
University of Mississippi University of Mississippi 

eGrove eGrove 

Electronic Theses and Dissertations Graduate School 

1-1-2016 

Seasonal Changes in Biomass of Two ComFreshwater Wetland Seasonal Changes in Biomass of Two ComFreshwater Wetland 

plants: storage of nutrients plants: storage of nutrients 

Emily Kathryn McCann 
University of Mississippi 

Follow this and additional works at: https://egrove.olemiss.edu/etd 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
McCann, Emily Kathryn, "Seasonal Changes in Biomass of Two ComFreshwater Wetland plants: storage 
of nutrients" (2016). Electronic Theses and Dissertations. 1270. 
https://egrove.olemiss.edu/etd/1270 

This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for 
inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, 
please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=egrove.olemiss.edu%2Fetd%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/1270?utm_source=egrove.olemiss.edu%2Fetd%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


i 
 

 

SEASONAL CHANGES IN BIOMASS OF TWO COMMON FRESHWATER WETLAND 

PLANTS: STORAGE OF NUTRIENTS 

 

 

 

 

 

 

A Thesis presented in partial fulfillment of requirements for the degree of Master of Science in 

the Department of Biology 

 University of Mississippi 

 

 

Submitted by: Emily Kathryn McCann 

 

 

 

 

 
 

 

 

May 25, 2016 

 

  

[Grab 

your 

reader’

s 

attenti

[Grab 

your 

reader’

s 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright Emily Kathryn McCann 2016 

ALL RIGHTS RESERVED  

[Grab 

your 

reader’

s 

attenti

on 

with a 



ii 
 

 

   ABSTRACT 

 In this study, I quantified differences in above- and belowground biomass and 

storage of nutrients. I hypothesized that storage of phosphorous would be greater in belowground 

biomass in the non-growing season compared to the growing. I also hypothesized that the storage 

of phosphorous would be greater in aboveground biomass in the growing season compared to the 

non-growing season. Furthermore, I hypothesized that the total amount of nutrients in plant 

tissue would be greater in the growing season, than the non-growing season. Typha latifolia and 

Carex lurida were placed in mesocosms at the University of Mississippi Field Station (UMFS) 

and dosed with phosphorous. Each replicate experiment lasted one month and began with new 

plants and soil. At the end of the experiment, all plants were harvested and samples were 

collected for analyses of total inorganic phosphorous, and other macronutrients.  

 The results show that plants store more nutrients than are necessary for growth. 

Increasing the amount of phosphorous available to plants also increases the storage of other 

nutrients, such as magnesium and potassium. The addition of phosphorous also had an effect on 

the location of nutrients in Typha latifolia. Specimens of T. latifolia. that were dosed with 

phosphorous contained larger amounts in roots than shoots, and the opposite was observed in the 

control specimens.  Also, dosed specimens of T. latifolia contained higher amounts of potassium 

in roots compared to shoots/leaves, whereas the control specimens contained higher amounts of 

potassium in shoots/leaves than roots.  Carex lurida results show an increase in the amounts of 
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plant tissue nutrients in the non-growing season compared to the growing season. Conversely, T. 

latifolia contained more plant tissue nutrients in the growing season than the non-growing.  Both 

species contained higher amounts of calcium, magnesium, and sulfur in shoots/leaves than roots.  
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CHAPTER 1 

INTRODUCTION 

Chemical fertilizers are used by farmers to maximize plant growth and crop yield. In 

2001, two million tons of phosphorous fertilizers were used in North American agriculture 

(Cooper and Moore, 2003). Farmers often apply more fertilizer than is necessary for crop 

production, resulting in the excess running off from fields into nearby water systems following 

rain. Unlike nitrogen, phosphorous cannot be released into the atmosphere, thus it remains in 

drainage waters (Kroger, 2007). Many of these contaminated drainage waters lead to large water 

bodies that can suffer from eutrophication due to the increase of these nutrients.  

Eutrophication can occur due to the buildup of nutrient rich sediments, which increase 

algal growth and can therefore lead to hypoxic conditions. Hypoxia is oxygen deficiency, and 

can occur in both freshwater and saltwater environments (Rabotyagov et al. 2014). Large 

amounts of excess nutrients are from agricultural and urban runoff, which is known as nonpoint 

source pollution, NPS, and it can also affect drinking water supplies and recreational water 

(Thornton et al. 1999). Eutrophication is the most widespread water quality problem in the US. It 

accounts for almost half of the impaired lake areas and 60% of impaired river reaches in the US. 

It is also the most common pollution problem in US estuaries (Smith et al. 1999). Most of the 

hypoxic zones in the world are seasonal, occurring in spring and summer, and many are 

reoccurring. One of the largest reoccurring hypoxic zones is in the Gulf of Mexico, which 

spreads over 20,000 km2, and has continued to grow since being first discovered in the 1970s 
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(Rabotyagov et al. 2014).The Gulf of Mexico “dead zone” is an example of eutrophication that 

has occurred due to concentrations of nutrients such as nitrogen and phosphorous (Pringle, 2003; 

Rabalais et al. 2002). Since preindustrial times, there is three times as much reactive 

phosphorous and nitrogen in the world’s oceans. Most of these nutrients are from runoff from 

agricultural fields draining into lakes and streams which eventually drain into the ocean 

(Rabotyagov et al. 2014). 

Wetlands are most commonly found at the interface of terrestrial ecosystems and open 

water. Characteristics of wetlands include the presence of water either at the surface or within the 

root zone, hydric soils, and vegetation adapted to wet conditions. Although natural wetlands 

recycle and process nutrients and energy, up until the last three decades, their importance was 

not recognized, and many were drained and destroyed. Globally over 50% of wetlands have been 

destroyed (Mitsch and Gosslink, 2007).Wetland loss is due to drainage for agriculture, forestry, 

housing development, mosquito control, residential and commercial use, waste disposal, and peat 

mining.  Natural wetlands are important for nutrient cycling and mitigating pollution.  

Constructed wetlands are being developed to provide filtration and processing of 

nutrients previously provided by natural wetlands. Constructed wetlands have been suggested as 

best management practices (BMP), or positive ways, to decrease the negative effects of potential 

agricultural pollutants to downstream receiving systems (Cooper and Moore 2003).  The 

majority of nonpoint source pollution (NPS) contaminants originate in agricultural and urban 

areas. Nutrients, especially nitrogen and phosphorous, stimulate the growth of phytoplankton 

which may cover the surface of water bodies, reducing light penetration and therefore interfering 

with water uses by causing eutrophication. These nutrients are derived from fertilizers, and 

livestock operations (Cooper et al. 2003).  
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Drainage ditches surround many agricultural fields and are used to promote water 

removal following rainfall and controlled-release events. If drainage ditches are viewed as 

buffers, or as BMPs, between farmland and downstream receiving systems, then the water 

quality of agricultural runoff can be improved after storm events (Cooper et al. 2003). Since 

drainage ditches are already in place, utilizing them can be both beneficial and cost effective to 

farmers by increasing their nutrient sequestration potential through simple landscape 

manipulation (Kroger et al. 2012). It is most beneficial to use drainage ditches as constructed 

wetlands to remove excess nutrients associated with agricultural runoff. Ditches can have many 

of the same characteristics as wetlands, including many of the same aquatic plants (Cooper and 

Moore, 2003). Some of these excess nutrients are held in the wetland ecosystem and are recycled 

through plant growth and storage. When water leaves a wetland system, it is first filtered through 

soil, peats, and other substrates, removing nutrients before reaching connecting waters (Hamner 

1997).  

To effectively manage these systems it is important to increase the hydraulic retention 

time (HRT) to allow for increased contact time and nutrient retention. Plants are often used to 

increase the HRT, and reduce nutrient concentrations before reaching downstream systems 

(Kroger et al. 2012). Dense stands of wetland plants can decrease the water velocity time, 

causing solids to settle. Wetland plants also store more nutrients than are necessary for growth, 

further sequestering nutrients (Cronk and Fennessy, 2001). 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General life cycle of perennial wetland plants 

 Most wetland plants are perennial and live for more than one growth cycle. Typically, 

perennial wetland plants bloom over the spring and summer and enter a stage of dormancy over 

winter. At the beginning of the growing season, their shoots rapidly grow using stored energy 

from rhizomes and roots (Cronk and Fennessy, 2001). At the end of the growing season, plants 

lose their aboveground parts due to the breakdown of cell components leading to cell death, 

which is known as senescence (Bidlack and Jansky, 2014).  

Plant non-growing season refers to late fall and winter when plants enter a stage of 

dormancy. Dormancy allows the plant to survive winter by limiting their growth, or stopping 

growth completely, until the spring. Leading to the dormant season, plants undergo several 

physiological and physical changes to prepare for winter. This process of preparation is known 

as acclimation, which occurs due to factors such as decreasing daylight, and lower temperatures 

(Raven et al. 2005). 

 

2.2 Nutrient removal by wetland plants  

Hunter et al. (2001) showed that vegetated areas remove more nitrogen and phosphorous 

than unvegetated areas.  This study demonstrated that nitrate removal was 67% in vegetated 
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compared to non-vegetated mesocosms (29%). Mesocosms are outdoor experimental systems 

(tubs, small pools, horse troughs) used to incorporate natural temperature and moisture 

fluctuations while having controlled elements, such as addition of nutrients, similar to a 

laboratory experiment. The amount of phosphorous removed was also higher in vegetated 

mesocosms (42%) than mesocosms without vegetation (20%).  

 Nutrient concentrations in aboveground vegetation tend to be highest in the early 

growing season (Johnston 1991).  Vymazal et al.  (1999)  showed that Phragmites australis 

accumulated more nutrients in above ground biomass in nutrient enriched conditions than in poor 

nutrient systems. Cronk and Fennessy (2001) report that nutrient storage in live plant tissues is 

temporary: some of the nutrients are released through tissue sloughing, plant senescence, and/or 

decomposition at the end of the growing season.  Studies have shown that the contribution plants 

make in removing nutrients in the spring and summer, is only temporary due to the loss of 

nutrients at senescence in fall and winter (Kao et al., 2003; Kroger et al., 2007; Menon and 

Holland, 2014). These studies indicate that plant senescence should be taken into account when 

calculating plant nutrient sequestration. Depending on the rate of decomposition of senesced 

plant parts, litter can retain large amounts of nutrients and release them over different periods 

(Kao et al. 2003). Kroger et al. (2007) demonstrated that a wetland plant, specifically Leersia 

oryzoides, takes up phosphorous during the growing season, but release it back into the water 

during the dormant season. This release in the dormant season may add to eutrophication in 

receiving waters.  

Mustafa and Scholz (2011) indicate that Typha latifolia is effective in removal of 

phosphorus and nitrogen from wastewater. The study also determined that more nutrients were 

stored in above ground biomass in the summer than winter. Conversely, more nutrients were 
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stored in belowground biomass, compared to aboveground biomass, in the winter. In studies of 

two coastal wetland plants, Chen (2011) also found more nutrients stored in belowground 

biomass in winter than summer.  

 

2.3 Nutrient Resorption 

 Many wetland species have the ability to conserve nutrients through nutrient 

translocation. Species of Poaceae and Cyperaceae translocate carbohydrates and nutrients from 

leaves to roots, allowing them to overwinter and provide energy for growth in the next season. 

Translocation of nutrients can account for nutrient retention in plants. Temperate trees retain 

nutrients in root cortex cells over winter and translocate nutrients from roots to foliar tissue in the 

spring. Foliar phosphorous concentration in woody species reduces by over half during the 

course of the growing season. In the spring, foliar phosphorous is high (Cronk and Fennessy, 

2001; Raven et al. 2005). 

Killingbeck (1996) determined that woody perennial species have the ability to re-absorb 

nutrients before they senesce their leaves. Killingbeck defines nutrient resorption as “the process 

by which nutrients are mobilized from senescing leaves and transported to other plant tissues.” 

This study discovered that resorption is highly proficient in plants that have reduced levels of 

nitrogen and phosphorus. Concentrations of 0.3% nitrogen and 0.01% phosphorus were found in 

senesced leaves (Killingbeck, 1996). It has also been determined that on average perennial 

species resorption efficiency is 52% for phosphorus and 50% for nitrogen. It has been further 

determined that resorption rates are not related to the amount of nutrients available for plants to 

use (Aerts, 1996). 
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 A similar study was conducted in 2008 on four macrophytes:  Glycera maxima, 

Phragmites australis, Carex acutiformis and Typha angustifolia. The study collected leaves from 

the species in July and senesced leaves were collected in September to determine nutrient 

resorption efficiency. The results showed a decrease in nutrient concentration of nitrogen, 

phosphorus and potassium in all species except for C. acutiformis, thus indicating a translocation 

of nutrients to below-ground biomass (Lawniczak, 2011). This study focuses on five 

macronutrients: phosphorous, calcium, magnesium, sulfur, and potassium. 

 

2.4 Phosphorous and Plants 

Phosphorous is one of the five nutrients analyzed for this study. Phosphorous (P) is 

required by almost all plant processes (Figure 1). It is vital in reactions including regulation of 

metabolic processes, activation of proteins, and energy transfer (Mikkelson, 2013). Furthermore, 

P is involved in photosynthesis, transformation of sugars and starches, nutrient movement in 

plants, and is also vital in transfer of genetic material since P is a main component in 

chromosomes and building blocks of genes. A large amount of P is required to develop new cells 

and to transfer the genetic code (International Plant Nutrition Institue,1999; Raven et al, 2005).  

Plants cannot grow without this nutrient, and it makes up about 0.2% of a plant’s dry weight. 

Second to Nitrogen, Phosphorus is a frequent limiter of plant growth (Schachtman et al. 1998). 

Although many soils contain high amounts of P, it may be present in forms that are unusable to 

plants (figure 1). Plants can only utilize inorganic phosphorus (Pi), and 20-80% of P in soils is 

organic in form and unusable for plants. Therefore, farmers apply large amounts of P to crops 

due to the fact that 80% of applied P becomes unavailable to plants due to runoff, adsorption, or 

conversion to the organic form (Holford, 1997). The amount of P concentration in agricultural 
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plants ranges from 0.1 to 0.5 percent; once inside the plant it is stored in roots or in stems and 

leaves (International Plant Nutrition Institute, 1999).  

Figure 1. Phosphorus in soils and absorption by plants.  

 

Phosphorus (P) uptake occurs mostly at young root tips and root hairs, typically through 

diffusion. P must first move through the apoplasm and into the “Casparian strip” until it reaches 

the stele of the root. The apoplasm is made up of the root walls, the cortical cells, and the open 

spaces between the two tissues. The movement of P from the apoplast to the stele is vital in 

transporting nutrients throughout the plant. This step requires energy-driven transport through 

phosphate transporters. Phosphate transporters are nutrient transport proteins, and research is 
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currently being done to determine ways to increase P uptake by these proteins and limit P 

application on crops (Mikkelson, 2013). 

When the supply of inorganic Phosphorus (Pi) is high, plants store the excess amounts in 

older leaf tissues and in vacuoles. When Pi is low, plants grow more roots to increase their 

uptake from soil while translocating Pi from older leaves and removing storage of Pi from 

cortex, pith, and vacuoles. Studies have determined that plants with sufficient amounts of P 

absorbed Pi through roots, and transported it to younger leaves through the xylem. Significant 

translocation of Pi in phloem from older plant leaves to growing shoots has been observed in 

times when the amount of Pi in soils is inadequate (Schachtman et al. 1998). 

 

2.5 Calcium and Plants 

 Calcium (Ca) in an essential element in plants. It is accessible to plants in the form of a 

cation Ca2+.  Deficiency of calcium leads to shoots and tips of plants dying (Raven et al. 2005).  

Ca is especially essential for stability of cells by maintaining membrane structure. The strength 

of cell walls are increased by calcium addition. Ca forms cross-links within the cell matrix 

increasing the structural rigidity of the cell wall (Eastwood, 2002). When the concentration of Ca 

is low the cell walls become more pliable, and are easily ruptured (Hepler, 2005). It is involved 

in the movement of substances through cell membranes by activating Ca2+ permeable channels. 

Ca ions bind to acidic groups of membrane lipids where they can act as a second messenger and 

initiate plant response to environmental stimuli (Taiz et al. 2015). When Ca is low there can be a 

leakage of ions and metabolites. Calcium also acts as an enzyme cofactor and regulates stimulus 

responses (Nabors, 2004). Studies show that Ca also slows the loss of chlorophyll and tissue 
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senescence by enhancing cytokinin. Ca also is found in the mitochondria of plant cells. It 

regulates NADH dehydrogenase, and therefore regulates mitochondrial function (Hepler, 2005). 

NADH is reduced nicotinamide adenine dinucleotide and acts as an electron carrier in respiration 

(Bidlack and Jansky, 2014). 

 

2.6 Potassium and Plants 

 Potassium (K) in plants typically is concentrated in the meristems and is responsible for 

enzyme activation (Bidlack and Jansky, 2014). It is a cofactor in osmosis and ionic balance, 

protein synthesis, and action of the stomata (Nabors, 2004). When potassium is deficient in 

plants necrotic spots occur, and the plant will also have narrow weak stems (Raven et al, 2005). 

K activates over 60 different enzymes that are required for plant growth. It changes that shape of 

the enzyme molecule and exposes the active site required for the reaction to take place. K also 

reduces organic anions and keeps the plant’s pH neutral. Plants depend upon K for proper 

stomata function. Stomata opening and closing is essential for gas exchange, photosynthesis, and 

nutrient transport. K moves into guard cells that surround the stomata causing water to enter the 

cells. When water enters the guard cells the pores open and gas exchange occurs. When K levels 

are low the pores tightly close and prevent the loss of water through stomata. K is also 

responsible for osmosis in roots. Deficient K in roots cause plants to be less able to absorb water. 

K ions also maintain the production of ATP. When levels of K are low, photosynthesis is slowed 

down as well as the production of ATP.  Furthermore, plants that do not have sufficient levels of 

K have lower translocation rates of nitrates, calcium, phosphates, magnesium and amino acids 

(IPNI, 1998). 
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 Potassium (K) levels are typically high in soils, but largely in a form that is unavailable to 

plants. On average, 90-98% of K found in soils is in an insoluble form and unusable by plants. 

For plants to use K, it must be in a water soluble form. K uptake in plants is increased by soil 

moisture, oxygen presence and temperature. Higher soil moisture increases the soluble form of K 

and is more readily useable by plants. Air is necessary for root respiration and K uptake. The 

optimum soil temperature of K uptake is around 70 degrees Fahrenheit. Since levels of useable K 

in soils is low, farmers apply fertilizers such as potassium chloride or manure to reach optimum 

levels for crop growth (Rehn and Schmitt, 2002). 

  

2.7 Magnesium and Plants 

 Magnesium (Mg) is a main component in chlorophyll and an activator of enzymes 

(Raven et al, 2005). When deficient, dead spots occur on plant leaves (Bidlack and Jansky, 

2014). Mg is responsible for the green color of leaves. Without Mg, chlorophyll cannot capture 

energy from the sun (Patterson, 2016). Mg is also the carrier of phosphorous in plants and 

enhances the uptake of phosphorous when applied as a fertilizer. The available form of Mg is the 

ionic form Mg++. There are several factors that affect the availability of Mg in soils. Low levels 

of pH decrease the availability of Mg for plants, and soils that contain high levels of potassium 

or calcium provide less Mg to the plant (Spectrum Analytic Inc., 2016). 

 

2.8 Sulfur and Plants 

 Sulfur (S) is an essential element in proteins, amino acids, and coenzymes of plants 

(Nabors, 2004).  Plants require as much sulfur as they do phosphorous. S is found in cystine and 
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cysteine that make up cell proteins (Baird, 1991). It is also involved in chlorophyll formation and 

the conversion of nitrate to amino acids (Steward, 2010). The available form of sulfur for plants 

is SO4. Transformation of S is similar to that of nitrogen. Sulfur that is available to plants can be 

transformed by bacteria to unusable forms. Harvesting and leaching also reduces the available S 

(Schulte and Kelling, 1992).  

 

2.9 Typha latifolia 

Known as the common cattail, it is found throughout most of the United States from 

Florida to Alaska and even into Mexico (Godfrey, 1979). It belongs to the Typhaceae family 

which consists of herbaceous perennial plants that live in fresh to slightly brackish wetlands. The 

cat-tail family is rhizomatous and often emergent in up to 1.5 meters of water. The flowers of 

Typhaceae are unisexual with both pistillate and staminate on the same plant. The pistillate 

spikes often persist into winter and foliage leaves are persistent.  Each spike can produce 

thousands of seeds. The seeds are wind-dispersed and germinate under shallow water or on bare 

wet soils. Seedlings can clone rapidly by means of rhizomes in their first season and flower the 

second season. They often form large stands producing large amounts of biomass in thick 

persistent stands. Typha species are used in numerous ways throughout the world. The “fluff” 

from fruiting spikes is used for insulation, leaves are used for dwellings and furnishings. Typha 

is important as habitat and food for wildlife. It is also useful in removal of pollutants and is sold 

commercially in the US for habitat and wetland restoration (Smith, 2000). Typha latifolia (Figure 

2) is commonly found in wetlands of the southeastern United States. It has also been proven to 

take up large amounts of nutrients (Mustafa and Scholz, 2011).  
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Figure 2.  Typha latifolia line drawing  (Britton and Brown (b), 1913). 

 

2.10 Carex lurida 

 Belonging to the Cyperaceae family, the Carex genus consists of over 2000 species 

worldwide. Carex species are herbaceous, perennial, rhizomatous plants. Its culms are trigonous, 

with basal and cauline leaves. The inflorescences are terminal and flowers are unisexual. Carex 

is one of the largest genera of vascular plants in the world. Its distribution is almost worldwide, 

found most places except for the tropics and Southeast Asia. It is most commonly found in wet 

habitats, with water no more than 50cm deep in the growing season. Vegetative shoots have 

basal leaves and the stem-like aboveground portion is composed of overlapping sheaths. Carex 

species are important members of many peat deposits and are often used in moist habitats as 
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forage for wildlife and livestock. Grasslands also have a large amount of biomass in species of 

Carex (Ball et al, 2000). Carex lurida (Figure 3) is native to the southeastern United States. It 

has also been shown to uptake and retain nutrients, such as phosphorous (Menon and Holland, 

2013).  

 

Figure 3. Carex lurida line drawing (Britton and Brown (a), 1913). 
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CHAPTER 3 

OBJECTIVES AND HYPOTHESES 

3.1 Objectives 

Some scientific literature suggests that sequestration of nutrients by wetland plants is 

only temporary due to plant senescence (Kao et al. 2003; Kroger et al. 2007; Menon and 

Holland, 2014). These studies quantify release from plant senescence by collecting leaf litter 

during the growing season and measuring decomposition over time. However, other studies 

showed nutrient storage belowground in winter (Cronk and Fennessy, 2001; Raven et al. 2005). 

Previous work did not answer the question about how two wetland plants store nutrients 

throughout the seasons.  This study examines the effectiveness of two common wetland plants in 

retaining five elements (including phosphorous) associated with agricultural runoff. I studied the 

nutrient storage of these plants following a simulated rainfall runoff event during both growing 

and non-growing crop seasons to assess their storage of phosphorous in above and belowground 

biomass. My objective was to determine the storage of plant nutrients in both growing and non-

growing seasons.  

 

3.2 Hypotheses 

 Hypothesis 1: Storage of phosphorous will be greater in belowground biomass in the 

non-growing season compared to the growing season.  
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Hypothesis 2. Storage of phosphorous will be greater in aboveground biomass in the 

growing season compared to the non-growing season

 

Hypothesis 3. Storage of other nutrients will be greater in the growing season in above 

ground biomass than during the non-growing season. 
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CHAPTER 4 

METHODS 

4.1 Research site and Experimental Set up 

The research was conducted at the University of Mississippi Field Station (UMFS) which 

is located on a 800-acre site, 11 miles northeast of the University of Mississippi’s Oxford 

campus, on County Road 202 (Figure 4; 34.432328N, -89.38966W). The Field Station is 

located within the Eoecene Hills of the interior coastal plains in the Southeastern United States. 

It contains both natural and constructed wetlands totaling over 200 experimental ponds (UM 

Field Station, 2016). The research was conducted in plastic drums that served as mesocosms. 

Mesocosms are outdoor experimental systems used to incorporate natural temperature and 

moisture fluctuations while having controlled elements, such as addition of nutrients, similar to a 

laboratory experiment. The drums were located outdoors, next to the UMFS greenhouse (Figure 

5). 

The species that were used in the experiment were collected from the UMFS pond 71 

(Figure 2), which is located in the southeastern side of the field station. Pond 71 is spring fed and 

is dominated by species Typha latifolia and Carex lurida (Figures 6 and 7).  

The soil was collected from UMFS, 200 yards west of the experiment site in an upland 

area free from any experimental runoff or contamination. The soil was sandy-loam, which is 

similar to the soil found in pond 71. The soil that was used was collected from the same location 

for each experiment.
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FIGURE 4:  University of Mississippi Field Station, located in Abbeville, Mississippi 

(Google, January 2016). 
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FIGURE 5.  University of Mississippi Field Station, Pond 71. Located in Abbeville, 

Mississippi (Google, January 2016). 
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Figure 6. Typha latifolia photo. (Russell, 2016). 

 

 

 

 

 

 

 

 

 

 

Figure 7. Carex lurida photo. (Staunton, 2016). 
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The initial experiment was set up in June 2015, replicated in July 2015, reproduced in 

late September 2015, and replicated in late October 2015 to simulate growing and non-growing 

seasons, respectively. The species Carex lurida (shallow sedge), and Typha latifolia (cattail) 

were used in this experiment.  

Each replicate experiment lasted one month and began with new plants and soil. Twenty 

plastic drums (55 gallon), cut in half, were used as planters (Figure 8). At the beginning of each 

experiment the planters were cleaned and filled with new soil. Then the plant species were 

collected from pond 71, cleaned of all residual sediments, weighed and then planted in barrels. 

Once planted the specimens were allowed to acclimate for three weeks before dosing occurred 

(Menon and Holland 2013). C. lurida was planted in ten drums and T. latifolia in ten. Five drums 

of each species served as controls.  The controls received unchlorinated ground-water. The other 

drums were dosed with phosphorous dissolved in unchlorinated ground-water (Figure 9). Dosing 

occurred using a 19 liter aquarium doser.  Each dose consisted of 18 liters of 2.5 mg/l of 

phosphorus to simulate a rainfall event. The phosphorus concentration was selected based on the 

concentration of phosphorus (0.01 to 3.0 mg P L -1) commonly found in agricultural runoff 

(Frossard et al. 2000). Throughout the experiment the planters were watered weekly with 

unchlorinated groundwater to ensure soil saturation. At the end of the experiment all plants were 

harvested, cleaned of sediments, and weighed. Specimens were brought back to the laboratory 

for analyses. For the month of September, Typha latifolia specimens were not successful 

following transplantation. For this reason, the month of September is not included in the analyses 

of Typha latifolia.  
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Figure 8.  Empty mesocosms, UMFS 

 

Figure 9. Experimental set-up. 
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4.2 Laboratory Analyses 

 Above- and belowground biomass were measured in the laboratory in the UM Biology 

Department in Oxford, MS. Clean specimens were sorted by species. Above-and belowground 

structures were separated, weighed and dried in a drying oven at 85 degrees Celsius for 48 hours 

to determine above and below ground biomass.  

Samples of root and stem tissue were collected, prior to drying, from each specimen and 

sent to the University of Georgia Soil, Plant, and Water laboratory, in Athens, GA, to be 

analyzed for total inorganic phosphorous (TIP) and four other nutrients.   

 

4.3 Statistical Analyses 

A multi-factor mixed effect ANOVA was used to compare means of plant nutrients 

among months, between location on plant (root or leaves), between phosphorus treatment, 

control versus dosed, and with interactions among those three factors. Specimen was treated as a 

random factor in the ANOVA, resulting in a split-plot analysis with location on plant as the 

within-plot factor, and month and phosphorous treatment as between-plot factors. Separate 

analyses were used for each plant species, for each of the five response variables: percent 

phosphorus, percent magnesium, percent calcium, percent sulfur, and biomass. Significance was 

accessed using α=0.05. Adjusted (least-squares) means and standard errors were calculated for 

the significant effects. For significant interactions or significant main effects of month, means 

were compared using a priori contrast. All analyses were performed using the lmer() function in 

the lmerTest package of R version 3.1. 
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CHAPTER 5 

RESULTS 

 

5.1 Typha latifolia 

5.1.1 Phosphorous 

 The results of the ANOVA showed the phosphorus-treated specimens contained more 

phosphorous than the control specimens (F1.24= 4.57, p=0.04282, Figure 10). There was a trend 

toward a P treatment by plant location interaction, whereby the treated specimens contained 

more P in roots than aboveground parts, whereas the control specimens had similar P 

concentration in roots and aboveground parts (F1.24= 4.0862, p=0.05452, figure 10). 
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Figure 10.  Mean above-belowground percent P compared for treated and control specimens of 

Typha latifolia (±SE, n=60). Means that share letters were not significantly different. 

 

Month and location had no effect on P concentration (p=0.20146).

 

5.1.2 Calcium 

 There was a significant three-way interaction of the treatment of phosphorous on the 

storage location of calcium between months (F2.24=7.984, p=.0021974, Figure 11). The 

leaves/shoots had higher means than the roots. Higher amounts of Ca were found specifically in 

the growing season (June and July), than the non-growing month (October).  The specimens that 

served as control had higher amounts of Ca.  
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Figure 11. Typha latifolia above- and belowground percent Ca of treated and control specimens 

compared over months (±SE, n=60). Means that share letters were not significantly different 

across the post-hoc significant effect contrasts within each location x treatment combination. 

 

 

 

 

 

5.1.3 Potassium 

 There was a significant three-way interaction of the treatment of phosphorous on the 

storage location of potassium between months (F2.24=3.9483, p=0.03293, Figure 12).There was 

more potassium (K) in June and July than October. Specimens that were treated with 

phosphorous contained more K than the control specimens. The control specimens contained 

more K in roots in the non-growing than the growing, and conversely contained more K in the 
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shoots in the growing than the non-growing season. The treated specimens had higher 

concentrations of K in the growing season than the non-growing season. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Typha latifolia above- and belowground percent K of treated and control specimens 

compared over months (±SE, n=60). Means that share letters were not significantly different 

across the post-hoc significant effect contrasts within each location x treatment combination. 

 

 

5.1.4 Magnesium 

 Results show a significant effect of treatment of phosphorous and storage of magnesium 

(Mg) over months (F2.48=5.0747, p=.01002, Figure 13). Specimens contained more Mg in the 

growing season (June and July) than the non-growing (October). The treated specimens 
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Figure 13. Percent Mg of treated and control specimens, of Typha latifolia, compared over 

months (±SE, n=60). 

 

 There was a significant difference between the storage of Mg in roots and leafs/shoots 

(F1.48=24.5742, p=9.324e-06, Figure 14). The leaves/shoots contained more Mg than the roots.  
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Figure 14.  Typha latifolia above- and belowground percent Mg (±SE, n=60). 

 

5.1.5 Sulfur 

 The treatment of P had no significant effect (p= 0.982). The results show a significant 

difference between the amount of Sulfur (S) between the different months (F2.24=9.6595, 

p=0.0008363, Figure 15). The growing months contained more S than the non-growing month. 

The month of July had the highest amount of S.  
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Figure 15. Percent S, in Typha latifolia, compared over months (±SE, n=60). 

 

 There is a significant difference between location of S in the plants (F1.24=19.9409, 

p=0.0001617, Figure 16).  The leaf/shoots contained more S than the roots.  

 

Figure 16. Typha latifolia above- and belowground percent S (±SE, n=60). 
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5.1.6 Mass 

 The treatment of P had no significant effect on growth of roots and shoots/leaves (p= 

0.8489).  The results show a significant difference in mass locations from root to shoot/leaf. 

(F1.24=16.8278, p=0.0004069, Figure 17), where the leaf/shoots had a higher mass than the roots.  

 

Figure 17. Typha latifolia above- and belowground mass (±SE, n=60). 

 

 There was no significant difference in the mass between dosed and control specimens 

(p=0.4589). There was also no significant difference in above- and below ground biomass 

between months (p=0.9415). 
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5.2 Carex lurida 

5.2.1 Phosphorous 

 The treatment of P had no significant effect (p=0.738624). Results show a significant 

difference in the storage of phosphorous (P) between months (F3.32=13.2863, p= 8.417e-06, 

Figure 18). The non-growing months had higher concentrations of phosphorous than the growing 

months.  

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Percent P compared over months, of Carex lurida (±SE, n=60). Means that share 

letters were not significantly different. 

 

 There is a significant difference in the location of phosphorous in the plant (F1.32=11.6093 

p=.001788, Figure 19). The leaves/shoots contained a higher concentration of P than the roots.  
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Figure 19. Carex lurida above- and belowground percent P (±SE, n=60). 

 

There is no significant difference in the location of P between months (p= 0.35). 

 

5.2.2 Calcium 

 The treatment of P had no significant effect (p= 0.87331). The results show a difference 

in the location of calcium between months (F3.32=5.014, p=.005816, Figure 20). There were 

higher amounts of Ca in the leaves/shoots than the roots for the month of July, conversely there 

was a higher concentration of Ca in the roots than the leaves/shoots in September.  
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Figure 20. Carex lurida above- and belowground percent Ca compared over months (±SE, 

n=60). Means that share letters were not significantly different. 

 

 

5.2.3 Potassium  

 The treatment of P had no significant effect (p=0.5325). There is a significant difference 

between months and the storage of potassium (F3.32=12.394, p= 1.524e-05, Figure 21). There are 

higher amounts of K in the non-growing months than the growing.  
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Figure 21.  Percent K, in Carex lurida, compared over months (±SE, n=60). Means that share 

letters were not significantly different. 

 

 There is a significant difference between the location of K on the plant (F1.32=38.621, 

p=5.84e-07, Figure 22), with a higher amount of K in the leaf/shoot than the root. 
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Figure 22. Carex lurida above- and belowground percent K (±SE, n=60). 

 

 

5.2.4 Magnesium 

 The treatment of P had no significant effect (p= 0.991913). Results show a significant 

difference between location of Magnesium (Mg) and month (F3.32=4.0594, p=0.014934, Figure 

23). There was no significant difference in the concentration of Mg over the seasons, but there 

was an increase in storage of Mg in roots from growing season to non-growing. In the growing 

season higher concentrations of Mg were in the leaves/shoots. Similar concentrations of Mg were 

found in leaves/shoots and roots in the non-growing season.   
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Figure 23. Carex lurida above- and belowground percent magnesium compared over months 

(±SE, n=60). Means that share letters were not significantly different. 

 

 

5.2.5 Sulfur 

 The treatment of P had no significant effect (p= 0.3319411). There is a significant 

difference in the amount of Sulfur (S) between months (F3.32=9.4080, p=.0001318, Figure 24). 

There are higher amounts of S in the non-growing months than the growing. There is also a 

significant increase in S from June to July. 
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Figure 24. Percent S, in Carex lurida, compared over months (±SE, n=60). Means that share 

letters were not significantly different. 

 

 The results show a significant difference between the location of S (F1.32=4.9284, p= 

0.0336263, Figure 25). There is more S in the leaves/shoots than the roots.  
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Figure 25. Carex lurida above- and belowground percent S (±SE, n=60). 
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Figure 26. Carex lurida above- and belowground mass compared over months (±SE, n=60). 

Means that share letters were not significantly different. 

 

 

5.3 Weather Results 2015 

 The average temperature for the 2015 growing and the non-growing season showed an 
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Monthly Average Temperature Report (F) 

Month (2015) Observed  Normal  
Depart from 
normal 

Last year's 
(2014) 

May 71.5 70.7 0.8 71.3 

June 79.2 78.1 1.1 78.8 

July 83 81.4 1.6 76.5 

August 78.8 80.8 -2.00 80.5 

September 74.7 74.1 0.6 75.5 

October 64.3 63 1.3 65 

November 57.6 52.9 4.7 46.8 
 

Table 1.  Average Temperature per month (NOAA, 2016). 

 

Monthly Average Precipitation Report (inch/day) 

Month (2015) Observed Rain (inch) Normal 

Depart 
from 
normal 

Last 
year's 
(2014) 

May 0.29 0.18 0.11 0.14 

June 0.11 0.15 -0.04 0.28 

July 0.33 0.13 0.2 0.2 

August 0.21 0.11 0.1 0.04 

September 0.01 0.11 -0.1 0.11 

October 0.13 0.13 0 0.27 

November 0.21 0.16 0.05 0.15 
 

Table 2. Average precipitation per day (NOAA, 2016).
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CHAPTER 6 

DISCUSSION 

6.1 Application of Phosphorous  

The application of phosphorous had no significant effect on Carex lurida, but had a 

significant effect in Typha latifolia. Typha latifolia that was dosed with phosphorous had larger 

amounts of P in both above and belowground biomass than the control (Figure 10), showing 

plants store more nutrients than are necessary for growth (Cronk and Fennessy, 2001). Dosed 

specimens of Typha latifolia also had larger amounts of potassium (Figure 13), and magnesium 

(Figure 14) than control specimens. Magnesium is a carrier of phosphorous in plants (Spectrum 

Analytic Inc., 2016), and potassium is required to translocate phosphorous (IPNI, 1998). My 

results corroborate the fact that plants with higher amounts of phosphorous contain larger 

amounts of magnesium and potassium to carry and translocate the phosphorus throughout the 

plant.

 

6.2 Change over seasons 

Plants typically contain fewer nutrients in the fall and winter as they enter a dormant 

stage, and higher concentration of nutrients in early growing season (Johnston, 1991). Dormancy 

occurs due to decreasing daylight and lower temperatures (Raven et al. 2005). My expectations 

were that storage of phosphorous would change locations during the season. However, my 
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results show the storage of phosphorous between above-and belowground biomass for Typha 

latifolia over the seasons was not significant. In Typha latifolia the storage of calcium, 

potassium, magnesium, and sulfur were greater in the growing months of June and July than the 

non-growing month of October (Figures 12, 13, 14, 16)

Carex lurida contained larger amounts of nutrients in the non-growing season than the 

growing. In the months of September and October Carex lurida contained higher amounts of 

phosphorous, calcium, potassium, and sulfur compared to June and July (Figures 21, 22, 24, 25, 

28), specifically with larger amounts of nutrients in the specimens harvested in September than 

in October.  For the non-growing seasons the specimens were collected in the beginning of 

October and November. Both months had temperatures that were higher than normal (Table 1). 

The month of October had an increase of 1.3 degrees Fahrenheit from normal, with a maximum 

temperature of 76 degree Fahrenheit. November had an increase of 4.7 degrees Fahrenheit from 

normal, with a maximum temperature of 68 degrees Fahrenheit. With higher temperatures than 

normal the plants may not have responded to environmental cues to begin translocating nutrients 

to belowground biomass from aboveground biomass (Cronk and Fennessy, 2001), and were still 

actively using nutrients for photosynthesis and growth.  

6.3 Storage of nutrients 

  Carex lurida contained more phosphorous in leaves/shoots than roots (Figure 22).  

Phosphorous (P) is required for photosynthesis, and typically found in large amounts in leaves 

(Raven et al. 2005). When the supply of P in soils is high, plants store the excess in older leaf 

tissue and vacuoles (Schachtman et al, 1998). The control specimens of Typha latifolia contained 
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more P in leaves/shoots than roots, while the dosed specimens, although they contained more P 

than the control, contained more P in roots than leaves/shoots. This could be due to insufficient 

sampling size as a result of the death of specimens from the month of September, or the 

specimens could have been storing more P in roots to prepare for vegetative growth. Large 

amounts of P are needed to transfer the genetic code (IPNI, 1999), and none of the specimens 

were developing sexually.  

   Typha latifolia contained more calcium, Ca, in leaves/shoots than in roots. This was 

similarly observed in Carex lurida with the exception of the month of September (Figure 12 and 

24). Ca is important in mitochondrial function. Leaves of plants that are undergoing 

photosynthesis would need larger amounts of Ca (Hepler, 2005).  

 Potassium, K, ions are important in the production of ATP, and adequate supplies of K 

are needed for photosynthesis to proceed, and for the opening and closing of stomata (IPNI, 

1998). Carex lurida results show more amounts of Potassium, K, in leaves than in roots (Figure 

26), indicating high levels of photosynthesis occurring. There was a significant difference 

between dosed and control specimens of Typha latifolia, and location of K (Figure 13). 

Specimens treated with P contained more overall storage of K in roots compared to 

shoots/leaves, this suggests the specimens were storing the excess K in roots.  Control specimens 

of T. latifolia contained more K in roots in October, while June and July contained more K in 

shoots/leaves. Without extra supplies of K the specimens were using what was available in above 

ground tissue to undergo photosynthesis, until October when greater amounts of nutrients were 

being stored in roots in preparation for winter.  

 Results from Typha latifolia specimens show there were greater amounts of Magnesium, 

Mg, in shoots/leaves than in roots (Figure 15), as does Carex lurida (Figure 27), with the 
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exception of the month of October. Typha latifolia contains larger amounts of Mg in the growing 

season than the non-growing season (Figure 14). Mg is a main component in chlorophyll, and is 

therefore a requirement for photosynthesis (Patterson, 2016). High levels of Mg in leaves rather 

than roots indicate use of Mg in photosynthesis, rather than storage such as what is seen in Carex 

lurida in the month of October when greater amounts of Mg are found in roots than leaves/shoots 

(Figure 27). Both Carex lurida and Typha latifolia contain more sulfur, S, in aboveground 

biomass than belowground biomass (Figure 17, and 29), which is to be expected, since sulfur is 

an important element in the formation of chlorophyll (Steward, 2010). 
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CHAPTER 7 

SUMMARY AND CONCLUSION 

 

 The original intent of this research was to investigate how two wetland plant species store 

phosphorous between seasons. After the experiment was concluded results for the amounts of 

other nutrients were also determined. The first hypothesis was that the storage of phosphorous 

would be greater in belowground biomass in the non-growing season compared to the growing 

season. The results were not significant for either species in reference to phosphorous. The 

second hypothesis was that the storage of phosphorous would be greater in aboveground biomass 

in the growing season compared to the non-growing season. The results were not significant for 

either species in reference to phosphorous. So neither hypothesis can be proven true.  Although 

there was no significance for phosphorous storage, the results did yield significance for other 

nutrients.  

 Both Carex lurida, and Typha latifolia showed significant differences in the storage of 

calcium, with both storing more calcium in above ground biomass than belowground biomass in 

the growing season, and more calcium in belowground biomass than the aboveground biomass in 

the non-growing season. This is also seen in the results from Carex lurida and the storage of 

magnesium, where there was more storage in the roots in the non-growing season than the 

growing. 

 This study also showed that plants store more nutrients in the non-growing season than 

the growing. Although they may be taking in larger amounts of nutrients from the water system 
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in the early growing season they are readily using them and not storing them as they would be in 

the fall and winter. This study also shows that the dosing of phosphorous not only affects the 

storage of other nutrients, but also affects the location of the storage of those nutrients.  

 

7.1 Recommendations for Future Research 

 In order to learn more about the storage of phosphorous in above- and belowground 

biomass between seasons, it is recommended to repeat the experiment increasing the number of 

specimens. A similar experiment should be conducted, but for a longer period that extends into 

winter, such as December or January, to see the full extent of the non-growing season. To further 

understand the effect of phosphorous on the storage and location of other nutrients within plants 

it is recommend a similar experiment be conducted using more replicates and varying amounts of 

phosphorous.  

 

7.2 Significance of the Study  

 The important findings of this study were that there was a significant difference in the 

storage of nutrients between above- and belowground biomass between months. The findings 

also show that plants that have excess amounts of phosphorous store them differently than under 

normal conditions. The study shows that specimens with increased amounts of phosphorous in 

the water take up more phosphorous and store more in aboveground biomass, even in the non-

growing season.  Although these specimens continue to take up nutrients in the non-growing 

season, it is in lower amounts than the growing. Therefore the aboveground biomass in the non-

growing season would still contain large amounts of phosphorous, and cutting the above ground 



 48 

vegetation, by farmers and landowners, of both Carex lurida and Typha latifolia in the non-

growing season, could release larger amounts of nutrients, specifically phosphorous, into the 

water system than previously estimated. This increase in nutrients could lead to higher levels of 

eutrophication of downstream receiving systems.
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Table 3. ANOVA results for interactions of Typha latifolia with Phosphorous as response 

variable. 

 

 

Table 4. ANOVA results for interactions of Typha latifolia with Calcium as response variable
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Table 5. ANOVA results for interactions of Typha latifolia with Potassium as response variable. 

 

 

Table 6. ANOVA results for interactions of Typha latifolia with Magnesium as response 

variable. 

 

 

Table 7.  ANOVA results for interactions of Typha latifolia with Sulfur as response variable. 
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Table 8. ANOVA results for interactions of Typha latifolia with dry mass as response variable. 

 

 

Table 9. ANOVA results for interactions of Carex lurida with Phosphorous as response variable.  

 

 

Table 10. ANOVA results for interactions of Carex lurida with Calcium as response variable. 
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Table 11. ANOVA results for interactions of Carex lurida with Potassium as response variable. 

 

 

Table 12. ANOVA results for interactions of Carex lurida with Magnesium as response variable. 

 

 

Table 13. ANOVA results for interactions of Carex lurida with Sulfur as response variable. 

 

 

Table 14. ANOVA results for interactions of Carex lurida with dry mass as response variable. 
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