K, as explained before. Each mode is characterized by its 

own dispersion curve, phase velocity and group velocities [72]. Then the equation of motion (3.4) 

can be written in the form  
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Along the FPS plate, the piezoelectric constant changes its sign in the neighboring 

domains as   ee
N

1 . Domain A has a positive piezoelectric constant and domain B has a 

negative one. Figure 3-2 shows the direction of the spontaneous polarization Ps


and the sign of 

the effective piezoelectric constant e .  
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Figure 3-2. The direction of the spontaneous polarization Ps


 and the sign of the piezoelectric 

constant e of an FPS structure along the X-axis. Polarity of the ferroelectric 

domains is indicated by arrows. This crystallographic orientation corresponds to the 

direction of the Z-axis. 
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Consider the acoustic plate mode with longitudinal displacement  
exp0

kxti
AA

  along 

the X-axis. The piezoelectric field is accompanying an acoustic wave with angular frequency . 

The mechanical boundary conditions are given by Equation (3.6) for the plate surfaces Ndx   

and hz  . The electrical boundary condition to be satisfied is given by Equation (3.7). The 

equality of the acoustic displacements and stresses at the interface between adjacent domains 

should also be taken into account. 

The mechanical boundary conditions are   .                                                 (3.6) 

The electrical boundary condition is      .                                                         (3.7)  

The electric field is assumed quasi-static, since the speed of electromagnetic wave is five orders 

of magnitude higher than the speed of acoustic waves in solids. Also there is no space charge 

within the medium, so divD=0, which is, 
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xe
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D
                                                                                                (3.8) 

The acoustic waves propagate in the x-direction, so the longitudinal displacement is 

given by  
eAA

kxti
x

  , such that Ax  is the displacement amplitude,  is the angular 

frequency, k  is the wave vector, and t  is the time. Therefore, the acoustic displacement is

x

T
A






 2

1
. The derivative of the displacement vector with respect to position x (Strain) can 

be substituted in Equations (3.2) and (3.3), as shown in Equations (3.9) and (3.10) below: 

ExeAckixT )()(  ,                                                                                                       (3.9) 
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 The electromechanical coupling coefficient is defined as the numerical measure of 

conversion efficiency between electrical and acoustic energy in piezoelectric media and 

mathematically is given by: 

c
e

K
2

2  .                                                                                                                                             (3.11) 

The electric field E  is assumed to be quasi-static, since the speed of the electromagnetic 

wave is five orders of magnitude higher than the speed of acoustic waves in solids. Then it can 

be written in term of the stressT , electric displacement D , and the electromechanical coupling 

coefficient K , as indicated by Equation (3.12) below: 

)1(

)(

)1( 22
K

T

c

xe

K

D
E










.                                                                                         (3.12) 

            The direct way to find the acousto-electric impedance is to use Equation (3.5). Equation 

(3.12) and the derivative of Equation (3.1) with respect to x can be substituted into Equation 

(3.4), as shown in Equation (3.13). More manipulations are shown below, in order to give the 

corresponding differential Equation (3.16): 
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The procedure to solve this second order differential equation is presented below 
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such that B and G are constants to be determined by applying the mechanical boundary 

conditions of stress free surfaces of this periodically poled plate at Ndx  . This is shown in 

Equations (3.16.a) and (3.16.b): 
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The constant G is equal to zero, which follows from the addition of Equations (3.20.a) 

and (3.20.b). The parameter 
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, which follows from subtracting Equations 

(3.20.b) from (3.20.a). Moreover, the internal boundary conditions that require equalities of the 

acoustic displacement and stresses at the interfaces between the adjacent inversely poled 

domains should be satisfied. The wave numbers at the boundaries of the resonator are k01 and k02. 

The piezoelectric effect vanishes and the wave vector becomes Kkk
2

101 1  in the first 

ABZ and Kkk
2

202 1  in the second ABZ as shown in Figure 1-5. Both wave numbers are 

implemented in the stress equation. 

The stress equation as a function of the electric displacement vector can take this form:  
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where the plus sign with the electromechanical coupling factor is for the first acoustic Brillouin 

zone (ABZ) and the minus sign is for the second ABZ. The piezoelectric constant has a positive 

magnitude and changes its sign, so the ratio  does equal to 1  or 1  in the alternating 

domains throughout the vibrator. The electric field equation in N-pair-domain vibrator via 

electric inductance can be calculated by substituting the stress Equation (3.21) into Equation 

(3.12),  

 exe )(
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Then applying the electric boundary conditions of metalized surfaces of this periodically 

poled plate at Ndx   is shown in Equation (3.23), in which the electric field is a function of 

electric displacement current: 
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The integration of the electric field , specified by Equation (3.23) over the 

superlattice length, is a sum of the particular integrals over each ferroelectric domain. This sum 

is equal to an applied rf-voltage, which allows for finding a dielectric displacement field )(D  

as a function of )(V   

 
dx

K

kNd

kx

e

xeKdNkD
dxEV

Nd

Nd

Nd

Nd


















 








21
sin

sin)(
1

),,,(
.)(


 .

                                      (3.24) 

The electrical inductance amplitude D0  strongly depends on the sign switching term in 

Equation (3.24). The sum over all domains is a result of the integration from the domain number 

–N at Ndx   to the domain number N at Ndx  . In reference [71], the acoustic amplitude 

 ,xE
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was calculated, and a similar equation to Equation (3.24) integral was discussed. The result is 

also applicable to the present problem. The integration is shown in the following Equation   
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where ceK 22  is squared piezoelectric coupling coefficient and Vk   is the wave 

number of acoustic wave that travels with velocity  c
21 . The electric displacement (D) as a 

function of the characteristics of ultrasonic wave is shown below 
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The rf-current ),,,( KNkI   flowing through the dielectric periodically poled 

superlattice is equal to ),,,( KNkD 


, as shown in Equation (3.27). The first term is a capacitive 

current through FPS capacitance  NdAC 20  in which hwA   is the area of the capacitor. 

The second term represents a contribution of the multidomain superlattice itself due to 

diffraction; it can be named phononic diffraction term:  
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An important acousto-electric characteristic of FPS is its rf- impedance . The 

impedance shows the efficiency of acousto-electric transduction in bulk and two-dimensional 

acoustic superlattice:  
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Acousto-electric impedance  is a function of wave number k , electromechanical 

coupling coefficient K , number of domain pairs N , electromechanical quality factorQ , and 

domain length d . Within the frequency domain,  Z  is minimum when the wave number is 

close to the boundary of the first ABZ, which corresponds to wave length approximately equal to 

twice the domain length. The term 


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21
sin  in Equations (3.21)  (3.28) is a result of 

applying the boundary conditions on the metalized edges of the resonator, in which the 

piezoelectric effect vanishes 

In a real crystal, acoustic wave attenuation is taken into account by a complex wave 

number  and corresponding quality factor , in which the real part 

 depends on the phase velocity of the acoustic wave, and the imaginary part 

depends on the quality factor .  

The fact that the stopband is at the boundary of the ABZ leads to splitting in the second 

term of the Equation (3.28), which must be computed for two parts of A0 mode in the first and 
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second ABZ, respectively. The final equation of the acousto-electric impedance in the first ABZ 

and the second ABZ is given in term of the phononic diffraction terms P 2,1 : 

         FfkPFfkPZiQdKNfZ o 222111 ,,1,,,,  ,                       (3.29) 
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One can discuss a limiting case such as, when the number of domains is large N . The 

length of the FPS is very large that makes the diffraction terms P 2,1  approach zero, and the 

impedance is going to be an impedance of a capacitor C0, then 00 C  and Z(f) tends to be 

large. The velocities of acoustic waves in the first and second ABZ can be calculated as 

sKmFdV 934.22 11  and sKmFdV 303.32 22  respectively. Physically, the 

reasons behind the stopband occurrence are as follows: 

1) The propagating mode in a piezoelectric plate has mechanical displacement, 

which is coupled to the piezoelectric field. 

2) The expansion and the contraction of the crystal at half-wave length distances 

caused by the propagation of acoustics waves in alternating regions with positive 

and negative piezoelectric constant.  

3) Resonance occurs if the wave length of the mode is equal to the period of 

ferroelectric domains. The propagating mode becomes trapped in the periodic 

domain structure, where its amplitude goes to zero due to out of phase diffraction.  
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This particularity of multidomain vibrators along with their frequency characteristics may 

be interesting for MEMS and rf-filter design, especially for super-high- frequencies of gigahertz 

range. We note that at the gigahertz range frequencies, the ferroelectric domains must be at the 

nanoscale. The results designated above also remain valid for any low dispersion acoustic wave 

in the multidomain ferroelectric plate; this includes shear waves as well as high frequency limits 

when a wavelength is much shorter than plate thickness. The phase speed of another acoustic 

mode is different. Nevertheless, these results also remain useable for cases other than for the 

crystallographic orientation of the crystal shown in Figure (3.1). A difference between ZX-cut 

and another cut will be rotating Z, X, crystallographic axes with respect to laboratory Z, X axes. 

Consequently changing acoustic and piezoelectric modules in the Equations (3.12)-(3.28) will 

not change the physical results. 

 

3.2 Computer modeling of the acousto-electric impedance of the MD3B sample 

 

This section is devoted to the computer modeling of the acousto-electric impedance as a function 

of frequency according to Equation (3.28). MD3B and MD3B-NC samples are used in the 

calculations. The possible variations of the FPS parameters are also studied computationally. 

Within the frequency domain, Z(f) is minimum when the wave frequency is in the near 

boundary(NB) region of the first ABZ, which corresponds to wave number 2k , and 

d2 . 

The theoretical plot of the acousto-electric impedance of MD3B sample is shown in 

Figure 3-3(a) and 3-3(b) for first and second ABZ respectively. This sample consists of 44 

domain pairs and 0.45mm-long domains. The MD3B sample configuration is shown in Figure 2-

7.  The electromechanical coupling coefficient K is 0.11 and the mechanical quality factor is 110, 
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both values are provided by the MTI Corporation (Richmond, CA). The zero asymmetrical mode 

A0 is propagating along the FPS plate. This mode cannot propagate through the stopband 

frequency range, because of the diffraction by the interdomain walls.  The computations in the 

following Figures are in arbitrary unit. In the first ABZ, the acousto-electric impedance 

minimum is in the NB region, in which F1=3.28 MHz. Similarly, in the second ABZ the acousto-

electric impedance minimum is in the NB region, in which F2=3.65 MHz. The zero 

antisymmetric mode is propagating along the FPS plate.  
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Figure 3-3 (a) 

 

 

Figure 3-3 (b) 

Figure 3-3. The acousto-electric impedance of FPS (Z/Z0) vs. frequency in (a) the first ABZ and 

(b) the second ABZ is computed for MD3B sample, which consists of 44-domain 

pairs and the domain length is 0.45mm. The reference Z0 is 20-KOhm.
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3.3 The influence of domains number on the acousto-electric impedance of FPS 

 

The number of domains has a strong influence on the acousto-electric impedance, which has 

been investigated numerically for four different structures with 44, 41, 35, and 28 domain pairs. 

Equation (3.28) and (3.30) are used along with the parameters that are taken from ZX-LN-MD3B 

sample to estimate the acousto-electric impedance as a function of number of domains. Those 

parameters include domain length of 0.45mm, sample thickness of 0.5mm, sample width of 

30mm, and electromechanical coupling coefficient of K=0.11. The periodic pattern causes 

reflections and diffractions of waves. Therefore, the larger number of domain pairs, the longer 

vibrator, which would increase the internal loss.  Figures 3-4(a), 3-5(a), and 3-6(a) show the 

effect of changing the number of domains on the acousto-electric impedance in the first ABZ. 

While Figures 3-4(b), 3-5(b), and 3-6(b) show the effect in the second ABZ. Mathematica 

software is used to compute the acousto-electric impedance as a function of number of domains

 NZ . The parameters used in this code are as follow: The mechanical quality factor in the first 

ABZ (Q1) is 97, the mechanical quality factor in the second ABZ (Q2) is 108, the phase velocity 

of A0 mode in the first ABZ (V1) is 2.943Km/s, the phase velocity of A0 mode in the second 

ABZ (V2) is 3.303Km/s, the electromechanical coupling coefficient (K) is 0.11, the dielectric 

constant of LiNbO3 ( ) is 1052.7 7 F/m.  
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Figure 3-4 (a) 

 

 

Figure 3-4 (b) 

Figure 3-4.  The acousto-electric Impedance of FPS vs. frequency in the first (a) and second (b) 

ABZ, computed for a PPLN sample with N=41, d=0.45mm and K=0.11  
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Figure 3-5 (a) 

 

 

Figure 3-5 (b) 

Figure 3-5.  The acousto-electric Impedance of FPS vs. frequency in the first (a) and second (b) 

ABZ, computed for a PPLN sample with N=35, d=0.45mm and K=0.11  
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Figure 3-6 (a) 

 

Figure 3-6 (b)  

Figure 3-6.  The acousto-electric Impedance of FPS vs. frequency in the first (a) and second (b) 

ABZ, computed for a PPLN sample with N=28, d=0.45mm and K=0.11  
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The main conclusions out of the computations presented in Figures 3.4-3.6 are the following. 

The acousto-electric impedance can be controlled by changing number of domains in FPS. One 

also can predict a phase shift of Z in FPS, due to a change sign of  NfZ , at certain frequencies 

and N. 
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CHAPTER IV   EXPERIMENTAL INVESTIGATIONS OF ACOUSTO-ELECTRIC 

IMPEDANCE Z(f) OF FPS. 

This chapter narrates the experimental investigations of the acousto-electric impedance 

and phase shift of FPS. Starting with Z(f) measurements taken from MD3B-NC sample, which 

leads us to improve and extend our investigations. The MD3B-NC sample is used mainly in this 

chapter to investigate the existence of displacement-components decoupling in complicated 

regions called transition zones within the near stopband frequencies. Furthermore, impedance 

phase shift measurements are included as an independent prove of the existence of acoustic 

displacement decoupling near stopband edges.  

 

3.1 The frequency characteristics of Z(f) from MD3B sample 

The acousto-electric impedance measured with the MD3B sample is shown in Figure 4-1 

to Figure 4-4 below. The sample structure is explained in details in section (2.2.2). It mainly 

consists of a PPLN zone, buffer zone and metal electrodes connected at the edges normal to the 

X-axis. The experimental setup explained in section (2.3.1) is used to take measurements of 

 fZ  using the vector voltmeter and a function generator (VVM & FG). The applied voltage by 

FG is about 1.7V. The measurements are taken at room temperature.  
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The impedance as a function of frequency is shown in Figures 4-1 and 4-2 in the first and 

second ABZ, respectively. The theoretical calculations-curve of  fZ , by Equations (3.28-3.30), 

is added to the experimental measurements for comparison. The second method used to 

investigate the impedance of FPS is explained in section (2.3.2), in which the digital oscilloscope 

and a function generator (OSC. & FG) are used. The applied voltage from FG is 9.0V. The 

experimental measurements of the impedance as a function of frequency are shown in Figures 4-

3 and 4-4 for this method. Likewise the theoretical calculations of  fZ  is added to the 

experimental measurements. 
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Figure 4-1.  The acousto-electric impedance vs. frequency in the first ABZ. The solid line 

shows the theoretical calculations by Equation (3-28) and points represent 

measurements taken by VVM & FG from the MD3B sample, which consists of 44 

domain pairs of 0.45mm domain- length. 
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Figure 4-2. The acousto-electric Impedance vs. frequency in the second ABZ. The solid line 

shows the theoretical plot by Equation (3.28) and points represent measurements 

taken by VVM & FG from the MD3B sample, which consists of 44 domain pairs of 

0.45mm domain-length. 
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Figure 4-3. The acousto-electric Impedance vs. frequency in the first ABZ. The solid line shows 

the theoretical calculations by Equation (3.28) and points represent measurements 

taken by OSC. & FG from the MD3B sample, which consists of 44 domain pairs of 

0.45mm domain-length. 
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Figure 4-4.  The acousto-electric Impedance vs. frequency in the second ABZ. The solid line 

shows the theoretical calculations by Equation (3.28) and points represent 

measurements taken by OSC. & FG from the MD3B sample, which consists of 44 

domain pairs of 0.45mm domain-length. 
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One can make the following conclusions out of the results presented above in the Figures 

4-1 to4-4.  

1. The FPS structure reveals the stopband effect. The width of this band is 380 KHz 

for the MD3B sample, which is in a good agreement with the definition of the 

stopband through the dispersion curve of PAW in this FPS (details are in section 

1.10).  

2. The Figures show that the impedance has minima at frequencies close to the 

stopband boundaries, that is )02.027.3(1 F MHz for m1 mode and 

)02.065.3(2 F MHz for m2 mode; where m1 is the acoustic mode in the 

first ABZ at F<F1, and m2 is the same acoustic mode but in the second ABZ at 

F>F2. 

3. Figures 4-1 through 4-4 reveals certain discrepancy between experiment and 

computations. In particular, there are two minima in Figures 4-1 and 4-3 instead 

of one minimum, and there are two points too far from the theoretical curves in 

Figures 4-1, 4-2, 4-3, and 4-4. This situation implies the existence of more than 

one diffraction term in Equation (3.28), and consequently more than one 

displacement component in an acoustic mode. The PAW modes have mainly 

more than one displacement component. In particular, the zero antisymmetric 

mode A0 has a longitudinal displacement AX and transverse displacement AZ. 

However, the two components AX and AZ are usually coupled, and as such 

piezoelectric interaction may be represented through certain effective 

displacement A, as in section (3.2). However, the discrepancy between theory and 

experiment in Figure 4-1 through 4-4 put under a strong question the coupling of 



77 
 

AX and AZ components of displacement right near the boundary of the stopband. 

In the next section (4.2) more details are provided. 

4. The experimental and theoretical amplitudes of Z at minimum do not coincide in 

Figures 4-1 and 4-3. This will be explained in details in section 4.3. 

 

4.2 Decoupling components of acoustic mode displacement near the stopband 

The MD3B-NC sample consists of 44 domain pairs, of 0.9mm domain length, and metal 

contacts that are different from those in the sample MD3B. The sample configuration is shown in 

Figure 2-6. The change in contact position on the sample is made to get rid of possible influence 

of protective non-polarized zones on the data taken from FPS. When the electric field is applied 

to the input electrode, lamb waves are excited to propagate through the FPS. When the 

wavelength is about twice the domain length, the A0 mode is split into two parts, m1 and m2, 

propagating in two different frequency bands. The transition zones are narrow frequency range 

that bound the stopband in the first and second ABZ as shown in Figures 4-5 and 4-6. As it 

follows from Figure 1-6, the first transition zone that exists in the first ABZ has a frequency 

range of about 70-KHz, and extends to the lower limiting edge of the acoustic stopband F1in  

Figure 4-5, or FL in Figure 1-5. Similarly the second transition zone exists in the second ABZ 

and has a frequency range of about 50-KHz. This zone starts from the upper limiting edge of the 

stopband, FU in Figure 1-5, or F2 in Figure 4-6. The mode m1 has two displacement components, 

AX and AZ, which decoupled in the transition zone with different velocities, as shown in Figure 

4-5. Furthermore, the mode m2 has two components in the transition zone with different 

velocities in the second ABZ, as shown in Figure 4-6. The so called X-component corresponds to 
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the acoustic displacement along the X-axis. This displacement component has a propagation 

velocity of 2.993Km/s in the first ABZ and 3.260Km/s in the second ABZ. The X-component of 

PAW can propagate at frequencies below F1X=3.28+0.01MHz and at frequencies above 

F2X=3.67+0.01MHz. The Z-component corresponds to the acoustic displacement along the Z-

axis. This displacement-component has a propagation velocity of 2.966Km/s in the first ABZ 

and 3.259Km/s in the second ABZ. The Z-component of PAW can propagate at frequencies 

below F1Z=3.26+0.01MHz in the first ABZ and above F2Z=3.66+0.01MHz in the second ABZ.  
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Figure 4-5.  Dispersion curve of A0 mode near lower frequency edge of the stopband, as it 

follows from the data of Figure 1-6. The mode displacements are decoupled into 

two components in the first transition zone near stopband. Displacement field of the 

A0 mode decoupled into two components including X-component displacement Ax 

and Z-component displacement Az. The transition zone of 70 KHz wide is very 

narrow about 2% of F1=3.27+0.01MHz. Plate acoustic waves with longitudinal 

displacement (X-component) can propagate at frequencies below F1X. Similarly 

plate acoustic waves with transverse displacement (Z-component) can propagate at 

frequencies below F1Z. The k01 is a wave vector in the first ABZ of the propagating 

mode in a wafer without inversely poled domains. 
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Figure 4-6. Dispersion curve of A0 mode near frequency edge of the stopband, as it follow from 

the data of Figure 1-6. Two mode-components exist in the second transition zone of 

the second ABZ. A0 mode decoupled into two components, X-component and Z-

component, through the transition zone. Plate acoustic waves with longitudinal 

displacement (X-component) can propagate at frequencies above F2X. Similarly 

acoustic wave with transverse displacement (Z-component) can propagate at 

frequencies above F2Z. The k02 is a wave vector in the second ABZ of the 

propagating mode in a wafer without inversely poled domains. 
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The Equations (3.29) and (3.30) must be modified for the decoupled displacements. The 

existence of mode-components is taken into account mathematically by splitting each term of 

Equation (3.30) into two sub terms. One can apply that by taking into consideration the 

numerical values of F1X, F1Z, F2X, and F2Z of Figures 4-4 and 4-6. The existence of two minima in 

each zone reflects the fact that the decoupled displacements of A0 mode in the transition zones 

have two different velocities. The modified Equations for Z(f) under the decoupled AX and AZ 

displacements are as follow for first ABZ: 

   
   FfZFfZ

FfZFfZ
Z

ZZXX

ZZXX

11

11
1




 ,                                                                                     (4.1) 

And for the second ABZ 

   
   FfZFfZ

FfZFfZ
Z

ZZXX

ZZXX

22

22
2




  ,                                                                                   (4.2) 

where each of ZX and ZZ is calculated by the Equations of the type of (3.28)-(3.30), but 

with corresponding frequencies and other parameters.  

 The computer modeling by Equations (4.1) and (4.2) of the acousto-electric impedance 

under decoupled AX and AZ displacement in the MD3B-NC sample is shown in Figures 4-7(a) 

and 4-7(b) for the first and second ABZ, respectively. In the numerical modeling of the acousto-

electric impedance of FPS, the following  parameters are used in the first ABZ: The mechanical 

quality factor of X-component (Q1X) is 125, the mechanical quality factor of Z-component (Q1Z) 

is 115, the phase velocity of X-component (V1X) is 2.94Km/s, the phase velocity of Z-component 

(V1Z) is 2.97Km/s, the electromechanical coupling coefficient of X-component (K1X) is 0.149, 

and the electromechanical coupling coefficient of Z-component (K1Z) is 0.17. One can use the 
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following parameters to numerically model the impedance in the second ABZ: The mechanical 

quality factor of X- component (Q2X) is 102, the mechanical quality factor of Z- component 

(Q2Z) is 83, the phase velocity of X- component (V2X) is 3.313Km/s, the phase velocity of Z- 

component (V2Z) is 3.294Km/s, and the electromechanical coupling coefficient of both 

components are near 0.3. 

The difference in quality factor between X- and Z- displacements may be explained by 

somewhat stronger piezoelectric coupling coefficient K for the Z-component which leads to a 

stronger attenuation of the Z-displacement. Computations show that actually, the results agree 

with experiment if K2X > K2Z by some percent near average K2=0.3. That is why in the 

calculations we may use K2=0.3 for both components, because the frequency range of the second 

transition zone is a way very narrow. If F>F2X, then both components AX and AZ are coupled and 

K is the same.   
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Figure 4-7 (a) 

 

Figure 4-7 (b) 

Figure 4-7.  Theoretical plot of the acousto-electric impedance of FPS (Z/Z0) vs. frequency in 

(a) the first ABZ and (b) the second ABZ for MD3B-NC sample. The two minima 

in both Figures are due to two displacement components in the corresponding 

transition zones. The normalization factor Z0 in the first ABZ is 45-KOhms and in 

the second ABZ is 62-KOhms. 
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4.3 Computations of the variance of important FPS-parameters 

In piezoelectric materials, there is a strong coupling between electrical and mechanical 

fields. Consequently, mechanical, electrical and piezoelectric components of energy losses 

should be included in the characterization. The acousto-electric impedance is sensitive to the 

change of the main parameters, such as the electromechanical coupling coefficient K, the 

mechanical quality factor Q, and the phase velocity of the acoustic wave. The minimum value of 

the impedance does exist within the transition zone, which is about 5070KHz in the frequency 

range. This section, computationally, discusses the effect of varying the parameters of FPS. 

Because the transition zone is a small frequency region, and one would like to study the 

influence within that zone, the change in the parameters is about 1% of the typical values of 

those parameters. In the following calculations, the parameters are taken for the MD3B-NC 

sample. The Figures below show the computed acousto-electric impedance in arbitrary unit. The 

normalization impedance Z0 is 45-KOhm in the first ABZ and 62-KOhm in the second ABZ. 

 

4.3.1 The variation of the electromechanical coupling coefficient (K) 

 The electro mechanical coupling coefficient is a numerical measure of conversion 

efficiency between electrical and acoustic energy in piezoelectric media and is mathematically 

given by
c

e
K

2
2  . For the MD3B-NC sample, the value of the electromechanical coupling 

coefficient is less than 0.31 for all components in the first and second ABZ. Figures (4-8-a) and 

(8-9-a) numerically show the effect of changing K through increasing it by 1% of K0 in the first 

and second ABZ, respectively. Figures (4-8-b) and (4-9-b) numerically show the effect of 

changing K through reducing it by 1% in the first and second ABZ, respectively. 
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Figure 4-8. The variation of the electro mechanical coupling coefficient by +1% in the first 

ABZ is computed for MD3B-NC sample. 
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Figure 4-9.The variation of the electro mechanical coupling coefficient by +1% in the second 

ABZ is computed for MD3B-NC sample.  
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The electromechanical coupling coefficient K is included in the 














 K

kNd

21
sin term of 

the Equation (3-28). In the first ABZ, the following analysis can be made according to the 

calculations: increasing K by 1% mainly affects the Z- component in which the magnitude of 

Z(f)-minimum is reduced with opposite effect on the X- component. In the second ABZ, the 

effect is vice versa from the analysis of the first zone due to the negative sign in the square root

K
21 . Therefore, increasing K by 1% increases the magnitude of Z(f)-minimum for both 

branches. In addition to that, there is a negligibly small frequency shift of about 20 KHz. 

4.3.2 The variation of the mechanical quality factor (Q) 

 The quality factor (Q) compares the time constant for decay of a resonating system’s 

amplitude to its resonance period. It is generally defined as the ratio of the stored energy to the 

energy dissipated per cycle. For the MD3B-NC sample, the typical value of the mechanical 

quality factor is Q0=105 on average. Figures (4-10-a) and (4-11-a) numerically show the effect of 

changing Q via increasing it by 1% of Q0 in the first and second ABZ respectively. Figures (4-

10-b) and (4-11-b) numerically show the effect of changing Q via reducing it by 1% in the first 

and second ABZ, respectively. 
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Figure 4-10. The variation of the mechanical quality factor by +1% in the first ABZ is 

computed for MD3B-NC sample.  

 

 

 

 

 

 



89 
 

 

Figure 4-11 (b) 

Figure 4-11. The variation of the mechanical quality factor by +1% in the second ABZ is 

computed for MD3B-NC sample. 
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Changing Q is responsible for changing magnitude of the impedance in the transition 

zones. There is no change or shift in the frequency. Mainly, increasing Q by 1% reduces the 

magnitude of Z in both zones, and decreasing Q by 1% increases the magnitude of Z. 

 

4.3.3 The variation of the phase velocity (V) 

The ultrasound speeds in the frequency range under consideration, 3-4MHz, are 

calculated as V1=2d.F1 for m1 mode, and V2=2dF2 for m2 mode. Thereafter the phase velocities 

of the X- component are calculated in the transition zone as follow: V1X=2dF1X in the first ABZ 

and V2X=2dF2X in the second ABZ. Similarly the phase velocities of Z- component is V1Z=2dF1Z 

in the first ABZ and V2Z=2dF2Z in the second ABZ. The frequency temperature coefficient for Z 

minimum is dependent on the phase velocity of the acoustic mode of FPS structure. As 

mentioned in chapter 1, the phase velocity is a function of the elastic constant of the materials 

and as such a function of temperature. In LiNbO3 the temperature coefficient for a plate 

resonator is CsT 04 /1066.1  .  Thus, if the velocity dependence on temperature is added to 

the code, then it is used in sensors applications. Numerically, this section studies the influence of 

varying the phase velocities by +1% which will vary the temperature coefficient. This change is 

taken into account by the Equation (3.28), in which  1%± of the typical values of V1X, V2X, V1Z, 

and V2Z is applied.  
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Figure 4-12. The variation of the phase velocity by +1% in the first ABZ is computed for 

MD3B-NC sample.  
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Figure 4-13. The variation of the phase velocity by +1% in the second ABZ is computed for 

MD3B-NC sample.  
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Figures (4.12) and (4.13) show the influence of 1% changing of phase velocity on the 

acousto-electric impedance. One can conclude that the magnitude of the impedance is not 

particularly affected. The main influence is the frequency shift in the impedance minima. This 

shift is approximately 3.5% of the frequency range under consideration. 

According to Figures 4-7 through 4-13, one can make the following conclusions: 

1- The variation of 1% of the mechanical quality factor affected the magnitude of the 

impedance only. 

2- The electromechanical coupling coefficient variations produces more complicated 

effects than changes in V or Q, because changing K by 1% leads to  changing the 

magnitude of Z and produces a frequency shift of minima in Z(f). 

3- In all over, this computing analysis prove that the developed Mathematica- Codes 

work stable, that is correctly and coincide with the theoretical expectations. 

4- It is important to note that if the changes in K, Q, and V are bigger than a few 

percents, than the computed model Z(f) is totally disagree with experiment data. The 

reason of this section is to show that computer model is very sensitive to all practical 

characteristics of FPS. Consequently, we may consider FPS parameters as trustable 

for computation coinciding with experiment.   

5- Changing the phase velocity by 1% created a frequency shift of the impedance 

minima in the first and second ABZ. Correspondingly, temperature coefficients will 

be changed. If the velocity dependence on temperature or Gamma radiation is applied 

to the code, then it is used for sensors applications. This shift in frequency is about 30 

KHz in both zones. 
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4.4 The experimental investigations of acousto-electric impedance of MD3B-NC sample 

The acousto-electric impedance as a function of frequency from FPS is calculated by the 

Equation (4.1), (4.2) along with Equations (3.28)-(3.30) for strongly coupled AX and AZ 

displacements.  It also numerically modeled in the first and second ABZ. The MD3B-NC sample 

is used to measure Z in the frequency range under consideration. The sample structure is 

explained in detail in section 2.2.2. This sample possesses the displacement components effect in 

the first and second ABZ as shown in Figures 4-5 and 4-6, experimental data prove it as 

presented in Figures 4-14 through 4-17. The theoretical calculations of Z(f) are made in this 

section using the same experimental frequency range for the sake of comparison. The non-linear 

fit is used with the experimental data to report the frequency values corresponding to the minima 

in Z(f) of X- and Z- displacement components. The electrical characterization of the fabricated 

sample-MD3B-NC is performed with two experimental methods. The experimental methods are 

explained in section 2.3. The experiments were done at room temperature. The experimental 

results of investigating Z(f) using the VVM along with a FG and the digital oscilloscope along 

with a FG are both presented in Figures 4-15 and 4-17 for the first and second ABZ, 

respectively.  
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Figure 4-14. The acousto-electric impedance vs. frequency in the first transition zone is 

calculated for the MD3B-NC sample. Equations (4.1and 4.2) and the limiting 

frequencies are used in this calculation. The two components of the acoustic mode 

are shown by two peaks.   
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Figure 4-15. The acousto-electric impedance vs. frequency in the first transition zone is 

measured by two methods. The Z- component is observed at frequency 

3.26+0.01MHz, and the X- component is observed at 3.28+0.01MHz as shown by 

the non-linear fit of the experimental data.  
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Figure 4-16. The acousto-electric impedance vs. frequency in the second transition zone is 

calculated for the MD3B-NC sample. Equations (4.1 and 4.2) and the limiting 

frequencies are used in this calculation. The Z- component is shown by the first 

peak and the X- component is shown by a peak shoulder.   
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Figure 4-17. The acousto-electric impedance vs. frequency in the second transition zone is 

measured by two methods. The Z- component is observed at frequency 

3.65+0.01MHz, and the X- component is observed at 3.67+0.01MHz as shown by 

the non-linear fit of the experimental data. 
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The acousto-electric impedance as a function of frequency is presented in Figures 4-14 

through 4-17. Non-linear fit is used to fit the experimental data, which provides us with 

information about the limiting frequencies. Both experimental methods show two peaks 

corresponding to the X- and Z- displacement components. The VVM & FG method gives the 

following limiting frequencies: F1Z=3.267MHz, F1X=3.286 MHz in the first ABZ and 

F2Z=3.650MHz, F2X=3.670MHz in the second ABZ. Similarly, using the OSC & FG method, the 

following limiting frequencies of X- and Z- component: F1X=3.286 MHz, F1Z= 3.267 MHz in the 

first ABZ, and F2X=3.668 MHz, F2Z=3.650 MHz in the second ABZ. However, these values are 

slightly different from the following theoretical limiting frequencies: F1X=3.297 MHz, F1Z=3.276 

MHz in the first ABZ, F2X=3.673 MHz, F2Z= 3.652 MHz in the second ABZ. The uncertainty of 

the measurements taken by the oscilloscope and the VVM are less than the size of the 

experimental points 
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4.5 The phase shift due to FPS 

Impedance ZiZZ )( is a vector quantity and maybe plotted in the plane with 

either rectangular or polar coordinates. The two rectangular coordinate values are clearly the real 

and imaginary parts of the impedance, as shown by Equations (4.3) and (4.4), respectively. 

Cos)Re( ZZZ  ,                                                                                                            (4.3) 

Sin)Im( ZZZ  ,                                                                                                             (4.4) 

with the phase angle   and the modulus Z ,  given by Equations (4.5) and (4.6), respectively.













 

Z

Z
tan

1  ,                                                                                                                       (4.5) 

   ZZZ  22
.                                                                                                                (4.6) 

In polar form, Z may now be written as   eZZ i  , which may be converted to rectangular 

form through the use of the Euler relation )()(exp  iSinCosi   . Impedance is by 

definition a complex quantity and is only real when 0 and thus )()(  ZZ  , that is, for 

purely resistive behavior. In this case, the impedance is completely frequency-independent. 

The phase shift of FPS can be measured by applying AC voltage using a FG to one 

electrode of the sample and simultaneously measuring the current response from the other 

electrode. The current response will be of a different phase than the applied voltage and will lag 

or lead the applied voltage signal depending on whether a measured quantity is capacitive or 

inductive, respectively. The current response of a pure capacitor will lag the applied voltage in 

phase by 900 while a pure inductor will lead the applied voltage in phase by 900. 

The phase shift of FPS is numerically modeled using Mathematica software. This 

software is able to provide the user with the imaginary and real parts of complex expressions. 
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This is applied to Equations 4.1-4.6 along with Equation 3.28 to model the phase shift of FPS in 

the first and second ABZ. The computations are as shown in Figures 4-18 and 4-20, for first and 

second ABZ, respectively. Figures 4-19 and 4-21 present the impedance phase shift of FPS 

measured using VVM & FG and OSC. & FG methods in the first and second ABZ, respectively.  
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Figure 4-18. The phase-shift of FPS (Degree) vs. frequency (MHz) in the first transition zone is 

calculated for MD3B-NC sample. Equations (3.28, 4.1- 4.4) along with the 

sample parameters are used in this modeling. The theoretical phase shift is about 

1200 in the first ABZ. 
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Figure 4-19. The impedance phase shift (Degree) vs. frequency (MHz) in the first transition 

zone is measured for MD3B-NC sample. The ‘VVM & FG’ and ‘OSC. & FG’ 

methods are used in this measurement. The phase shift is about 1050. 
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Figure 4-20. The impedance phase-shift vs. frequency in the second transition zone is calculated 

for MD3B-NC sample. Equations (3.28, 4.1- 4.4) and sample parameters are used 

in this modeling. The theoretical phase shift is about 1750 in the first ABZ. 
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Figure 4-21. The impedance phase-shift (Degree) vs. frequency (MHz) in the second transition 

zone is measured for MD3B-NC sample. The ‘VVM & FG’ and ‘OSC. & FG’ 

methods are used in this measurement. The phase shift is about 1700. 
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The phase shift of FPS is considered theoretically and verified experimentally. 

Theoretically, the total phase shift of FPS is about 1200 and 1750 in the first and second ABZ, 

respectively. The method of using VVM & FG shows close measurements to the proposed 

theory, the total phase shift is 1050 and 1700 in the first and second ABZ, respectively. The 

second method OSC. & FG reveals the total phase shift of about 1180 and 1780 in the first and 

second ABZ, respectively. There is a small difference in the frequency range between theory and 

experiments. The same parameters used in the impedance modeling are used for the phase 

modeling. 

The experimental measurements of phase shift reveal the existence of two acoustical 

components of the A0 mode in the transition zones. In the first ABZ, the existence Z-component 

is shown by a peak in the phase diagram in which the curve cross the zero scale with positive 

slope and then with negative slope. This is shown in Figure 4-22 by two green vertical lines to 

the left. That phase shift peak corresponds to minimum in the acousto-electric impedance, which 

is proportional to maximum acoustical amplitude. Consequently, the existence of X-component 

is shown by local peak in the phase-shift diagram, in which the slope is slightly changing from 

positive to negative at frequency close to 3.286MHz. This peak corresponds to a local minimum   

in the acousto-electric impedance, as shown in Figure 4-22. In the second ABZ the phase-shift 

experimental curve crosses the zero with negative slope at one point, as shown in Figure 4-23 by 

a solid green line to the left. At that frequency the impedance has a minimum. Moreover, there is 

a small change in the phase-slope sign close to the frequency 3.68MHz. This small change of 

sign is signified by that small shoulder in the impedance measurements of FPS, as presented in 

Figure 4-23.  
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Figure 4-22. The acousto-electric impedance (Z) and the impedance phase-shift (Theta) vs. 

frequency for the MD3B-NC sample. The measurements are taken in the first 

transition zone. The impedance obtained with VVM & FG and the OSC. & FG 

methods are indicates on the left vertical axes. The phase obtained by the VVM & 

FG and the OSC. & FG methods are indicates on the right vertical axes. The 

green lines represent the extreme values of Z corresponding to a sign changing 

slope of the phase-shift curve. The dashed green line denotes the small difference 

between the VVM & FG and OSC. & FG methods. 
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Figure 4-23. The acousto-electric impedance (Z) and the phase-shift (Theta) vs. frequency for 

the MD3B-NC sample. The measurements are taken in the second transition zone. 

The impedance obtained with VVM & FG and the OSC. & FG methods are 

indicates on the left vertical axes. The phase-shift obtained by the VVM & FG 

and the OSC. & FG methods are indicates on the right vertical axes. The green 

lines represent the extreme values of Z corresponding to a sign changing slope of 

phase-shift curve. The dashed green line represents the small difference between 

the VVM & FG and the OSC. & FG methods. 
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CHAPTER V   CONCLUSIONS 

Results including, theoretical, computations, and experimental investigations presented 

allow to make the following conclusions: 

1. The analytical Equation of the acousto-electric impedance  fZ  of ferroelectric 

phononic superlattice (FPS) is obtained. The impedance  fZ  is a function of frequency

f , and FPS characteristics such as number of domain pairs N , domain length d , 

electromechanical coupling coefficient K , mechanical quality factor, and phase velocity

V of plate acoustic waves (PAW) in a crystal.  

2. An important physical property of the acousto-electric impedance is its phase shift 

between applied AC-voltage and AC-current flowing through the ferroelectric phononic 

superlattice. The phase shift of the acousto-electric impedance is obtained analytically. 

3. Computer modeling of the acousto-electric impedance of the ferroelectric phononic 

superlattice reveals the effect of acoustic stopband. Within the stopband frequencies 

 fZ  is much higher than at each side frequency. The phase shift is strongly changing 

near the boundary of the stopband. 

4. The number of domains influences the acousto-electric impedance. Theory given by 

Equation (3.28) and calculations showed in Figures (3-4, 3-5, and 3-6), in which the 

number of domains are changed from 44 to 28 domain pairs, illustrate that Z  can be as 

small as close to zero. It means that Z  can be effectively controlled by N . 
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5. The comparison with experimental data and computational variation of the parameters of 

ferroelectric phononic superlattice under study, such as the mechanical quality factor Q, 

the electromechanical coupling coefficient K and the acoustic phase velocity V, proved 

the validity of the Mathematica codes that is used to model the acousto-electric 

impedance and its phase shift of FPS. 

6. The frequency limits of the acoustic stopband maybe determined experimentally by 

measuring the minima in  fZ dependency. The experimental data taken from FPS based 

on the periodically poled crystal of lithium niobate prove this consideration. Furthermore, 

it is proved by computer simulations with the analytical equations obtained in this work. 

7. Measurements of the  fZ  dependency reveal the existence of two minima in the  fZ  

function. In particular, there are two minima in Figures 4-1 and 4-3. However, the 

computations by a single acoustic mode with coupled displacements gives only one 

minimum.  This situation implies the possibility of more than one component of an 

acoustic displacement field contributing into  fZ . In other words, a total acoustic 

displacement of plate wave may be decoupled into components. The effect of decoupled 

displacements near a stopband in a phononic crystal is theoretically shown for LiNbO3-

superlattice in reference [73]. The two displacement components, those in plane of 

propagation and those normal to it become decoupled near the stopband. 

8. The existence of displacement components in the transition zone is proved 

experimentally by the data from the MD3B-NC sample as shown in Figures (4-15 and 4-

17). The first and second displacement components are reflected by the two minima in 

the  fZ  for each acoustic Brillouin zone. This refers to the two orthogonal displacement 

components such as AX and AZ. 
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9. The phase shift of ferroelectric phononic superlattice FPS is experimentally measured 

with the MD3B-NC sample. Figures (4-21 and 4-19) show the phase plot changing its 

slope at the frequencies corresponding to the limiting frequencies of X- and Z-

components. The frequencies are FX1, FZ1, FZ2, and FX2. This result shows the decoupling 

of the acoustic mode by Ax and Az displacements near the boundaries of the stopband in 

the frequency domain. In the wave-vector domain, the decoupling takes place near the 

boundary of the acoustic Brillouin zone. 

10. Both measurements phase and the acousto-electric impedance prove the effect of the 

decoupling of the total acoustic displacement by two components. The phase diagram 

with changing slope-sign corresponds to the mode displacement, and that is supported by 

a minimum in the impedance diagram. This is shown in Figures 4-22 and 4-23 in the first 

and second ABZ, respectively. 

11. The maximum efficiency of a transformation from electric in to acoustic energy and vice 

versa will be near the acousto-electric resonances at frequencies F1  and F 2 . The 

acoustic amplitude is inversely proportional to the acousto-electric impedance. Thus the 

minima’s in Figures (4-1, 4-2, 4-3 and 4-4) reflects the maximum efficiency of acousto-

electric transformation of energy. 

12. The analytical equations can be used for developing new acousto-electric applications 

such as ultrasonic sensors, ultrasonic transducers and actuators usually found in MEMS. 

One can use the equations and Mathematica codes for any FPS, since experiments proved 

a validity of the equations and codes. For a particular FPS, it is necessary to substitute 

into the equations and codes the characteristics of the FPS, such as the number of 
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domains N, the electromechanical coupling coefficient K, the mechanical quality factor 

Q, the domain length d, and the plate acoustic phase velocity V.   
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Below are the MATHEMATICA codes of modeling the acousto-electric impedance and its phase 

shift in the first and second ABZ. The parameters are included. 

 

ClearAll 

Element[m,Reals]; Element[d,Reals]; Element[K,Reals]; Element[n,Reals]; 

Element[K1,Reals];Element[K2,Reals];Element[K3,Reals];Element[K4,Reals]; 

Element[c,Reals];Element[V0,Reals];Element[Q2,Reals]; 

Element[h,Reals];Element[f,Reals];Element[e,Reals];Element[FL1,Reals];Element[

FL2,Reals];Element[FU1,Reals];Element[FU1,Reals];Element[Q1,Reals];Element[Q3,Re

als];Element[Q4,Reals] 

 

Q1= Quality factor of Z-component in the 1st ABZ 

Q2= Quality factor of the X-component in the 1st ABZ 

Q3= Quality factor of the Z-component in the 1st ABZ 

Q4= Quality factor of X-component in the 1st ABZ 

FL1= Lower frequency of Z-component near the Stopband(MHz)  

FL2= Lower frequency of X-component near the Stopband(MHz)  

FU1= upper frequency of Z-component near the stopband(MHz)  

FU2= upper frequency of X-component near the stopband(MHz) 

n= Domain number 

h= Sample thickness (mm) 

K1= Electromechanical coupling of Z- component in the 1st ABZ 

K2= Electromechanical coupling of X- component in the 1st ABZ 

K3= Electromechanical coupling of Z- component in the 2nd ABZ 

K4= Electromechanical coupling of X- component in the 2nd ABZ 

d= Domain length(mm) 

c= elastic constant 

w= Sample width(mm) 

= Permittivity of the LiNbO3 (F/m) 

   

V1=2*d*FL1; Phase velocity of Z- component in the 1st ABZ 

V2=2*d*FL2; Phase velocity of X- component in the 1st ABZ 

V3=2*d*FU1; Phase velocity of Z- component in the 2nd ABZ 

V4=2*d*FU2; Phase velocity of X- component in the 2nd ABZ 

 

k1=(2**f)/V1*(1-(*1)/(2*Q1));    The wavenumber of the acoustic components 

k2=(2**f)/V2*(1-(*1)/(2*Q2)); 

k3=(2**f)/V3*(1-(*1)/(2*Q3)); 

k4=(2**f)/V4*(1-(*1)/(2*Q4)); 

=2**f; 
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F1:

=
2 ∗ ⅈ ∗ 𝑛 ∗ 𝑑 ∗ 10−3

𝜖 ∗ 𝑤 ∗ ℎ ∗ 𝜔
((1

− Abs[(Sin[
𝑘1 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

𝑘1 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
𝑘1 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[𝑘1 ∗ 𝑑 ∗

𝑛

√1 + K12
])⁄ ]) ∗ (1

− Abs[(Sin[
𝑘2 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

𝑘2 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
𝑘2 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[𝑘2 ∗ 𝑑 ∗

𝑛

√1 + K22
])⁄ ]))/(2

− Abs[(Sin[
𝑘1 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

𝑘1 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
𝑘1 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[𝑘1 ∗ 𝑑 ∗

𝑛

√1 + K12
])⁄ ]

− Abs[(Sin[
𝑘2 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

𝑘2 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
𝑘2 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[𝑘2 ∗ 𝑑 ∗

𝑛

√1 + K22
])⁄ ])(*1stABZ*) 

Impedanceinthe1stABZ, 𝑍 =
𝑍𝑥 ∗ 𝑍𝑧
𝑍𝑥 + 𝑍𝑧

 

 

F2:=
2 ∗ ⅈ ∗ 𝑛 ∗ 𝑑 ∗ 10−3

𝜖 ∗ 𝑤 ∗ ℎ ∗ 𝜔
((1

− Abs[(Sin[
𝑘3 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

𝑘3 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
𝑘3 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[𝑘3 ∗ 𝑑 ∗

𝑛

√1 − K32
])⁄ ])

∗ (1

− Abs[(Sin[
𝑘4 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

𝑘4 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
𝑘4 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[𝑘4 ∗ 𝑑 ∗

𝑛

√1 − K42
])⁄ ]))

/(2

− Abs[(Sin[
𝑘3 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

𝑘3 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
𝑘3 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[𝑘3 ∗ 𝑑 ∗

𝑛

√1 − K32
])⁄ ]

− Abs[(Sin[
𝑘4 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

𝑘4 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
𝑘4 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[𝑘4 ∗ 𝑑 ∗

𝑛

√1 − K42
])⁄ ]) 

Impedanceinthe2ndABZ, 𝑍 =
𝑍𝑥 ∗ 𝑍𝑧
𝑍𝑥 + 𝑍𝑧

 

P1 = Plot[Abs[F1], {𝑓, 3.25,3.32}, AxesLabel → {𝑓[MHz], 𝑍[Arb. unit]}, LabelStyle

→ Directive[Black, Bold, 30], PlotStyle → Directive[{Thickness[0.005], Black}], Filling

→ Axis, FillingStyle → Lighter[Blue,.7], GridLines → Automatic, GridLinesStyle

→ Directive[Red, Dashed]] 

P2 = Plot[Abs[F2], {𝑓, 3.6,3.72}, LabelStyle → Directive[Black, Bold, 30], PlotStyle

→ Directive[{Thickness[0.005], Black}], AxesLabel → {𝑓[MHz], 𝑍[Arb. unit]}, Filling

→ Axis, FillingStyle → Lighter[Blue,.7], GridLines → Automatic, GridLinesStyle

→ Directive[Red, Dashed]] 
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Phase Shift of FPS 

First ABZ 

1=(2**f)/V1; 

1=(*f)/(V1*Q1); 

2=(2**f)/V2; 

2=(*f)/(V2*Q2); 

Elements[{1,1},Reals]; 

k1=1-*1; 

Elements[{2,2},Reals]; 

k2=2-*2; 

F01:

=
2 ∗ 𝑛 ∗ 𝑑 ∗ ⅈ

𝜖 ∗ 𝑤 ∗ ℎ ∗ 𝜔
(1

− (Sin[
k1 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

k1 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
k1 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[k1 ∗ 𝑑 ∗

𝑛

√1 − K22
])⁄ ); 

F02:

=
2 ∗ 𝑛 ∗ 𝑑 ∗ ⅈ

𝜖 ∗ 𝑤 ∗ ℎ ∗ 𝜔
(1

− (Sin[
k2 ∗ 𝑑

2
] ∗∑(−1)𝑚 ∗ Sin[

k2 ∗ 𝑑

2
∗ (2 ∗ 𝑚 − 1)]

𝑛

𝑚=1

) (
k2 ∗ 𝑑 ∗ 𝑛

2
∗ Sin[k2 ∗ 𝑑 ∗

𝑛

√1 − K12
])⁄ ) 

Z1:= √(Re[F01])2 + (Im[F01])2; 

Z2:= √(Re[F02])2 + (Im[F02])2 

R1 ≔ ArcTan [
Im[F01]

Re[F01]
] ; 

R2 = ArcTan [
Im[F02]

Re[F02]
] ; 

RT:= ArcTan [
(
Im[F01]
Re[F01]

) + (
Im[F02]
Re[F02]

)

1 − (
Im[F02]
Re[F02]

) ∗ (
Im[F01]
Re[F01]

)
] ; 

Plot[RT, {f, 3.22,3.31}] 

Second ABZ 
 

3=(2**f)/V3; 

3=(*f)/(V3*Q3); 

4=(2**f)/V4; 

4=(*f)/(V4*Q4); 

Elements[{3,3},Reals]; 

k3=3-*3; 

Elements[{4,4},Reals]; 

k4=4-*4; 
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𝐅𝟎𝟑:

=
𝟐 ∗ 𝒏 ∗ 𝒅 ∗ ⅈ

𝝐 ∗ 𝒘 ∗ 𝒉 ∗ 𝝎
(𝟏

− (𝐒𝐢𝐧[
𝐤𝟑 ∗ 𝒅

𝟐
] ∗∑(−𝟏)𝒎 ∗ 𝐒𝐢𝐧[

𝐤𝟑 ∗ 𝒅

𝟐
∗ (𝟐 ∗ 𝒎− 𝟏)]

𝒏

𝒎=𝟏

) (
𝐤𝟑 ∗ 𝒅 ∗ 𝒏

𝟐
∗ 𝐒𝐢𝐧[𝐤𝟑 ∗ 𝒅 ∗

𝒏

√𝟏 − 𝐊𝟐𝟐
])⁄ ); 

𝐅𝟎𝟒

≔
𝟐 ∗ 𝒏 ∗ 𝒅 ∗ ⅈ

𝝐 ∗ 𝒘 ∗ 𝒉 ∗ 𝝎
(𝟏

− (𝐒𝐢𝐧 [
𝐤𝟒 ∗ 𝒅

𝟐
] ∗∑(−𝟏)𝒎 ∗ 𝐒𝐢𝐧 [

𝐤𝟒 ∗ 𝒅

𝟐
∗ (𝟐 ∗ 𝒎− 𝟏)]

𝒏

𝒎=𝟏

) (
𝐤𝟒 ∗ 𝒅 ∗ 𝒏

𝟐
∗ 𝐒𝐢𝐧 [𝐤𝟒 ∗ 𝒅 ∗

𝒏

√𝟏 − 𝐊𝟏𝟐
])⁄ ) 

𝐙𝟑 ≔ √(𝐑𝐞[𝐅𝟎𝟑])𝟐 + (𝐈𝐦[𝐅𝟎𝟑])𝟐; 

𝐙𝟒 ≔ √(𝐑𝐞[𝐅𝟎𝟒])𝟐 + (𝐈𝐦[𝐅𝟎𝟒])𝟐 

𝐑𝟑 ≔ 𝐀𝐫𝐜𝐓𝐚𝐧 [
𝐈𝐦[𝐅𝟎𝟑]

𝐑𝐞[𝐅𝟎𝟑]
] ; 

𝐑𝟒 = 𝐀𝐫𝐜𝐓𝐚𝐧 [
𝐈𝐦[𝐅𝟎𝟒]

𝐑𝐞[𝐅𝟎𝟒]
] ; 

𝐑𝐓 ≔ 𝐀𝐫𝐜𝐓𝐚𝐧 [
(
𝐈𝐦[𝐅𝟎𝟑]
𝐑𝐞[𝐅𝟎𝟑]

) + (
𝐈𝐦[𝐅𝟎𝟒]
𝐑𝐞[𝐅𝟎𝟒]

)

𝟏 − (
𝐈𝐦[𝐅𝟎𝟑]
𝐑𝐞[𝐅𝟎𝟑]

) ∗ (
𝐈𝐦[𝐅𝟎𝟒]
𝐑𝐞[𝐅𝟎𝟒]

)
] ; 

𝐏𝐥𝐨𝐭[𝐑𝐓, {𝒇, 𝟑. 𝟔, 𝟑. 𝟕𝟏}]; 
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